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Abstract

Knowledge spillovers between firms are often measured using patent citations. I show
that even the most cited patents granted before 2000 received around 50% of citations
from one firm only, and this concentration has increased up to 77% by 2014. I provide
additional evidence consistent with the following hypothesis: instead of spillovers citations
reflect intentional sharing of trade secrets between business partners. I develop and test a
theory of knowledge sharing between firms in a production network that partially explains
the observed citation patterns. The theory highlights that knowledge flows depend on the
market structure and contractual arrangements between firms.
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1 Introduction

Knowledge flows between firms are key for economic growth (Romer (1990), Grossman &
Helpman (1991), Aghion & Howitt (1992)). The economic and legal rationales for patents rely
centrally on these transfers: a patent owner gets monopoly rights on a technology in exchange
for its disclosure to the public, so others can create follow-on innovations based on it.1

Therefore, patents should act as a source of knowledge similar to scientific publications.
Patent citations are often used to measure knowledge spillovers in order to discipline growth
models (Caballero & Jaffe (1993), Eeckhout & Jovanovic (2002), Akcigit & Kerr (2018)), to
evaluate the localization of spillovers in space (Jaffe et al. (1993), Thompson & Fox-Kean
(2005), Singh & Marx (2013)), and to identify high-quality technologies (Aghion et al. (2021),
Akcigit et al. (2021), Moretti (2021)).

This paper shows that the distribution of citations across firms is highly concentrated, raising
a question about the role of patents in the diffusion of knowledge. For example, the IBM’s
patent in Table 1 is heavily cited, but almost all of its citations come from one firm only,
Amkor Technology Inc. In general, for each year between 1976 and 2014 I consider the set of
the most cited patents filed in the U.S. Patent and Trademark Office.2 Figure 1 shows that a
patent granted between 1980 and 2000, on average, received around 50% of citations from one
firm only, and this increased to around 70% in 2010s. As a benchmark, the concentration of
citations for the most cited scientific publications declined from 6% to 2% over the same time
period.

Table 1: Example of a patent with a high concentration of citations

Patent Number Assignee Total Number
of Citations

% of Citations from
Amkor Technology Inc

5877043 IBM 218
top 0.005% 94%

To clarify the source of the concentration, I document additional facts about patent
citations. First, I show that the concentration is primarily driven by differences across firms in
the probabilities of a citation rather than in the number of patents. For instance, Amkor is
responsible for the majority of citations to the IBM’s patent, not because Amkor has more

1See Mazzoleni & Nelson (1998) and Pfaff v. Wells Elecs., Inc., 525 U.S. 55, 63 (1998) where the U.S.
Supreme Court stated that “the patent system represents a carefully crafted bargain that encourages both the
creation and the public disclosure of new and useful advances in technology, in return for an exclusive monopoly
for a limited period of time.”

2Specifically, in each grant year and technology class for the period 1976–2014 I track citations within a
five-year window for the top 1% of the most cited patents. Taking a five-year window controls for the truncation
bias that older patents have more time to accumulate citations. Comparing patents from the same technology
class controls for differences across classes in citation patterns (Lerner & Seru (2022)).
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Figure 1: Concentration of Citations

This figure shows the average concentration of citations for the most cited patents between 1976 and 2014. In
each grant year and technology class for the period 1976–2014, I track citations within a five-year window for
the top 1% of the most cited patents. For each cited patent, the concentration is defined as the share of citations
coming from the most citing firm. The technological classes are defined at the group level in the cooperative
patent classification system. To construct the aggregate measure, I take the average concentration across patents
within each class, and then the average across classes weighted by the number of patents.

patents than other companies, but because a large share of its patents makes citations to IBM
while other companies with similar patents make no citations. Second, these citation
probabilities are specific to citing firms rather than to inventors working in these companies.
Specifically, I show that an inventor who heavily cites a particular patent in one company
significantly decreases her citations to this patent once she moves to another firm. Therefore,
the explanation for the concentration of citations should be based on the relationship between
firms citing each other rather than on the interactions between their inventors. Third, I show
that firms responsible for the majority of citations to a highly-cited patent grow around 1%
faster in sales and profits. Their citing patents generate around 15% more forward citations
and around 3% greater abnormal stock market response on the grant day of a patent (Kogan
et al. (2017)). Finally, I control for the legal specifics of the patent system. For example, the
concentration is not driven by patent examiners or lawyers.

The high concentration of citations is puzzling because valuable technologies disclosed in
public patent files would be expected to generate spillovers across a broader set of firms. So,
interpreting patent citations as being similar to scientific ones, in terms of measuring knowledge
spillovers and the breadth of influence, might be incorrect. Instead, an alternative view of patent
citations might be that they reflect cooperation or exchange of information between firms with
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close business ties. This is the broad idea that I pursue in this paper.
I argue that citations between firms are correlated with the sharing of trade secrets

accompanying patents. As a result, they are concentrated because only a limited set of firms
gets access to private knowledge of a patent owner. Despite the disclosure requirements of the
patent system, firms frequently combine patenting with secrecy “because innovations are
rarely composed of a monolithic piece of knowledge” (Anton et al. (2006)). For instance, the
debates on waiving intellectual property rights for Covid-19 vaccines emphasized that, in
addition to the information in patents, a successful replication of the mRNA technology
requires access to the trade secrets and technical know-how about it (Price II et al. (2020)).3

In general, firms prefer patenting for knowledge that is codified and can be reverse-engineered,
and secrecy for knowledge that is tacit and easier to hide (Roin (2005), Hall et al. (2014)).

I develop and test a theory of knowledge sharing between firms that accounts for observed
citation patterns. The idea behind the theory is as follows. A firm has incentives to share
valuable secrets with a producer of complementary products such as an input supplier. For
example, in Table 1 Amkor Technology is a supplier to IBM. In turn, the supplier might want
to share these secrets with its other customers because by increasing the customers’ profits it can
charge them a higher input price. Depending on whether the supplier leaks private knowledge
to others or not, knowledge flows are diffused or concentrated. This outcome depends on the
market structure and types of contracts the supplier signs with the owner of secrets.

