Trade with Nominal Rigidities: Understanding the Unemployment and Welfare Effects of the China Shock

Andrés Rodríguez-Clare, Mauricio Ulate, Jose P. Vasquez

NBER SI International Trade & Investment

July 13, 2022

The views expressed in this paper do not necessarily reflect the views of the FRBSF or the Fed System

Motivation

▶ Autor, Dorn, and Hanson (2013) results

Table: Effects of Exposure to China

Unemployment	0.221**
Not In Labor Force (NILF)	0.553**
Population	-0.050
Manufacturing Employment	-0.596**
Non-Manufacturing Employment	-0.178
Manufacturing Wage	0.150
Non-Manufacturing Wage	-0.761**

Motivation

- \blacktriangleright Standard model: Full employment \rightarrow all effects on wages
- \blacktriangleright Add upward sloping labor supply \rightarrow employment effects
 - Need labor supply to be extremely elastic
 - No unemployment; different welfare implications
- Our approach: Add downward-nominal wage rigidity (DNWR)

This paper

- CDP + nest (EoS $1/\nu$ across sectors and $1/\kappa$ across regions)
- Add DNWR as in Schmitt-Grohe and Uribe (2016)
 - Wage can fall by no more than $100(1-\delta)\%$ per year
- Dynamic exact hat algebra for counterfactual analysis
- ▶ Data: WIOD + 50 U.S. states (with migration), 2000-2007
- Calibrate China shock to match predicted change in US imports from China
- Pick ν , κ , δ to match ADH on unemployment, participation, population
- Study implications for employment and welfare

Preview of Findings

- DNWR has important effects at state level:
 - $\blacktriangleright\,$ No DNWR \rightarrow 1 state loses and suffers declines in L
 - \blacktriangleright DNWR \rightarrow 8 states lose, and 31 suffer declines in L
- Aggregate: 1.5 pp \uparrow in unemployment in 2007
- Decent fit to non-targeted moments
- > DNWR reduces avg U.S. welfare gain by 1/4 to 1/3

Literature

- Aggregate and dist. effects of China Shock: ADH'13, CDP'19, GRY'21, AAE'21
- ► Trade + Search and matching frictions: Dix-Carneiro et al.'20, Kim & Vogel'20
- ► Trade + Wage rigidities: EK + Neiman'14, Costinot et al'22
- Nominal rigidities in macro: NS'18, Shimer'04, Schmitt-Grohe & Uribe'16
- Microeconomic evidence for DNWR: Dickens et al.'07, Hazell-Taska'20

Outline

► Model

Data and Calibration

Results

Basic Assumptions

- ▶ *I* regions (*M* inside US), *S* market sectors plus home production
- ► Cobb-Douglas preferences $(\alpha_{i,s})$ across market sectors. Armington assumption within sectors with EoS $\sigma_s > 1$. All income devoted to consumption
- Cobb-Douglas production using labor $(\phi_{i,s})$ and intermediate inputs $(\phi_{i,ks})$
- ▶ Perfect competition with iceberg trade costs $au_{ij,s,t} \ge 1$

$$P_{i,t} = \prod_{s=1}^{S} P_{i,s,t}^{\alpha_{i,s}}, \qquad P_{j,k,t}^{1-\sigma_{k}} = \sum_{i=1}^{I} p_{ij,k,t}^{1-\sigma_{k}}$$
where $p_{ij,k,t} = \tau_{ij,k,t} A_{i,k,t}^{-1} W_{i,k,t}^{\phi_{i,k}} \prod_{s=1}^{S} P_{i,s,t}^{\phi_{i,sk}}$

Market Clearing

• Exogenous trade imbalances: $P_{i,t}C_{i,t} = \sum_{s=1}^{S} W_{i,s,t}L_{i,s,t} + D_{i,t}$

