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Abstract

We study aggregate lapsation risk in the life insurance sector. We construct two lapsation
risk factors that explain a large fraction of the common variation in lapse rates of the 30
largest life insurance companies. The first is a cyclical factor that is positively correlated
with credit spreads and unemployment, while the second factor is a trend factor that cor-
relates with the level of interest rates. Using a novel policy-level database from a large
life insurer, we examine the heterogeneity in risk factor exposures based on policy and
policyholder characteristics. Young policyholders with higher health risk in low-income
areas are more likely to lapse their policies during economic downturns. We explore the
implications for hedging and valuation of life insurance contracts. Ignoring aggregate
lapsation risk results in mispricing of life insurance policies. The calibrated model points
to overpricing on average. In the cross-section, young, low-income, and high-health risk
households face higher effective mark-ups than the old, high-income, and healthy.
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1 Introduction

Life insurance is a key risk management tool for households when it comes to managing the
tail risk associated with the premature death of a family member. Based on a 2016 LIMRA
survey, 67% of men and 62% of women between the ages of 35 and 44 own a life insurance
policy (see Koijen and Van Nieuwerburgh, 2020). While life insurance holdings increase with
income, participation rates are still 66% for men and 70% for women among those earning
between $35k and $50k in annual income.

These ownership statistics mask the fact that policyholders frequently lapse (surrender)
their policies, thereby forfeiting the insurance protection the policy had afforded. The actu-
arial literature has found that policyholders often lapse in response to economic hardship.
Our focus is on the implications of the link between lapsation and macroeconomic condi-
tions both for the policyholder and the insurer. Despite the presence of this important link
and the prevalence of life insurance, life insurance markets and lapsation risk have not re-
ceived nearly as much attention in the household finance and financial economics literature
as, for instance, the mortgage and consumer credit markets.!

In this paper, we use new data at the insurer and policyholder level to first develop new
measures of aggregate lapsation risk. Next, we show how life insurance contracts with dif-
ferent policy and policyholder characteristics are differentially exposed to these common
lapsation factors. When young, low-income, or high health-risk households lapse their poli-
cies in a recession, that has long-lasting consequences for their economic well-being and
contributes to the cost of business cycles. These new facts also have implications for life in-
surers, since the systemic variation in lapsation rates affects the valuation and risk mismatch
on the balance sheets of insurance companies.?

To start, we use regulatory filings data from the 30 largest life insurance companies from
1996 to 2020 to measure the dynamics and co-movement of lapsation rates. We decompose
the lapsation rate of each company into a trend and a cycle component. We then extract
the first principal component of the trend components and the first principal component
of the cycle components. The first principal components explain the bulk of the variation
across years and companies. The first factor, which we label the trend factor, captures a
secular decline in lapsation rates, from a little over 7% per year in the beginning of our
sample to approximately 5% at the end of our sample. The dynamics of this factor follows
the trend in the level of interest rates. The second factor captures the counter-cyclicality in
lapsation rates. This cycle factor correlates strongly with credit spreads and macroeconomic

1 An important recent exception is Gottlieb and Smetters (2021).
2The impact of lapsation on life insurance valuations is analogous to the impact of prepayment on the
valuation of mortgages.



conditions. We illustrate the co-movement between the cycle factor and employment (left
panel) and GDP (right panel) in Figure 1.

Figure 1. Lapse Cycle and Macro Variables

This figure plots the lapse cycle factor against macroeconomic variables. The red dotted
line in both panels represent the lapse cycle factor. The black line in the left panel
represents the cyclical component of employment (“Filtered Employment”). The black line
in the right panel represents the cyclical component of GDP (“Filtered GDP”).
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We find additional support for systematic variation in lapsation in the cross-section of
regions. Areas with low house price growth or income growth experienced substantially
higher lapsation during the Great Financial Crisis.

With the aggregate lapsation factors in hand, we explore how exposure to these factors
varies with policy and policyholder characteristics. We exploit a new proprietary data set
from a large US life insurance company, the first analysis on such micro data for the United
States. We have detailed data on the terms of the life insurance policy (including term or
whole life insurance, the length of the term, and the size of the policy) and policyholder
characteristics (including age, health status, zip code, and gender).

We estimate a proportional hazard model with policy and policyholder characteristics
and their interactions with the lapse cycle. We find that higher health-risk households have
higher lapsation sensitivity to the business cycle. For whole life policies, we find strong
dependence on policyholder age and on policy size (death benefit), with younger house-
holds and larger policies displaying more sensitivity to the lapse cycle than older house-
holds and smaller policies. For term life, we find strong interaction effects between ZIP-code
level income and the lapse cycle. Households in lower-income neighborhoods display not
only higher lapsation rates but more sensitive lapsation rates to the cycle. While whole-life
policies on average display stronger cyclicality than term life policies, term life lapsation is
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clearly counter-cyclical. This is a new finding to the literature, which has focused on whole
life lapsation. Since term life policies typically have no cash surrender value, their counter-
cyclical lapsation indicates the importance of binding cash-flow constraints for households
in recessions. This finding provides a new dimension to the emergency fund hypothesis
discussion in the literature, which has focused on the role of the cash surrender value.

These findings are not only relevant to households, but also to life insurance companies.
In particular, as a result of the correlation between lapsation and aggregate economic con-
ditions, the valuation of life insurance policies is affected. Since lapsation is high during
economic downturns, when investors” marginal utility is high, the effective lapsation rate
is higher when accounting for aggregate risk. Formally, the risk-neutral lapsation rate is
higher than the physical lapsation rate.

We explore how lapsation rates are reflected in life insurance valuations. There are two
opposing forces. On the one hand, when insurance companies underwrite policies, they pay
an acquisition fee, typically a commission to the insurance broker. If the policy is more likely
to lapse early, the insurer may not yet have recovered the acquisition cost, and ignoring
aggregate lapsation risk would lead to a premium that is too low. We refer to this as the
“fixed-cost effect.” On the other hand, a key feature of typical life insurance contracts is
that the premium paid is flat over the life of the contract. Since mortality risk increases with
age, insurers profit during the first years of the contract (when the cost of mortality cover is
below the premium) and lose money during the later years of the contract (when the cost of
mortality cover exceeds the premium). If insurers ignore aggregate lapsation risk, and use a
lapsation rate that is too low, they put too much weight on the later years of the contract that
are unprofitable. The insurance premium charged would therefore be too high. We refer to
his as the “mortality effect.”

Given these opposing forces, it is a quantitative question how aggregate lapsation risk
affects life insurance valuation. We develop an asset pricing model that captures the ob-
served correlation of lapsation rates with financial market variables. The model is calibrated
to match the prices of Treasury and corporate bonds. We find that the mortality effect out-
weighs the fixed-cost effect. In our calibration, premiums on a 20-year life insurance contract
sold to a healthy 40-year old are about 3% higher than they would be if the contract was cor-
rectly priced, while insurer profits are about 30% too high. Excess profits are higher in a low
interest rate environment.

To the extent that the heterogeneity across policyholders in exposures to the lapsation
cycle is not reflected in the pricing of life insurance, which our conversations with industry
experts confirm, ignoring aggregate lapsation risk also has important implications for the
cross-section of policies. Specifically, the young, higher health-risk policyholders, living in

lower-income areas, who have the highest exposure to the lapse cycle, face the most over-



priced policies. Older, richer, and healthier policyholders face the least overpriced policies.
For a given markup on the insurer’s book of business, the former group effectively subsi-
dizes the latter group. Since the former group has higher marginal utility than the latter,
ignoring lapsation risk (inadvertently) results in “wrong-way-around” redistribution. Fur-
thermore, the cross-sectional pricing effects could affect both the extensive and the intensive
margin of coverage.

The Covid-19 pandemic, which occurs at the end of our sample, presents an interesting
study in contrasts. Unlike in previous recessions, the lapsation rate falls in 2020. We conjec-
ture that, first, the coronavirus increased the salience of mortality risk, and brought renewed
urgency to not letting insurance policies lapse, and second, that the government’s unusually
generous transfer spending (stimulus checks, extended unemployment insurance) enabled
households to continue paying their insurance premiums in the face of economic hardship.
Government emergency funds alleviated the need to use the life insurance policy as an emer-
gency fund, and preserved the financial protection life insurance provides to households.

Our findings have implications for the design of life insurance policies. As the increase in
lapsation is plausibly related to binding financial constraints at the household level, an inter-
esting question is how to optimally design life insurance policies that account for aggregate
risk. While policies with cash values and the ability to lend against them can buffer some of
the shocks, we find that lapsation also increases for term life policies during economic down-
turns. Premium holidays in recessions would reduce lapsation and benefit households, but
would affect pricing (especially in a model with aggregate risk) and could potentially hurt
the financial stability of the insurance sector.® In short, our paper raises interesting questions
for contract design, and how those might interact with behavioral frictions documented re-
cently in Gottlieb and Smetters (2021).

Related Literature Along with mortality, lapsation behavior is a key risk factor in the pric-
ing of life insurance policies and has been studied extensively in the insurance literature.
Most of the discussion focuses on whole life policies, which pay the policyholder an amount,
known as the cash surrender value, upon lapsation. The emergency fund hypothesis (EFH),
going back to (Linton, 1932), hypothesizes that personal financial distress (a negative income
or unemployment shock) may result in lapsation since the policyholder may want to access
the cash surrender value for consumption smoothing purposes. The second and third main
hypotheses are the interest rate hypothesis (IRH, Schott (1971)) and policy replacement hy-
pothesis (PRH, Outreville (1990)), which are related. They state that when interest rates go
up, policies are more likely to lapse because policyholders may want to walk away from

3See Greenwald, Landvoigt, and Van Nieuwerburgh (2021) for a related discussion in the context of shared-
appreciation mortgages whose payments are tied to (aggregate or regional) house prices.



their current policy-whose investment account was earning a lower fixed rate— and turn to
a higher-yielding investment or a new life insurance policy (with higher implicit return or
lower premium payments) instead.* See Eling and Kochanski (2013) and Bauer et al. (2017)
for recent reviews.

These hypotheses have been tested empirically, initially in aggregate time-series data.
Evidence for the U.K. (Dar and Dodds, 1989), the U.S. and Canada (Outreville, 1990; Kuo,
Tsai, and Chen, 2003), South Korea (Kim, 2005), and Germany (Kiesenbauer, 2012) is gen-
erally supportive of both the EFH and the IRH. Lapsation tends to increase with both ag-
gregate unemployment and with interest rates, with the relative strength depending on the
country, sample, and empirical method. We extend this analysis by studying a more recent
data sample, which includes the Great Financial Crisis and the Covid-19 crisis, and we ap-
ply anovel method that extracts an aggregate lapsation cycle and trend from firm-level data.
Our results provide strong support for both the EFH and IRH.

A more recent, and much smaller strand of the empirical literature uses individual-level
policy data to analyze lapsation behavior. Fier and Liebenberg (2013) uses the Health and
Retirement Survey in the U.S. to study voluntary lapsation. It finds that negative income
growth (but not unemployment) is associated with higher lapsation, consistent with the
EFH, and that individuals who obtained a new life insurance policy are more likely to have
lapsed, consistent with the PRH. Households that lost their bequest motive due to death of
a spouse, divorce, or retirement are more likely to lapse. Lapsation first increases and later
declines in age, while income is not significant. Sirak (2015) uses data from a German life
insurance company and estimates a proportional hazard model to find strong evidence for
the EFH. Income drives out policyholder age and education. The PRH may be less relevant
in an era of declining interest rates and in a context with high surrender fees.

Using U.S. HRS data, Fang and Kung (2021) find that many lapsation decisions are driven
by idiosyncratic shocks, uncorrelated with health, income, and bequest motives, especially
for younger policyholders. Likewise, Gottlieb and Smetters (2021) find evidence based on
a survey instrument for forgetfulness as an important driver of lapsation, alongside with
negative income shocks (or liquidity needs more generally) which policyholders tend to
underestimate. Society of Actuaries and LIMRA (2019) and Milliman (2020) are industry
studies that study lapsation behavior of member firms and study its determinants.

In this paper, we study individual-level lapsation data for the U.S. from a large U.S.
life insurance company. Importantly, we focus on heterogeneity across policyholders in their
exposure to the lapse cycle. Not only do policy and policyholder characteristics matter for lap-
sation, we find systematic variation in the sensitivity of lapsation to the cycle depending

“Hendel and Lizzeri (2003) show how the front-loading of insurance policies affects lapse behavior by com-
paring renewable term policies to level-payment term policies.



on policyholder age, risk status, and income. Private conversations with industry experts
reveal that models with individual lapsation determinants do not consider cyclicality in lap-
sation. Hence, the interaction of individual characteristics with lapsation in the data but not
in the models used for pricing implies important redistributional effects across policyhold-
ers. While it is stronger for whole than for term life, our finding that term life lapsation rates
are also counter-cyclical is new and sheds a new light on a lapsation literature that has been
focused on whole life policies.

Finally, we contribute by developing a tractable affine model of life insurance valuation
that models lapsation as a function of the interest rate and the cycle (credit spread). We
contribute to the theoretical literature by explaining how cyclical lapsation affects the pricing
of term life policies, and what the role of the interest rate is.

