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Introductory Example

Ex. Informing farmers exposed to environmental disasters to increase
insurance take-up.
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Introductory Example

Ex. Informing farmers exposed to environmental disasters to increase
insurance take-up.

How should we design information campaigns?

= Choosing how many people (and whom) to treat.
(i) Spillovers among farmers in the same village (e.g., Cai et al., 2015);
(i) Treatment can be costly: treating each individual is sub-optimal;

(iii) And... network data can be difficult or infeasible to collect.
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Introductory Example

Ex. Informing farmers exposed to environmental disasters to increase
insurance take-up.

How should we design information campaigns?
= Choosing how many people (and whom) to treat.
(i) Spillovers among farmers in the same village (e.g., Cai et al., 2015);
(i) Treatment can be costly: treating each individual is sub-optimal;

(iii) And... network data can be difficult or infeasible to collect.

Q1 Does what the policy maker is currently doing maximize benefits net
of costs/can we conduct inference on policy-optimality?

Q2 Measure that indicates the direction for an improvement/can we
estimate the best policy?
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Introductory Example

Ex. Informing farmers exposed to environmental disasters to increase
insurance take-up.

How should we design information campaigns?
= Choosing how many people (and whom) to treat.
(i) Spillovers among farmers in the same village (e.g., Cai et al., 2015);
(i) Treatment can be costly: treating each individual is sub-optimal;

(iii) And... network data can be difficult or infeasible to collect.

Q1 Does what the policy maker is currently doing maximize benefits net
of costs/can we conduct inference on policy-optimality?

Q2 Measure that indicates the direction for an improvement/can we
estimate the best policy?

Ex2 Cash transfers, health and welfare programs, etc.
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This Paper: Welfare Maximization

Suppose we want to allocate treatments to maximize the average
outcome in the population (welfare) taking spillovers into account.
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This Paper: Welfare Maximization

Suppose we want to allocate treatments to maximize the average
outcome in the population (welfare) taking spillovers into account.

Example: No costs, basic policy, simple model where N; are neighbors of i.

Y, = Dixvy +
~~ SN——

outcome direct effect
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This paper: welfare maximization

Suppose we want to allocate treatments to maximize the average
outcome in the population (welfare) taking spillovers into account.

Example: No costs, basic policy, simple model where N; are neighbors of i.

Y = Dixm + Z Dj X 72
~—~ H,_/ N
outcome direct effect Je

linear spillovers

Treat everybody if y1 + 2 > 0;
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This paper: welfare maximization

Suppose we want to allocate treatments to maximize the average
outcome in the population (welfare) taking spillovers into account.

Example: No costs, basic policy, simple model where N; are neighbors of i.

1 2
\\j,-/ = Dixm +\/\/'| ZD X Y — <Wi|Jg/\:/iDj) v3 +v;.

outcome dlrect effect

linear spillovers quadratic spillovers

Treat everybody if v1 + 2 > 0; if 3 # 0, unclear.
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This paper: welfare maximization

Suppose we want to allocate treatments to maximize the average
outcome in the population (welfare) taking spillovers into account.

Example: No costs, basic policy, simple model where N; are neighbors of i.

1 2
\\j,-/ = Dixm +\/\/'| ZD X Y — <Wi|J§/\:/iDj) v3 +v;.

outcome dlrect effect

linear spillovers quadratic spillovers
Treat everybody if v1 + 2 > 0; if 3 # 0, unclear.

Policy with no information: P(D; =1) = ( )
W(s) = ZEﬁ[Y] B* € arg mﬁax W(3).
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Some remarks to keep in mind

In the paper, | consider ( )

(A) More complex policies:
= Targeted treatments on observables P(D; = 1|X; = x) = n(x; §8);
= Constraints on the policy space.

Ex. Treating differently people in remote areas, younger/older, etc.

(B) Unknown model for spillovers.

Throughout most of this talk: policy is choosing how many people to treat.
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Basic Intuition Behind our Design

@ Network is difficult to collect:

= Consider few unobserved
networks/clusters (e.g., regions).
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Basic Intuition Behind our Design

@ Network is difficult to collect:

= Consider few unobserved
networks/clusters (e.g., regions).

lllustration: D; ~ Bern(}3)

0.0 X x
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Probability of Treatment
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Basic Intuition Behind our Design

@ Network is difficult to collect:
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0.0 i—4
0.00 0.25 0.50 0.75 1.00
Probability of Treatment

July, 2022 5/30

Davide Viviano (UCSD)



Basic Intuition Behind our Design

@ Network is difficult to collect:

= Consider few unobserved
networks/clusters (e.g., regions).

lllustration: D; ~ Bern(}3)

0.0 i—4
0.00 0.25 0.50 0.75 1.00
Probability of Treatment

July, 2022

Davide Viviano (UCSD)



Basic Intuition Behind our Design

@ Network is difficult to collect:

= Consider few unobserved
networks/clusters (e.g., regions).

lllustration: D; ~ Bern(}3)
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Basic Intuition Behind our Design

@ Network is difficult to collect:

= Consider few unobserved
networks/clusters (e.g., regions).

lllustration: D; ~ Bern(}3)

0.9 Reject => Experiment
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Basic Intuition Behind our Design

@ Network is difficult to collect:

= Consider few unobserved
networks/clusters (e.g., regions).

lllustration: D; ~ Bern(}3)

0.0 i—4
0.00 0.25 0.50 0.75 1.00
Probability of Treatment
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Overview and Contributions

@ 40% of experimental papers in 2020 top-five mention spillovers.
@ Standard experiments with spillover effects are geared towards ATEs.
= Not sufficient for welfare maximization.
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Overview and Contributions

@ 40% of experimental papers in 2020 top-five mention spillovers.
@ Standard experiments with spillover effects are geared towards ATEs.
= Not sufficient for welfare maximization.

