Trade with Nominal Rigidities:
 Understanding the Unemployment and Welfare Effects of the China Shock

Andrés Rodríguez-Clare, Mauricio Ulate, Jose P. Vasquez
NBER SI International Trade \& Investment

July 13, 2022

The views expressed in this paper do not necessarily reflect the views of the FRBSF or the Fed System

Motivation

- Autor, Dorn, and Hanson (2013) results

Table: Effects of Exposure to China

Unemployment	$0.221^{* *}$
Not In Labor Force (NILF)	$0.553^{* *}$
Population	-0.050
Manufacturing Employment	$-0.596^{* *}$
Non-Manufacturing Employment	-0.178
Manufacturing Wage	0.150
Non-Manufacturing Wage	$-0.761^{* *}$

Motivation

- Standard model: Full employment \rightarrow all effects on wages
- Add upward sloping labor supply \rightarrow employment effects
- Need labor supply to be extremely elastic
- No unemployment; different welfare implications
- Our approach: Add downward-nominal wage rigidity (DNWR)

This paper

- CDP + nest (EoS $1 / \nu$ across sectors and $1 / \kappa$ across regions)
- Add DNWR as in Schmitt-Grohe and Uribe (2016)
- Wage can fall by no more than $100(1-\delta) \%$ per year
- Dynamic exact hat algebra for counterfactual analysis
- Data: WIOD + 50 U.S. states (with migration), 2000-2007
- Calibrate China shock to match predicted change in US imports from China
- Pick ν, κ, δ to match ADH on unemployment, participation, population
- Study implications for employment and welfare

Preview of Findings

- DNWR has important effects at state level:
- No DNWR $\rightarrow 1$ state loses and suffers declines in L
- DNWR $\rightarrow 8$ states lose, and 31 suffer declines in L
- Aggregate: $1.5 \mathrm{pp} \uparrow$ in unemployment in 2007
- Decent fit to non-targeted moments
- DNWR reduces avg U.S. welfare gain by $1 / 4$ to $1 / 3$

Literature

- Aggregate and dist. effects of China Shock: ADH'13, CDP'19, GRY'21, AAE'21
- Trade + Search and matching frictions: Dix-Carneiro et al.'20, Kim \& Vogel'20
- Trade + Wage rigidities: EK + Neiman'14, Costinot et al'22
- Nominal rigidities in macro: NS'18, Shimer'04, Schmitt-Grohe \& Uribe'16
- Microeconomic evidence for DNWR: Dickens et al.'07, Hazell-Taska'20

Outline

- Model
- Data and Calibration
- Results

Basic Assumptions

- I regions (M inside US), S market sectors plus home production
- Cobb-Douglas preferences $\left(\alpha_{i, s}\right)$ across market sectors. Armington assumption within sectors with EoS $\sigma_{s}>1$. All income devoted to consumption
- Cobb-Douglas production using labor ($\phi_{i, s}$) and intermediate inputs ($\phi_{i, k s}$)
- Perfect competition with iceberg trade costs $\tau_{i j, s, t} \geq 1$

$$
P_{i, t}=\prod_{s=1}^{S} P_{i, s, t}^{\alpha_{i, s}}, \quad P_{j, k, t}^{1-\sigma_{k}}=\sum_{i=1}^{l} p_{i j, k, t}^{1-\sigma_{k}}
$$

where $p_{i j, k, t}=\tau_{i j, k, t} A_{i, k, t}^{-1} W_{i, k, t}^{\phi_{i, k}} \prod_{s=1}^{S} P_{i, s, t}^{\phi_{i, s k}}$

Market Clearing

- Exogenous trade imbalances: $P_{i, t} C_{i, t}=\sum_{s=1}^{S} W_{i, s, t} L_{i, s, t}+D_{i, t}$
- Equilibrium in sector s, region i, at time t :

$$
R_{i, s, t}=\sum_{j=1}^{I} \lambda_{i j, s, t}\left(\alpha_{j, s} P_{j, t} C_{j, t}+\sum_{k=1}^{S} \phi_{j, s k} R_{j, k, t}\right)
$$

with trade shares $\lambda_{i j, k, t}=\frac{p_{i j, k, t}^{1-\sigma_{k}}}{\sum_{r=1}^{1} p_{r j, k, t}^{1-\sigma_{k}}}$