• Equilibrium in sector *s*, region *i*, at time *t*:

$$R_{i,s,t} = \sum_{j=1}^{I} \lambda_{ij,s,t} \left(\alpha_{j,s} P_{j,t} C_{j,t} + \sum_{k=1}^{S} \phi_{j,sk} R_{j,k,t} \right)$$

with trade shares
$$\lambda_{ij,k,t} = rac{p_{ij,k,t}^{1-\sigma_k}}{\sum_{r=1}^{l} p_{rj,k,t}^{1-\sigma_k}}$$

- Labor market clearing: $W_{i,k,t}L_{i,k,t} = \phi_{i,k}R_{i,k,t}$
- ▶ Standard model: free mobility and $\sum_{k=1}^{S} L_{i,k,t} = \overline{L}_{i,t}$

Labor Supply

- ► As in CDP:
 - Agents can move across sectors and regions within U.S., only across sectors in other countries
 - ▶ Forward-looking agents (with perfect foresight) move subject to relocation costs
 - ▶ In region *i*, time *t*, home production yields μ_i and sector *s* yields $\omega_{i,s,t}$
- Different elasticities across sectors $(\frac{1}{\nu})$ and regions $(\frac{1}{\kappa})$
 - Nested Gumbel for amenity shocks across regions and sectors

► In CDP:
$$\omega_{i,s,t} \equiv \frac{W_{i,s,t}}{P_{i,t}}$$
. With DNWR: $\omega_{i,s,t} \equiv \frac{W_{i,s,t}}{P_{i,t}} \frac{L_{i,s,t}}{\ell_{i,s,t}}$

• This block determines labor supply $\ell_{i,s,t}$

Nominal Wage Rigidity

- DNWR: $W_{i,s,t}^{LCU} \ge \delta_s W_{i,s,t-1}^{LCU}$
- Maximum employment: $L_{i,s,t} \leq \ell_{i,s,t}$
- Complementary slackness:

$$(\ell_{i,s,t} - L_{i,s,t})(W_{i,s,t}^{LCU} - \delta_s W_{i,s,t-1}^{LCU}) = 0$$

▶ For regions outside of the U.S., with exchange rate E_{i,t} given in dollars per LCU, DNWR implies

$$W_{i,s,t} \geq \frac{E_{i,t}}{E_{i,t-1}} \delta_s W_{i,s,t-1}$$

Exchange Rate and Nominal Anchor

Exchange rate (options for third countries):

- 1. ER flexibility: $E_{i,t}$ can adjust enough so that DNWR never binds
 - ▶ Implies $L_{i,s,t} = \ell_{i,s,t} \forall i > M$, unemployment only in US states
 - This will be our baseline
- 2. Fixed exchange rate: $E_{i,t} = E_{i,t-1}$
 - Implies that DNWR takes same form in other countries as in US

Nominal anchor: World aggregate demand in \$ grows at γ

$$\sum_{i=1}^{l} \sum_{s=1}^{S} W_{i,s,t} L_{i,s,t} = \gamma \sum_{i=1}^{l} \sum_{s=1}^{S} W_{i,s,t-1} L_{i,s,t-1}$$

Dynamic Hat Algebra

- Assume agents did not expect China shock but then in 2001 know how it will unfold with perfect foresight
- Match 2000 data (t = 0) assuming this year is at steady state (no unemployment)

• Denote
$$\dot{x}_t \equiv x_t/x_{t-1}$$
 and $\hat{x}_t \equiv \dot{x}_t'/\dot{x}_t$

▶ Goal is to compute relative changes x̂_t only due to the China shock modeled as a sequence of shocks starting in 2001.

