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Introductory Example

Ex. Informing farmers exposed to environmental disasters to increase
insurance take-up.

How should we design information campaigns?

⇒ Choosing how many people (and whom) to treat.

(i) Spillovers among farmers in the same village (e.g., Cai et al., 2015);

(ii) Treatment can be costly: treating each individual is sub-optimal;

(iii) And... network data can be difficult or infeasible to collect.

Q1 Does what the policy maker is currently doing maximize benefits net
of costs/can we conduct inference on policy-optimality?

Q2 Measure that indicates the direction for an improvement/can we
estimate the best policy?

Ex2 Cash transfers, health and welfare programs, etc.
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This Paper: Welfare Maximization

Suppose we want to allocate treatments to maximize the average
outcome in the population (welfare) taking spillovers into account.

Example: No costs, basic policy, simple model where Ni are neighbors of i .

Yi︸︷︷︸
outcome

= Di × γ1︸ ︷︷ ︸
direct effect

+
1

|Ni |
∑
j∈Ni

Dj × γ2︸ ︷︷ ︸
linear spillovers

−
( 1

|Ni |
∑
j∈Ni

Dj

)2
γ3︸ ︷︷ ︸

quadratic spillovers

+νi .

Treat everybody if γ1 + γ2 > 0; if γ3 6= 0, unclear

Policy with no information: Di i .i .d ., P(Di = 1) = β

W (β) =
1

N

N∑
i=1

Eβ[Yi ], β∗ ∈W (β).
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Some remarks to keep in mind

In the paper, I consider ( illustration )

(A) More complex policies:

⇒ Targeted treatments on observables P(Di = 1|Xi = x) = π(x ;β);

⇒ Constraints on the policy space.

Ex. Treating differently people in remote areas, younger/older, etc.

(B) Unknown model for spillovers.

Throughout most of this talk: policy is choosing how many people to treat.
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Basic Intuition Behind our Design

Network is difficult to collect:

⇒ Consider few unobserved
networks/clusters (e.g., regions).

Illustration: Di ∼ Bern(β)
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Overview and Contributions

40% of experimental papers in 2020 top-five mention spillovers. more

Standard experiments with spillover effects are geared towards ATEs.
⇒ Not sufficient for welfare maximization.

What we do:

1. Design a short (single-wave) experiment that
Identifies policy relevant estimands/direction for welfare improvement;
Also allows for inference on treatment and spillover effects.

2. Design a multi-wave/sequential experiment that
Efficiently recovers the best policy;
Also improves participants’ welfare.

⇒ Controls in-sample and out-of-sample regret at a fast rate in T and K :

W (β∗)−W (β̂)︸ ︷︷ ︸
out-of-sample regret

≤ C

K
, In-sample regret ≤ C log(K )

K
.

⇒ First framework for experimental design to maximize welfare with
unobserved/unknown spillovers (see Viviano, 2019 for observed spill).
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Related Literature

1. Experimental design for
Inference (with interference): Baird et al., 2018; Eckles et al., 2017;
Basse and Airoldi, 2018; Johari et al. (2020); Viviano (2020)... ;
Optimization: Pricing in two-sided markets (Wager and Xu, 2021);
Bandits with iid (Bubeck, 2012; Agarwal et al., 2010); Adaptive
randomizations without inference (Kasy and Sattmann, 2020); ... .

⇒ None studies policy design with network spillovers/partial interference.

2. Inference on networks/clusters
Savje et al. (2020); Aronow and Samii (2017); Hudgens and Halloran
(2008); Ibragimov and Mueller (2010, 2016); Goldsmith-Pinkham and
Imbens (2013); ...

⇒ None studies policy/experimental design.

3. Other literature:

Treatment choice;
Seeding/centrality;

ciao

Peer groups’ allocations;
Optimal taxation.ciao

⇒ None studies experimental design/adaptive assignments.
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Content

1 Single wave experiment

2 Adaptive experiment

3 Additional results and conclusions
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Basic setup

Asm Individuals are organized in relatively few large clusters with N units:

Individuals interact with at most γN many other individuals;
Each cluster may have different networks;
Outcomes depend arbitrarily on neighbors’ assignments.