- Labor market clearing: $W_{i, k, t} L_{i, k, t}=\phi_{i, k} R_{i, k, t}$
- Standard model: free mobility and $\sum_{k=1}^{S} L_{i, k, t}=\bar{L}_{i, t}$

Labor Supply

- As in CDP:
- Agents can move across sectors and regions within U.S., only across sectors in other countries
- Forward-looking agents (with perfect foresight) move subject to relocation costs
- In region i, time t, home production yields μ_{i} and sector s yields $\omega_{i, s, t}$
- Different elasticities across sectors ($\frac{1}{\nu}$) and regions ($\frac{1}{\kappa}$)
- Nested Gumbel for amenity shocks across regions and sectors
- In CDP: $\omega_{i, s, t} \equiv \frac{W_{i, s, t}}{P_{i, t}}$. With DNWR: $\omega_{i, s, t} \equiv \frac{W_{i, s, t}}{P_{i, t}} \frac{L_{i, s, t}}{\ell_{i, s, t}}$
- This block determines labor supply $\ell_{i, s, t}$

Nominal Wage Rigidity

- DNWR: $W_{i, s, t}^{L C U} \geq \delta_{s} W_{i, s, t-1}^{L C U}$
- Maximum employment: $L_{i, s, t} \leq \ell_{i, s, t}$
- Complementary slackness:

$$
\left(\ell_{i, s, t}-L_{i, s, t}\right)\left(W_{i, s, t}^{L C U}-\delta_{s} W_{i, s, t-1}^{L C U}\right)=0
$$

- For regions outside of the U.S., with exchange rate $E_{i, t}$ given in dollars per LCU, DNWR implies

$$
W_{i, s, t} \geq \frac{E_{i, t}}{E_{i, t-1}} \delta_{s} W_{i, s, t-1}
$$

Exchange Rate and Nominal Anchor

Exchange rate (options for third countries):

1. ER flexibility: $E_{i, t}$ can adjust enough so that DNWR never binds

- Implies $L_{i, s, t}=\ell_{i, s, t} \forall i>M$, unemployment only in US states
- This will be our baseline

2. Fixed exchange rate: $E_{i, t}=E_{i, t-1}$

- Implies that DNWR takes same form in other countries as in US

Nominal anchor: World aggregate demand in \$ grows at γ

$$
\sum_{i=1}^{I} \sum_{s=1}^{S} W_{i, s, t} L_{i, s, t}=\gamma \sum_{i=1}^{l} \sum_{s=1}^{S} W_{i, s, t-1} L_{i, s, t-1}
$$

Dynamic Hat Algebra

- Assume agents did not expect China shock but then in 2001 know how it will unfold with perfect foresight
- Match 2000 data $(t=0)$ assuming this year is at steady state (no unemployment)
- Denote $\dot{x}_{t} \equiv x_{t} / x_{t-1}$ and $\hat{x}_{t} \equiv \dot{x}_{t}^{\prime} / \dot{x}_{t}$
- Goal is to compute relative changes \hat{x}_{t} only due to the China shock modeled as a sequence of shocks starting in 2001.

Outline

- Model
- Data and Calibration
- Results

Data

87 regions: 50 U.S. states, 36 other countries, aggregate RoW
15 sectors: home production, 12 manufacturing sectors, services, agriculture

- WIOD: 35 sectors for 40 countries for 2000
- 2002 CFS: trade flows across U.S. States for 43 commodities
- 2008 U.S. Census: trade between U.S. states and other countries
- BEA: state-level production and consumption in serv. and agric. for 2000
- BLS and OECD: labor force participation for 2000
- CPS + ACS: sector-level bilateral migration flows between U.S. states for 2000

Exposure to China

$$
\text { Exposure }_{i} \equiv \sum_{s=1}^{S} \frac{L_{i, s, 2000}}{L_{i, 2000}} \frac{\Delta X_{C, U S, s}^{2007-2000}}{R_{U S, s, 2000}}
$$