The lapsation literature has interesting parallels to the much larger literature on mort-
gage prepayment and valuation in finance (E.g., Schwartz and Torous, 1989; Stanton, 1995;
Deng, Quigley, and Order, 2000; Boyarchenko, Fuster, and Lucca, 2019; Chernov, Dunn, and
Longstaff, 2018; Diep, Eisfeldt, and Richardson, 2021). In this literature, it is well under-
stood that modeling prepayment risk and the covariance of prepayment rates with priced
aggregate risk factors is essential to determine the correct valuation of a mortgage or a pool
of mortgages (mortgage-backed security). Real-world mortgage prepayment behavior re-
sponds to interest rates (the rate incentive) and variables that move with the business cycle
like employment or house prices, which affect turnover in the housing and hence mortgage
market. But prepayment also contains behavioral aspects that are harder to capture with a
rational model. In another parallel, the recent mortgage literature has emphasized that sub-
optimal prepayment behavior can lead to cross-subsidization and redistribution (Gerardi,
Willen, and Zhang, 2021; Zhang, 2022; Fisher et al., 2021). We show that lapsation rates are
also exposed to priced aggregate risks, that accounting for these aggregate risks is impor-
tant in computing insurance premiums, and that cross-sectional differences in actual lap-
sation behavior have distributional consequences when they are not reflected in insurance

premiums.

2 Data and Empirical Methodology

2.1 Data
2.1.1 S&P Global Market Intelligence

To study aggregate lapsation risk, we analyze two databases. The first database is S&P
Global Market Intelligence (SNL), which contains the universe of regulatory filings by insur-



ance companies. We focus on life insurance companies and exclude property and casualty
insurance companies. The data are at the annual frequency, spanning 1996 to 2020 (the lapse
rate starts in 1997). SNL offers data at two different levels of granularity: at the company
level (company codes starting with “C”) or at the group level (company codes starting with
“GK”). We use group-level data in our baseline analysis. For robustness, we also repeat the
same analysis using corporate-level data, and find that the analysis does not meaningfully
change. We refer to firm or firm-year to represent the entities in the group-level data (that is,
“GK” companies).

The main variable of interest is the lapsation rate observed at a yearly frequency. We use
the term “lapsation rate” to include both the lapsation and surrender, following the standard
definition used in the industry (Society of Actuaries and LIMRA, 2019). We use the lapsa-
tion rate for ordinary life insurance (that is, individual life insurance), retrieved from the
Ordinary Life: Lapse & Surrender Ratio time series of the SNL dataset.” We drop the follow-
ing five insurance groups: SCOR U.S. Only (GK4020905), RGA U.S. Only (GK103450), Swiss
Re U.S. Only (GK4290308), Hannover Life Reassurance (C2749), and Munich Re U.S. Only
(GK4005715). These companies are either international or reinsurance companies. For the
regression analysis, we drop outliers with lapsation rates greater than 30%, which removes
2.8% of the lapsation rate observations. The 30 largest firms in the SNL database represent
about 81.2% of the market based on the in-force policy size at the end of 2020.

2.1.2 Macro Variables

We construct two macro variables, GDP and Employment, at the firm-year level. Specifically,
we start from state-level macro time series data from the FRED database of the St. Louis Fed.
For GDP, we use the annual Real Total Gross Domestic Product series for each state. The time
series starts in 1997. We extend this series back to 1993 by regressing GDP growth rates of
each state on state-level employment growth rates and the aggregate GDP growth rate.

We then apply the Hamilton (2018) filter to the annual series of the state-level log GDP to
obtain its cyclical component. For Employment, we use the seasonally-adjusted monthly All
Employees: Total Nonfarm time series for each state. We apply the Hamilton filter to the log
level of employment, and take the annual average of the filtered values. For each firm-year,
we use the share of total life insurance premium income (Life ex Annuity: Sate Direct Premiums
& Annuity Considerations (in $000) from S&P Global Market Intelligence) in each U.S. state

®Data is accessed on April 18, 2021. Note that S&P Global Market Intelligence retrospectively updates his-
torical financial data to reflect the latest corporate structures following Mé&As and other corporate activities.
In “Group Methodology Summary on MI” document, it states “Market Intelligence Groups are composed of mem-
bers within that corporate structure on an as-is basis. Structures are updated quarterly and amended for any mergers or
acquisitions. The current members’ composition is applied retrospectively to all financial data for all periods.”



as the weight vector to calculate firm-specific macro variables. This process generates our
tirm-year level macro time series.

Aggregate macro variables are also retrieved from the FRED database of the St. Louis
Fed. For GDP, we use the annual Real Gross Domestic Product series (GDPCA). We apply the
Hamilton filter to the annual series of the log GDP. For employment, we first retrieve the
monthly All Employees, Total Nonfarm series (PAYEMS), and apply the Hamilton filter to the
monthly series to decompose the trend and the cycle.® We then take the annual average of
the monthly cycle to construct an annual employment cycle series.

For interest rates, we use the 10-Year Treasury Constant Maturity Rate (GS10), where we
convert the monthly series into an annual one by taking averages. For credit spreads, we
use Moody'’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant
Maturity (BAA10YM) and follow similar procedure to obtain an annual time series. We av-
erage these series because the annual lapsation rate reflects lapsation that occurs throughout
the year.

For the county-level analysis, we use the median house price from Zillow. Specifically,
we take the average of the monthly ZHVI index over each year to construct the annual
series. The county-level unemployment rate data is downloaded from the BLS Local Area
Unemployment Statistics (LAUS) and is already at annual frequency.

2.1.3 Policy-level Insurance Database

The second and main novel proprietary database is provided to us by a major U.S. life in-
surance company. This is a large database of life insurance contracts, containing policy-level
details. The database is de-identified by a third party vendor for research purposes, so that
we cannot recover the identity of policyholders. We observe policy characteristics, such as
size, policy type (whole life, term life, or other), policy status (in-force, lapsed, or surren-
dered) and issuance date. We also observe detailed policyholder characteristics such as age,
gender, smoking status, risk class, and ZIP code. Hereafter, we will refer to this database as
the Firm Database for convenience. The database contains life insurance policies originated
between late 1998 and early 2016.

As part of our data validation process, we compare the lapse rates of the Firm in the
S&P database (see Section 2.1.1) with the aggregate lapse rates we construct using the Firm
Database. If the Firm Database is representative of the firm’s portfolio of insurance policies,

®The Hamilton filter described in Hamilton (2018) can be applied to both annual and monthly time series
with different choices of (I, p) for the regression y;,;, = do + Zle diyi—j+1+ ¢t We use the recommended
parameter value of i = 2 for annual series and & = 24 for monthly series. We also use p = 2 for annual
series and p = 12 for monthly series, which look back one year for the lagged regressors, consistently with the
recommended choice of p = 4 for quarterly series.



the two lapsation rates should be close. We present a comparison in Figure 2. The orange
line plots the lapsation rate from the S&P database, while the blue line plots the aggregate
lapse rate calculated from the Firm Database. In the early period from 1999-2004, there is
a wide discrepancy between the two lines. This discrepancy is due to the left-truncation of
the Firm Database, which only contains new policies originated after late-1998. To see this,
note that the lapse rate in year ¢ is calculated using the following equation:

Policies Lapsed within Year ¢
0.5 (In-Force Beginning of Year t + In-Force End of Year ¢)

LapseRate, = (1)
where the numerator and the denominator can be based on either the number of policies or
the amount of face value.

Since we only observe the policies issued by the Firm on or after 1998, it takes a few years
until the in-force policy pool populates and the denominator stabilizes. Similarly, at the end
of the sample, the two lines diverge as we do not observe policies in the firm-level database
that were originated after 2016. In between these two periods, our firm-level data set tracks
the aggregate lapse rate well.

We merge in ZIP-code level income data from the 2016 American Community Survey.

2.2 Empirical Methodology
2.21 Principal Component Analysis

For each of the 30 largest life insurance companies, as defined by in-force policy amount
outstanding as of 2020, we decompose the lapse rate time series into a trend and cycle com-
ponent using the Hamilton filter. We then separately run two principal component analyses,
one using the trend time series and one using the cycle time series. Starting from the 30 trend
time series, we construct the first principal component that explains most of the variation
using the correlation matrix, and denote it as the Lapse Trend factor. Similarly, we define the
Lapse Cycle factor as the first principal component of the 30 cycle time series. We use the Lapse
Trend factor and the Lapse Cycle factor as the aggregate lapsation risk factors.

7We skip the 30th largest life insurance company, Resolution Life Holdings Inc (GK26554449), because it has
the 2010 lapsation rate missing. Instead we include the next largest company, Penn Mutual (GK110258). The
PCA results do not fundamentally change when we use the Resolution Life Holdings Inc with the overridden
lapsation rate 0.80% for 2010, which is the best estimate based on the Insurance In Force, Insurance Lost: Lapsed
and Insurance Lost: Surrendered variables.



Figure 2. Aggregate Lapse Rate Validation

This figure presents the validation exercise we perform to ensure the coverage of the Firm
Database we use. The blue line plots the aggregate lapse rate we directly calculate from the
Firm Database using Equation (1). The orange line plots the reported aggregate lapse rate
from the S&P Global Market Intelligence database. Two graphs are reasonably close after
2003, which validates our use of the database. There is some discrepancy early in the
period due to left truncation of the database, see Section 2.1.1 for details.
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2.2.2 Firm-level Lapsation Analysis

We first study the heterogeneity in aggregate lapsation risk exposure at the firm-level. The
tirm-level time series of lapsation rates can be used to run the following factor regression
with the lapsation risk factors constructed in 2.2.1:

Lapse Rate{ — ol + ﬁ];[rendLapse Trend; + ﬁjcydeLapse Cycle; + 8]1;, (2)

where j represents the index for firm j.

2.2.3 Geographical Analysis

We investigate the geographical variation in lapse rate changes between 2006 and 2009 at the
county-level. As the severity of the economic downturn varies across geographies, it pro-
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vides us another way to explore how economic conditions relate to lapse rates. Specifically,
we study the relationship with county-level economic variables such as house price changes
and unemployment rate changes. The Firm Database contains the policyholders” ZIP codes
for about 95% of our sample, so we first map the ZIP code information to the corresponding
county’s FIPS code by using the HUD USPS ZIP code-to-county crosswalk.® There are 3,049
counties in the database, and the Firm’s life insurance business is concentrated in larger and
more populous counties. As the lapsation calculation becomes noisy for counties with little
coverage, we drop counties with fewer than 100 policies issued in our sample. This leaves
us with 826 counties, representing 96% of life insurance face amount coverage of the overall
sample. Data on changes in house prices from Zillow (ZHVI) are available for 762 coun-
ties (92%), changes in unemployment rates are available for 823 counties (99.6%), and both
variables are available for 759 counties (92%). Our results are not sensitive to reasonable
variations in the 100-policy threshold.

We construct three county-level variables to measure the change in lapsation rates, hous-

ing prices, and the unemployment rates between 2006 and 2009,

(ALapse 06 — 09). = (Lapsec 2009 — Lapsec006) x 100,
ZHV 12009
ZHV 12006

(AUnemp 06 — 09). = (Unempc 000 — Unempcao06) % 100.

(AHousingPrice 06 — 09), = ( - 1) x 100,

We then regress (ALapse 06 — 09). on the house price change and the unemployment rate
change. The baseline specification is least squares, where observations are weighted by the
average in-force amount in 2006. This variable is the denominator used in the lapse rate

calculation formula. Intuitively, it represents the size of insurance business in each county
as of 2006.

2.2.4 Policy-level Lapsation Analysis

For our main analysis, we investigate the heterogeneity in exposures to aggregate lapse risk
factors by policy and policyholder characteristics, utilizing the micro-level Firm Database. To
this end, we estimate a Cox proportional hazard model of the observed lapse events on the
time-varying characteristics. For policy j issued at time t, we specify the annual lapsation
hazard rate at time ¢ + 7 as:

ALY = Ao(n) exp(B' Zr4n) 3)

8h’t’cps:/ /www.huduser.gov/portal/datasets /usps_crosswalk.html. We use the union of 2010, 2013, 2016
and 2019 Q1 versions, where the latest mappings were used per ZIP code.
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where Ag(n) is the baseline hazard rate at policy age n > 1, and the log relative risk is
linear in the vector of characteristics Z;;,,. Most of the policy or policyholder character-

istics (for instance, gender, smoking status, risk class, and term life policy indicator) are
;’,t—&—n
characteristic), we additionally include the interaction term with the lapse cycle factor, i.e.

;iﬁie = z§ x (Lapse Cycle);,y in the characteristic vector Z; ;1 ,. The estimated coefficients

on these interacted variables allow us to understand how the exposure to the cycle factor

time-invariant. For each policy or policyholder characteristic z; (or z if time-varying

varies with policy and policyholder characteristics.’

3 Empirical Results

3.1 Lapsation Trend and Cycle

Following the empirical procedure described in Section 2.2.1, we construct two lapsation risk
factors from the 30 lapse trend components and the 30 lapse cyclical components. Figure 3
plots the aggregate lapsation risk factors. The Lapse Trend factor, which is the first principal
component of the lapse trend time series, explains 96.4% of variation in firms’ lapse trends.
The Lapse Cycle factor explains 69.5% of variation in firms’ lapse cycles. These two factors
explain a large part of the common variation in lapsation rates across firms, and we use
these factors as the aggregate lapse risk factors.

One salient fact is the gradual decline in the Lapse Trend factor. Coinciding with the sec-
ular decline in interest rates, lapse rates have also been declining over the past 20 years as
depicted for several large firms in Figure 4. The Lapse Trend factor captures this industry-wide
decline. The co-movement with interest rates is illustrated in the upper panel of Figure 5.

Table 1 formalizes this relationship by regressing the Lapse Trend factor on the 10-year
Treasury rate and other business cycle variables such as aggregate Filtered GDP, aggregate
Filtered Employment, and the Baa credit spread over the 10-year Treasury rate. The positive
and statistically significant coefficients on the 10-year Treasury rate, along with insignifi-
cant coefficients on the business cycle variables indicate that the Lapse Trend factor primarily
moves with interest rates.