Target:Di |Xi = x ∼ π(x ; β̂)

X

Exp:Dk
i |X k

i = x ∼ π(x ; ?)

(
Y k
i ,1,Y

k
i ,0,D

k
i ,X

k
i

)n
i=1
, n ≤ N, k ≤ K
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Sampling

For the moment, consider:

t = 1 (one-wave experiment), one cluster

No covariates: Di |β ∼ Bern(β).

Network: (with some simplification, ( general ))

Ak
i ,j = f (Uk

i ,U
k
j )︸ ︷︷ ︸

graphon

1{i ∼ j}︸ ︷︷ ︸
latent space

, Uk
i ∼i .i .d . FU .

Ex Farmers a given region only interact in the same and nearby villages.

Def γN =
∑

i 1{i ∼ j}.

Basic outcome model: In cluster k (dropping the superscript k), for
unknown r() het

Yi ,1 = r
(
Di ,DNi

,Ui ,UNi
, |Ni |, νi ,1

)
+ τk , Yi ,0 : baseline.
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Welfare and Marginal Effects

Lem We write (in cluster k), for νi ,1 i.i.d. exogenous unobservables

Eβ[Yi ,1|Di ] = m(Di , β) + τk , for Di ∼ Bern(β).

Def Welfare, marginal effect, direct effect: example

W (β) = Eβ[Yi ,1]−cβ, V (β) =
∂W (β)

∂β︸ ︷︷ ︸
marginal effect

, ∆(β) = m(1, β)−m(0, β)︸ ︷︷ ︸
Direct effect

.

Remarks:

V (β) also captures spillovers (function of ∆(β) and ∂m(d ,β)
∂β , more );

V (β) provides a direction for a welfare improvement;

β = β∗ ⇒ V (β) = 0.
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Estimation of marginal effects: one-wave experiment

⇒ Goal: estimate V (β).

1. Matching clusters:

2. Small deviations:

Dk
i ∼ Bern(βk), βk =

{
β − ηn if k is odd;

β + ηn otherwise

3. Estimator: for pair g = (k , k + 1) illustration

V̂g (β) =
1

2ηn

[
Ȳ k+1

1 − Ȳ k+1
0

]
− 1

2ηn

[
Ȳ k

1 − Ȳ k
0

]
.

Davide Viviano (UCSD) Policy Design in Experiments with (Unknown) Interference July, 2022 12 / 30



Estimation of marginal effects: one-wave experiment

⇒ Goal: estimate V (β).

1. Matching clusters:

2. Small deviations:

Dk
i ∼ Bern(βk), βk =

{
β − ηn if k is odd;

β + ηn otherwise

3. Estimator: for pair g = (k , k + 1) illustration

V̂g (β) =
1

2ηn

[
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0

]
.

Davide Viviano (UCSD) Policy Design in Experiments with (Unknown) Interference July, 2022 12 / 30



Some Guarantees

Under regularities more , with probability at least 1− 1/n∣∣∣V̂g − V (β)
∣∣∣ = Õ

(√ γN
n × η2

n︸ ︷︷ ︸
var

+ ηn︸︷︷︸
bias

)

⇒ Bias-variance trade-off for tuning parameter ( rule of thumb ).

In the paper

⇒ Asymptotic normality of V̂g ;
⇒ Test statistic to test H0 : V (β) = 0 using clusters’ pairs ( details ).

⇒ Finite cluster asymptotics (K <∞) with pairing more , power sim .