What we do:

1. Design a short (single-wave) experiment that
o ldentifies policy relevant estimands/direction for welfare improvement;
o Also allows for inference on treatment and spillover effects.
2. Design a multi-wave/sequential experiment that
o Efficiently recovers the best policy;
e Also improves participants’ welfare.
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Overview and Contributions

@ 40% of experimental papers in 2020 top-five mention spillovers.
@ Standard experiments with spillover effects are geared towards ATEs.
= Not sufficient for welfare maximization.

What we do:

1. Design a short (single-wave) experiment that
o ldentifies policy relevant estimands/direction for welfare improvement;
o Also allows for inference on treatment and spillover effects.
2. Design a multi-wave/sequential experiment that
o Efficiently recovers the best policy;
e Also improves participants’ welfare.
= Controls in-sample and out-of-sample regret at a fast rate in T and K:
w(s*) — W(B) < %, In-sample regret < Cl%(K).
| S

out-of-sample regret
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Overview and Contributions

@ 40% of experimental papers in 2020 top-five mention spillovers.
@ Standard experiments with spillover effects are geared towards ATEs.
= Not sufficient for welfare maximization.

What we do:

1. Design a short (single-wave) experiment that
o ldentifies policy relevant estimands/direction for welfare improvement;
o Also allows for inference on treatment and spillover effects.
2. Design a multi-wave/sequential experiment that
o Efficiently recovers the best policy;
e Also improves participants’ welfare.
= Controls in-sample and out-of-sample regret at a fast rate in T and K:
A C Clog(K
Ww(g*) - w(p) < ra In-sample regret < %
| S
out-of-sample regret

= First framework for experimental design to maximize welfare with
unobserved /unknown spillovers (see Viviano, 2019 for observed spill).
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Related Literature

1. Experimental design for

o Inference (with interference): Baird et al., 2018; Eckles et al., 2017;
Basse and Airoldi, 2018; Johari et al. (2020); Viviano (2020)... ;

o Optimization: Pricing in two-sided markets (Wager and Xu, 2021);
Bandits with iid (Bubeck, 2012; Agarwal et al., 2010); Adaptive
randomizations without inference (Kasy and Sattmann, 2020); ... .
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= None studies policy design with network spillovers/partial interference.

Davide Viviano (UCSD) July, 2022 7/30



Related Literature

1. Experimental design for

o Inference (with interference): Baird et al., 2018; Eckles et al., 2017;
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Bandits with iid (Bubeck, 2012; Agarwal et al., 2010); Adaptive
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2. Inference on networks/clusters
e Savje et al. (2020); Aronow and Samii (2017); Hudgens and Halloran
(2008); Ibragimov and Mueller (2010, 2016); Goldsmith-Pinkham and
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= None studies policy/experimental design.

3. Other literature:

e Treatment choice; e Peer groups' allocations;
e Seeding/centrality; e Optimal taxation.

Davide Viviano (UCSD) July, 2022 7/30



Related Literature

1. Experimental design for

o Inference (with interference): Baird et al., 2018; Eckles et al., 2017;
Basse and Airoldi, 2018; Johari et al. (2020); Viviano (2020)... ;

o Optimization: Pricing in two-sided markets (Wager and Xu, 2021);
Bandits with iid (Bubeck, 2012; Agarwal et al., 2010); Adaptive
randomizations without inference (Kasy and Sattmann, 2020); ... .

= None studies policy design with network spillovers/partial interference.

2. Inference on networks/clusters
e Savje et al. (2020); Aronow and Samii (2017); Hudgens and Halloran
(2008); Ibragimov and Mueller (2010, 2016); Goldsmith-Pinkham and
Imbens (2013); ...

= None studies policy/experimental design.

3. Other literature:

e Treatment choice; e Peer groups' allocations;
e Seeding/centrality; e Optimal taxation.

= None studies experimental design/adaptive assignments.
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© Single wave experiment
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Asm Individuals are organized in relatively few large clusters with N units:

o Individuals interact with at most vy many other individuals;
e Each cluster may have different networks;
e Outcomes depend arbitrarily on neighbors’ assignments.
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Asm Individuals are organized in relatively few large clusters with N units:

o Individuals interact with at most vy many other individuals;
e Each cluster may have different networks;
e Outcomes depend arbitrarily on neighbors’ assignments.

Exp:DF|XK = x ~ 7(x; 7) Target:D;| X; = x ~ m(x; B)
‘Q‘ ‘Q
TG a

OO0 ® @

-

&

! N

(Yil,(l)yil,(lek7Xik>,.:1’n§N’kSK X
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Sampling

For the moment, consider:

e t =1 (one-wave experiment), one cluster
@ No covariates: D;|8 ~ Bern(f).
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Sampling

For the moment, consider:

e t =1 (one-wave experiment), one cluster
@ No covariates: D;|8 ~ Bern(f).

Network: (with some simplification, ( )

Af'(,j = f(UF, Uj‘) {i~j}t, Uf~iia Fu.
—_——— ——

graphon latent space

Ex Farmers a given region only interact in the same and nearby villages.
Def yy = 32, 1{i ~ j}.
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Sampling

For the moment, consider:

e t =1 (one-wave experiment), one cluster
@ No covariates: D;|8 ~ Bern(f).

Network: (with some simplification, ( )

Af'(,j = f(UF, Uj‘) {i~j}t, Uf~iia Fu.
—_——— ——

graphon latent space

Ex Farmers a given region only interact in the same and nearby villages.
Def yy = 32, 1{i ~ j}.