Lower rates increase the present value of the death benefit, and hence the value of a
life insurance contract, making it more costly to lapse from the policyholder’s perspective.
Lower rates also increase the cost (premium payments) of a new policy, again increasing
the cost of lapsing an existing contract that was signed when rates were higher. Finally,

9We can similarly include the interaction terms with the lapse trend factor. Our main interest is the het-
erogeneous exposure on the lapse cycle risk factor, so we do not include the lapse trend interactions in the
baseline specification. Including the interaction terms with the lapse trend factor does not materially change
the coefficients on the interacted variables with the lapse cycle factor.
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Figure 3. The Evolution of Lapse Trend and Lapse Cycle

This figure plots the aggregate lapsation factors we construct. For each company, we start
from the historical lapse rate series from 1997 to 2020, and apply Hamilton filter to
decompose the lapse rate time series into the trend time series and the cycle time series. We
then separately run two principal component analyses to the trend time series and the cycle
time series. Starting from the 30 trend time series, we construct the first principal
component that explains the most of the variations using the correlation matrix, and denote
it as the Lapse Trend factor. Similarly, we define the Lapse Cycle factor as the first principal
component of the 30 cycle time series.

2000 2005 2010 2015 2020

Lapse Trend Lapse Cycle ‘

and as emphasized in the literature, fixed-rate investment returns on whole life policies
signed when rates were higher are attractive relative to the investment returns on new poli-
cies (interest rate hypothesis), making it less desirable to replace the old policy with a new
one (policy replacement hypothesis. Our evidence is consistent with the IRH and PRH. We
do caution that identifying relationships between trending variables is challenging, and we
therefore interpret this evidence as suggestive of a link between the trends in lapsation rates
and interest rates. That said, the interpretation is bolstered by the evidence from the histori-
cal record, which showed gradual increases in lapsation rates from the early 1950s until the
mid 1980s when interest rates rose, and persistent declines after the mid 1980s when rates
started to fall (Kuo, Tsai, and Chen, 2003).

The Lapse Cycle factor on the other hand mostly captures the business cycle effect. Figure
1 plots the Lapse Cycle factor against two filtered macro variables, employment and GDP. The
counter-cyclicality of the Lapse Cycle factor is clear from the graphs.!? The lower panel of

Figure 5 shows that the factor is positively correlated with the Baa credit spread, a financial

19The principal component analysis is agnostic on the sign of the factor. We construct the factor to be coun-
tercyclical instead of being procyclical.
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Table 1. Time Series Regression of Lapse Trend

This table presents the results of the following time-series regressions:
Lapse Trend Factor, = B (Treasury 10y), + yX; + &;

for year t, where the business cycle variable X; indicates either the Filtered GDP, Filtered
Employment, or Baa Credit spread over 10y. Robust standard errors are reported in
parentheses.

(1) ) 3) 4) (5)
Treasury 10y 0.478%% 0.479"* 0465** 0.506"* 0.470"*
(0.0688) (0.0607) (0.0578) (0.0608) (0.0544)

Filtered GDP -0.0622 0.298***
(0.0366) (0.0769)
Filtered Employment -0.0849** -0.301***
(0.0377) (0.0520)
Baa Credit Spread over 10y 0306  0.445*
(0.185)  (0.180)
Constant 4359 43517 4401 3.463**  3.244%**
(0.266)  (0.239)  (0.233)  (0.565)  (0.455)
Observations 21 21 21 21 21
R? 0.664 0.704 0.735 0.724 0.814
Adjusted R? 0.646 0.671 0.706 0.693 0.768

Standard errors in parentheses
*p<0.1, ** p<0.05, *** p<0.01

market variable known to be closely related to the business cycle.

Table 2 formalizes this relationship by estimating similar models as in Table 1. Two obser-
vations are notable compared to the results in Table 1. First, the coefficients on the business
cycle variables, Filtered GDDP, and the Baa Credit Spread over the 10-year Treasury yield
are all statistically significant at the 5% level, and the coefficient on Filtered Employment
is statistically significant at the 10% level. The signs of the coefficients highlight the strong
counter-cyclicality of the Lapse Cycle factor. Second, the coefficients on the 10-year Treasury
yield are also statistically significant and positive. This indicates that the cyclical component

of lapsation contains some exposure to declining interest rates.!! Intuitively, the rise in the

"The Lapse Trend factor and the Lapse Cycle factor are not constructed as the first and the second principal
component of a set of vectors, so there is no guarantee that these factors are uncorrelated. The constructed
lapsation risk factors are positively correlated.
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lapsation rate in recessions indicates that a subset of policyholders face economic hardship

that no longer allows them to make premium payments. Hence, this evidence is consistent

with the emergency fund hypothesis (EFH).

Table 2. Time Series Regression of Lapse Cycle

This table presents the results of the following time-series regressions:

Lapse Cycle Factor, = B (Treasury 10y), + vX; + &

for year t, where the business cycle variable X; indicates either the Filtered GDP, Filtered
Employment, or Baa Credit spread over 10y. Robust standard errors are reported in

parentheses.
() (2) 3) 4) ()
Treasury 10y 0.210**  0.213**  0.195*  0.262***  0.255***
(0.0549) (0.0772) (0.0807) (0.0620)  (0.0694)
Filtered GDP -0.124** -0.113
(0.0515) (0.0976)
Filtered Employment -0.106* 0.0597
(0.0608) (0.0859)
Baa Credit Spread over 10y 0.550***  0.366**
(0.177)  (0.162)
Constant -0.697***  -0.714* -0.645** -2.309*** -1.813***
(0.186)  (0.279) (0.300)  (0.581)  (0.548)
Observations 21 21 21 21 21
R? 0.227 0.504 0.422 0.568 0.596
Adjusted R? 0.186 0.449 0.358 0.520 0.495

Standard errors in parentheses
*p<0.1, ** p<0.05, *** p<0.01

The top panel of Figure 5 plots the Lapse Trend factor against the 10-year Treasury yield.

The bottom panel of Figure 5 plots the Lapse Cycle factor against the Baa credit spread over

the 10-year Treasury yield.
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Figure 4. Lapse Rates vs. Macro Variable (GDP) of the Largest Life Insurers

This figure plots the historical lapse rates against the firm-specific filtered GDP of the 12
largest insurance groups from the S&P Global Market Intelligence Database. For each life
insurance company, the company-relevant GDP is calculated as the weighted-average of
the state-level GDP, where the weights are based on the gross premium income from each
state to reflect the economic exposures to each state.
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Figure 5. Lapse Factors and Financial Market Variables

This figure plots the lapsation factors against the financial market variables. The blue line
in the upper panel plots the Lapse Trend factor against the 10-year Treasury yield. The red
line in the lower panel plots the Lapse Cycle factor against the Baa credit spread over 10-year
Treasury yield.
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3.1.1 Implications For Hedging

The strong comovement suggests that aggregate lapsation risk can be hedged with a port-
folio of Treasuries and corporate bonds. We formalize this intuition in Table 3 by regressing
the change in lapse rates on the changes in financial market variables. Unlike in Table 1 and
2, we use changes in variables to establish the relationship, because the changes in variables
are more relevant than the levels for hedging purposes. Column (1) suggests that the Lapse
Trend factor is harder to hedge annually, and that there is a lower frequency relationship be-
tween the Lapse Trend factor and the 10-year Treasury Rate. Column (2) shows that the annual
changes in Lapse Cycle factor can be effectively hedged using Baa-rated corporate bonds and
Treasuries. In Column (3), we use the change in Lapse Total as a dependent variable, which is
the sum of the Lapse Trend factor and the the Lapse Cycle factor. This final column shows that
this simple hedging strategy already captures 40% of the variation in lapse rates.

Table 3. Hedging Opportunities using Financial Products

This table presents the time-series regression results of the changes in lapsation risk factors
on the change in 10-year Treasury rate and the change in Baa Credit Spread over 10-year
Treasury yield. Robust standard errors are reported in parentheses.

(1) (2) (3)
ALapse Trend ALapse Cycle ALapse Total
ATreasury 10y -0.103 0.551** 0.449**
(0.124) (0.224) (0.158)
ABaa Credit Spread over 10y -0.0897 0.693*** 0.603***
(0.117) (0.188) (0.0963)
Constant -0.128%*** 0.0594 -0.0682
(0.0432) (0.0885) (0.0875)
Observations 20 20 20
R? 0.061 0.392 0.394
Adjusted R? -0.049 0.320 0.323

Standard errors in parentheses
*p<0.1, ** p<0.05, *** p<0.01

3.2 Heterogeneity in Risk Factor Exposures Across Firms

Equipped with the two aggregate lapsation risk factors, we investigate the heterogeneity in
lapsation risk exposures across large life insurers by estimating the regression specified in

Equation (2).
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Table 4 presents the first set of results for large insurers. The table lists the 30 largest
life insurers based on the in-force policy amounts at the end of 2020, which is the same
group of life insurers that we used to construct the lapsation risk factors in Section 2.2.1. The
third and the fourth column report the mean and the standard deviation of the historical
lapse rates. The fifth column reports the correlation of the historical lapse rate series with
the filtered employment series. The correlation coefficients are mostly negative, which is
consistent with Figure 4. The sixth and the seventh column are the main results of interest:
the exposures to the Lapse Trend factor and the Lapse Cycle factor. We note substantial variation
in these risk exposures across companies. This suggests that optimal hedging strategies to
manage lapsation risk vary across companies. The valuation impact of aggregate lapse risk

similarly varies across companies.

3.3 Geographical Heterogeneity During the Great Financial Crisis

Next, we explore the heterogeneity in lapsation rates across geographies during the 2008 fi-
nancial crisis. Figure 6 presents the binscatter plots of the county-level lapse rate change,
(ALapse06 — 09)., against the county-level economic variables during the Global Finan-
cial Crisis. The top panel plots the lapse rate change against the housing price change,
(AHousingPrice 06 — 09),, and the bottom panel plots the lapse rate change against the un-
employment change, (AUnemp 06 — 09).. The counties are sorted into 20 equal-sized bins
based on the value of the economic variable on the horizontal axis. The blue dots are plotted
at the equal-weighted averages for each bin and the orange dots are plotted at the weighted-
averaged for each bin. The average in-force amount in 2006 is used to construct the weights,
and the orange marker size indicates the bin-level sum of the weights. The blue lines show
the OLS predictions while the orange lines show the weighted least squares (WLS) predic-
tions. All three variables are winsorized at the 2.5% and 97.5% percentiles.

The top panel shows a clear negative relationship between the change in the lapse rate
and house price changes, and the bottom panel shows a clear positive relationship between
lapse rate changes and changes in the unemployment rate. Counties with more adverse
housing and labor market conditions during the Great Financial Crisis experienced larger
increases in the lapse rates.

We formalize this relationship by estimating county-level regressions. Table 5 presents
the WLS results, which we prefer as the baseline specification. The OLS results are presented
in Table A2 in the Appendix. Robust standard errors are reported. In Column (1) of Table
5, the point estimate on house price changes is -0.04 and it is statistically significant at the
5% level. The mean and standard deviation of AHousing Price 06 — 09 are —7.8% and 12.5%,

respectively, so that a one-standard deviation decline in house prices is associated with a

19



Table 4. Lapsation Risk Exposures to Lapse Trend and Cycle by Firm

This table reports the lapsation risk exposures of large life insurers to the two lapsation risk
factors. Specifically, we run the following regression:

Lapse Rateﬁ = o + ,BijdLapse Trend; + ,BjcycleLapse Cycle; + 5];

where the superscript j represents the index for the 30 largest life insurer groups from the
S&P Global Market Intelligence database.