⇒ Guarantees also for treatment/spillover effects ( more )

E
[ 1

K

K∑
k=1

∆̂k

]
= ∆(β) + o(n−1/2),

∂m(0, β)

∂β
.

where ∆̂k : Weighted difference treated/control in cluster k .
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(√ γN
n × η2

n︸ ︷︷ ︸
var

+ ηn︸︷︷︸
bias

)
⇒ Bias-variance trade-off for tuning parameter ( rule of thumb ).

In the paper

⇒ Asymptotic normality of V̂g ;
⇒ Test statistic to test H0 : V (β) = 0 using clusters’ pairs ( details ).

⇒ Finite cluster asymptotics (K <∞) with pairing more , power sim .

⇒ Guarantees also for treatment/spillover effects ( more )

E
[ 1

K

K∑
k=1

∆̂k

]
= ∆(β) + o(n−1/2),

∂m(0, β)

∂β
.

where ∆̂k : Weighted difference treated/control in cluster k .

Davide Viviano (UCSD) Policy Design in Experiments with (Unknown) Interference July, 2022 13 / 30



Practical implications
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Types Information

Objective Functions

Estimate direct effect ∆(β) and W (β)−W (0) up to negligible
(small) bias;

Estimate marginal effect ∂W (β)
∂β ;

Also estimate marginal spillover effects ∂m(0,β)
∂β .
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Content

1 Single wave experiment

2 Adaptive experiment

3 Additional results and conclusions
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Adaptive experiment

“How do we estimate β∗ with a sequential experiment?”.

⇒ Treatments/outcomes collected sequentially (Dk
i ,t ,Y

k
i ,t) ( more ).

1. Initialization (β1,0, β2,0, · · · , βK ,0) = (β0, · · · , β0).

2. Pairing and circular cross-fitting:

3. Policy update: βk,t = βk,t−1 + αk,tV̂k+2,t−1 ( learning rate )

4. Small deviations
Dk
i ,t |βk,t ∼ Bern(βk,t ± ηn)
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Properties

Theorem: let K ≥ 2T . Under regularity conditions ( more ), p = dim(β):

max
k

1

T

T∑
t=1

[
W (β∗)−W (βk,t)

]
≤ C̄p2 log(T )

T︸ ︷︷ ︸
in-sample

, W (β∗)−W (β̂) ≤ C̄p2

T︸ ︷︷ ︸
out-of-sample

⇒ Rate 1/K for K = 2T ;

⇒ For n ≥ C̄ eT ⇒W (β∗)−W (β̂) = O(e−T/κ);

⇒ Stronger than what you obtain with clusters as sampled units.

⇒ 2-60% improvement over grid-search methods in simulations
calibrated to information diffusion and cash-transfers. ( more )

Why circular fitting?

⇒ I illustrate that with repeated sampling: Eβk,t [Y k
i ,t ] 6= Eβk,t [Y k

i ,t |βk,t ].
⇒ Circular fitting avoids bias and maximizes the number of clusters, and

existing cross-fitting techniques would fail here for T > 2. ( more )
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Why circular fitting? Illustration
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Compare to the policy that does observe the network

Difference betw largest welfare with observed and unobserved network?

Asm1 Costs as opportunity costs without spillovers: c = m(1, β)−m(0, β);

Asm2 Individuals depend on the share of treated friends (can be relaxed);

Asm3 Network is sufficiently dense.

D

Thm The welfare with the best policy without observing the network
converges to the largest welfare as we observe the network. more
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Some extensions

In the paper:

Matching with heterogeneity of covariates’ distribution more ;

Inference/estimation with observed heterogeneity betw clusters more .

Dynamic treatments/path of policies more ;

Treatments can be assigned only once;

Strict quasi-concavity;

Simple global interference mechanisms within cluster more ;

...

In progress

Application in collaboration with PxD/Chicago Lab (500k farmers).
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Interesting future directions and related works

Value of collecting network information in generic settings?

unbounded degree with decaying dependence? (e.g., Theorem 3.1,
more )

network which also depends on the treatments? more

Some related works

Policy Targeting under Network Interference (Viviano, 2019):

⇒ Policy choice using data from an existing experiment.