Basic outcome model: In cluster k (dropping the superscript k), for
unknown r()

Yii= r(D,, Dy, Us, Uy, W,-\,u,-,l) + 76, Yio: baseline.
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Welfare and Marginal Effects

Lem We write (in cluster k), for v 1 i.i.d. exogenous unobservables
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Welfare and Marginal Effects

Lem We write (in cluster k), for v 1 i.i.d. exogenous unobservables

EB[Y,'j]_’D,'] = m(D,,B) + Tk, for D,' ~ Bern(ﬁ).
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Welfare and Marginal Effects

Lem We write (in cluster k), for v 1 i.i.d. exogenous unobservables

EB[Y,'j]_’D,'] = m(D,,B) + Tk, for D,' ~ Bern(ﬁ).

Def Welfare, marginal effect, direct effect:

WE) = ZalYisl—es, v(8) = 25,

~
marginal effect

A(B) = m(1, ) — m(0, 5)

~
Direct effect
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Welfare and Marginal Effects

Lem We write (in cluster k), for v 1 i.i.d. exogenous unobservables

EB[Y,'j]_’D,'] = m(D,,B) + Tk, for D,' ~ Bern(ﬁ).

Def Welfare, marginal effect, direct effect:

WE) = ZalYisl—es, v(8) = 25,

~
marginal effect

A(B) = m(1, ) — m(0, 5)

~
Direct effect

Remarks:
e V() also captures spillovers (function of A(3) and %Z’ﬂ), );
e V/(p) provides a direction for a welfare improvement;

o f=p"= V() =0.
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Estimation of marginal effects: one-wave experiment

= Goal: estimate V(7).
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Estimation of marginal effects: one-wave experiment

= Goal: estimate V(7).

H B
1. Matching clusters: - .
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Estimation of marginal effects: one-wave experiment

= Goal: estimate V(7).

H B
1. Matching clusters: - .
L

2. Small deviations:

B — nn if k is odd,;
D/.k ~ Bern(fk), Bk = { B + 1, otherwise
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Estimation of marginal effects: one-wave experiment

= Goal: estimate V(7).

H B
1. Matching clusters: - .

2. Small deviations:

B — nn if k is odd,;
D/.k ~ Bern(fk), Bk = { B + 1, otherwise

3. Estimator: for pair g = (k, k + 1) CEZED
Soooy . L Tok+1 gkt L Tok ok
VelB) = 5[V - Vg = 5 [V - W],
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Some Guarantees

Under regularities , with probability at least 1 — 1/n

Ve - V(B)‘ = O( nang +\77,L)

bias

var
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Some Guarantees

Under regularities , with probability at least 1 — 1/n

Ve - V(B)‘ = O( nang +L7,L)

bias

var
= Bias-variance trade-off for tuning parameter ( ).
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Some Guarantees

Under regularities , with probability at least 1 — 1/n

Ve - V(B)‘ = O( nang +L7,L)

bias

var
= Bias-variance trade-off for tuning parameter ( ).

In the paper

= Asymptotic normality of Vy;
= Test statistic to test Hp : V() = 0 using clusters’ pairs ( ).
= Finite cluster asymptotics (K < o0) with pairing :
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Some Guarantees

Under regularities , with probability at least 1 — 1/n

Ve - V(B)‘ = O( nang +£,L)

bias

var
= Bias-variance trade-off for tuning parameter ( ).

In the paper
= Asymptotic normality of Vy;

= Test statistic to test Hp : V() = 0 using clusters’ pairs ( ).
= Finite cluster asymptotics (K < o0) with pairing :

= Guarantees also for treatment/spillover effects ( )
K
1 Al -1/2 om(0, 8)
E[K Ak} = A(B) +o(n12), TS

k=1

where Ak : Weighted difference treated/control in cluster k.
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Practical implications
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Practical implications

0.9
Q
806
(0]
=
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0.0{ { | | |
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Probability of Treatment

= Estimate direct effect A(S) and W(5) — W(0) by pooling
observations
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Practical implications

0.00 0.25 0.50 0.75 1.00
Probability of Treatment

= Estimate direct effect A(S) and W(5) — W(0) by pooling
observations up to a small bias (negligible for inference);
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Practical implications

0.00 0.25 0.50 0.75 1.00
Probability of Treatment

= Estimate direct effect A(S) and W(5) — W(0) by pooling

observations up to a small bias (negligible for inference);

= Estimate marginal effect ‘9%/[(35);
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Practical implications

0.00 0.25 0.50 0.75 1.00
Probability of Treatment

= Estimate direct effect A(S) and W(5) — W(0) by pooling

observations up to a small bias (negligible for inference);

= Estimate marginal effect ‘9%/[(35);

= Also estimate marginal spillover effects amég,ﬁ)_

July, 2022 14 /30
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© Adaptive experiment
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Adaptive experiment

“How do we estimate 3* with a sequential experiment?”.

: k vk
= Treatments/outcomes collected sequentially (D}, Y/) ( ).

Lt ",
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Adaptive experiment

“How do we estimate 3* with a sequential experiment?”.

: k vk
= Treatments/outcomes collected sequentially (D}, Y/) ( ).

Lt ",

1. Initialization (/81,07 52,07 e 76K,0) = (Boa e 7B0)'
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Adaptive experiment

“How do we estimate 3* with a sequential experiment?”.

= Treatments/outcomes collected sequentially (D, " ) (C=D).

1. Initialization (/81,07182,07 e 76K,0) = (Boa e 7/80)'

2. Pairing and circular cross-fitting:

=% IEE Ras
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Adaptive experiment

“How do we estimate 3* with a sequential experiment?”.