The key assumption in the theory is that contracts on knowledge sharing are incomplete
(Arrow (1962)). Courts cannot verify the quality of secrets companies share with each other, so
a firm cannot sell its secrets to a competitor when it is mutually beneficial for them. Once a buyer
of secrets pays for the knowledge, a seller has little incentives to disclose them, and, conversely,
once the seller reveals its secrets, the buyer might refuse to pay. In contrast to competitors, firms
in a vertical relationship have incentives to share secrets because they produce complementary
products and can use an input price to split the gains from knowledge sharing.

I assume that the firm with valuable trade secrets can sign two types of contracts with
a supplier to prevent a leakage of its knowledge: a confidentiality agreement and exclusive
dealing. Although courts cannot verify the quality of secrets firms share, they can verify the
communication between parties, and a confidentiality agreement restricts the supplier’s ability
to discuss topics related to the firm’s technology with other companies. Exclusive dealing
eliminates the supplier’s incentives to leak secrets by restricting its ability to sell an input to
other companies.

In equilibrium, the firm and its supplier sign a contract that maximizes their joint surplus
which consists of the firm’s gross profits and the supplier’s input sales to other firms. If

3Appendix A provides legal background and more case studies on how firms combine patenting and secrecy.
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downstream competition is high, they sign exclusive dealing to give the downstream firm an
advantage over its competitors. This mechanism is similar to the foreclosure literature (Rey &
Tirole (2007)). If downstream competition is low, but the firm’s competitors have a strong
outside option to the supplier’s input, the firm and the supplier sign a confidentiality
agreement. They prefer to sell inputs to others due to low competition but to keep the firm’s
knowledge secret because the supplier cannot extract enough gains from sharing it with other
firms. In both cases, the supplier does not leak the firm’s secrets, so knowledge flows are
concentrated. If competition is low and competitors have a weak outside option, a knowledge
leakage to other companies generates greater gains in input sales to the supplier relative to
losses in the firm’s profits. Therefore, the supplier and the firm sign neither a confidentiality
agreement nor exclusive dealing, and knowledge flows are more diffused.

The theory can be generalized to other types of business connections where firms engage in
complementary activities. For example, I also consider the framework with a common customer
buying from several suppliers. I focus on a vertical relationship between firms in order to test
the theory using Compustat Segments data on supplier-customer relationships between publicly
traded U.S. firms (Cohen & Frazzini (2008), Barrot & Sauvagnat (2016)).

The theory leads to several testable predictions. First, I show that a vertical supply chain
relationship increases the probability of a citation between firms relative to similar firms with
no production relationship. Second, firms sharing a common supplier or customer are also
more likely to cite each other relative to firms with exclusive suppliers or customers. Third,
the probability of a citation between firms sharing a common supplier is increasing in the
bargaining position of this supplier which is proxied by its size relative to other firms in the
supplier’s industry. The relative size of the supplier approximates the weakness of customers’
outside options of not working with it.4

The model also predicts that a higher level of competition leads to lower knowledge sharing.
I show that the decline in knowledge sharing after 2000 (the rise in the concentration of citations
in Figure 1) is greater in the technologies more exposed to import competition from China, where
the U.S. imports are instrumented by Chinese exports to other high-income countries (Autor
et al. (2020a)). Moreover, the competition affected citation patterns of firms but not of non-
corporate organizations (e.g., universities and government agencies), so its effect on the decline
of knowledge sharing is unlikely to be driven by the correlation between general technological
changes and globalization.

4In the framework with a common customer, I assume that the suppliers’ outside options of not working with
it are zero. Therefore, this framework does not give empirical predictions about the suppliers’ outside options,
which can be proxied by the customer’s relative size in its industry. Considering a more general downstream
market structure would complicate the model, and I leave it for future research.
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Literature

Patent citations are often used to measure knowledge spillovers between firms and inventors
(e.g., Jaffe & Trajtenberg (2002), Jaffe & de Rassenfosse (2019)). The evidence in this paper
indicates that patent citations are more likely to reflect intentional exchange of information
between business partners rather than unintentional knowledge externalities.

On the theory side, this paper studies cooperation (creative construction) between firms
who intentionally share private knowledge with each other to improve their joint production.
The model is related to the antitrust literature on exclusionary vertical contracts (e.g.,
Whinston (2006)) but with a focus on the incentives to share knowledge. I complement this
literature by discussing the role of confidentiality agreements. The theory in this paper has
two main differences from the Schumpeterian literature on economic growth (e.g., Aghion
et al. (2014)). First, the Schumpeterian literature is focused on competition between firms
(“creative destruction”) in the environment with knowledge spillovers while I highlight the
importance of cooperation in production networks for the diffusion of knowledge across
competitors. Second, the literature usually assumes that conditional on R&D knowledge
spillovers are independent of the economic environment while I emphasize that intentional
knowledge flows depend on the market structure.

Rosenberg (1963) was one of the first to emphasize the importance of input suppliers in
the technological progress and described how in the nineteenth century specialized machine
tool suppliers disseminated knowledge across industries about the metal working technology
developed in the armament manufacture. The importance of vertical knowledge flows is also
highlighted in the literature on R&D cooperation (e.g., Cassiman & Veughelers (2002)) and
foreign direct investment (e.g., Aitken & Harrison (1999), Blalock & Gertler (2008), Alfaro-
Ureña et al. (2021), Bai et al. (2021)).

Much of the literature on intellectual property (IP) protection treats patenting and secrecy
as substitutes (e.g., Hall et al. (2014)). I argue that the combination of patents and trade secrets
might be used to protect the same technology. This is in line with the surveys of firms (e.g.,
Cohen et al. (2000)), the management literature (e.g., Amara et al. (2008)), legal research (e.g.,
Jorda (2008)), and case studies on IP protection in the chemical industry and drugs (e.g., Arora
(1997), Price II et al. (2020)).