Experimental Design under Network Interference (Viviano, 2020):

⇒ Statistical framework for two-wave experiments with networks: select
participants, and assign treatments for variance reduction.

Fair Policy Targeting (Viviano and Bradic, 2020):

⇒ Design fair and efficient treatment rules.
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Conclusions

I have introduced a statistical framework for estimation and
inference for welfare-maximizing policies;

The framework allows for unobserved (and partial) interference;
The experiment consists of a matched-pair local and two-stage design.

I have discussed an adaptive experiment for policy choice;

I provide asymptotic properties and regret bounds of the procedure;

I illustrate the method in a calibrated simulation.

Questions? Thanks!

More at dviviano.github.io
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One-wave experiment
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( back )
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Why circular?

T = 3

(i) Circular cross fitting guarantees exogeneity of the parameters over
each iteration;

(ii) Existing sample-splitting/cross-fitting procedure would fail for T > 2.
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Why circular?

T = 2

(i) Circular cross fitting guarantees exogeneity of the parameters over
each iteration;

(ii) Existing sample-splitting/cross-fitting procedure would fail for T > 2.
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Identification and estimation: DID

t

E[Y ]

t = 0 t = 1
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Identification and estimation: DID

t

E[Y ]

t = 0 t = 1

×

×

τ2 − τ1
×W (β + ηn) + τ1

W (β − ηn) + τ2 ×
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Identification and estimation: DID

t

E[Y ]

t = 0 t = 1

×

×

τ2 − τ1
×

×
2∂W (β)
∂β ηn + τ2 − τ1

( back )
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Adaptive Experiment: Comparisons
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One simple example

Yi ,1 = Di × γ1︸︷︷︸
direct effect

+
1

|Ni |
∑
j∈Ni

Dj × γ2︸ ︷︷ ︸
linear spillovers

−
( 1

|Ni |
∑
j∈Ni

Dj

)2
γ3︸ ︷︷ ︸

quadratic spillovers

+νi .

Ex. Welfare is approximately : ( details , back )

W (β) ' β γ1︸︷︷︸
direct effect

+ βγ2︸︷︷︸
linear spillovers

− β2γ3︸︷︷︸
∼ quadratic spillovers

− cβ︸︷︷︸
cost

Note: this is just an example and the quadratic assumption/model is not
required.
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Example: details

Recall quadratic model

Yi ,1 = Di ,1γ1 +
1

|Ni |
∑
j∈Ni

Djγ2 −
( 1

|Ni |
∑
j∈Ni

Dj

)2
γ3 + νi ,1

Taking expectations

⇒ Yi ,1 = βγ1 + βγ2 − Q(β)γ3

We can write

Q(β) = E
[ 1

|Ni |2
∑
j∈Ni

D2
j

]
+ E

[ 1

|Ni |2
∑

j ,h,j 6=h∈Ni

DjDh

]
= E

[ 1

|Ni |2
∑
j∈Ni

Dj

]
︸ ︷︷ ︸

βE[1/|Ni |]'0

+E
[ 1

|Ni |2
∑

j ,h,j 6=h∈Ni

DjDh

]
︸ ︷︷ ︸

(1−E[1/|Ni |])β2'β2

( back )
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Marginal effects: a close look

Welfare: back

W (β) =
[
βm(1, β) + (1− β)m(0, β)︸ ︷︷ ︸

WELF

− cβ︸︷︷︸
COST

]
,

Marginal effect:

V (β) =
[
β
∂m(1, β)

∂β
+ (1− β)

∂m(0, β)

∂β︸ ︷︷ ︸
(S)

+ (m(1, β)−m(0, β)− c)︸ ︷︷ ︸
(D)

]
.

(S) Can be identified only with two clusters;

(D) Can be identified with a single cluster.