Rank Company Name Mean St. dev. Corr. w.  Exposure to Exposure to

Lapse Lapse Employm. LapseTrend Lapse Cycle
1 Prudential Financial Inc. 5.20 1.19 -0.39 1.08 (0.11) 0.94 (0.15)
2 Northwestern Mutual 3.74 0.35 -0.29 0.16 (0.05) 0.44 (0.06)
3 AIG 6.18 248 -0.06 1.68 (0.57) 1.39 (0.76)
4 Transamerica 7.48 1.18 -0.33 0.65 (0.26) 0.95 (0.34)
5 Lincoln Financial 6.02 1.36 -0.28 1.20 (0.21) 0.85 (0.28)
6 New York Life 5.90 0.75 -0.29 0.69 (0.12) 0.41 (0.16)
7 State Farm 6.36 0.98 -0.35 0.83 (0.09) 0.89 (0.12)
8 Protective 5.52 1.30 -0.05 1.06 (0.31) 0.26 (0.41)
9 Principal Financial Group Inc. 4.50 1.78 -0.45 1.65 (0.16) 1.37 (0.21)
10 MassMutual 4.83 0.76 -0.07 0.50 (0.15) 0.65 (0.19)
11 Legal & General U.S. only 4.75 0.98 -0.35 0.91 (0.11) 0.69 (0.15)
12 Primerica 9.97 1.50 -0.36 1.09 (0.16) 1.54 (0.21)
13 Genworth 5.28 1.23 -0.52 0.13 (0.39) 0.46 (0.51)
14 John Hancock 5.68 0.95 -0.52 0.59 (0.15) 0.98 (0.19)
15 Brighthouse Financial 5.77 1.35 -0.44 1.25 (0.23) 0.63 (0.31)
16 Pacific Life 6.31 1.58 -0.50 0.11 (0.38) 1.80 (0.50)
17 Allstate Corp 8.88 1.77 -0.34 1.50 (0.26) 1.32 (0.34)
18 Equitable Holdings 6.30 1.17 -0.29 1.27 (0.18) 0.25 (0.24)
19 MetLife 5.11 1.06 -0.18 0.98 (0.15) 0.65 (0.20)
20 USAA 2.57 0.34 0.01 0.20 (0.08) 0.22 (0.11)
21 Voya Financial Inc. 5.64 1.57 -0.29 1.41 (0.23) 1.01 (0.31)
22 Guardian 5.28 1.16 -0.34 1.17 (0.14) 0.64 (0.19)
23 Berkshire Hathaway Inc. 9.23 4.19 0.14 1.96 (1.28) -0.35(1.69)
24 Great-West U.S. only 6.32 2.36 -0.16 1.94 (0.52) 0.85 (0.70)
25 Sammons Enterprises Inc. 6.22 1.02 -0.28 0.89 (0.20) 0.44 (0.27)
26 KUVARE 6.72 1.76 -0.32 0.93 (0.36) 1.63 (0.48)
27 Zurich 8.25 1.47 -0.42 1.32 (0.19) 1.07 (0.25)
28 Nationwide 5.90 1.31 -0.44 1.10 (0.24) 0.77 (0.32)
29 Ohio National 5.85 0.66 -0.33 0.14 (0.21)  -0.20 (0.28)
30 Penn Mutual 5.29 1.30 -0.43 1.04 (0.21) 1.00 (0.27)
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Figure 6. Lapsation Rate Change vs. County-level Economic Variables

This figure plots the lapsation change between 2006 and 2009 against the county-level
economic variables. The top panel plots the lapsation rate change ((ALapse 06 — 09).)
against the housing price change ((AHousingPrice 06 — 09).) and the bottom panel plots
the lapsation rate change ((ALapse 06 — 09).) against the unemployment change
((AUnemp 06 — 09).). Counties are sorted into 20 equal-size bins based on the economic
variable on the X-axis. The blue dots are plotted at the equal-weighted averages for each
bin and the orange dots are plotted at the weighted-averaged for each bin. The average
in-force amount in 2006 are used as the weights, and the orange marker size indicates the
bin-level sum of the weights. The blue lines show the OLS predictions while the orange
lines show the WLS predictions.
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0.51% higher lapsation rate.

Similarly, in Column (4), the coefficient on the unemployment rate change is 0.23 and it is
statically significant at the 5% level. The mean and standard deviation of AUnemp Rate 06 —
09 are 4.4% and 1.7%, respectively, so that a one-standard deviation more severe unemploy-
ment rate increase is associated with a 0.39% higher lapsation rate.

In Columns (2) to (3) and (5) to (6), we control for median 2006 income'? and 2006 log
population. The coefficient on house price changes becomes more negative. Larger coun-
ties (usually in populous MSAs with higher median income) experienced more severe house
price declines, but experienced a smaller increase in lapsation rates. Controlling for income
and population thus makes the sensitivity of lapse rates to house prices larger. For unem-
ployment changes, controlling for income and population does not affect the coefficient of
interest much.

In Columns (7) to (9), we present the results when both house price changes and un-
employment changes are included in the model. The effect from unemployment changes is
subsumed by the coefficient on the house price change. The latter is still statistically signifi-
cant at the 5% level, and is larger in absolute value than in Columns (1) to (3)."

In sum, regional variation in economic hardship correlates positively with lapsation
rates, adding an additional dimension of heterogeneity to the results from the previous sec-
tion, and bolstering the evidence that policies tend to lapse more in adverse states of the

world.

4 Heterogeneity in Lapse Cycle Exposure Across Policies

For our main results, we study heterogeneity in lapsation risk exposure across individual
policies by estimating the Cox proportional hazard model (PHM) specified in Equation (3)
on our Firm Database.

Table 6 presents the results using the policy-level data. The first column indicates the
policy or policyholder characteristic that we examine. For the attained age of the policy-
holder, the policy size (death benefit amount in 2016 USD), and the ZIP-code income level
of the policyholder, we divide the sample into groups and use the group indicator variables.
We omit the 40-49 year-old policyholder, the $200-400k policy size, and the Zip-code income
between $50-75k groups. We include male, smoker, and whole life indicators, and omit the

12This is the imputed ACS income of 2006. If ACS data exists, we use the data, otherwise we use the predicted
income of the following panel regression: (ACSIncome)cs = p* (HUDIncome)ct + ac + ;. The estimated B is
~ 0.275.

13Comparing the WLS results in Table 5 to the OLS results in Table A2, the coefficients are similar in columns
(1) to (6). When both house price change and unemployment rate change are included as regressors, the
coefficients lose statistical significance, unlike in the WLS.
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standard risk class. Hence, the reference policy is for a 40-49 year-old female policyholder
with a term life policy of $200-400k who lives in a ZIP code with annual income between
$50-75k, is a non-smoker, and has average health risk.!* The data have substantial mass for
this combination of characteristics, which is why we chose it as the reference point. The
Shock Year variable is an indicator variable that takes on the value of one for a term policy
in the year of maturity, allowing us to capture the large spike in lapsation due to the renewa-

t.15 Each of the covariates is interacted

bility feature common in the U.S. term policy marke
with the Lapse Cycle variable. Columns two and three report point estimates for the PHM
coefficients B and associated t-statistics based on the full sample of term and whole life poli-
cies; they are our main results. Columns four and five study a subsample estimation on term
life policies and the last two columns study whole life policies separately.

Figure 7 plots the estimated baseline hazard rate function Ag(n), which describes the
lapsation rate of a group that has the average covariate values for every characteristic as a
function of policy age. The downward-sloping pattern is consistent with the documented
shape of the lapse term structure from the industry report (Society of Actuaries and LIMRA,
2019).16

Before we discuss the heterogeneity in lapse cycle exposures, which is our main focus,
we discuss the estimated uninteracted lapse rate coefficients. Younger policyholders lapse
much more than the reference group, for both term and whole life policies. Older policy-
holders also lapse more but that effect is weaker and solely driven by term life policies.
For whole life, lapsation rates are monotonically declining in age. Male policyholders lapse
more. Lapsation is highest for the reference policy size of $200-400k. Smaller term and whole
life policies lapse substantially less than the reference policy, while the effects for large poli-
cies are more similar to the reference group. Smokers lapse much more, and better risk-class
(healthier) policyholders lapse significantly less. Policyholders in lower-income ZIP codes
lapse substantially more, a strong and highly significant effect for both term and whole life

4The Risk Class (Better) variable indicates the initial risk classification of the policyholder by the life insurer
at the time of underwriting, where the ultra preferred class takes the value +2, the select preferred class takes
the value +1, the standard class equals 0, and the sub class takes the value -1, within either Tobacco or Non-
Tobacco risk ratings.

15See Figure 33 of Society of Actuaries and LIMRA (2019) for the effect of the shock year lapse “spikes”. Both
Society of Actuaries (2010) and Milliman (2020) provide detailed discussion on the shock-year lapse effects.
Instead of flagging both year T and year T + 1 as in other source, we only flag year T + 1 as the shock lapse
year, because the Firm Database only records the policy status updates dates with about a 3-month delay. This
is the same effect that we discuss in the baseline hazard rate graph.

16There is a “kink” at the 2-year data point. This results from the operation of the Firm Database, which
records the status update date for lapsation or surrender, not the last date of coverage. In practice, there is
usually a 30-day grace period to declare the lapsation and an additional administrative delay of one to two
months. With this limitation, many of “lapses” at the end of the first year are shifted by a few months and
measured as the second-year lapse. Because this effect is common to all policies, the effect on the heterogeneous
risk exposure 8 is minimal.
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Table 6. Lapsation Risk Exposures by Policy and Policyholder Characteristics

This table reports the heterogeneous lapsation risk exposures of life insurance policies
depending on various policy or policyholder characteristics. We estimate the following Cox
proportional hazard model for policy j in the Firm Database issued at time ¢:

A}j? = Ao(7) exp(8' Zjt1n)

where Ag(n) is the baseline hazard rate at policy age n > 1, and the log relative risk is linear
in the vector of the policy or policyholder characteristics Z; ;.

Policies included in estimation: Term and whole life Term only Whole life only
Characteristic B t-stat B t-stat B t-stat
Age Group 00-29 0.40 43.11 0.50 31.88 0.28 24.73
Age Group 30-39 0.12 23.13 0.07 8.87 0.21 25.74
Age Group 50-59 0.09 15.84 0.18 21.06 -0.06 -7.16
Age Group 60 or higher 0.02 2.23 0.42 33.65 -0.27  -32.66
Age Group 00-29 x LapseCycle -0.02 -1.50 -0.11 -4.11 0.10 5.39
Age Group 30-39 x LapseCycle -0.02 -1.93 -0.04 -3.31 0.05 4.28
Age Group 50-59 x LapseCycle -0.15 -15.99 -0.13 -8.60 -0.12 -9.87
Age Group 60 or higher x LapseCycle -0.29 -24.56 -0.23 -10.43 -0.18 -13.74
Lapse Cycle 0.11 8.46 0.11 5.24 0.26 15.80
Male 0.02 4.38 0.02 2.64 -0.02 -2.61
Male x LapseCycle 0.00 0.58 0.02 1.33 0.01 0.52
Size less than 200k -0.06 -6.88 -0.04 -2.24 -0.09 -8.97
Size 400k to 750k -0.03 -4.21 0.00 0.20 -0.02 -2.36
Size 750k or higher -0.01 -1.43 0.03 3.06 0.01 1.03
Size less than 200k x LapseCycle -0.05 -3.34 0.00 0.15 -0.06 -3.65
Size 400k to 750k x LapseCycle -0.01 -0.50 -0.01 -0.49 -0.01 -0.80
Size 750k or higher x LapseCycle 0.03 2.80 -0.01 -0.31 0.07 5.88
Smoker 0.47 64.53 0.50 45.52 0.40 41.42
Smoker x LapseCycle 0.01 1.19 0.03 1.52 0.00 0.06
Risk Class (Better) -0.22 -98.51 -0.25 -70.47 -0.20 -65.34
Risk Class (Better) x LapseCycle -0.04 -9.66 -0.02 -2.68 -0.07  -13.61
Zipcode Income <35k 0.47 32.72 0.53 23.94 0.38 19.85
Zipcode Income 35k-50k 0.15 20.99 0.17 15.67 0.11 12.20
Zipcode Income 75k-100k -0.07 -12.36 -0.08 -8.68 -0.06 -7.90
Zipcode Income 100k or higher -0.20 -39.26 -0.18 -23.63 -0.23 -33.12
Zipcode Income <35k x LapseCycle 0.05 2.26 0.10 2.74 0.02 0.68
Zipcode Income 35k-50k x LapseCycle 0.04 3.65 0.04 2.38 0.05 3.28
Zipcode Income 75k-100k x LapseCycle -0.02 -1.98 -0.02 -1.00 -0.03 -2.16
Zipcode Income 100k or higher x LapseCycle  -0.04 -4.89 -0.07 -5.06 0.00 -0.40
Whole & Others -0.15 -35.08

Whole & Others x LapseCycle 0.20 27.18

Shock Year 1.92 99.70 1.90 80.85

Shock Year x LapseCycle -1.01 -27.57 -1.03 -23.65

Number of Subjects 847,813 368,681 479,132
Number of Periods 6,322,248 2,617,120 3,705,128
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Figure 7. The Estimated Baseline Hazard Rate

This figure plots the estimated baseline hazard rate from the Cox proportional hazard rate
model using the Firm Database. The Cox proportional hazard model specifies that for
policy j in the Firm Database issued at time ¢: A](.’Z) = Ao(n) exp(B'Zjt+n) where Ag(n) is

the baseline hazard rate at policy age n > 1, and the log relative risk is linear in the vector
of the policy or policyholder characteristics Zj ¢y .

Baseline Hazard Rate (%)

0 5 10 15 20
Policy Age (years)

policies. Whole life policies see lower average lapsation rates than term life policies. Finally,
we observe the spikes in term life lapsation around policy maturity. These effects are broadly
consistent with the patterns found in the industry lapse experience (see Society of Actuaries
and LIMRA, 2019; Milliman, 2020).

Our main findings uncover large heterogeneity in the exposure of different policies and
policyholders to the aggregate lapse cycle. The cyclicality of the reference group can be read
off the “Lapse Cycle” coefficient, which is 0.11 for term life and 0.26 for whole life policies,
both of which are highly significant. The cyclicality of term life lapsation is a new finding
to the literature, which has focused on whole life. The coefficient on “Whole x LapseCycle”
in the second column confirms that whole life policies display more cyclical lapsation than
term life policies.

Next, we look at heterogeneity by policyholder attained age. For whole life policies,
the lapse rates of the young go up substantially more and those of the old much less in a
recession than for the reference group of 40-49 year olds. For term life, the cyclicality is
highest for the reference group, a feature the full sample inherits.

In terms of policy size, larger (smaller) whole life policies are more (less) sensitive to the
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lapse cycle. Larger whole life policies have larger cash surrender values, making them more
valuable in a recession-induced emergency. For term life policies, there is not much of an
effect along the policy size dimension.

Policyholders with higher health risk (negative risk class) have significantly higher lap-
sation, both among term and whole life policies. For smokers and non-smokers there is no
differential sensitivity. The same is true for males versus females.

Policyholders living in lower-income ZIP codes experience significantly stronger increases
in lapsation in recessions, especially for term life policies. This makes sense as whole life
policies are more prevalent among the wealthy, while the opposite is true for term life. The
results for term life highlight the importance of binding financial constraints in recessions
for term life policyholders, forcing some of them to forfeit their life insurance coverage.