Arora et al. (2021) estimate how knowledge spillouts to competitors affect firms’ incentives
to invest in scientific research, measured by the number of publications. I complement their
paper by studying how import competition from China affected the firms’ choice of protection
for existing trade secrets, measured by the concentration of patent citations. Both the increase
in the concentration of patent citations documented in this paper and the decline in corporate
science over time (Arora et al. (2019)) are consistent with the rising role of trade secrets.
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The empirical tests of the theory analyze citation patterns in the production network and
contribute to the literature on knowledge flows between firms (e.g., Gomes-Casseres et al.
(2006)). Autor et al. (2020a) show that trade with China reduced corporate patenting in the
U.S. I complement their evidence by showing that trade with China also reduced knowledge
sharing between firms. The paper also contributes to the literature on patents’ quality (e.g.,
Kogan et al. (2017), Higham et al. (2020)) by estimating it as a function of the knowledge
inventors rely on.

Akcigit & Ates (2019) document the increasing share of firms’ self-citations in backward
citations. I complement their evidence by documenting the rising concentration of forward
citations between firms after 2000. I analyze the relationship between these firms, how they grow
depending on the knowledge they rely on, and distinguish whether the concentration is driven
by firms or inventors. Akcigit & Ates (2019) also develop the model in which the exogenous
decline in knowledge diffusion between competitors can explain multiple macro trends (e.g., the
decline in business dynamism). My theoretical results with endogenous knowledge sharing and
the empirical evidence with China shock point out that the decline in knowledge diffusion might
be caused by rising competition. This result is consistent with Autor et al. (2020b) who argue
that the competition level in the U.S. has increased.

The paper is organized as follows. Section 2 presents motivating evidence. Section 3 develops
a theory of knowledge sharing between firms. Section 4 tests the theoretical predictions in the
data. Appendix provides empirical details, robustness checks, theoretical extensions, and case
studies.

2 Motivating Evidence: Concentration of Citations

This section provides several new facts about patent citations. Section 2.1 documents that
even for the most cited patents the majority of citations come from one firm only, and this
concentration has significantly increased since 2000. In Section 2.2, I show that the high
concentration of citations is primarily driven by differences across firms in citation rates
(probabilities) rather than by differences in the number of patents. Section 2.3 shows that
inventors who move between companies significantly change their citation rates, meaning that
citation probabilities are specific to firms rather than to inventors. In Section 2.4, I show that
firms responsible for the majority of citations to a highly-cited patent grow faster in sales and
profits and have patents of higher quality. Section 2.5 provides robustness checks, and Section
2.6 discusses the implications of the results.
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Data and Background

Patents are supposed to facilitate knowledge sharing through the disclosure of information in
the award. The U.S. Supreme Court stated that patent disclosures “will stimulate ideas and
the eventual development of further significant advances in the art” and that these “additions
to the general store of knowledge are of such importance” that they are worth the “the high
price of . . . exclusive use.”5

Patents consist of two parts: a written description of an invention including citations to
prior art (patents, publications, etc), and claims defining the boundaries of intellectual property
rights. To be patentable, inventions should be patent-eligible, useful, novel, non-obvious, and
the text of the application should satisfy the disclosure requirements.6 Patent examiners use
references to prior art to check whether the invention is novel and non-obvious. In the U.S.,
applicants have a “duty of candor” to disclose relevant prior art that they are aware of, and the
failure to do so can lead to patent invalidation. In general, prior art is used to strengthen, narrow
or reject certain claims. Therefore, citations serve a legal function of delimiting intellectual
property rights on an invention.

I use the data on utility patents granted in the U.S. Patent and Trademark Office (USPTO)
for the period 1976–2019. Most granted patents contain information about assignees (patent
owners). I clean assignee names to group patents by firms, individual inventors, universities
and other organizations. Autor et al. (2020a) provide a matching of patent assignees to names
of publicly traded firms in Compustat data set. I extend their matching for additional years
2015–2019. Details are given in Appendix B.1.

2.1 Results: High Concentration of Patent Citations

For each year and technological class in the period 1976–2014, I track citations within a five-year
window for the top 1% of the most cited granted patents. There are two reasons to focus on
the set of the most cited patents. First, the value of patents is highly skewed with many of no
value to the firm, so the empirical literature on innovation is often focused on the most cited
patents (e.g., Aghion et al. (2021)). This is justified by the positive correlation between the
number of patent citations and the firm’s stock market valuation (Hall et al. (2005), Kogan
et al. (2017)). Second, by construction these patents are expected to generate most follow-
on innovations and knowledge flows, providing a lower bound on the concentration measure.
Taking a five-year window controls for the truncation bias that older patents have more time to
accumulate citations. Comparing patents within each technological class controls for differences

5See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 481 (1974) and Ouellette (2012).
6These requirements are governed by the US Code, Title 35, sections 101, 102, 103, 112. For a review, see

Scotchmer (2004), ch. 3.
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across classes in citation patterns (Lerner & Seru (2022)). To classify technologies, I use the
group level of Cooperative Patent Classification (CPC) system which has 672 groups.7

For each patent among the most cited ones, I compute the distribution of citations across
different organizations. Denote by nk,i the number of citations from organization i to patent
k. Organizations are mostly firms but also include non-corporate entities such as government
agencies and universities. I exclude citations from individual inventors and from patents with
missing assignee information. The concentration measure for patent k is the share of citations
coming from the most citing organization:

Ck “ max
i

! nk,i
řMk

j“1 nk,j

)

(2.1)

where Mk is the number of citing organizations. The most citing organizations are
predominantly corporate firms, so I will use terms “firms” and “organizations”
interchangeably. To construct an aggregate measure, for each year I take the average of
patents’ concentration measures within each technology class and then the average across
technological classes weighted by the number of patents in a class. Appendix B.2.1 provides
more details.

Figure 1 on page 2 shows the resulting aggregate concentration measure. On average, a
patent (among the most cited ones) granted between 1976 and 2000 received around 50% of
citations from one firm only. This concentration has significantly increased since 2000: a patent
granted in 2014 received around 77% of citations from one firm only.