Outline

Model

► Data and Calibration

Results

87 regions: 50 U.S. states, 36 other countries, aggregate RoW

15 sectors: home production, 12 manufacturing sectors, services, agriculture

- WIOD: 35 sectors for 40 countries for 2000
- > 2002 CFS: trade flows across U.S. States for 43 commodities
- > 2008 U.S. Census: trade between U.S. states and other countries
- ▶ BEA: state-level production and consumption in serv. and agric. for 2000
- BLS and OECD: labor force participation for 2000
- ▶ CPS + ACS: sector-level bilateral migration flows between U.S. states for 2000

Exposure to China

$$\mathsf{Exposure}_{i} \equiv \sum_{s=1}^{S} \frac{L_{i,s,2000}}{L_{i,2000}} \frac{\Delta X_{C,US,s}^{\widehat{2007-2000}}}{R_{US,s,2000}},$$

•
$$L_{i,s,2000} \equiv \text{employment in } (i,s) \text{ in } 2000$$

•
$$R_{US,s,2000} = U.S.$$
 sales in *s* in 2000

- $\Delta X_{C,US,s}^{2007-2000}$ = predicted change in exports from China to the US from 2000 to 2007 in *s*
- ▶ Re-normalize to have the same mean as the measure in ADH

Chinese Technology Changes

• Need
$$\hat{A}_{China,s,t}$$
 for $s = 1, ..., 12$ and $t = 2001, ..., 2007$

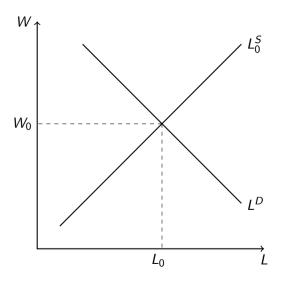
• Set
$$\hat{A}_{China,s,t} = \hat{A}^{1}_{China,t} \hat{A}^{2}_{China,s}$$
 (19 parameters instead of 84)

• Predict ΔX in USA using ΔX from other countries:

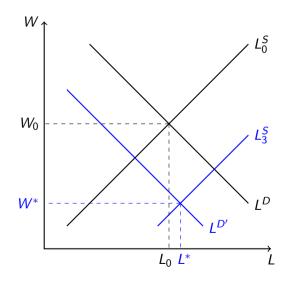
$$\blacktriangleright \{\hat{A}^{1}_{China,t}\}, \{\hat{A}^{2}_{China,s}\} \text{ to match } \{\Delta X^{2007-2000}_{C,US,s}\}, \{\Delta \widehat{X_{C,US,t}}\}$$

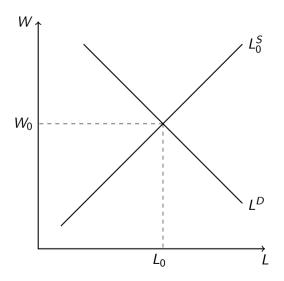
Parameters

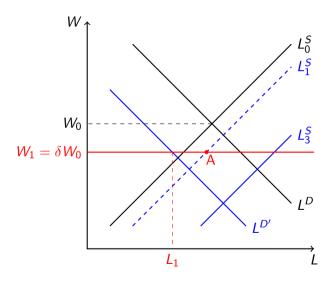
- $\sigma_s = \sigma = 6$ (trade elasticity of 5 in all sectors)
- \blacktriangleright Set $\gamma=$ 1, put burden on δ
- Match ADH on unemployment, participation, and population:
 - ▶ 0.22 \uparrow in unemp., 0.55 \downarrow in LFP, and 0.05% fall in population for each \$1000 of exposure to China shock
- \blacktriangleright Result is $\delta \approx$ 0.98, $\nu \approx$ 0.55, and $\kappa \approx 12$
 - \blacktriangleright Wages can fall $\approx 2\%/{\rm year} \approx$ Schmitt-Grohe and Uribe
 - ν ≠ κ key to match NiLF and population effects: CDP's ν = κ = 2.02 implies too little NiLF and too large population effects