= Treatments/outcomes collected sequentially (Df,, Y,) (€E).

1. Initialization (/81,07182,07 e 76K,0) = (Boa e 7/80)'

2. Pairing and circular cross-fitting:

=% IEE Ras

3. Policy update: S+ = Bkt—1 + ke \A/k+2,t_1 (CEEED)
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Adaptive experiment

“How do we estimate 3* with a sequential experiment?”.

= Treatments/outcomes collected sequentially (Df,, Y,) (€E).

1. Initialization (/81,07182,07 e 76K,0) = (Boa e 7/80)'

2. Pairing and circular cross-fitting:

=% IEE Ras

3. Policy update: S+ = Bkt—1 + ke \A/k+2,t_1 (CEEED)
4. Small deviations
Dilft|5k,t ~ Bern(ﬁk,t + 77n)
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Theorem: let K > 2T. Under regularity conditions (

), p=dim(3):

\i

~ 12 ~ 2
mpe g 3 W) - W] < SPREEL wr) - wiy < T

~~

&

. out-of-sample
in-sample
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Theorem: let K > 2T. Under regularity conditions ( ), p=dim(5):

\i

~ 12 ~ 2
mpe g 32 (W) - W] < DL wi - wid) < T

~~

&

. out-of-sample
in-sample

= Rate 1/K for K =2T,;
= For n> Ce™ = W(B*) — W(B) = O(e~T/");
= Stronger than what you obtain with clusters as sampled units.

= 2-60% improvement over grid-search methods in simulations
calibrated to information diffusion and cash-transfers. ( )
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Theorem: let K > 2T. Under regularity conditions ( ), p=dim(5):

~ 2 ~ 12
mx 1 3 (W) - Wiso] < P20 wiey - wid) < 2

out-of-sample

in-sample

= Rate 1/K for K =2T,;
= For n> Ce™ = W(B*) — W(B) = O(e~T/");
= Stronger than what you obtain with clusters as sampled units.
= 2-60% improvement over grid-search methods in simulations
calibrated to information diffusion and cash-transfers. ( )
Why circular fitting?
= | illustrate that with repeated sampling: E%[Yi’ft] # Eﬁk’t[Yi’ft|6k7t].

= Circular fitting avoids bias and maximizes the number of clusters, and
existing cross-fitting techniques would fail here for T > 2. ( )
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Why circular fitting? Illustration

Experiment with repeated sampling
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Why circular fitting? Illustration

! Eﬁk,t[yilft] # Eﬁk,t[yil,(t‘ﬂki];

Experiment with repeated sampling
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Why circular fitting? Illustration

! Eﬁk,t[yilft] # Eﬁk,t[yil,(t‘ﬂki];

Experiment with repeated sampling
Policy on a new population

Davide Viviano (UCSD) July, 2022 18/30



© Additional results and conclusions
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Compare to the policy that does observe the network

Difference betw largest welfare with observed and unobserved network?
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Compare to the policy that does observe the network

Difference betw largest welfare with observed and unobserved network?

Asm1 Costs as opportunity costs without spillovers: ¢ = m(1, 3) — m(0, 3);

Asm?2 Individuals depend on the share of treated friends (can be relaxed);
Asm3 Network is sufficiently dense.
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Asm3 Network is sufficiently dense.

/D\

i o

Davide Viviano (UCSD) July, 2022 20/30



Compare to the policy that does observe the network

Difference betw largest welfare with observed and unobserved network?

Asm1 Costs as opportunity costs without spillovers: ¢ = m(1, 3) — m(0, 3);

Asm?2 Individuals depend on the share of treated friends (can be relaxed);
Asm3 Network is sufficiently dense.

/D\

i o

Thm The welfare with the best policy without observing the network
converges to the largest welfare as we observe the network.
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Some extensions

In the paper:

@ Matching with heterogeneity of covariates’ distribution ;
Inference/estimation with observed heterogeneity betw clusters

o
e Dynamic treatments/path of policies ;
@ Treatments can be assigned only once;

o

Strict quasi-concavity;

@ Simple global interference mechanisms within cluster ;
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Some extensions

In the paper:

@ Matching with heterogeneity of covariates’ distribution ;
Inference/estimation with observed heterogeneity betw clusters

o
e Dynamic treatments/path of policies ;
@ Treatments can be assigned only once;

o

Strict quasi-concavity;

@ Simple global interference mechanisms within cluster ;

In progress
@ Application in collaboration with PxD/Chicago Lab (500k farmers).
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Interesting future directions and related works

@ Value of collecting network information in generic settings?

@ unbounded degree with decaying dependence? (e.g., Theorem 3.1,

)

@ network which also depends on the treatments?
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Interesting future directions and related works

@ Value of collecting network information in generic settings?

@ unbounded degree with decaying dependence? (e.g., Theorem 3.1,

)

@ network which also depends on the treatments?

Some related works

@ Policy Targeting under Network Interference (Viviano, 2019):
= Policy choice using data from an existing experiment.

o Experimental Design under Network Interference (Viviano, 2020):

=- Statistical framework for two-wave experiments with networks: select
participants, and assign treatments for variance reduction.

e Fair Policy Targeting (Viviano and Bradic, 2020):
=- Design fair and efficient treatment rules.
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Conclusions

@ | have introduced a statistical framework for estimation and
inference for welfare-maximizing policies;

o The framework allows for unobserved (and partial) interference;
e The experiment consists of a matched-pair local and two-stage design.