Figure C1 in Appendix C shows that the increase in the concentration is primarily driven by
changes within technological classes rather than the rise of technologies with high concentration
of citations. An increase in the concentration after 2000 is observed in 87% of classes. Panel
(a) of Figure C2 shows that the average number of citations has significantly increased over
time: patents granted in 2014 received 11 times more citations within five years from the
grant day than patents granted in 1976. Panel (b) shows that more cited patents have a
higher concentration of citations, and this relationship is driven by patents granted after 2000.8

Therefore, an increase in the concentration of citations is not driven by the decline in the number
of citations. The next section discusses the sources of the concentration and its increase.

7The group level of CPC system is similar to the three-digit USPC system. There are several reasons to
use modern CPC system instead of the more outdated USPC system. First, CPC system provides a consistent
classification over time. Second, it is available for all years while USPTO stopped updating USPC from 2015.
Third, CPC system is applied internationally, not only in the U.S. Finally, its classification provides more levels
of disaggregation in contrast to USPC. I will use this feature in Section 4.1.

8The relationship holds for patents with more than 7 citations. For patents with less than 7 citations, the
concentration is high due to a low number of citations. See section 2.2 for more details.
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2.2 Sources of the Concentration of Citations

In this subsection, I decompose the concentration of citations into three sources: differences in
citation rates (probabilities) across firms, differences in patenting across firms, and the total
number of firms that could potentially make citations. The number of firms provides a natural
lower bound on the concentration measure: withM firms the concentration cannot be lower than
1{M. I show that the high concentration of citations is primarily explained by the differences in
citation probabilities rather than by the variance in patenting across firms. For instance, Amkor
Inc is responsible for 94% of citations to the IBM’s patent in Table 1 because each of Amkor’s
patents makes a citation to the IBM’s patent with a significantly higher probability relative to
other firms, not because Amkor has more patents than other companies.

The details of the decomposition are the following. First, I divide all granted patents into
disjoint groups based on common observational characteristics. Patents that share the same
characteristics are more likely to cite similar patents. It is well-known that citation patterns
depend on the geographical location of inventors (e.g., Jaffe et al. (1993)), proximity of
technologies (e.g., Acemoglu et al. (2016)), and time differences between inventions (e.g.,
Caballero & Jaffe (1993)). So, for characteristics of patents I choose a geographical location of
the majority of inventors, a detailed technology class (main subgroup level in CPC), and an
application year.9 Denote the set of all these groups by H.

Second, for each cited patent I construct the set of patents that could potentially cite it and
rely on the knowledge disclosed in it. This set includes patents with the same characteristics
as the patents that actually make citations to the cited patent. Denote by Hk Ď H the set of
the characteristics of the patents citing patent k. For example, patents making citations to the
IBM’s patent in Table 1 (k “ 5877043) are divided in |Hk| “ 106 disjoint groups based on their
characteristics. Most citations (10 out of 218, all from Amkor) come from the following group
(h P Hk): technological class H01L23, location of inventors Arizona, and application year 2003.
Overall, there were 92 patents with these characteristics coming from firms such as Intel (62),
Amkor (12), Freescale Semiconductor (5), and others (13).10 If each of these patents made a
citation to the IBM’s patent with the same probability, more citations would be expected to
come from Intel rather than from Amkor.

Consider citations to patent k from patents with characteristics h P Hk. The number of
citations from firm i, nk,iphq, can be decomposed as follows

nk,iphq “ pk,iphq ¨Niphq

9The location is defined at the state level in the U.S. and at the country level for foreign inventors. For patents
with inventors from multiple locations I take the location of the majority of inventors. See Appendix B.2.2.

10For illustration, I consider citations from all years to the IBM’s patent in Table 1, not only within a 5-year
window of the grant day. The aggregate results are based on citations within a 5-year window.
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where Niphq is the total number of patents with characteristics h P Hk (citing and non-citing)
from firm i, and pk,iphq “ nk,iphq

Niphq
is the citation rate. I construct two counterfactual distributions

of the concentration measure. First, I do Monte-Carlo simulations where nk,iphq citations are
allocated randomly across all patents with the same characteristics h P Hk. This exercise equates
citation rates across firms that have patents with characteristics h P Hk (pk,iphq “ pk,jphq for
i ‰ j) and shows the counterfactual concentration that is entirely driven by the differences
in the number of patents across companies and the total number of firms. Second, I allocate
nk,iphq citations randomly across firms assuming that all firms with patents in h P Hk have
the same number of patents. This exercise equates both the citation rates and the number of
patents across firms (pk,iphq “ pk,jphq and Niphq “ Njphq for i ‰ j) and shows the counterfactual
concentration that is entirely driven by the number of firms that could potentially cite patent k.11

For each patent k, I do the Monte-Carlo simulations described above for all characteristics
of citing patents, Hk. Then I compute the counterfactual concentration measures in which
citation rates are equal, and in which both citation rates and the number of patents are equal
across firms. I aggregate these measures across cited patents in the same way as with the actual
concentration in Section 2.1.

Figure 2(a) shows the decomposition of the concentration of citations. The upper solid line
shows the actual aggregate concentration (ACt). The dashed and the dotted lines in the middle
show the 95th quantile and the median of the concentration measure where citation probabilities
are equalized across firms (denote by RCt the median). Finally, the crossed line at the bottom
shows the median concentration with equalized citation rates and equalized patenting across
firms (PCt). This measure provides a natural lower bound on the concentration of citations
that is driven by the number of firms. The average decomposition over all years from 1976 to
2014

AC ´ PC
loooomoooon

17.3%

“ AC ´RC
loooomoooon

14.1%

`RC ´ PC
loooomoooon

3.3%

shows that the concentration is primarily explained by the differences across firms in citation
probabilities rather than by the variance in the number of patents. The actual and
counterfactual concentrations also have different dynamics. Both PCt and RCt declined until
2000 and then started to increase. This means that the average number of firms that filed for