This rich pattern of heterogeneity in exposures suggests that there are important distri-
butional consequences from aggregate lapsation risk. The fact that young, lower-health, and
lower-income policyholders are all more likely to lapse their policy during economic down-
turns provides a new perspective on the costs of business cycles. This is particularly relevant
if households who lapse their policies are less likely to purchase a new policy in the future.

It also has important implications for pricing if life insurers ignore aggregate lapsation
risk when setting premiums. We return to those implications in Section 5.7. We do so for four
types of policies: the reference group, high-risk smokers, the young and low-income, and the
small policy and low income. Table 7 reports the ratio of the lapse rate in recessions (when
the variable Lapse Cycle is one standard deviation above its mean of zero) to the average lapse
rate (when Lapse Cycle is at is mean of zero) minus one. For the reference policy in Panel A,
the lapsation rate is 7.0% higher in recessions in the full sample. For whole life policies,
lapsation is 16.9% higher in recessions. As Panel B shows, high-risk smokers have higher
exposure to the lapse cycle, with lapsation rates that are 10.2% higher (21.7% for whole life).
Panel C shows that households that are both young (between age 30 and 39) and low-income
(in ZIPs with income below $35k) also display excess sensitivity to the cycle with lapsation
rates that are 11.0% higher for term life (22.1% for whole life). Finally, Panel D shows that the
small-policy and low-income group sees 14.1% higher lapse sensitivity for term life (14.4%

for whole life) policies. We study these four policies in Section 5.7.

5 Valuation Model

In this section, we develop an asset pricing model to quantify the impact of aggregate lapsa-
tion risk on the valuation of life insurance policies. We calibrate the model to be consistent
with asset pricing data. We then use the model to compute the mispricing and its impact on

insurer profitability when insurance companies do not account for systematic lapsation risk
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Table 7: Heterogeneity in exposure to the lapse cycle

Policies included in estimation: Term and whole life Term only Whole life only

Policy considered: Term Term Whole

Reference policy lapse cycle exposure 0.116 0.122 0.269
Panel A: Baseline policy and policyholder

(log) lapse rate (LC=0) 6.6% 6.7% 5.1%

(log) lapse rate (LC=0.58) 7.1% 7.2% 5.9%

% diff 7.0% 7.4% 16.9%

Panel B: High-risk smoker

(log) lapse rate (LC=0) 13.2% 14.2% 9.3%
(log) lapse rate (LC=0.58) 14.5% 15.7% 11.3%
% diff 10.2% 10.1% 21.7%

Panel C: Young and low income

(log) lapse rate (LC=0) 12.0% 12.2% 9.1%
(log) lapse rate (LC=0.58) 13.1% 13.6% 11.1%
% diff 9.2% 11.0% 22.1%
Panel D: Small policy and low income
(log) lapse rate (LC=0) 10.0% 11.0% 6.8%
(log) lapse rate (LC=0.58) 10.7% 12.5% 7.8%
% diff 7.2% 14.1% 14.4%

in calculating insurance premiums.

5.1 Summary of the Economic Intuition

Before explaining the details of the model, we discuss the basic economic intuition for how
aggregate lapsation risk affects the valuation of life insurance policies.

Let Ay = [E;[Lapse;;1] be the probability that a policyholder lapses her policy in the
subsequent period, where Lapse;;1 is one in case of lapsation and zero otherwise. In the
presence of aggregate risk, the probability to be used in valuation accounts for the stochastic

discount factor, M?

tH1°
M? M?
/\g2 = IE; %Lapsetﬁl = At + Covy (L‘;,Lapseprl) .
]Et[Mf+l] IE; t+1]

We have seen that lapsation is high during economic downturns, which coincides with pe-
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riods when investors” marginal utility is high as well. The covariance term is therefore posi-
tive and the effective lapsation rate to be used for valuation, AQ, exceeds the actual lapsation
rate, A.

If an insurer ignores aggregate lapsation risk, then the lapsation rate used is too low.
This has two opposing effects on the premium charged to policyholders. First, insurance
companies pay a commission to insurance brokers to sell their products. If insurers use a
lapsation rate that is too low, they understate the probability that the policy lapses before
they have been able to recover the fixed cost of selling the policy. As a result, the premium
charged is too low.

The opposing effect is a consequence of the fact that insurers charge a fixed premium
during the term of the contract, while mortality rates increase. This implies that the first
years of the contract are profitable (as the premium exceeds the costs of the mortality cover),
and the later years of the contract are unprofitable (as the premium is lower than the costs
of the mortality cover). If insurers use a lapsation rate that is too low, they put too much
weight on the second part of the contract, and charge a premium that is too high.

A priori, it is unclear which effect dominates and how large these effects are, how they
vary with the markup charged by the insurer, and with macroeconomic conditions such as
the low-rate environment. To answer these questions, we develop a quantitative model in
the remainder of this section.

5.2 Model Setup

The model builds on the affine valuation models that are widely used in finance, and we
extend it to value life insurance policies in the presence of aggregate lapsation risk.

We assume that the N x 1 vector of state variables, z;, follows a Gaussian first-order VAR:
zt =u+Yz_1 + Y2e, (4)

with shocks ¢; ~ i.i.d.N(0,I) whose variance is the identity matrix, I. The companion
matrix ¥ is an N X N matrix and Z% is a lower-triangular matrix. As detailed below, the

state vector contains a one-year government bond yield, the return on a credit portfolio, and

the credit spread.
The nominal SDF M? = exp(m’;$ 1) is conditionally log-normal:
1
mi = —yP — SAIA— Ajeryr. (5)

2

Note that ]/?,1 = —IEt[me] - O.SWt[me]. The risk prices, A, are modeled as Ay = Ag +
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Aqz;. We impose further restrictions on Ag and A; below.

All lapsation rates A are converted to log lapsation rates A satisfying exp(—A) = 1 — A.
We assume that the log lapsation factor is affine in the state vector, that is, Iy = ag+ ayz. We
parameterize the term structure of lapsation rates using the sequence of constants {b(") }y,.
The log lapsation rate of a policy of age 7 is then given by:

A =50,

with b(") > 0and b'(") < 0.

Two comments are in order. First, the lapse rate can, in theory, become negative. How-
ever, the probability of this happening is so small that we favor this specification that pro-
vides a simple closed-form solution over more complicated alternatives. Second, the lapsa-
tion rate inherits the persistence of factors. We could generalize this by adding an additional
component to the state variables in z; that reflects an independent component in the lapsa-

tion rate.

5.3 Nominal Bonds

Given the assumptions we made, we can recursively find a closed-form solution for nominal

bond yields.

Proposition 1. Nominal bond yields are affine in the state vector:

AS  BY

$ —_fr_ 2t
]/t(T)— = TZt,

where the coefficients A? and B$ satisfy the following recursions:
1 ! ! 1
$ — $ $ $ $ 2
aS,y = AS+o(BY) z(BY)+(BY) (n—zino) (6)
/ / / 1
(ij +1> = (sz) ¥ e, - (Bi) SIA, 7)
initialized at Ag =0and Bg =0.

Proof. See Appendix Section A.1. O

5.4 Term Life Policy

We now use the model to value term life policies. We consider a T—year term life insurance

contract that is issued at time ¢. The annual mortality rate at age a is 77, and it is typically
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increasing in age. The life insurance contract is sold via brokers and the broker compensation
equals C = xp, with p the insurance premium and x a multiple of the annual premium.
Hence, if ¥ = 1, then the broker receives one year of premiums

Fort=1,2,---,T, the lapse rates {)\t+r} and the SDF M?
We denote the cumulative SDF by Mt 1t

insurance policy equates the expected premium revenue with the expected cost of paying

i+ are modeled in Section 5.2.

=TT, M? +s- The valuation equation for the life

the broker and paying the death benefit to the policyholder:

PE:

1+ Z Mtl - 11[(1 — ﬂaJrsfl) 11[(1 - /\t(+)s)]

=1 s=1 s=1

T*l
—C+(1+(P [ZMtl-rnaJrT 1H 1— 7y 1 t+s]z
= s=1

s:l

where ¢ denotes the markup of the insurance policy before considering the brokerage fee.'”
Using C = kp, we can solve for the insurance premium:

E; [Zzzl M?1'T7Ta+r—1 H;;ll( — Tlats—1) HT 1(1 - )‘54—)5)]

p=(1+¢) : 8)
B [14 2T ME T (1= 7 1) T (1- A | — ¢
Given the assumptions made, we calculate a closed-form solution for E; [M 1 Il (1 — AL

which is the key term in computing the insurance premium. Note that the solutlon de-
pends on the lapse factor exposures at different policy age, i.e. b(1:7) = {b(l), b2, ..., b }
We recursively solve for the two coefficient functions P; : R™ — R and Q; : RT — RN
that satisfy E; [MH e (1= AEJF)S)} = exp ( (61T + Qr (b)) zt>. The other term

E; [Mt g N, 1 (1- Agi)s)} in the numerator can be calculated as a special case when b(t) =
0, that is, if there is no lapsation in the final period. The following proposition provides the
recursion for Pr and Q.. Note that when T = 0, we slightly abuse the notation P (b(Z:TH)) =
Py and Q. (b(>™+1)) = Qq for constants Py and Q for simplicity.

Proposition 2. The term policy premium p can be written as:

2221 exp (PT(b(lzT 2 ) + Q ( 1 ) O)IZt) Tlat+71-1 H;r:_ll(l - 7Ta+sfl)
1+ZT 1exp< ( )+Q ( 1T)/Zf> H;rzl(l_ﬂa—&-s—l)_’c

7

p=(1+¢)

7Note that the timing is such that we first draw the health outcome (survival or death) and then proceed to
the lapse decision. If this is reverse, the last term on the right-hand side would have [T:_;(1 — A;) instead of

T2 (1= As).
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where the coefficient functions P; : RT — R and Q; : R — RN satisfy the following

recursions:
/ 1
pT+1(b(1:T+1)) _ —b(l)ao—l—PT(b(Zﬂ_l))—l— (QT(b(Z:H—l))_b(l)a]) <V_27A0>
1 ! )
- (2:7+1) (1) (2:t4+1)y _ 1(1)
5 (Qe(6®™ ) —bWar ) = (Qe(6® V) — bVay ) ©)
/
<QT+1(b(1:T—|—1))> — QT b 2T+1 b(l)ﬂl) <1If 22A1> ynl (10)

initialized at Py = 0 and Qg = 0.
Proof. See Appendix Section A.2. O

The recursion in Proposition 2 can be regarded as an extension of the recursion in Propo-
sition 1. When lapse rates do not depend on the state of the economy, i.e. b)) = p(?) = ... =
b =0, E [M P =1 (1 — AE JF)S)} simplifies to the nominal bond price of maturity 7. We
verify that P(0) = A?g and Q;(0) = B?. Indeed, Equations (9) and (10) are equivalent to
Equations (6) and (7) when b(1) = p(?) = ... = p(v+1) =0,

5.5 Calibration

We calibrate the model using financial market data at an annual frequency. Instead of di-
rectly estimating the VAR model presented in Section 5.2 on annual data, we specify an un-
derlying monthly VAR model. We estimate the monthly model, properly time-aggregated
to match moments obtained from annual financial market data. The advantage of this mod-
eling and calibration approach is that it allows us to simultaneously capture the dependency
of the lapse rates on the average of financial market state variables during the year and the
relationship between the credit risk premium and the credit spread at the end of the year.'

The three-dimensional state vector z; = (1, cr¢, s¢) contains the 1-year Constant Maturity
U.S. Treasury rate (GS1 in FRED), the monthly credit return calculated from the ICE BofA
BBB US Corporate Index Total Return Index (BAMLCCO0A4BBBTRIV in FRED) and the credit
spread, defined as Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-
Year Treasury Constant Maturity (BAA10Y in FRED) for the sample period 1990-2020. We
convert the interest rate, credit return, and credit spread into logarithms before estimating

the VAR model. The monthly specification is the same as Equation (4) with the monthly

8L apsation rate data are available only at the annual frequency. When we model and estimate (in Table 3)
the relationship between the annual lapse rates and the financial market state variables, the lapse rate depends
on the average state variables throughout the year not just on the end-of-year state variables. Using a monthly
VAR allows us to model the annual lapse rate as a function of the 12-month average of monthly state variables.
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VAR parameters (y, ¥, . )E
zt = pu+Yzp1 + g, (11)

The monthly dynamics imply the following annual dynamics:

k=1 k=1
Zprk = ( Tl) Y+ ) 11Ilz%*3t+k—z'/ (12)
i=0 i=0
and
K K (k-1 Ko K k=1
Yoz = YLV Y ) ) VS (13)
k=1 k=1 \i=0 k=1 k=1i=0

Equation (12) describes the dynamics of the annually-sampled interest rate and the credit
spread (71412 and s;112). Equation (13) describes the annual log holding period return on
the credit portfolio, which is the sum of twelve monthly log returns (2112:1 cryx). Equation
(13) multiplied by 1/12 also describes the dynamics of the state variables, averaged over the
year. It is those averages that drive the lapsation behavior.

$

The monthly nominal SDF M? . = exp(m?,) is given by:

t+1 t+1
S Oz 1
$ 0 1<t
My = T EA;At — Agery1, (14)
. $ oo 5izt . . . .
where the one-month discount rate y;, = T + 5 lsan affine function of the state variable

zt. We parameterize the market price of risk A; as:
A= Ao+ Aizp = Ag + Arélzs,

which requires us to identify three parameters, two for Ag = (Af, Af, 0)" and one for A =
(0,2,0)".

We use the following three moments to calibrate these three market price of risk parame-
ters. First, we match the average slope of the yield curve, defined as the difference between
the 10- and 1-year Treasury bond yields. Second, we match the unconditional credit risk
premium. Third, we match the linear dependence of the credit risk premium on the lagged
credit spread. Additionally, (dy, 1) are estimated from the restriction that the one-year risk-
free interest rate implied by the monthly SDF equals the one-year bond yield included in the
state vector, 7;.