@ | have discussed an adaptive experiment for policy choice;
@ | provide asymptotic properties and regret bounds of the procedure;

@ | illustrate the method in a calibrated simulation.
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dviviano.github.io

Conclusions

@ | have introduced a statistical framework for estimation and
inference for welfare-maximizing policies;

o The framework allows for unobserved (and partial) interference;
e The experiment consists of a matched-pair local and two-stage design.

@ | have discussed an adaptive experiment for policy choice;
@ | provide asymptotic properties and regret bounds of the procedure;

@ | illustrate the method in a calibrated simulation.

Questions? Thanks!

More at dviviano.github.io
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@ Appendix (not for presentation)
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One-wave experiment

Clusters — 10 — 20 — 30 40

Targeting Information 0 5Targeting Information
| | 0.0 i —
0.2 0.4 0.6 0.2 0.4 0.6
Regret (Unit Free) Probability of Treatment
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Why circular?

(i) Circular cross fitting guarantees exogeneity of the parameters over
each iteration;

(ii) Existing sample-splitting/cross-fitting procedure would fail for T > 2.
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Why circular?

(i) Circular cross fitting guarantees exogeneity of the parameters over
each iteration;

(ii) Existing sample-splitting/cross-fitting procedure would fail for T > 2.
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Why circular?

T=2

(i) Circular cross fitting guarantees exogeneity of the parameters over
each iteration;

(ii) Existing sample-splitting/cross-fitting procedure would fail for T > 2.
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Why circular?

(i) Circular cross fitting guarantees exogeneity of the parameters over
each iteration;

(ii) Existing sample-splitting/cross-fitting procedure would fail for T > 2.
(D)
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Identification and estimation: DID

E[Y]
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Identification and estimation: DID

E[Y]

T1—=X
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Identification and estimation: DID

E[Y]

=T

T1=X
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Identification and estimation: DID

E[Y]

=T
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Identification and estimation: DID

E[Y]
X
W(B — nn) + m2—<
™ =T
W(B + 1n) + T1-x
Lx
} } t
t=20 t=1
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Identification and estimation: DID

E[Y]

X
T — T 283/5(5),’7" + Ty — 7—1[
X

(€59)
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Adaptive Experiment: Comparisons

Information : out—-of—sample Cash transfers : out-of-sample
0.6
Q
g 0.02 0.4
I
% 0.01 0.2
0.00 0.0
T=5 T=5 T=10 T=15
Information : in—-sample Cash-transfers : in—sample
al5 0.3
E
-0 0.2
05
2 0.1
0.0 0.0
T=5 T=10 T=15 T=5 T=10 T=15
(CD)
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One simple example

1 2
Y,'71:D,'>< \}/ |N| ZD X Y2 — (MJ;/\;IDJ) 3 +vi.

direct effect

Vv Vv
linear spillovers quadratic spillovers
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One simple example

1 2
Y,'71:D,'>< \}/ |N| ZD X Y2 — (MJ;/\;IDJ) 3 +vi.

direct effect

Vv Vv
linear spillovers quadratic spillovers

Ex. Welfare is approximately: ( : )
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One simple example

1 2
Y,'71:D,'>< \}/ |N| ZD X Y2 — (WJ}%DJ) 3 +vi.

direct effect

linear spillovers quadratic spillovers
Ex. Welfare is approximately: ( : )
2
WB)~B8 m + Br - B3 - B
—~— ~—~ —~—~ ~—
direct effect  linear spillovers  ~ quadratic spillovers cost

Note: this is just an example and the quadratic assumption/model is not
required.
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Example: details

Recall quadratic model

1
\/’.7 = 11’71_'_ N E DJ72 (N E ) 73+V11
’ ‘jEN | ”JGN
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Example: details

Recall quadratic model

1 2
Yii= :1’Y1+’N‘Z (mZQ) Y3+ Vit
JEN; e
Taking expectations

= Yi1= 087+ 87— Q(B)n

Davide Viviano (UCSD) July, 2022 24 /30



Example: details

Recall quadratic model

1
Yii=Dj1m+ N ZDﬂz <./\f Z )73—1—1/,1
Vil & Wil

Taking expectations
= Yi1= B+ B2 — Q(B)
We can write

Q(8) [’N|ZZD2}+E[|

JEN;

1
NE 2 DDy

" johj#hEN;

(€59)
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Example: details

Recall quadratic model

1
Yii=Dj1m+ N ZDﬂz <./\f Z )73—1—1/,1
Vil & Wil

Taking expectations

= Yi1= 087+ 87— Q(B)n3

We can write

Q(5) :E[WliP .Z o} +E[ !

.|2

> DDy

J.hj#heN;
- [ ZD]JrE[ L 3 D-D}
~LNE N2 o

. jhj£heN;

BE[L/N;[]~0 (1—E[1/|N;[]) 822

]

(€59)
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Marginal effects: a close look

Welfare:
W(B) = [ gm(L.5) + (1 - Am(0.5) - &8 ].

WELF COST
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Marginal effects: a close look

Welfare:
W(B) = [ gm(L.5) + (1 - Am(0.5) - &8 ].

WELF COST
Marginal effect:
vie) = [ - 9 20 (mia, ) - mi0. )~ )|

D
RS (D)
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Marginal effects: a close look

Welfare:

W(B) = [ gm(L.5) + (1 - Am(0.5) - &8 ].

WELF COST

Marginal effect:

vie) = [ - 9 20 (mia, ) - mi0. )~ )|

D
RS (D)

(S) Can be identified only with two clusters;
(D) Can be identified with a single cluster.
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Marginal effects: a close look

Welfare:

W(B) = [ gm(L.5) + (1 - Am(0.5) - &8 ].

WELF COST

Marginal effect:

vie) = [ - 9 20 (mia, ) - mi0. )~ )|

D
RS (D)

(S) Can be identified only with two clusters;
(D) Can be identified with a single cluster.