- $L_{i, s, 2000} \equiv$ employment in (i, s) in 2000
- $R_{U S, s, 2000}=$ U.S. sales in s in 2000
- $\Delta X_{C, U S, S}^{2007-2000}=$ predicted change in exports from China to the US from 2000 to 2007 in s
- Re-normalize to have the same mean as the measure in ADH

Chinese Technology Changes

- Need $\hat{A}_{\text {China }, s, t}$ for $s=1, \ldots, 12$ and $t=2001, \ldots, 2007$
- Set $\hat{A}_{\text {China,s,t }}=\hat{A}_{\text {China }, t}^{1} \hat{A}_{\text {China,s }}^{2}$ (19 parameters instead of 84)
- Predict ΔX in USA using ΔX from other countries:

$$
\begin{aligned}
\Delta X_{C,, 4, s}^{2007-2000} & =b_{2} \Delta X_{C, O C, s}^{2007-2000}+\varepsilon_{s} \\
\Delta X_{C, U S, t} & =a+b_{1} \Delta X_{C, O C, t}+\varepsilon_{t}
\end{aligned}
$$

- $\left\{\hat{A}_{\text {China }, t}^{1}\right\},\left\{\hat{A}_{\text {China }, s}^{2}\right\}$ to match $\left\{\Delta X_{C, U S, s}^{2007-2000}\right\},\left\{\Delta \widehat{X_{C, U S, t}}\right\}$

Parameters

- $\sigma_{s}=\sigma=6$ (trade elasticity of 5 in all sectors)
- Set $\gamma=1$, put burden on δ
- Match ADH on unemployment, participation, and population:
- $0.22 \uparrow$ in unemp., $0.55 \downarrow$ in LFP, and 0.05% fall in population for each $\$ 1000$ of exposure to China shock
- Result is $\delta \approx 0.98, \nu \approx 0.55$, and $\kappa \approx 12$
- Wages can fall $\approx 2 \% /$ year \approx Schmitt-Grohe and Uribe
- $\nu \neq \kappa$ key to match NiLF and population effects: CDP's $\nu=\kappa=2.02$ implies too little NiLF and too large population effects

Outline

- Model
- Data and Calibration
- Results

Some Intuition, Flexibility

Some Intuition, Flexibility

Some Intuition, DNWR

Some Intuition, DNWR

Some Intuition, DNWR

Some Intuition, DNWR

Average Unemployment

Cumulative change in US unemployment.

Effects Across States

	Number of States			
	1	7	23	19
ToT \& L in S.S.	\downarrow	\uparrow	\uparrow	\uparrow
Welfare	\downarrow	\downarrow	\uparrow	\uparrow
L in transition	\downarrow	\downarrow	\downarrow	\uparrow

Higher Exposure Decreases Welfare

Net Exports Exposure vs. ADH Exposure

Table: "Horse race" between exp. measures with and without DNWR

	(1) Welf. Flex	(2) Welf. DNWR	(3) Emp. Flex	(4) Emp. DNWR
Constant	$0.513^{* *}$	$0.522^{* *}$	$3.204^{* *}$	$4.732^{* *}$
ADH Exp.	-0.016	-0.031^{*}	-0.168	$-0.944^{* *}$
NX Exp.	$-0.076^{* *}$	$-0.092^{* *}$	$-0.537^{* *}$	$-1.168^{* *}$
N	50	50	50	50
R squared	0.491	0.554	0.460	0.503
Mean d.v.	0.269	0.198	1.351	-0.821

Baseline and Extensions

	ADH (1)	Base. (2)	NoMo (3)	DNWRM (4)
Change in Population Shares				
\quad Unemployment (targeted)	$0.221^{* *}$	0.221	0.221	0.221
NILF (targeted)	$0.553^{* *}$	0.553	0.553	0.553
Mfg Employment	$-0.596^{* *}$	-0.331	-0.337	-0.543
Non-mfg Employment	-0.178	-0.442	-0.437	-0.230
Percentage Changes				
Population (targeted)	-0.050	-0.050	0.000	-0.050
Mfg. Wage	0.150	-0.214	-0.182	0.152
Non-mfg. Wage	$-0.761^{* *}$	-0.689	-0.717	-1.065
Welfare				
Mean welfare change		0.229	0.235	0.197
Mean welfare change no DNWR		0.310	0.313	0.298
ν		0.551	0.594	0.496
κ		12.30		11.21
δ		0.980	0.980	0.987