Specifically, we model the monthly excess return on the credit portfolio as:

$ _ cr
CTey1 —VYpq = Yo+ 718t + 0 ery,

33



with e;11 ~ N(0, 1), so that the expected excess return depends on the credit spread:

Etlerea] —yiy = Y0+ 75t

The Euler equation for the credit portfolio then implies:

1
Etleria] + 5 Vilerenl = yiy = —Covileri, my, ]

Using our assumption on the credit return and the affine structure of the SDF, this can be

rewritten as:
1
Yo + Y15t + 5(0")2 = Ao Covtlery1, €4 q] + (A + Jst)o Coveleryq, €]

Matching the unconditional credit risk premium delivers the second moment condition:
1
Y0+ MElsi] +5(07)* = oo Covlers1, &) + (A + CE[si])o" Covlern efyy]  (15)
and matching the conditional credit spread delivers the third moment condition:

11 = (o Covlepyq, €7 4] (16)

Appendix B contains the details of the calibration process. The estimated monthly dy-
namics that result from matching moments measured in annual data are as follows:

Ti+1 0.0006 09792 0 0 T 0.0041 0 0 A

crepr | = | —0.0139 | + | 0.0933 0 0.7245 cry |+ | 0.0013  0.0242 0 €1

St41 0.0026 0 0 0.8388 St —0.0023 —0.0025 0.0016 €1
The estimated market price of risks are A, = —0.1265, Af = —0.5365 and { = 29.98.

We verify that the model indeed matches the unconditional slope of the log yield curve
of 1.36% and the unconditional credit risk premium of 4.43% (equivalently, the monthly
unconditional credit risk premium of 0.41%), as well as the observed dependence of the
annual credit risk premium on the 12-month lagged credit spread.

Next, we calibrate the parameters for the aggregate lapsation process, modeled as fol-

lows,
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where Z; denotes the 12-month moving average of the state variables. We first calibrate the
parameters ag and a;. By regressing the log lapsation rate I; on a constant, the constant-
maturity U.S. Treasury 10-year log rate (y%,t)’ and the Baa-10y log spread (s;) over the pe-
riod 2000 to 2020 (annual average financial market data), we obtain the following relation-
ship: I; = 0.0094 + O.85y$0,t + 0.94s;. Using the theoretical relationship yquo,t = 0.02986 +
0.41247r; from the calibrated yield curve, we obtain the coefficients ayp = 0.0347 and a; =
(0.35,0,0.94)’.

We calibrate the term structure of lapsation coefficients {b(")} by parameterizing {b(")} =
U+
2009nand 2009-2013 lapsation term structures to the term policy lapsation curves observed
in the data (Society of Actuaries and LIMRA, 2012, 2019).19 The calibrated term structure is

1.75
(n) — S
b 0.54 + 1075

the data, as shown in Figure 8.

v o and we search for the vector (1, v, w) that delivers the closest fit for the 2007-

and the model-implied lapsation term structure is reasonably close to

Figure 9 presents the historical paths of the model state variables, and the model-implied
lapse rates and the market price of risks. In the top panel, we plot the first and the third state
variables (r¢,s;) retrieved from FRED between 2000 and 2020. The middle panel compares
the actual lapse rate data with the model-implied lapse rates, showing that our lapsation
model provides a good fit. The bottom panel shows the time variation in the market price of
risk on the credit return shock (the market price of risk on the interest rate shock is constant).
During the Great Financial Crisis when the credit spread was high, the market price of credit
risk was high, and lapsation was high. It is this positive covariance between lapsation rates

and marginal utility that is the key new ingredient in our insurance pricing model.

5.6 Mispricing when Ignoring Aggregate Lapsation Risk

We now study an insurer who does not consider systematic lapsation risk when pricing life
insurance contracts. We first consider the correct premium when the life insurer properly
accounts for aggregate lapsation risk. We repeat Equation (8) for convenience:

B |0y My e TS (1= s 1) T exp(=A17) |
E; [1 +Xi] M?ﬁ:r [T21 (1 = ass—1) TT54 eXP(—;\gi)r)} —K

p=1+¢)

YWe do not model the extendibility of a term life policy and the associated “shock lapses” at the end of
the level premium periods, so we calculate the 6-10 and 11-20 average lapse rates excluding the policy ages
affected by the shock lapses (10, 11, 15, 16, 20). See Society of Actuaries (2010) for a detailed investigation of
the shock lapses after the level-premium period. The report shows that most of the shock lapses are occurring
at the end of the policy age T and the beginning of the policy age T + 1.
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Figure 8. Lapse Rate Calibration

This figure plots the calibrated lapse rates from the model and compare it to the Data for
2007-2009 and 2009-2013 periods (Society of Actuaries and LIMRA, 2012, 2019). See Section
5.5 for the details of the calibration process.
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Figure 9. Lapsation Model and Data

The top panel plots the historical paths of two state variables, (r¢,s;), of the asset pricing
model. The middle panel compares the actual lapse rate data with the model-implied lapse
rates. For the details of model calibration, see Section 5.5. The bottom panel plots the
model-implied market price of risk.
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The correct expected profit to the insurer V is:

T-1 T T
ycorrect _ p- 1+ Z Mtl Tn(l — 7'Ca+5_1) Hexp(—)\gi)r)] —K
=1 s=1 s=1 |
—a(T)
T T—1 T—1 < (s)
— E [2 M Taieo1 [T(1 = Mags—1) [ ] exp(—At+T)]
\ =1 s=1 s=1 |
=p(T)

where we have a closed-form solution for a(T) =1+ ZT 1 exp ( (0D + Qp (b1 Y )

T (1= s 1) and B(T) = £1g exp (Pe(b07,0) + Qe(bM7,0)'z ) g e 1 T (1 -
7Tu+s—1)-20

Intuitively, «(T) measures the number of years of premium income the insurer can ex-
pect to receive in the presence of lapsation risk and mortality risk. The first arrival of either
lapsation or policyholder death ends the premium revenue claim. B(T) measures the ex-
pected value of a $1 death benefit pay-out from the perspective of the insurer. This death
benefit only needs to be paid out if the policyholder dies during the term of the life insurance
contract and the policy did not yet lapse.

We contrast this case with the case where an insurer ignores the covariance between the
SDF and lapsation when pricing the term life insurance contract. To capture this scenario, we
assume that the lapse rate depends on an independent lapsation factor, which is defined as
[ind = gy + a4 zi". The independent state vector z{"? follows the process z;’fl = u+¥zird 4
22€t+1 with shocks & ~ N(0,I) that are independent from ¢;. This modeling approach
preserves the distribution of lapsation rates, while decoupling lapsation risk from shocks to
the SDF.

When both «(T) and B(T) are incorrectly calculated based on this independent lapsation
model, denoted by &(T) and B(T), respectively, the premium is set as f = (1 + ¢) EfT()T EK.
We can calculate &(T) and B(T) also in closed form as &(T) = 1+ Y 1 L. Z-TT'} (1 —
Mars—1) and B(T) = Y11 Lo 1 ZeTper y [T2(1 = Mass_1) for Ze = E [Mt _ H] and
L: = E; [ 11— )\E ﬁs)] . Appendix A.2 and Section B.3 contains the affine recursions for
Ly and Z;.

20See Appendix B3 for details on the calculation of the terms in mispricing formula such as

«(T), B(T),&(T), B(T).
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When the premium j is charged, but actual lapsation is subject to aggregate risk, the

insurer’s profit is given by:

yrealized _ p-(a(T)—x)—B(T)

We measure the impact of ignoring aggregate priced risk on the life insurer’s profits as
. Vrealizedivcorrect

Mispricing(%) = “—ama—— We first study the numerator of this expression:
Vrealized _ yycorrect _ (1 + 4)) (gg;g :z) B(T) . ‘B(T) . ¢5(T)
— (1 9) (S =5~ 1) BT + (1 ¢) (B(T) — B(T)

We find that a(T) < &(T) and B(T) < B(T). Intuitively, lapse rates tend to increase dur-
ing bad times (high SDF states). Taking this covariance into account shortens the duration
of the premium leg and lowers the expected discounted death benefit payment. The effect
of aggregate lapsation risk is to increase the effective lapse rates. The risk-neutral lapse rates
(under the Q measure) are higher than the physical lapse rates (under the IP measure).

We use the notation &(T)/a(T) = 1+ A, and B(T)/B(T) =1+ Ag 1 for Ay, AgT > 0.
Then, after dividing the previous expression by V! and some algebraic manipulation,

we can express the Mispricing(%) measure as the sum of two components:

. o Vrealized o Vcorrect
Mispricing(%) =

Vcorrect
_ Ayt Ay
=(1+¢7" B Z 1+A
f ¢ )(1+AM 1+A,X,T—x/a(T)>( * f"T)J

=Fixed—Cost Ef fect<0

+(14¢7hH ( ApT BT ) (1+Ap7) (17)

1+Agr 1+Ay7

. 4

=Mortality Ef fect>0

The fixed-cost effect term shows how the presence of the broker cost (x > 0) affects our
mispricing measure. The insurer has to pay the fixed cost when the policy is underwritten.
Early lapsation means that the insurer may not earn enough premium income to offset the
cost of the broker fee. The higher the lapsation rate, the stronger the detrimental effect
of fixed costs on profits. Since the effective lapsation rate is higher when accounting for
priced aggregate lapsation risk, the fixed-cost effect is negative. In other words, not correctly
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considering systematic lapsation risk leads insurers to earn too little profit.

The second term is labeled a mortality effect because the sign of the term is determined by
the relative size of Ag r and A, 7. We observe Agt > A, 1 in our calibration when mortality
rises with age. With a flat mortality curve, A, 7 ~ Ag 1 and mispricing captures mostly the
fixed-cost effect. However, under a realistic mortality curve, the mortality rate exponentially
rises in age and Agt >> A, 7. The mortality effect contributes positively to the mispricing
measure. Intuitively, the insurer charges a flat premium throughout the life of the contract.
The expected cost, by contrast, increases with age as mortality rates increase. Putting the
tixed cost aside, the insurer experiences profits during the early years (as the flat premium
exceeds the costs of mortality coverage) and losses during the later years of the contract (as
the flat premium is lower than the costs of mortality coverage). If the insurer understates
lapsation risk, it puts more weight on the later years during which the insurer experiences
losses. As a result, the premium is set too high and the insurers unexpectedly earns excess
profits.

Because the mispricing decomposition shows two countervailing effects, we need to
quantitatively assess the relative magnitude of the two effects. We do so for a hypothet-
ical 40 year-old male policyholder with a realistic mortality curve.?! The fee paid to the
broker is known to be between 50% to 100% of the first-year premium revenue, so we use
x = 0.5,0.75, and 1.0, with benchmark value ¥ = 0.75. We vary the margin parameter ¢ in
a reasonable range by using values ¢ = 0.05,0.1,0.2. In Appendix C we test the validity of
the markup assumption by calculating the insurer’s expected share 6 from the underwriting
profit, after paying the broker’s share (1 — 8). The 40% to 50% profit share range for term
policies ranging from 10 to 20 years in maturity (see Table A1) in our baseline cases ¢ = 10%
and x = 0.75 is in line with our understanding of the broker fee structure in the market.

Table 8 reports the mispricing measure and its decomposition. We find that the mortality
effect dominates the fixed-cost effect, so that insurers who ignore priced aggregate lapsation
risk earn excess profits. In our baseline case, k = 0.75 and ¢ = 10%, the realized profit for
a 10-year term policy is 6.9% higher than the theoretically correct one. This mispricing is
decomposed into the two effects previously discussed in the second and third panels of the
table. The insurer has to pay 75% of the first year premium to the brokers as a fixed cost. Ig-
noring the accelerated lapsation during recessions (higher lapsation under Q) results in 3.2%
understatement of the profit. On the other hand, the insurer charges a higher premium than
the theoretically correct one (0.6% higher premium before markup and fixed-costs), as she
is pricing a higher likelihood of having to pay out the death benefit when she assumes that

2lWe use the 2017 Loaded CSO (Commissioners Standard Ordinary) Composite mortality table
(https:/ /www.soa.org/resources/experience-studies/2015/2017-cso-tables). We use the select mortality table
to reflect the fact that insurers in practice are able to select policyholders with lower-than-population mortality
risk, at least in the early years of the policy.
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lapsation rates are lower (under IP than under Q). The mortality effect makes the realized
profit 10.0% higher compared to the correct profit. Since the mortality effect outweighs the
tixed-cost effect, ignoring systematic lapsation risk in pricing decisions results in an excess
profit of 6.9% compared to the case where the insurer correctly considered systematic lapsa-
tion risk. Term life policies would be cheaper in the world with correct pricing and profits
would be lower.

The mispricing effect increases strongly in the maturity of the policy. The excess profit
is 29.3% for a 20-year policy, due to a much stronger mortality effect. The reason is that
mortality rises exponentially in age, and is much higher around age 60 than around age 40.
This backloading of mortality risk interacts with lapsation risk. Understating lapsation risk
in the incorrect pricing model results in a much higher expected death benefit payout than
in the correct pricing model. The incorrect insurer charges a much higher premium and
earns much higher profits. We have verified that with a (counter-factually) flat mortality
rate profile, the mortality effect remains near zero for the 20-year policy.

Mispricing falls in both x and ¢. A higher fixed cost x, while holding the markup ¢ fixed,
results in a lower fixed-cost effect while the mortality effect is not changed. As the markup
¢ increases, holding x fixed, both the fixed-cost effect and the mortality effect decline due to
the 1+ ¢! term in Equation (17).