Ex Quadratic model: W (β) = βγ1 + βγ2 − β2γ3 − cβ

(D) = γ1 − c ,
∂m(d , β)

∂β
' γ2 − 2γ3β
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Illustration for targeted treatments

Can only treat half of the population: ( back )

⇒ Trade-off between treating people in remote/non remote areas.

Example

Davide Viviano (UCSD) Policy Design in Experiments with (Unknown) Interference July, 2022 24 / 30



Meta-analysis

“Top-5 econ journals”

0

10

20

30

40

2016 2018 2020

Type Mention Network Exp Total Exp

40% of experimental papers mention spillovers in their analysis;

Industry survey: 22% of companies on online platforms conduct
experiments (total: 8 million; Runge et al., 2021).

( back )
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Sampling

Sampling:

(X k
i ,U

k
i ) ∼i .i .d . FU|XFX , Ak

i ,j = f (X k
i ,X

k
j ,U

k
i ,U

k
j )1{ik ∼ jk}

→ →

Y k
i ,t = r

(
N k

i ,D
k
i ,t ,DN k

i ,t
,Uk

i ,X
k
i ,UN k

i
,XN k

i
, νi ,t

)
+ αt + τk ,

Ex-ante, individuals can only connect with some units: |Ni | ≤ γN .

( back )
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Conditions under cluster heterogeneity

Consider the following model in cluster k

Yi ,1 = r
(
Di ,DNi

,Ui ,UNi
,Ai ,·, νi ,1, θk

)
+ τk ,

where

θk is fixed (and observable and captures cluster heterogeneity;

for each θ ∈ Θ, there are two clusters (k , k ′) such that θk = θk ′ .

Experiments:

Single wave experiment: clusters with the same θk are matched with
each other. Test remains valid for

H0 : β(θ) = β∗(θ) for all θ.

Multi-wave experiment: same matching as above + no time
dependence: different policies for different groups.

( back , backextensions )
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Regularity conditions

Regularities for consistency/high probability bounds

εi ,t is sub-gaussian;

m(d , β) is uniformly bounded with bounded derivative.

Additional regularities for asymptotic normality

Var
(√

n(Ȳ k
1 − Ȳ k

0 )
)
> 0;

γN/N
1/8 = o(1), n ∝ N;

Regularities for regret bounds (adaptive exp)

W (β) is strongly concave (can be relaxed with strict quasi-concavity).

( back )
( back2 )
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Rule of thumb

Choose

ηn =

{
n−1/3 ×

√
2σ̂
ĉ if n−1/3 ×

√
2σ̂
ĉ < B

B otherwise,

where

σ̂ is the individual outcomes’ variance;

ĉ approximates the curvature of W (β) (which can be obtained with
three clusters and a quadratic model);

ĉB is the largest bias that the researcher is willing to tolerate (e.g.,
ĉB = 0.05).

( back )
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Pivotal test statistics

Theorem: Under regularity conditions ( more ), for ηn = o(n−1/4),

V̂g (β)− V (β)√
Var(V̂g (β))

→d N (0, 1)

Corollary: let

Tn =

√
GV̄√

(G − 1)−1
∑G

g=1(V̂g − V̄ )2
, V̄ =

1

G

G∑
g=1

V̂g ,

then ( back )

lim
n→∞

P
(
|Tn| ≤ cvK/2−1(α)|H0

)
≥ 1− α.
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Pairing permits finite cluster asymptotics

⇒ Without pairing concentration at rate (Kη2
n)−1/2 � ηn.

Ex. Let β ∈ [0, 1], no fixed effects.

W (β + ηn)−W (β−ηn) = W (β)−W (β)︸ ︷︷ ︸
(A)

+
∂W (β)

∂β
ηn −

∂W (β)

∂β
(−ηn) + O(η2

n).

⇒ (A) equals to zero because of pairing.

⇒ Otherwise, after averaging across all clusters, (A) = O(1/
√
K ) with

randomization.