Ex Quadratic model: W(B) = fv1 + 72 — %73 — ¢
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Marginal effects: a close look

Welfare:

W(B) = [ gm(L.5) + (1 - Am(0.5) - &8 ].

WELF COST

Marginal effect:

vie) = [ - 9 20 (mia, ) - mi0. )~ )|

D
RS (D)

(S) Can be identified only with two clusters;
(D) Can be identified with a single cluster.
Ex Quadratic model: W(B) = fv1 + 72 — %73 — ¢

(D) =m—c, W’V%—%aﬁ
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lllustration for targeted treatments
)

Can only treat half of the population: (
= Trade-off between treating people in remote/non remote areas.

Example

0.281

Welfare

0.241
0.1 0.2 0.3 0.4 0.5
Treatment in Remote Regions

0.0

July, 2022 24 /30
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Meta-analysis

“Top-5 econ journals”

Type @ Mention [ Network Exp [l Total Exp

40

30

aEN

2016 2018 2020

@ 40% of experimental papers mention spillovers in their analysis;

@ Industry survey: 22% of companies on online platforms conduct
experiments (total: 8 million; Runge et al., 2021).

()
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Sampling

e Sampling:

(XK, UF) ~iia. FuxFx, Afj=

f(x,k,)gk, Uk, Uj‘)l{ik ~ K}
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Sampling

e Sampling:
(XK, UF) ~iia. FuxFx,  Af = F(XFXF, UF UR W ~ i}
ey P N
<> DR ¢ o
<}~~O G~~i
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Sampling

e Sampling:
(XK, UF) ~iia. FuxFx,  Af = F(XFXF, UF UR W ~ i}
_ Q' _ *,

<> DR ¢ o

<}~~O G~~i

o Y.k = r(_/\/'ik7 Dilfﬁ D/\/T,t’ Uik7X,'k7 UMk7X-A[ik7l/i’t> + ot + Tk,

1,t

e Ex-ante, individuals can only connect with some units: || < yy.

(€59)
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Conditions under cluster heterogeneity

Consider the following model in cluster k
Yii= f(Di, Dy, Ui, Uni L AiLLvin, 9k> + Tk,

where
@ Oy is fixed (and observable and captures cluster heterogeneity;
e for each 6 € ©, there are two clusters (k, k’) such that 6, = 0.
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Conditions under cluster heterogeneity

Consider the following model in cluster k

Yii= f(Di, Dy, U, UM,Ai,-,Vi,1,9k> + Tk,
where

@ Oy is fixed (and observable and captures cluster heterogeneity;
e for each 6 € ©, there are two clusters (k, k’) such that 6, = 0.

Experiments:

@ Single wave experiment: clusters with the same 6 are matched with
each other. Test remains valid for

Ho : B(6) = B*(6) for all 6.

@ Multi-wave experiment: same matching as above 4 no time
dependence: different policies for different groups.

(€9, )
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Regularity conditions

Regularities for consistency/high probability bounds
® ¢j ¢ Is sub-gaussian;

e m(d,f) is uniformly bounded with bounded derivative.

Additional regularities for asymptotic normality
° Var(ﬁ(\_/lk - \_/Ok)> > 0;
o Yv/NY8 =0o(1),n x N;

Regularities for regret bounds (adaptive exp)

e W(p3) is strongly concave (can be relaxed with strict quasi-concavity).
(€59)
(CE)
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Rule of thumb

Choose

n3 % /2 ifn 13 %x,/% <« B
Ny = é é

B otherwise,

where
@ § is the individual outcomes’ variance;

@ ¢ approximates the curvature of W/(/3) (which can be obtained with
three clusters and a quadratic model);

@ (B is the largest bias that the researcher is willing to tolerate (e.g.,
¢B =0.05).

(€59)
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Pivotal test statistics

Theorem: Under regularity conditions ( ), for 9, = o(n~1/%),
w —4 N(0,1)
Var(Vg(8))

Corollary: let

VGV o1&
777: ’ V=— Va
(6 - )15 (V- vy P

then (€9)
n||_>ngo P<]77,| < CVK/Z_l(a)\Ho) >1—a.
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Pairing permits finite cluster asymptotics

— Without pairing concentration at rate (Kn2)~/2 > 7,.
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Pairing permits finite cluster asymptotics

= Without pairing concentration at rate (Kn%)_l/2 > .

Ex. Let 8 € [0, 1], no fixed effects.
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Pairing permits finite cluster asymptotics

= Without pairing concentration at rate (Kn%)_l/2 > .
Ex. Let 8 € [0, 1], no fixed effects.

W(B + nn) — W(B—na) = W(B)-W(B)
)
oW(p) ow(pB)
T8 " s

(1) + O(n7)-
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Pairing permits finite cluster asymptotics

= Without pairing concentration at rate (Kn%)_l/2 > .
Ex. Let 8 € [0, 1], no fixed effects.

W(B + nn) — W(B—na) = W(B)-W(B)
)
oW(p) ow(pB)
T8 " s

(1) + O(n7)-

= (A) equals to zero because of pairing.

= Otherwise, after averaging across all clusters, (A) = O(1/vK) with
randomization.