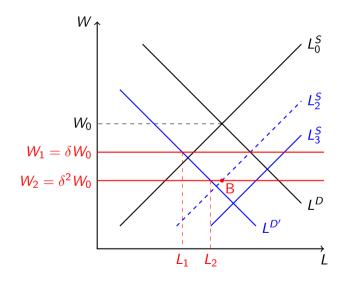

Outline

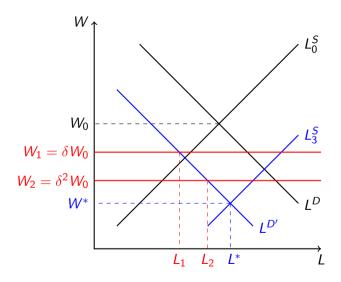
Model

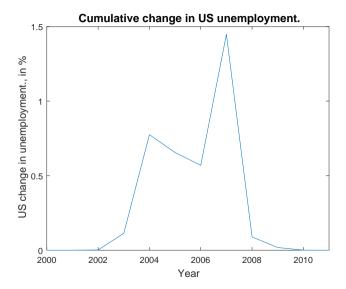

Data and Calibration

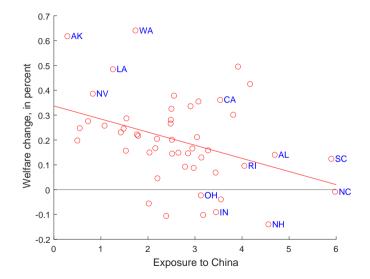

► Results


Some Intuition, Flexibility




Some Intuition, Flexibility





Average Unemployment

	Number of States					
	1	7	23	19		
ToT & L in S.S.	\downarrow	\uparrow	\uparrow	\uparrow		
Welfare	\downarrow	\downarrow	\uparrow	\uparrow		
L in transition	\downarrow	\downarrow	\downarrow	\uparrow		

Higher Exposure Decreases Welfare

Net Exports Exposure vs. ADH Exposure

Table: "Horse race" between exp. measures with and without DNWR

	(1)	(2)	(3)	(4)
	Welf. Flex	Welf. DNWR	Emp. Flex	Emp. DNWR
Constant	0.513**	0.522**	3.204**	4.732**
ADH Exp.	-0.016	-0.031*	-0.168	-0.944**
NX Exp.	-0.076**	-0.092**	-0.537**	-1.168**
N	50	50	50	50
R squared	0.491	0.554	0.460	0.503
Mean d.v.	0.269	0.198	1.351	-0.821

Baseline and Extensions

	ADH	Base.	NoMo	DNWRM
	(1)	(2)	(3)	(4)
Change in Population Shares				
Unemployment (targeted)	0.221**	0.221	0.221	0.221
NILF (targeted)	0.553**	0.553	0.553	0.553
Mfg Employment	-0.596**	-0.331	-0.337	-0.543
Non-mfg Employment	-0.178	-0.442	-0.437	-0.230
Percentage Changes				
Population (targeted)	-0.050	-0.050	0.000	-0.050
Mfg. Wage	0.150	-0.214	-0.182	0.152
Non-mfg. Wage	-0.761**	-0.689	-0.717	-1.065
Welfare				
Mean welfare change		0.229	0.235	0.197
Mean welfare change no DNWR		0.310	0.313	0.298
ν		0.551	0.594	0.496
κ		12.30		11.21
δ		0.980	0.980	0.987

Dispersion in Employment and Income Effects

- ADH 2021 and AAE 2021 show that standard quantitative models deliver too little dispersion in employment or income effects of China shock
- ► For example, CDP or Galle et al. (2021) struggle to match the spatial het. of the employment and income effects in ADH
- Model with DNWR leads to much larger declines in employment in the most exposed regions
 - ▶ S.D. for effects on employment/pop = 1.35 (vs 1.18 in ADH)
 - ▶ S.D. for effects on income/pop = 2.5 (vs 1.9 in ADH)

- DNWR can explain \uparrow in unemployment, and larger \uparrow in NiLF
- Model leads to realistic dispersion and rationalizes importance of ADH exposure
- Relevant implications for welfare
- Caveats: macro rules, risk sharing