5.7 Cross-Sectional Variation in Mispricing

We now explore how heterogeneity in exposure to aggregate risk affects the pricing of premi-
ums and insurers’ profits when insurers ignore aggregate risk in pricing. We use the results
from Table 6. We do so for the four types of policies discussed in Table 7: the reference group,
high-risk smokers, the young and low-income, and the small-policy and low-income.

We first map the results from the proportional hazard model to the affine model. To do
so, we adjust ag and a1 (3) so that the ratio of lapse rates in the affine model matches the ratio
in the hazard model, where the numerator is the lapse rate of the policy type under consid-
eration and the denominator the lapse rate in the reference group. We compute this ratio
when the lapse cycle is zero (its unconditional mean) and when it is equal to one standard
deviation. This gives us two moments to calibrate ap and a1 (3) for each type of policy.

The top panel of Figure 10 reports the lapse rates when the lapse cycle equals zero and
when it is equal to one standard deviation. In the middle panel, we plot the impact on the
premium mispricing, and in the bottom panel we plot the impact on insurers’ profits. We
decompose the profit effect into the mortality effect and the fixed cost effect. In valuing these
various policies, we use group-specific mortality curves.

For high-risk smokers, the lapse rate is both much higher on average and much more

41



Table 8. Mispricing of Term Life Policies without Aggregate Lapse Risk

This table presents the calculated mispricing measure defined in Section 5.6 by

Vreal ized ycorrect

Mispricing(%) = Vearrect
where Vet = pB(T) is the correct profit of selling the term policy at markup ¢ assuming
the correct pricing, and V™24 = § . (a(T) — x) — B(T) is the realized valuation based on
the incorrect pricing when the aggregate lapsation risk is ignored.

Mispricing (%)
x=0.5 x=0.75 x=1.0

10-year Term Policy ¢=5% 15.3% 13.1% 10.7%
$=10% 8.0%  69%  5.6%
$=20% 44%  37%  3.1%

15-year Term Policy ¢=5% 34.3% 31.6% 28.8%
$=10% 18.0% 16.6% 15.1%
$=20% 9.8%  9.0%  82%

20-year Term Policy ¢=5% 59.0% 56.0% 52.8%
$=10% 30.9% 29.3% 27.7%
$=20% 16.9% 16.0% 15.1%

Fixed-Cost Effect (%)
k=05 x=0.75 x=1.0
10-year Term Policy ¢=5% -39% -6.0% -8.4%
$=10% -2.0% -32% -4.4%
$=20% -11% -1.7% -2.4%
15-year Term Policy ¢=5% -4.8% -7.4% -10.3%
$=10% -2.5% -39% -54%
$=20% -14% -21% -29%
20-year Term Policy ¢=5% -55% -8.5% -11.7%
$=10% -29% -45% -6.1%
$=20% -1.6% -24% -3.3%
Mortality Effect (%)
k=0.5 k=075 «=1.0

10-year Term Policy ¢=5% 19.1% 19.1% 19.1%
¢=10% 10.0% 10.0% 10.0%
¢=20%  5.5% 5.5% 5.5%

15-year Term Policy ¢=5% 39.1% 39.1% 39.1%
$=10% 20.5% 20.5% 20.5%
$¢=20% 11.2% 11.2% 11.2%

20-year Term Policy ¢=5% 64.5% 64.5% 64.5%
$=10% 33.8% 33.8% 33.8%
$=20% 184% 18.4% 18.4%
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sensitive to the cyclical factor. As a result, the premium mispricing is 7%, more than twice
as large as for the reference policy. The bottom panel shows that high-risk smokers are par-
ticularly profitable policies for insurers. Ignoring aggregate lapsation risk results in profits
that are 70% too high. We find the same effects on excess premiums and profits, albeit to a
smaller degree, for young and low-income households as well as for low-income households
purchasing small policies.

The key takeaway is that an insurance company charging a fixed markup across policies
inadvertently charges heterogeneous markups when ignoring aggregate risk in setting in-
surance premiums. The implicit markups are particularly high for young, low-income, and
high-risk households for whom life insurance coverage is particularly valuable. The covari-
ance between policy premiums or policy profits on the one hand and policyholder marginal
utility on the other hand is positive.

5.8 Using Corporate Bond Yields to Value Life Insurance Policies

Life insurers can use a corporate credit curve when calculating discounted present values for
reserve calculations (National Association of Insurance Commissioners, 2021). The stated
argument is that life insurers mostly hold corporate bonds on their balance sheet. This argu-
ment is incorrect because what a firm holds on the asset side should not affect the valuation
of its liabilities. The premature death risk of individual policyholders is idiosyncratic, thus
payouts on a portfolio of such policies should be discounted with the Treasury yield curve,
not the corporate credit curve. As we have shown above, lapsation is correlated with corpo-
rate credit risk, and this affects valuations of life insurance contracts. These effects should be
modeled via the covariation of lapsation rates and the SDF, and not as an ad-hoc adjustment
to discount rates.

We investigate whether the observed credit-curve discounting practice mitigates the mis-
pricing effect of ignoring aggregate lapsation risk. If the artificially higher discounting curve
offsets some of the mispricing effect, then life insurers may have been accidentally pricing
life insurance policies closer to the theoretically correct price than what we calculate in Sec-
tion 5.6. Table 9 shows the results from applying higher discount curves than the Treasury

curve.”? By ignoring aggregate lapsation risk, life insurers effectively use lapsation rates that

22The Standard Valuation Model published by NAIC contains a reserve calculation with a discount rate
based on a moving average of the Moody’s average composite yields of seasoned corporate bonds. The actual
discount rate formula used is I = 0.03 + p - (min(R,0.09) — 0.03) + (p/2) * (max(R,0.09) — 0.09), where R
is the minimum of the 12-months and the 36-months moving average of the Moody’s composite yield on
seasoned corporate bonds. To mimic this formula, we assume that the insurer uses the risk-free discounting
curve implied by the alternative log SDF, m; ; = —0.03 — p(ysf,1 + 5t —0.03) — LAJA; — Alesq1. We use the
parameter p = 0.45, as specified in Section 2.a.iii of VM-20 (National Association of Insurance Commissioners,
2021) for policies with duration between 10 and 20 years. The implied credit spread over Treasury curve is
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are too low when pricing their policies, compared to the risk-neutral lapsation rates. This
leads them to overstate their expected premium income and their expected death benefit
payouts. Using a higher discount rate in these present value calculations effectively offsets
the effect of using lapsation rates that are too high. As a result, the “double mispricing”
effects in Table 9 are much smaller than in Table 8. Life insurers may get the pricing about
right, but it is only because two mistakes cancel each other out.

6 Conclusion

We study aggregate lapsation risk in the life insurance sector. We construct two lapsation
risk factors that explain a large fraction of the common variation in lapse rates of the 30
largest life insurance companies. The first is a cyclical factor that is positively correlated
with credit spreads and unemployment, while the second factor is a trend factor that cor-
relates with the level of interest rates. Using a novel policy-level database from a large life
insurer, we examine the heterogeneity in risk factor exposures based on policy and policy-
holder characteristics. Young policyholders with higher health risk in lower-income areas
are more likely to lapse their policies during economic downturns. We explore the implica-
tions for hedging and valuation of life insurance contracts. Ignoring aggregate lapsation risk
results in mispricing of life insurance policies. The calibrated model points to overpricing on
average and important cross-sectional implications. Young and high-health risk households
face higher effective mark-ups than the old and healthy.

around 1.2% to 1.5% across different maturities. Effectively, we are shifting up the discount rate by 1.2-1.5%
points relative to the Treasury yield curve.
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Table 9. Double Mispricing with Credit Discounting

This table presents the calculated mispricing measure defined in Section 5.6 by

Vreal ized ycorrect

Mispricing(%) = Veorrect
where Vet = $B(T) is the correct profit of selling the term policy at markup ¢ assuming
the correct pricing. V24 = 5. (a(T) — k) — B(T) is the realized valuation based on the
assumption that the premium p is doubly-mispriced, i.e. the aggregate lapsation risk is
ignored but also the credit curve is used for discounting. See 5.8 for the details.

Mispricing (%)
k=05 x=0.75 x=1.0

10-year Term Policy ¢=5% -11.5% -10.3% -9.0%
$=10% -6.0% -54% -47%
$=20% -833% -29% -2.6%
15-year Term Policy  ¢=5% 14%  19%  2.6%
$=10%  0.7% 1.0% 13%
$=20% 04%  06%  0.7%

20-year Term Policy ¢=5%  184% 18.6% 18.8%
$=10%  9.6%  9.7%  9.9%
$=20%  53% 53%  54%

Fixed-Cost Effect (%)
x=0.5 x=0.75 «=1.0

10-year Term Policy  ¢=5% 2.1% 3.2% 4.5%
¢$=10% 1.1% 1.7% 2.4%
¢=20% 0.6% 0.9% 1.3%

15-year Term Policy  ¢=5% 1.1% 1.6% 2.3%
¢$=10% 0.6% 0.9% 1.2%
¢$=20% 0.3% 0.5% 0.7%

20-year Term Policy  ¢=5% 04%  05%  0.7%
$=10%  02%  03%  04%
$=20% 01%  02%  02%

Mortality Effect (%)
k=0.5 =075 «=1.0
10-year Term Policy ¢=5% -13.5% -13.5% -13.5%
$=10% -71% -71% -71%
$=20% -39% -39% -39%
15-year Term Policy  ¢=5% 03%  03%  0.3%

¢=10% 0.2% 0.2% 0.2%
¢$=20% 0.1% 0.1% 0.1%

20-year Term Policy  ¢=5% 18.1% 18.1% 18.1%
¢$=10% 9.5% 9.5% 9.5%
¢$=20% 5.2% 5.2% 5.2%
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Figure 10: The impact of heterogeneous lapse cycle exposures on premiums and profits
The top panel reports the log lapse rate when the lapse cycle is equal to zero or to one standard
deviation. The middle panel reports premium mispricing, and the bottom panel reports mispricing

of insurers’ profits. We decompose the total effect from mispricing on profits into the mortality effect
and the fixed cost effect.
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A Model Solution

A.1 Nominal Bonds

Proposition 1. Nominal bond yields are affine in the state vector:

where the coefficients A? and Bf? satisfy the following recursions:
1 ! / 1
$ . 1
a5 = A+ (BE) = (BY)+ (BY) (k—xin), (A1)
/ !/ 1
(ijz +1) — (Bf) <‘1f _ Z2A1) — & (A.2)
initialized at A% = 0 and Bg =0.

Proof. We conjecture that the t + 1-price of a T-period bond is exponentially affine in the
state:

/
log(Pt$+1,T) = Ai + (B§> Zt+1

and solve for the coefficients Ai 4 and Bf L1 in the process of verifying this conjecture using
the Euler equation:

PET+1 = ]Et[exp{mirl + log (Pt$+1,r> }]
1 /
= Edexp{—y}, — EAgAt — Aferp1 + A3 + (B%) Zt11}]
1 /
= exp{—e]’/nzt — EA;At + A%+ (Bf) (u+Yz)} %
|
E; {exp{—AistH + (Bi) 22€t+1}:| .
We use the log-normality of ¢, 1 and substitute for the affine expression for A; to get:
! 1 ! I 4
PS., = exp {—e;nzt +AS (Béf'i) (1 +¥20) + 5 (Bi) 5 (Bi) - (Bi) 22 (Ag + Alzt)} .
Taking logs and collecting terms, we obtain a linear equation for log(p:(7 +1)):
5 _ 48 5 Y
log (Pt,r—i-l) _ AT+1 + (BT—H) Zt,
where Aﬁ; 4 satisfies (A.1) and Bf 1 satisfies (A.2). The relationship between log bond prices
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and bond yields is given by — log ( ) /T = yt - O

A.2 Term Life Policy

Proposition 2. Term policy price p can be written as:

Yi_jexp (Pr(b(“ D,0) + Q(b:T1 0)/2t> Tair—1 1121 (1 — Tags—1)
14+ X1 exp (Pe(b00)) + Qu (b150)) 2, ) [Ty (1= s 1) —

p=1+¢)

7

where the coefficient functions P; : R™ — R and Q; : R — RN satisfy the following

recursions:
Py (007H)) = —pMgy 4 (b)Y (QT( (2ie+1)) _ b(l)al)/ <y—Z%A0)
+% (Qe(v®™1) - b<1>a1)'2 (Qe(v@™D) —bMay) (A3)
(QT+1(b(1:T+1))>/ = (0« bzr+1 b(l)a1> (‘P 22A1> yn, (A.4)

initialized at Py = 0 and Qg = 0.