11Monte-Carlo exercises can be described using the urn model in probability theory (Feller (1968)). Denote the
number of firms that have at least one patent with characteristics h P Hk by Mphq. The exercise that equates
citation rates only can be described as the following urn model of random drawings without replacement:
ř

i nk,iphq balls are taken from the urn that contains
řMphq
i“1 Niphq balls of Mphq different colors with the

distribution of colors tNiphquMphqi“1 . The exercise that equates both the citation rates and the number of patents
can be described as the following urn model of random drawings with replacement:

ř

i nk,i drawings are taken
from the urn that contains Mphq balls of different colors. After each drawing, the ball is returned back to the
urn.
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Figure 2: Sources of the Concentration of Citations

Figure 2(a) compares the actual concentration of citations (the upper solid line) with the counterfactual ones
in which citation rates are equalized across firms (the dashed and the dotted lines in the middle), and in which
both citation rates and the number of patents are equalized across firms (the crossed line at the bottom).
These counterfactual concentration measures are constructed using Monte-Carlo simulations in which citations
are allocated randomly across observationally similar patents (equalized citation rates) and across firms with
observationally similar patents (equalized citation rates and patenting). The details are given in Appendix B.2.2.
Figure 2(b) shows the same decomposition for the concentration of citations across firms within inventors who
patented for multiple companies. The solid line shows the actual aggregate within-inventor concentration of
citations across firms. The dashed and the dotted lines show the 95th quantile and the median of the same
measure in the Monte-Carlo simulations where citations rate are equalized across firms within an inventor. The
crossed line at the bottom shows the concentration (median) where both the citation rates and the number of
patents are equalized across firms within an inventor. The averages are almost the same as the medians. To
increase the sample size I consider citations from all years, not only 5-year window. The graph is taken until
2009 to ensure that patents have enough time to accumulate citations from inventors-movers. More details are
given in Appendix B.3.

patents with similar characteristics increased until 2000 and then decreased.12 The actual
concentration ACt stayed approximately constant until 2000 and then started to increase at a
faster rate than PCt and RCt. This implies that the role of the differences in citation
probabilities was increasing during all years

∆AC ´∆PC
loooooomoooooon

30.2%

“ ∆AC ´∆RC
loooooomoooooon

22.1%

`∆RC ´∆PC
loooooomoooooon

8.1%

where ∆AC “ AC2014 ´AC1976, ∆RC “ RC2014 ´RC1976, and ∆PC “ PC2014 ´ PC1976.
An important limitation in the construction of the counterfactual concentrations is that

12The difference RCt´PCt has slightly increased over time, meaning that the variance in patenting has slightly
increased from 1976 to 2014.
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citations are randomized across patents similar to the ones that actually make citations,
excluding the ones that could have potentially made citations. For example, for the IBM’s
patent in Table 1 most citations come from Amkor Technology, which is a supplier to IBM.
Therefore, the citations are allocated randomly across the patents that are similar to the
Amkor’s patents and are likely to represent non-competing technologies to IBM. So, the
randomization exercise does not take into account a lot of patents from IBM’s competitors
that could have made citations to it. This underestimates the difference between the actual
and counterfactual concentrations.

The counterfactual concentrations are constructed using the randomization of citations
across patents that have the same detailed characteristics. Figure C3 (Appendix C) shows the
counterfactual concentration in which citations are randomized across broader technological
classes, and the concentration where inventors are not required to be from the same
location.13,14 These counterfactual concentrations are lower by 6 and 16 percentage points,
respectively, relative to the baseline one. Figure C4 also shows that the results of the
decomposition are robust when I group patents based on their textual similarity (Arts et al.
(2018)) rather than based on the classification into technological classes.

As another benchmark, I also compute the concentration of citations for scientific
publications using Microsoft Academic Graph data (Marx & Fuegi (2020)). The concentration
measure is constructed in a way similar to the measure for patents. For each year and field of
science in the period 1976–2014, I track citations within a five-year window for the top 1% of
the most cited publications. I use Web of Science classification of scientific disciplines.
Appendix B.2.5 provides details. Figure C3 shows that in contrast to patents the
concentration of citations for scientific publications declined from 6% to 2% over the same
time period.

2.3 Movement of Inventors

The concentration of citations might be driven by inventors rather than firms. For instance,
suppose a patent received all of its citations from one inventor who always worked in one firm.
Then, the concentration of citations across companies for this patent would be 100%, but it
could reflect the inventor’s citation practice. To separate whether citations are firm- or inventor-
specific, I find inventors who filed similar patents in multiple companies. Then, I compute the
concentration of citations within these inventors and do the decomposition from Section 2.2 to

13The main subgroup in CPC is a much more detailed level of technology classification than the one used
in the literature. It has 7137 detailed categories while the literature (e.g., Jaffe et al. (1993) and Bell et al.
(2019)) often considers technologies to be similar if they come from the same 3-digit USPC or NBER sub-class
classifications, which have 876 and 445 categories, respectively.

14A patent file is a publicly available source of information to all inventors in the world.
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check whether inventors’ citation rates (probabilities) differ across firms.
Formally, consider the following statistical framework. Suppose inventor ` worked in two

companies, i and j, and created N `
i phq and N `

j phq patents with characteristics h P H,
respectively. Assume that each patent in firm i (j) makes an independent citation to patent k
with probability p`k,iphq (p`k,jphq). Then the expected number of citations from inventor ` in
firm i to patent k is

n`k,iphq “ p`k,iphq ¨N
`
i phq,

and the goal is to test whether p`k,iphq “ p`k,jphq. To do this, I compare the actual concentration
of citations within an inventor with the counterfactual one where citation probabilities are
equalized across companies (p`k,iphq “ p`k,jphq).