Additional Slides

More Extensions

				D (III I	<u> </u>
	ADH	Base.	Def. Low	Def. High	Fixed ER
	(1)	(2)	(5)	(6)	(7)
Change in Population Shares					
Unemployment (targeted)	0.221**	0.221	0.221	0.221	0.221
NILF (targeted)	0.553**	0.553	0.553	0.553	0.553
Mfg Employment	-0.596**	-0.331	-0.340	-0.400	-0.299
Non-mfg Employment	-0.178	-0.442	-0.434	-0.374	-0.475
Percentage Changes					
Population (targeted)	-0.050	-0.050	-0.050	-0.050	-0.050
Mfg. Wage	0.150	-0.214	-0.180	0.015	-0.165
Non-mfg. Wage	-0.761**	-0.689	-0.661	-0.541	-0.574
Welfare					
Mean welfare change		0.229	0.232	0.221	0.185
Mean welfare change no DNWR		0.310	0.323	0.386	0.284
ν		0.551	0.548	0.571	0.521
κ		12.30	11.87	10.38	10.37
δ		0.980	0.981	0.986	0.987

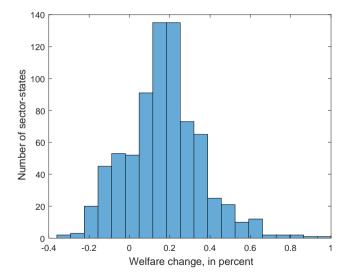
Welfare and Discounting

Table:	Welfare	gains	for	different	discount	factors
--------	---------	-------	-----	-----------	----------	---------

			Weighte	d	ι	Jnweight	ed
	β	$\delta = 0$	cal. δ	% dec.	$\delta = 0$	cal. δ	% dec.
_	0.99	0.382	0.362	5.33	0.332	0.315	5.23
	0.95	0.310	0.228	26.22	0.269	0.198	26.36
	0.91	0.250	0.134	46.42	0.217	0.114	47.46

Welfare and Discounting

			Weighte	d	ι	Jnweight	ed
	eta	$\delta = 0$	cal. δ	% dec.	$\delta = 0$	cal. δ	% dec.
C	0.99	0.382	0.362	5.33	0.332	0.315	5.23
	0.95	0.310	0.228	26.22	0.269	0.198	26.36
	0.91	0.250	0.134	46.42	0.217	0.114	47.46


Table: Welfare gains for different discount factors

Welfare and Discounting

:			Weighte	d	ι	Jnweight	ed
	β	$\delta = 0$	cal. δ	% dec.	$\delta = 0$	cal. δ	% dec.
	0.99	0.382	0.362	5.33	0.332	0.315	5.23
	0.95	0.310	0.228	26.22	0.269	0.198	26.36
$\left(\right.$	0.91	0.250	0.134	46.42	0.217	0.114	47.46

Table: Welfare gains for different discount factors

Dispersion in Sector-State Welfare

Job Losses and the "Missing Intercept" Problem

- ▶ ADH: a $1k/worker \uparrow exposure \Rightarrow emp/pop \downarrow 77 bp (22 from unemp + 55 LFP)$
- ► These effects are relative (more exposure vs less exposure)
- \blacktriangleright A naive calculation that assumes zero exposure \rightarrow zero effect
 - Cross-sectional regression with zero intercept
 - ▶ Job losses = $0.77 \times 2.63 \times 220$ mill = 4.4 million jobs, where 2.63 is mean exposure
- Model implies an intercept = -1.75
 - ▶ Back-of-the-envelope comp. \Rightarrow $(-1.75 + 0.77 \times 2.63) \times 220 = 0.55$ mill jobs lost
 - Full GE model implies 0.47 million jobs lost
- ▶ We stop counting job losses in 2007. Long-term effect are net gains