Proof. We conjecture the exponential affine form solution,

s=1

E, [M;ﬂ 10~ AE#)] = exp (Pe(6) + Qe (b))

A6)

Then we can recursively calculate E; [ Dl T (1 - A +S)] as the following (we use a

concise notation b = b(%7 +1))
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T+1 B
E; [H exp(my, , — b(s)lf+s)]

s=1

= E; [exp( 1 —p )lt+1 VEi i1 [Hexp s — b(SH)THHS)H

S
= Ex[exp(n,, — 0T exp | Pe(b7H) + Q0 ) z,) |
] . ) )
= Erexp | (—€y,zi — EA;At — Nepr — bW (ag + dhzy 1) + Po(b) + Qr(b)’th)H

: : )
— Erexp | (~chuzt — 3~ Ader = 000+ P(B) + (Q:l6) — b0 z1) |

ynZt — >

= Erexp (—e' 1A;At — A£€t+1 - b(l)ﬂo + PT(E))
+(Qe(B) — bW ay) (i + ¥z; + They 1))

= Erexp [(—%A;At—b“awm )+ (QelB) — bV

+((QelB) ~ bW )¥ — ef, )z + ((Q:(B) - <1>a1>'22—At>et+1]
= exp [— b+ Pe(B) + (Qe(B) — 8V ar) 1+ (Qe(B) — V)Y — &), )2
£ 3(Qe(B) — b 2(Qe(B) WV ay) — (Qe(F) — b" >'z%<Ao+A1zt>]
~exp [_ ¥Wag+ Pr(5) + (Qe(B) — 6 ) (4 — 30
+ 5(0e(B) — b5 (Qu(B) — bVay)

T+ (Qe(B) — bVay) (¥ —3A) - e’yn>zj

Taking the logs and collecting terms, we obtain a linear equation:

7+1
log (E [ t 1T+ H t+s ] ) = PT+1(b(1:TH)) + Qr—kl(b(lzrﬂ))/zt
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where the coefficient functions satisfy

PT+1(b(1:T+1)) = —b(l)ao + PT(b(21T+1)) + (QT(b(Z:T—i—l)) _ b(l)al)’(y o Z%AO)

+ 5 (Qe(0®* V) —bWar)2(Qr(b* ™) —pWay)

1
2
and

QT+1(b(1:T+1))/ _ (Qr(b(2:1+l)) . b(l)al)/('lif . Z%Al) _ e}l/n

Substituting E; [MH o (1= AEQS)} = exp (PT(b(”)) + Qr(b(”))zt> into Equation
(8) concludes the proof.

Note that if we evaluate the coefficients with b(") = 0, Vn, then {Pr,Q+} do not de-
pend on b anymore, so we get the following recursion for the affine coefficient constants
{ZP, ZQ<} for the zero coupon bonds Z. (i.e. Z: = E; [Mt b1 t+T} = exp [ZPT + ZQ+ ’zt])

1
ZPpiq = ZPr + ZQ: (0 — T2Ag) + 520 Y70,

1
ZQui1' = Z0Q: (¥ —Z2Aq) — e’yn

We can analogously calculate the coefficient function recursion for the expected survival
function, L.(b(7)) = E; [ (1= AEJF)S)] = exp [LPT(b(l’T)) + LQ(b(17) /Zt]

LPT+1(b(1:T+1)) _ _b(l)ﬂO+LP (b(22T+1 ) (LQ ( 2T+1 ) b(l)ﬂl) /]/l
(LQ ( 27+1) b( ) (LQ ( 2T+1) b(l)al)

LQri1(b ““) (LQr( @)y — pWgy)'

B Monthly VAR Model Calibration with Annual Data

B.1 Model Setup

We follow the set up described in Section 5.5. The monthly state variables z; = (r,cr,s¢)’

follows the dynamics

zr = u+¥z_1 + Xle (B.1)
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The monthly dynamics implies the following two annual dynamics

k=1 k=1
Zitk = (2 TZ) p+¥z+ ) Yixle, (B.2)
i=0 i=0
and
K K (k=1 K L K k=1 |
Yozee = Y (YL u+ )Y T+ ) ) ¥ (B.3)
k=1 k=1 \i=0 k=1 k=1i=0

Equation (B.2) describes the dynamics of the annually observed interest rate and the credit
spread (74412 and s;412), while Equation (B.3) describes the annually observed credit return

12
(k21 STt rk)-

The monthly nominal SDF Mf = exp(mf 1) becomes
S Oz 1
$ 0 1<t
mHl = —E — E — EA;At — A;€t+1. (B4:)
. $ oo (5{Zt . . .
where the one-month discount rate y;; = T + 5 isan affine form of the state variable z;.

We parametrize the market price of risk A; as
At = Ao+ Nz = Ag+ Alegzt

which requires us to identify three parameters, two for Ag = (A}, A§,0)’ and one for A; =

(0,2,0)".

We additionally model the credit return as

Crep1 — Vi = Y0+ M8t +0erp (B.5)

with e; 1 ~ N(0,1), so that the expected excess return depends on the credit spread.

Note that the recursions in Proposition 1 and Proposition 2 in Appendix A are slightly
changed in the monthly model, as the discount rate is now an affine form of the states, not
simply the first state. More precisely, Equation (A.1) and (A.2) become

AS = —f—g + A8+ % (B%)'z (Bi?) + (Bi*g)/ (y - 2%A0> , (B.6)
(BEH)/ = <Bf$g>/ (¥-=2m1) - % (B7)
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and Equation (A.3) and (A.4) become

PTH(b(l:H—l)) — _f_g _p( )110 + pT(b(2:~c+1)) + <QT(b(2:r+1)) _ b(l)zZl)/ (pt B Z%A())
1 / .
+= <Q (p@TH)y - b(l)a1> Y (Qr(b(z.r—l—l)) _ b(l)a1> (B.8)
. / 5/
(QT+1(b(1.T+1))> _ (QT p(2: r+1 b(l)a1> (‘{f 22A1> =3 (B.9)

B.2 Calibration Process

Note that given our specification of Ag and A1, all the affine coefficients for the yields {B%}y,
have the second and the third components zeros (see Equation B.7), so we can simplify to
o = (51,0,0) and only need to estimate 1. Then the short rate then becomes 12}/?1 =
S0 + &1zt = 8o + d17+.

We start by restricting the companion matrix as

¢ 0 0
Y= %0’71
0 0 ¢

The restriction in the second row directly follows from our credit return model in Equation
(B.5). For r; and s, we set the off-diagonal terms zero. For the covariance matrix, we specify

is as a lower triangular matrix

ol 0 0

1
2= | g% o2 0
0.31 0.32 0.33

The monthly persistence parameters (¢, ¢;) are estimated by regressing r41» on r and s;41»

on s¢, as Equation (B.2) implies

k=1 1

Tip12 =€) (Z ‘P’) 1+ e[ ¥z + e Y. ‘Plz%stm_i (B.10)
i=0 i=0
k=1 1

stern =6y | Y ¥ | p+ ez +eb Y ¥iE2eqp . (B.11)
i=0 i=0

That is, ¥12 is the annual companion matrix. The estimated annual persistence implies ¢} =
0.7770 and ¢}? = 0.2431, so we get ¢, = 0.9792 and ¢; = 0.8888. We estimate x" = 0.0006 and
u® = 0.0026 to match the unconditional r,s; implied by Equation (B.2) with the 1990-2020
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mean in the data, 0.0276 and 0.0237.
Equation (B.10) also implies that the error term of 71, on r; regression is e} Z}io ‘I’iZ%etHz_i.
Then the variance of the error term becomes

1 11 S
Varde, Y ¥S2e1,1, ] = Y 4¥E(T) e (B.12)
i=0 i=0

which implies o' = 0.0041.

We then estimate (A6,(50,<§1) using the following three moment conditions. First, we
match the unconditional slope of the yield curve between the 1-year and 10-year log rates,
which is 0.136 in the 1990-2020 annual data. We also match A% = 0 and sz = (-1,0,0)
conditions. Note that given our risk price assumption, knowing u" and ¢'! is sufficient to
generate the entire yield curve. The estimated parameters are A = —0.1265, 5y = —0.0062
and 6; = 1.1196.

Now we estimate 1. First, observe that the dynamics of Y_}2, cr; is implied by Equa-
tion (B.3)

12 k—

Z CTpik =€) Z <Z ‘I”) pte Z ¥z + € Z 2 Yirle, (B.13)

Observe that ¢) Y32, ¥* = (1,0, (Z 0 4>S) 71). Therefore if we regress (2112: 1 crtJrk) —r¢on
s¢, i.e. if we run the annual credit excess return predictive regression, the estimated annual
prediction coefficient 4.9324 implies y; = 0.7245. By matching the unconditional credit
excess return, we get u“ = —0.0139.

The rest five elements of £7 can be estimated from Equation (B.10), (B.11), and (B.13),
which imply 5 covariance equations in addition to Equation (B.12) we already used. For ex-
ample, the model implied covariance between the residuals of r;; 1, equation and 2;2:1 CTiik

equation is:

12 k—

Covy[e] Z‘I’ 228t+12 i€y Z‘I’ ZZsHk i]
i=0 k=1i=0

which should match the (1, 2)-th element of the residual covariance matrix from the regres-
sions in Equation (B.10), (B.11), and (B.13) using the annual data. The estimated X7 is:

0.0041 0 0
0.0013  0.0242 0
—0.0023 —0.0025 0.0016

N—=
I

2
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We conclude the calibration process by estimating the rest two market price of risks, A
and . We use the conditions from the credit return Euler equations, Equation (15) and (16)
that we specify in Section 5.5 as moment conditions:

1
Yo+ 71E[st] + E((T")z = Ay Covleri1, €, 4] + (A + CE[st])o" Covleryq,€i’ 1]  (B.14)
11 = (o Covlepyq, €7 4] (B.15)

1 1
where (0)2 = %55, 0" Covles11, €, 4] = %3 and 0 Covle;1, €', 1] = £3,. The estimated
parameters are Af’ = —0.5365 and { = 29.98.

B.3 Mispricing Calculation with Monthly VAR Model

Proposition 2 assumes the annual VAR model. Pricing formula and mispricing calculation
should be slightly modified to reflect the fact that (i) we model the underlying monthly VAR
model, and (ii) we model the lapse factor as a function of the 12-month moving average

of the states, i.e. I; = ag + a}z;. Equation (B.6), (B.7), (B.8), and (B.9) show how the recur-
sions change due to the monthly SDF specification (effect of (i)). We additionally modify the
recursions Equation (B.8) and (B.9) in this section (effect of (ii)).

We extend the state space to include the 11 lagged state variables, i.e. y; = (z},z}_1,- - ,2}_17)-

Then the dynamics of y; is derived from Equation (B.1):

yr = i+ Yy,_q + S2g

where the new parameters (fi, ¥, 5%) can be naturally extended from (y, ¥, »1) by padding
zeros and identity matrices. We can similarly extend the time-varying component of MPR
A1 to A1. We omit the details for brevity.

We can also transform the parameters ag,a;, {b™} to be consistent with the extended
state space. The lapse factor can be written as I} = ag + ajz; = ag + @y;, where ] =
(11—2, 11—2, e, 11—2) ® a}. Also define {E(”)}1§n§240 as

m _ )0 if mod (n,12) #0
b("/12) if mod (n,12) =0
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Then we can calculate the monthly recursions similar to Proposition 2,

Pryq (BT = —f—g — 5Wgg 4 P (BFTHD) 4 <QT(E(2:T+1)) _ 5(1)ﬁ1>’ (ﬁ _ i%A())
1 ~ (. - /o (. -
_|_§ <Qr(b(2.r+1)) — b(l)ﬁ1> 5 (Qr(b(z.r—i—l)) _ b(l)ﬁl> (B.16)
/
(Qm(@““”)))/ = (Qe(B™Y) — E“)m)/ (¥-£244) - % (B.17)

Note that after calculating the monthly coefficient recursions, we still calculate the pre-
mium leg and the death benefit leg value by summing up annual strips, where the Tth-year
strip is calculated by:

T
Er [Milzr [1a- /\Si)s)] = exp <P12*r(b(1:12*7)) + Q12*r(b(1:12*7))’yt> .

s=1
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C Markup Validation with Expected Profit Share

The life insurer sets ¢ as the markup on the policy before considering the brokerage fee.
From the net premium (the expected premium income net of the expected benefit payout)
the insurer first pays the broker fee and the rest is the earned profit. In presenting mispricing
results, we vary ¢ to take values of 5%, 10%, and 20%. To validate whether these values are
realistic, we calculate the expected profit split of 6 : (1 — 0) between the insurer and the
broker, where 0 < 0 < 1 indicates the life insurer’s profit share and the (1 — 6) indicates the
broker fee share. The premium pricing formula from Section 5.6 is

E; [ZZ:l M?lzrﬂwr‘rfl H::_ll(l - 7Ta+571) H::_ll(l B Agj—)s)]
B (1 LT ME T (1= 7ast) Ty (1 - AR | —

— )b

p=0+¢)

The second line follows from our assumption that the life insurer is pricing premium with
markup ¢ without the aggregate lapsation risk. Thus, the expectation operator in the de-
nominator is evaluated to be &(T) instead of «(T), using the notation from Section 5.6.

The life insurer expects ¢pB(T) as its profit, while the broker receives the fee x - §. There-
fore, the expected profit share of the insurer is

_9B(T)
¢B(T) +x-p
a(T)—x«
(14+¢ 1) +a(T)—x«

The formula is consistent with our intuition as the expected profit share 6 is higher when the
markup (¢) is higher and the the broker fee (k) is lower.

Table A1l shows the expected profit share 6 calculated for the ranges of parameters for ¢
and x we consider in Table 8. In our baseline case of ¢ = 10% and k¥ = 0.75, the expected
profit share is between 40% to 50%, which is within the range of the industry consensus.
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Table Al. Expected Profit Share

This table presents the expected profit share 6 calculated for the ranges of parameters for ¢
and x we consider in Table 8. See Appendix C for the details.

x=0.5 x=0.75 x=1.0

10-year Term Policy ¢=5% 36.0% 26.4% 20.5%
$=10% 51.8% 40.6% 32.9%
$=20% 66.3% 55.7% 47.4%

15-year Term Policy ¢=5% 41.3% 31.1% 24.7%
$=10% 57.3% 46.3% 38.5%
$=20% 71.1% 61.3% 53.4%

20-year Term Policy ¢=5% 44.1% 33.8% 27.0%
$=10% 60.1% 49.3% 41.4%
$p=20% 734% 64.1% 56.5%

D Additional Tables and Figures
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