Dispersion in Employment and Income Effects

- ADH 2021 and AAE 2021 show that standard quantitative models deliver too little dispersion in employment or income effects of China shock
- For example, CDP or Galle et al. (2021) struggle to match the spatial het. of the employment and income effects in ADH
- Model with DNWR leads to much larger declines in employment in the most exposed regions
- S.D. for effects on employment/pop $=1.35$ (vs 1.18 in ADH)
- S.D. for effects on income/pop $=2.5$ (vs 1.9 in ADH)

Conclusion

- DNWR can explain \uparrow in unemployment, and larger \uparrow in NiLF
- Model leads to realistic dispersion and rationalizes importance of ADH exposure
- Relevant implications for welfare
- Caveats: macro rules, risk sharing

Additional Slides

More Extensions

	ADH (1)	Base. (2)	Def. Low (5)	Def. High (6)	Fixed ER (7)
Change in Population Shares					
Unemployment (targeted)	0.221**	0.221	0.221	0.221	0.221
NILF (targeted)	0.553**	0.553	0.553	0.553	0.553
Mfg Employment	-0.596**	-0.331	-0.340	-0.400	-0.299
Non-mfg Employment	-0.178	-0.442	-0.434	-0.374	-0.475
Percentage Changes					
Population (targeted)	-0.050	-0.050	-0.050	-0.050	-0.050
Mfg. Wage	0.150	-0.214	-0.180	0.015	-0.165
Non-mfg. Wage	-0.761**	-0.689	-0.661	-0.541	-0.574
Welfare					
Mean welfare change		0.229	0.232	0.221	0.185
Mean welfare change no DNWR		0.310	0.323	0.386	0.284
ν		0.551	0.548	0.571	0.521
κ		12.30	11.87	10.38	10.37
δ		0.980	0.981	0.986	0.987

Welfare and Discounting

Table: Welfare gains for different discount factors

	Weighted			Unweighted		
β	$\delta=0$	cal. δ	\% dec.	$\delta=0$	cal. δ	\% dec.
0.99	0.382	0.362	5.33	0.332	0.315	5.23
0.95	0.310	0.228	26.22	0.269	0.198	26.36
0.91	0.250	0.134	46.42	0.217	0.114	47.46

Welfare and Discounting

Table: Welfare gains for different discount factors

	Weighted			Unweighted		
β	$\delta=0$	cal. δ	\% dec.	$\delta=0$	cal. δ	$\%$ dec.
0.99	0.382	0.362	5.33	0.332	0.315	5.23
0.95	0.310	0.228	26.22	0.269	0.198	26.36
0.91	0.250	0.134	46.42	0.217	0.114	47.46

Welfare and Discounting

Table: Welfare gains for different discount factors

	Weighted			Unweighted		
β	$\delta=0$	cal. δ	\% dec.	$\delta=0$	cal. δ	\% dec.
0.99	0.382	0.362	5.33	0.332	0.315	5.23
0.95	0.310	0.228	26.22	0.269	0.198	26.36
0.91	0.250	0.134	46.42	0.217	0.114	47.46

Dispersion in Sector-State Welfare

Job Losses and the "Missing Intercept" Problem

- ADH: a $\$ 1 \mathrm{k} /$ worker \uparrow exposure \Rightarrow emp/pop $\downarrow 77$ bp (22 from unemp +55 LFP)
- These effects are relative (more exposure vs less exposure)
- A naive calculation that assumes zero exposure \rightarrow zero effect
- Cross-sectional regression with zero intercept
- Job losses $=0.77 \times 2.63 \times 220$ mill $=4.4$ million jobs, where 2.63 is mean exposure
- Model implies an intercept $=-1.75$
- Back-of-the-envelope comp. $\Rightarrow(-1.75+0.77 \times 2.63) \times 220=0.55$ mill jobs lost
- Full GE model implies 0.47 million jobs lost
- We stop counting job losses in 2007. Long-term effect are net gains