For example, during 2008 to 2017 inventor Stefan G. Schreck from California created 16
patents in the technological class A61F2 while working in Endologix Inc. In 15 out of 16
patents, he made a citation to patent 5690642 assigned to Cook Incorporated. He also applied
for 9 patents with similar characteristics in another company, Edwards Lifesciences Corporation,
but made zero citations to patent 5690642. If 15 citations were allocated randomly across
16 ` 9 “ 25 patents, the expected share of citations from Endologix Inc would be 9.5{15 “ 0.63
and the 95th quantile would be 12{15 “ 0.8, but the actual share (15{15 “ 1) is significantly
higher. Notice that for an inventor who worked in two companies the concentration (the share
of citations from the most citing firm) cannot be less than 50%.

I compute the average concentration of citations across firms within all inventors who
moved between companies, and do the decomposition from Section 2.2. The details are given
in Appendix B.3. Figure 2(b) shows the actual average concentration within an inventor
(ACwt ), the 95th quantile and the median of the concentration with equalized citation rates
across firms (RCwt pq95q and RCwt ), and the median concentration in which both citation rates
and patenting are equalized across firms (PCwt ).15 The actual average concentration within an
inventor is significantly higher relative to the what we would expect if citation probabilities
were equalized across firms (ACwt ą RCwt pq95q). The average decomposition over all years

ACw ´ PCw
loooooomoooooon

22.2%

“ ACw ´RCw
loooooomoooooon

17.3%

`RCw ´ PCw
loooooomoooooon

4.9%

shows that the concentration is primarily explained by the differences across firms in citation
15The variable PCwt is greater than 50% because the majority of inventor-movers worked in two firms only.

For example, with two citations randomly allocated across two firms the expected concentration measure is

1
4 ¨ 1`

1
4 ¨ 0.5`

1
4 ¨ 0.5`

1
4 ¨ 1 “ 0.75
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probabilities rather than by the variance in the number of patents. The difference ACwt ´RCwt
is stable over time, and there was a slight increase in the difference RCwt ´ PCwt , meaning that
the dispersion in the number of patents across firms within an inventor has slightly increased
by the end of the period.

This evidence should be interpreted with caution because inventors-movers might differ in
their citation rates from inventors who always work in one company. My conjecture is that
the non-movers would have higher concentration of citations across firms if they were randomly
moved to another company. Below I argue that citations are correlated with access to trade
secrets. Based on this interpretation, the conjecture is that inventors-movers are less restricted
by contractual arrangements such as confidentiality agreements and non-compete contracts,
and this leads to less concentrated citations. An interesting area for future research is to study
the movement of inventors caused by exogenous shocks to firms, for example, natural disasters
(Barrot & Sauvagnat (2016)) or financial constraints (Chodorow-Reich (2014)).

2.4 Value of Citations for the Most Citing Firm

In this section, I compare the quality of (citing) patents and the growth of the most citing firms
relative to other firms. I identify citing patents that satisfy two conditions. First, they are
assigned to a firm that is responsible for the majority of citations to a patent from the top 1%
of the most cited patents. Second, the most citing firm has a significantly higher citation rate
relative to other firms (see Section 2.2). I call patents satisfying these two conditions “specific”
patents. For example, patents from Amkor Technology making citations to IBM’s patent in
Table 1 are “specific” ones. Appendix B.2.4 provides more details.

I start with the following regression of firms’ growth on different types of patents.

yf,t`τ ´ yf,t “ βs ¨ l̃n
`

N s
ft

˘

` βg ¨ l̃n
`

N g
ft

˘

` βn ¨ l̃n pNftq ` ηf ` ζipfq,t ` γXft ` εft (2.2)

where l̃npxq “ ln
´

x` px2 ` 1q 1
2

¯

is the inverse hyperbolic sine transformation to control for
zeros in patenting. For firm f in year t, the variable yf,t denotes profits or sales, N s

ft is the
number of granted specific patents, N g

ft is the number of granted patents that make at least
one citation to the top 1% of the most cited patents. The inclusion of N g

ft allows to distinguish
whether specific patents are associated with higher firm’s growth because they are responsible
for the majority of concentrated citations or because they simply rely on a highly-cited patent.
Nft is the total number of granted patents, ηf is a firm fixed effect, ζipfq,t is an industry-year
fixed effect, and Xft is the set of controls that includes firm employment, firm capital stock, and
a lag of firm profits or sales. The variable εft is an error term. Appendix B.4 provides details.

The estimated coefficients βs and βn for τ “ 1, . . . , 5 are given in Figure 3. The positive
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(a) Coefficients for specific patents, βs.
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(b) Coefficients for all patents, βn.

Figure 3: Value of Citations for the Most Citing Firm

This figure shows the estimated coefficients βs and βn with corresponding 95% confidence intervals for τ “ 1, . . . 5
for the specification in (2.2). The positive coefficient βn ą 0 means that higher number of patents is associated
with higher firm’s growth in sales and profits. The positive coefficient βs ą 0 indicates that given the same
number of patents the growth rate is higher for firms with greater share of specific patents. Blue lines show the
results for the specification with growth in profits, and green lines for specification with growth in sales. The
left panel shows estimates for βs, and the right panel shows the estimates for βn. Standard errors are clustered
at the firm and year levels. Details are given in appendix B.4.

coefficient βn ą 0 means that higher number of patents is associated with higher firm’s growth
in sales and profits, which is a standard result in the literature. However, in addition to this
result the positive coefficient βs ą 0 indicates that given the same number of patents the growth
rate is higher for firms with a greater share of specific patents. Therefore, specific patents are
more valuable to firms relative to non-specific ones.

One of the differences between specific and non-specific patents might be related to their
quality. I explore whether specific patents are of higher quality relative to non-specific ones
using two popular measures of patent quality used in the literature (Higham et al. (2020)). The
first measure is the number of forward citations relative to the average number of citations for
patents granted in the same year and technology class (group level CPC). Citations are taken
within a 5 year from the grant day. I call it a scientific value of a patent. The second measure
is based on the abnormal stock market return on the grant day of a patent for the firm that
owns it (Kogan et al. (2017)). I extend Kogan et al. (2017) estimates for years up to 2019 using
their parameter estimates for the baseline measure (see formula p4q in Kogan et al. (2017)). I
call it an economic value of a patent.