( back )
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Formula direct and spillovers

Direct effect

∆̂k =
1

n

n∑
i=1

[Y k
i D

k
i

βk
−

Y k
i (1− Dk

i )

1− βk

]

Spillover effect (no fixed effects)

Ŝk
0 =

1

2nηn

n∑
i=1

[Y k
i (1− Dk

i )

1− βk
−

Y k+1
i (1− Dk+1

i )

1− βk+1

]

heterogeneous spillover effects (no fixed effects)

Ŝk
0 (x) =

1

2nηn

n∑
i=1

[ Y k
i (1− Dk

i )1{X k
i = x}

(1− βk)P(X k
i = x)︸ ︷︷ ︸

cluster k

−
Y k+1
i (1− Dk+1

i )1{X k+1
i = x}

(1− βk+1)P(X k+1
i = x)︸ ︷︷ ︸

cluster k+1

]

( back )
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Adaptive experiment: details 1

Outcome (no covariates for simplicity)

Yi ,t = r
(
Di ,t ,DNi ,t ,Ui ,UNi

,Ai ,·, νi ,t

)
+ αt + τk , νi ,t ∼ P

Description

No carry-over effects (relaxed in the extensions);

Stationary unobservables νi ,t , but time-varying separable fixed effects
allowed.

( back )
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Adaptive experiment: details 2

Learning Rate

1. Strong concavity αk,t ∝ 1/t;

2. Strict quasi concavity αk,t ∝ 1
||V̂k,t ||2

√
T

.

In practice recommended 2.
( back )
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Details on global optimality

Model

Yi = s
( 1

|N 1
i |
∑
j∈N 1

i

Dj

︸ ︷︷ ︸
Spill from j∈Ni :Xj=1

, · · · , 1

|N |X |i |

∑
j∈N |X|i

Dj

)
+ νi , |X | <∞

Finitely many types and spillovers are heterogeneous in types;

No direct effects: effects are the opportunity costs of the intervention.
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Details on global optimality cont’d

Why is it sufficient to randomize at the individual level?

Ideally, we would like to find for all units

s
(
β∗1 , · · · , β∗|X |

)
, β∗ ∈ argmax

β
s(β).

This choice (weakly) dominates any assignment D ∈ {0, 1}N ;

If we randomize treatments independently, we can show

Di |Xi = x ∼i .i .d . Bern(β∗x )⇒ 1

|N x
i |
∑
j∈N x

i

Dj ' β∗x !

⇒ Using bounds on derivatives of s(·), we can obtain the desired result.

( back )
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Regret

Cluster_size 200 400 600
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R
e
g

re
t

Targeting Cash Transfers

( back )
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Welfare improvement relative to grid-search

Information Cash Transfer

T = 5 10 15 20 5 10 15 20

200 -0.02 0.01 0.04 0.03 0.29 0.39 0.52 0.32

400 0.00 0.02 0.02 0.03 0.46 0.44 0.58 0.56

600 0.00 0.03 0.02 0.02 0.48 0.48 0.62 0.64

( back )
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Coverage from simulations

Information Cash Transfer

K = 10 20 30 40 10 20 30 40

n = 200 0.90 0.95 0.90 0.90 0.92 0.94 0.91 0.89

n = 400 0.98 0.96 0.90 0.92 0.98 0.96 0.89 0.93

n = 600 0.97 0.97 0.95 0.94 0.97 0.99 0.96 0.93

( back )
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Vary ηn

0.00

0.25

0.50

0.75

1.00
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Regret (Unit Free)

P
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e
r eta

0.05
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( back )
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Global interference: example

Asm Individuals depend on everybody else through some statistics;

Ex. Change in average number of treated friends in the cluster.