(€59)
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Formula direct and spillovers

Direct effect

ALy [Y,-kD,-k A D,-k)}
Bk 1 — Bk

n=<
i=1
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Formula direct and spillovers

Direct effect

ALy [Y,-kD,-k A D,-k)}
Bk 1 — Bk

n-
i=1

Spillover effect (no fixed effects)

&k 1 . |:\/Ik(1 B le) _ )/ikJrl(]‘ - Dik+1)]
1 — Bk 1 — Bry1
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Formula direct and spillovers

Direct effect

ne—L1 B 1 — B

jo_ Ly [YEDE YR D)

Spillover effect (no fixed effects)

§k _ 1 " |:\/Ik(1 B le) _ )/ikJrl(]‘ - Dik+1)]
1 — Bk 1 — Bry1

heterogeneous spillover effects (no fixed effects)

S = Ly [ U DOLE =g Y DI =
2mn (1= Bu)P(X} = x) (1 — Bry1) P(X[ T = x)
cluster k cluster k+1

(€59)
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Adaptive experiment: details 1

Outcome (no covariates for simplicity)

Yie = f<Di,t, Dn..t, Ui, Un;, A Vi,t) +at+7k, Vig~P

Description
@ No carry-over effects (relaxed in the extensions);

@ Stationary unobservables v; ¢, but time-varying separable fixed effects
allowed.

(€59)
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Adaptive experiment: details 2

Learning Rate

1. Strong concavity ay ¢ o< 1/t;

2. Strict quasi concavity ay ; o ——t——.
q y k,t Hvk,t‘|2ﬁ

In practice recommended 2.

(€59)
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Details on global optimality

Model
1 1
g SND e Y DJ-)+1/,-, 1X] < 00

Y, =s —_—
! X
( N S NV

—_———
Spill from jeN;:Xj=1

o Finitely many types and spillovers are heterogeneous in types;

@ No direct effects: effects are the opportunity costs of the intervention.
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Details on global optimality cont'd

Why is it sufficient to randomize at the individual level?

o ldeally, we would like to find for all units

S(/Bika aﬁr)ﬂ)? ﬁ*eargmgxs(ﬁ)‘
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Details on global optimality cont'd

Why is it sufficient to randomize at the individual level?

o ldeally, we would like to find for all units

S(/Bika aﬁr)ﬂ)? ﬁ*eargmgxs(ﬁ)‘

@ This choice (weakly) dominates any assignment D € {0, 1}";
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Details on global optimality cont'd

Why is it sufficient to randomize at the individual level?

o ldeally, we would like to find for all units

S(/Bika aﬁr)ﬂ)? B*Gargmgxs(ﬁ).

@ This choice (weakly) dominates any assignment D € {0, 1}";

o If we randomize treatments independently, we can show

Di|Xi = x ~j 4. Bern(8;) = Z Dj ~ B!
A 2
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Details on global optimality cont'd

Why is it sufficient to randomize at the individual level?

o ldeally, we would like to find for all units

S(/Bika aﬁr)ﬂ)? B*Gargmgxs(ﬁ).

@ This choice (weakly) dominates any assignment D € {0, 1}";

o If we randomize treatments independently, we can show

Dj|X; = x ~i.iq. Bern(B%) = WX JGEA;XD B!

= Using bounds on derivatives of s(-), we can obtain the desired result.
(€59)
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Cluster_size — 200 — 400 — 600
Targeting Information Targeting Cash Transfers
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Welfare improvement relative to grid-search

Information Cash Transfer
T = 5 10 15 20 5 10 15 20
200 -0.02 0.01 0.04 0.03 0.29 0.39 0.52 0.32
400 0.00 0.02 0.02 0.03 0.46 0.44 0.58 0.56
600 0.00 0.03 0.02 0.02 0.48 0.48 0.62 0.64
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Coverage from simulations

Information Cash Transfer
K= 10 20 30 40 10 20 30 40
n=200 090 0.95 0.90 0.90 092 094 091 0.89
n=400 098 0.96 0.90 0.92 098 0.96 0.89 0.93
n=600 097 097 095 0.94 0.97 0.99 096 0.93
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Targeting Information

1.001
0.751
- eta
()
2 0.50 - 0.05
o ~ 0.1
- 0.15
0.25
0.00 0.0 0.2 0.4 0.6

Regret (Unit Free)
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Global interference: example

Asm Individuals depend on everybody else through some statistics;

Ex. Change in average number of treated friends in the cluster.
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Global interference: example

Asm Individuals depend on everybody else through some statistics;

Ex. Change in average number of treated friends in the cluster.

Example: outcomes depend on the average treatment in the cluster

1 N
Yi_N;DH-Vi
=

Global
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Global interference: example

Asm Individuals depend on everybody else through some statistics;

Ex. Change in average number of treated friends in the cluster.

Example: outcomes depend on the average treatment in the cluster

N
1 _
W=NZD;+V,-=B+V;+ (D-8)
Hl_,l_/ Op(n—1/2):can be ignored
Global
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Global interference: example

Asm Individuals depend on everybody else through some statistics;

Ex. Change in average number of treated friends in the cluster.

Example: outcomes depend on the average treatment in the cluster

N
1 _
W=NZD;+V,-=B+V;+ (D-8)
Hl_,l_/ Op(n—1/2):can be ignored
Global

With high probability:

' _ 1
r-vo|=oo [ Een )

additional term

from before without v,
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Clusters with different distributions

o Cluster specific distributions: X ~;; 4 FX;
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Clusters with different distributions

o Cluster specific distributions: X ~;; 4 FX;

e Treatments randomized with some probabilities: DX ~ Bern(8);
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Clusters with different distributions

o Cluster specific distributions: X ~;; 4 FX;
e Treatments randomized with some probabilities: DX ~ Bern(8);

e Outcomes can be written as Y* = y(X;, Bx) + sf-‘

1
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Clusters with different distributions

o Cluster specific distributions: X ~;; 4 FX;
e Treatments randomized with some probabilities: DX ~ Bern(8);

e Outcomes can be written as Y* = y(X;, Bx) + sf-‘

1

Target:

wi = Eg, [Y/] = Es,.,[Y{]
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Clusters with different distributions

o Cluster specific distributions: X ~;; 4 FX;
e Treatments randomized with some probabilities: DX ~ Bern(8);

o Outcomes can be written as Y* = y(X;, Bx) + sf-‘

1

Target:

wie = Bg, [Y¥] — Eg,,, [Y] = /y(X: Bi)dFx — /y(X: Bry1)dFE

-~

not identified

Davide Viviano (UCSD) July, 2022 24 /30



Matching clusters with embeddings

Bias characterization:

’E{Vk — \_/kﬂ] — wk) < sup /y(X§ ﬁk+1)(dF)§ - dF)léH)
y(,Brk+1)EM

= Pxk = fxkel
N —’

embeddings
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Matching clusters with embeddings

Bias characterization:
’E[Vk - Vk+1] - wk) < sup /Y(X: Brr1)(dF5 — G'F)l}ﬂ)
y(-,Bry1)EM
= Pxk = fxkel
————

embeddings

Reproducing Kernel Hilbert Space

—— @ RKHS embedding of Q
@ RKHS embedding of P

X
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Matching clusters with embeddings

Bias characterization:
’E[Vk - Vk+1] - wk) < sup /Y(X: Brr1)(dF5 — G'F)l}ﬂ)
y(-,Bry1)EM
= Pxk = fxkel
————

embeddings

Reproducing Kernel Hilbert Space

—— @ RKHS embedding of Q
@ RKHS embedding of P

X

o Consistent estimator of jix are available (Smola et al., 2007;
Muandet, 2016; ...)

(€59)
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Dynamic treatments

= Consider a sequence of parameters

{ﬂt};r:p Di,t ~ Bern(ﬁt)
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Dynamic treatments

= Consider a sequence of parameters
{Be}{—1, Dit~ Bern(f:)

o Take assignments drawn with parameters {3;}. Let

Yi7t = r(/Bty ﬂt—l) + €it-
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Dynamic treatments

= Consider a sequence of parameters
T
{Bt}i=1, Dit ~ Bern(B:)
o Take assignments drawn with parameters {3;}. Let

Yi7t = r(/Bty ﬂt—l) + Eit-

e Long-run welfare

.
> ' T(Be, Bea).
t=1

Davide Viviano (UCSD) July, 2022 24 /30



Dynamic treatments

= Consider a sequence of parameters
T
{Bt}i=1, Dit ~ Bern(B:)
o Take assignments drawn with parameters {3;}. Let

Yi7t = r(/Bty ﬂt—l) + €it-
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.
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e Future decisions must depend on past decisions: optimal path
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Dynamic treatments

= Consider a sequence of parameters
{Be}{—1, Dit~ Bern(f:)

o Take assignments drawn with parameters {3;}. Let

Yi7t = r(/Bty ﬂt—l) + €it-

e Long-run welfare

.
> ' T(Be, Bea).
t=1

e Future decisions must depend on past decisions: optimal path
ﬂ;k = h@(ﬁffhﬂ;;Z)

= Main idea: marginal effect improves rate of convergence. ( )
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Policy gradient: estimation with t = 2

= Many K and only t = 2.
a. Construct triads of clusters;
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Policy gradient: estimation with t = 2

= Many K and only t = 2.

a. Construct triads of clusters;

b. Randomize pairs (31, 52) to each triad;

c. Estimate the marginal effects from past and present;

d. Estimate the functions ar(géi’gz), 8r(§éfﬁ regressing the noisy

measurement from c. onto (1, 52)

= Estimate
0* = arg 2'163@X /V\V/({ﬂ:})a ﬁ: = h@(ﬂ:fl’/8212)'

with gradient descent, with gradient estimated using
or(B1,82) O (B1,62)
0B 7 0B

(€59)
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Endogenous network formation

Asm In each cluster k (dropping the superscript k)

Vie = r(Dies D U, Unis Ao Vit ) + 75+ e
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Endogenous network formation

Asm In each cluster k (dropping the superscript k)

Vie = r(Dies D U, Unis Ao Vit ) + 75+ e

Asm Let
Ak

ij,t —

k k k k : :
f(Ui ) UJ ) Di,t: Dj,t)l{’ NJ}
N——

Treatments

Lem We can write (in cluster k), for v; ; i.i.d. exogenous unobservables

IE5[Yi,f|Di,t] = m(D,-mﬁ) + Tk + for Di,t ~ Bern(ﬁ);
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Endogenous network formation

Asm In each cluster k (dropping the superscript k)

Vie = r(Dies D U, Unis Ao Vit ) + 75+ e

Asm Let
Ak

ij,t — f(Ulk? Ujk? Dllfh D_llft)l{l NJ}
——

Treatments

Lem We can write (in cluster k), for v; ; i.i.d. exogenous unobservables
Eg[Yi¢|Di¢] = m(Dit, B) + 7k + o,  for  Dj; ~ Bern(p);

(a) Network changes over time and depends on treatment assignments;
(b) The people | can connect ex-ante is invariant + no carry-overs;
(c) Marginal effect also captures the effect on the network. ( ),

( )

Davide Viviano (UCSD) July, 2022 24/30



Individuals depend on higher-order degree neighbors

Consider

Yii= f(Di,l, Dy, Ui, Ups, Ai Vi) + 7k + Rem

effect from remaining units

For consistency, we require that Rem = o(1/n,).

= the higher order effect needs to decay at a sufficiently faster rate than
the degree. ( )

Alternative condition:

= By letting Var(y/nVy k1) = O(p), we have p,/(n3) = o(1)
(Theorem 3.1).
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