I run the following regression at the patent level

ln pQkq “ βs ¨ Isk ` βg ¨ I
g
k ` γXk ` εk (2.3)
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Table 2: Value of Patents as a Function of Backward Citations

Scientific Value Economic Value
(1) (2) (3) (4) (5) (6)

Specific Patent, βs 0.27 0.22 0.18 0.22 0.20 0.03
p0.03q p0.03q p0.02q p0.05q p0.04q p0.014q

Citation to a Top Patent, βg 0.33 0.31 0.30 0.15 0.10 0.01
p0.01q p0.01q p0.01q p0.03q p0.02q p0.005q

Firm Controls Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Firm FE Yes Yes
Firm ˆ Year ˆ Tech Class FE Yes
Notes: This table shows the estimation results from the regression (2.3) of the value of a patent
on a dummy whether this patent is specific or not. Columns p1q–p3q consider the specification with
the scientific value of a patent, which is defined as the number of forward citations relative to the
average number of citations for patents granted in the same year and technological class. Columns
p4q–p6q consider the specification with the economic value of a patent, which is defined based on
the abnormal stock market return on the grant day of a patent for the firm that owns it (Kogan
et al. (2017)). Firm controls include lag log of profits, log of employment and log of capital stock.
Standard errors are clustered by firm and year.

where Qk is the value of patent k (scientific or economic), Isk “ 1 if patent k is specific and
zero otherwise, Igk “ 1 whether patent k makes a citation to a patent from the top 1% of the
most cited patents. The control Igk allows to distinguish whether specific patents are of higher
quality because of the concentration of citations or because they simply rely on a highly-cited
patent. The variable Xk includes the set of controls for the patent and the firm that owns it.
The variable εk is an error term.

The results are given in the Table 2. All specifications show that specific patents are of higher
quality relative to non-specific ones. For the scientific value of patents, the most restrictive
specification is given in the column p3q and includes firm-year-technological class fixed effects,
meaning that specific patents are of higher scientific quality relative to non-specific ones even
within the same firm, grant year, and technological class. The specific patents have on average
18% more forward citations relative to non-specific ones that cite a top patent, and 48% more
citations relative to patents that do not cite the top 1% of the most cited patents.

For the economic value of patents, such a restrictive specification is not feasible due to data
limitations.16 The most restrictive specification is given in column p6q and includes firm controls,

16The main problem is that patents are granted only on Tuesdays of each week (except federal holidays), and
it is impossible to distinguish the value of patents granted on the same day. In my specifications, I define patents
to be specific if all patents granted on a given day were specific. Distinguishing them by technological classes
would significantly reduce the sample size.
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firm and industry-year fixed effects. The specific patents have on average 3% higher economic
value relative to non-specific ones that cite a top patent, and 4% higher economic value relative
to patents that do not cite the top 1% of the most cited patents.

2.5 Robustness and Additional Results

Appendix B.5 provides multiple robustness checks. In particular, the results are robust when I
consider different thresholds for the most cited patents (top 5% and 10%). The concentration is
not driven by superstar firms in patenting. The concentration is robust to the exclusion of firms’
self-citations to themselves, so it is driven by citations between firms rather than self-citations.
The concentration is also robust when I group citations of patents from the same within-country
family (continuations, continuations-in-part, divisionals) as a single citation, so its rise is not
driven by increasing patent families. Citation patterns might be affected by patent examiners
(Alcácer et al. (2009)). I show that the concentration of citations from patent examiners is
around two times lower than the concentration based on citations from non-examiners. Citations
might also be affected by patent lawyers. Using citations of lawyers who represented several
companies and the methodology similar to the movement of inventors, I show that citations
are not lawyer-specific, and the concentration is driven by firms. Appendix B.5 provides more
robustness checks, including controls for outliers, different samples, and weighting schemes.

2.6 Discussion and Implications for the Theory

Knowledge spillovers might come from different sources. The U.S. courts argue that patents
should provide a source of knowledge to other inventors (Roin (2005)), and the same argument
is often used in the growth literature (e.g., Romer (1990), p.84). The literature on urban
economics and technology diffusion argues that spillovers come from interactions between
inventors (Duranton & Puga (2004), Perla & Tonetti (2014), Buera & Lucas (2018)). The
evidence above raises concerns whether patent citations can be used to capture these types of
knowledge spillovers. First, the comparison of the actual concentration with the random one
indicates that that there are significant differences in citation rates across firms with very
similar patents. Second, the evidence on the movement of inventors indicates that citation
rates are different across firms even within the same inventor.

I argue that patent citations might reflect cooperation between firms and exchange of tacit
trade secrets that are complementary to codified knowledge disclosed in patents. As a result,
citations are concentrated because only a few companies get access to private knowledge of a
patent owner. The evidence in Section 2.4 suggests that this access is valuable to the recipients
of trade secrets. In theory, due to the disclosure requirements one invention cannot be protected

17



by both patents and trade secrets, but in practice “[b]ecause innovations are rarely composed of a
monolithic piece of knowledge, a combination of patenting and secrecy is common” (Anton et al.
(2006)). Appendix A describes several examples on how firms combine secrecy and patenting.
In particular, I discuss the examples of the mRNA technology for Covid-19 vaccines and the
Haber-Bosch process for ammonia. I also provide several legal cases on why and when the
combination of patenting and secrecy does not violate the disclosure requirements of patents.

The evidence from this section motivates the structure of the theoretical framework I develop
below. First, the theory is aimed to explain the differences in citation rates across firms rather
than the differences in the number of patents. Second, the explanation for the differences
in citation rates is based on connections between firms and their incentives to share private
knowledge rather than on connections between inventors who work in these firms, and how they
interact with each other.

3 Theory

The grant of monopoly through patents is justified by the claim that it promotes knowledge
diffusion through the disclosure of inventions. However, the evidence in Section 2 indicates that
even for the most cited patents only a limited set of firms builds on the patents’ knowledge.
I argue that citations are associated with the sharing of trade secrets that accompany patents
and develop a theory of knowledge sharing between firms that gives conditions under which
knowledge flows are diffused or concentrated.