Example: outcomes depend on the average treatment in the cluster

Yi =
1

N

N∑
i=1

Di︸ ︷︷ ︸
Global

+νi= β + νi + (D̄ − β)︸ ︷︷ ︸
Op(n−1/2):can be ignored

With high probability:

∣∣∣V̂ − V (β)
∣∣∣ = Op

( √
1

nη2
n

+ ηn︸ ︷︷ ︸
from before without γn

+ 1/
√
nη2

n︸ ︷︷ ︸
additional term

)
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Clusters with different distributions

Cluster specific distributions: X k
i ∼i .i .d . F

k
X ;

Treatments randomized with some probabilities: Dk
i ∼ Bern(βk);

Outcomes can be written as Y k
i = y(Xi , βk) + εki

Target:

ωk = Eβk [Y k
i ]− Eβk+1

[Y k
i ]=

∫
y(x ;βk)dF k

X −
∫

y(x ;βk+1)dF k
X︸ ︷︷ ︸

not identified
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Matching clusters with embeddings

Bias characterization:∣∣∣E[Ȳk − Ȳk+1

]
− ωk

∣∣∣ ≤ sup
y(·,βk+1)∈M

∫
y(x ;βk+1)(dF k

X − dF k+1
X )

= µX k − µX k+1︸ ︷︷ ︸
embeddings

Consistent estimator of µ̂X are available (Smola et al., 2007;
Muandet, 2016; ...)

( back )
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Dynamic treatments

⇒ Consider a sequence of parameters

{βt}Tt=1, Di ,t ∼ Bern(βt)

Take assignments drawn with parameters {βt}. Let

Yi,t = Γ(βt , βt−1) + εi,t .

Long-run welfare
T∑
t=1

qtΓ(βt , βt−1).

Future decisions must depend on past decisions: optimal path

β∗
t = hθ(β∗

t−1, β
∗
t−2)

⇒ Main idea: marginal effect improves rate of convergence. ( back )
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Policy gradient: estimation with t = 2

⇒ Many K and only t = 2.

a. Construct triads of clusters;

b. Randomize pairs (β1, β2) to each triad;
c. Estimate the marginal effects from past and present;

d. Estimate the functions ∂Γ(β1,β2)
∂β1

, ∂Γ(β1,β2)
∂β2

regressing the noisy

measurement from c. onto (β1, β2)

⇒ Estimate

θ∗ = argmax
θ∈Θ

W̃ ({β∗t }), β∗t = hθ(β∗t−1, β
∗
t−2).

with gradient descent, with gradient estimated using
̂∂Γ(β1,β2)
∂β1

,
̂∂Γ(β1,β2)
∂β2

.

( back )
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with gradient descent, with gradient estimated using
̂∂Γ(β1,β2)
∂β1

,
̂∂Γ(β1,β2)
∂β2

.
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Endogenous network formation

Asm In each cluster k (dropping the superscript k)

Yi ,t = r
(
Di ,t ,DNi,t

,Ui ,UNi,t
,Ai ,·,t , νi ,t

)
+ τk + αt .

Asm Let
Ak
i ,j ,t = f (Uk

i ,U
k
j , D

k
i ,t ,D

k
j ,t︸ ︷︷ ︸

Treatments

)1{i ∼ j}

Lem We can write (in cluster k), for νi ,t i.i.d. exogenous unobservables

Eβ[Yi ,t |Di ,t ] = m(Di ,t , β) + τk + αt , for Di ,t ∼ Bern(β);

(a) Network changes over time and depends on treatment assignments;

(b) The people I can connect ex-ante is invariant + no carry-overs;

(c) Marginal effect also captures the effect on the network. ( back beg ),
( back ext )
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Individuals depend on higher-order degree neighbors

Consider

Yi ,1 = r
(
Di ,1,DNi

,Ui ,UNi
,Ai ,·, νi

)
+ τk + Rem︸︷︷︸

effect from remaining units

For consistency, we require that Rem = o(1/ηn).

⇒ the higher order effect needs to decay at a sufficiently faster rate than
the degree. ( back ext )

Alternative condition:

⇒ By letting Var(
√
nV̂k,k+1) = O(ρn), we have ρn/(nη2

n) = o(1)
(Theorem 3.1).
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