The idea behind the theory can be illustrated with a case study on the diffusion of knowledge
about the copper interconnect technology for semiconductor chips (Lim (2009)). IBM was one
of the leaders in the development of this technology and relied heavily on secrecy to protect it.
IBM shared its secrets with an input supplier Novellus who developed a copper deposition tool.
To protect its secrets, IBM and Novellus signed a contract that restricted Novellus’s ability to
discuss its partnership with IBM and to sell a deposition tool to others:

“Under this agreement, Novellus was not permitted to reveal that it was working
with IBM. . ., and IBM maintained a list of companies to which Novellus could not
initially sell the tool.”

In the model, IBM acts as an incumbent firm (I) who shares its private knowledge with an
input supplier (S), Novellus. To protect its secrets from leakages to others, I and S sign a
confidentiality agreement and exclusive dealing. As a result, knowledge flows are concentrated.
Around 1997, IBM became more open about the development of the copper interconnect
technology and filed for patents. Table C1 (Appendix C) shows the distribution of citations
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for one of the most cited patents in this technology assigned to IBM and Novellus.17 Citations
for this patent are highly concentrated and mostly come from IBM’s suppliers: 64% from
Novellus and 30% from other suppliers.

Besides IBM, Motorola also worked on this technology. In contrast to IBM, Motorola was
relatively open with its suppliers, and they diffused knowledge to others:

“. . . Motorola worked jointly with suppliers from an early stage to develop tools
for copper technology. A member of Motorola’s copper team remarked that ‘unlike
IBM, we are quite open with vendors,. . .’ Motorola’s relative openness made it an
important source of information for the rest of the industry. . .”

In the model, Motorola also acts as an incumbent firm who shares its private knowledge
with an input supplier, for example, Applied Materials. However, the difference from IBM is
that Motorola signs neither a confidentiality agreement nor exclusive dealing, so the supplier
shares Motorola’s knowledge with other firms, for instance, Taiwan Semiconductor
Manufacturing Company (TSMC). TSMC entered into this technology much later relative to
IBM and Motorola, and in the model it acts as an entrant (E). According to interviews,
“[TSMC] depended primarily on technical knowledge from equipment suppliers. TSMC
worked closely with Applied Materials. . .” Table C2 shows the distribution of citations for one
of the most cited patents in this technology assigned to Motorola. In contrast to IBM’s
patent, citations to Motorola’s patent are less concentrated and come from a diverse set of
firms: 23% come from several suppliers (e.g, 7% from Applied Materials), and 39% come from
17 firms sharing a common supplier with Motorola (e.g., 5% from TSMC).

The goal of the theory is to derive conditions on the market structure and bargaining between
firms under which business partners sign or do not sign different types of contracts that prevent
knowledge flows in the economy. Section 3.1 presents a simple version of the model. Section 3.2
provides extensions and additional results to the baseline model. Section 3.3 lists the model’s
testable predictions.

3.1 Simple Model

Demand. There are two competing firms, an incumbent (I) and an entrant (E), who sell their
products to a continuum of consumers of measure 1. Each consumer is one of three types. A
share 1 ´ α of consumers buys a product from one firm only (loyal customers). Specifically,

17The fact that IBM and Novellus filed for a joint patent provides another dimension of a close relationship
between these firms. Only around 3% of patents granted in USPTO have more than one assignee. In Figure
C5, I document the rise in joint innovations (measured by joint patents) between input suppliers and customers.
Both the share of suppliers and customers who applied for joint patents and the share of suppliers and customers
among the patents with multiple assignees have increased from 1980 to 2010.
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a share 1´α
2 buys from I only, and a share 1´α

2 buys from E only. Their willingness to pay
is determined by the quality of a product. So, I-consumers are ready to pay up to qI , and
E-consumers are ready to pay up to qE , where qI and qE are product qualities of I and E ,
respectively. A share α of consumers buys the product from a firm with the highest quality-
price difference (switchers). Therefore, the parameter α measures the degree of competition
between I and E .

Note that this demand can be interpreted through the lenses of international trade where
there is a continuum of measure 1 products, firms I and E are from different countries, and
products with loyal customers represent non-traded goods. An increase in α can be interpreted
as an increase in the set of goods that can be traded (e.g., due to the decline in trade costs).

Pricing to Consumers. Firms I and E can perfectly discriminate between different types
of consumers.18 So, they can charge loyal customers by their willingness to pay, pI “ qI and
pE “ qE . For the rest (switchers), I and E compete in prices. Therefore, these consumers will be
served by a firm with a higher product quality at a price p “ max tqI , qEu ´min tqI , qEu where
I assume that in the case of indifference consumers buy from a firm with the highest quality. I
also assume that consumers buy from I if pI “ pE and qI “ qE .

Technology. Firm I has a valuable technology that consists of two types of knowledge:
tacit and codified. Tacit knowledge is unpatentable and is easy to hide, so I keeps it secret.
The incumbent needs an input in its production, and it has its own low-quality input or it can
buy a high-quality one from an input supplier (S). However, for S to produce a superior input,
firm I has to share the tacit knowledge with it. Without this knowledge, S can only offer the
same low-quality input as I has. Firm I can produce a final product of quality qI “ λ with a
high-quality input from S, and of quality qI “ p1´ γqλ with a low-quality input where γ ď 1.

Firm E also needs an input, and it has its own low-quality input or it can buy an input from
S. The quality of E ’s product is qE “ λ0 with a superior input from S, and qE “ p1 ´ γqλ0

with an inferior input where λ0 ă λ. However, using I’s tacit knowledge it can innovate and
improve the quality of its product to qE “ λ with a superior input from S, and qE “ p1 ´ γqλ

with an inferior input. The summary is given in Table 3.

Firm E also values I’s codified knowledge, which it can obtain through reverse-engineering of
I’s product. However, the codified knowledge without the tacit secrets allows E only to imitate
I’s quality for common customers (switchers) but not to improve the quality of its product for
its loyal customers. Codified knowledge is patentable, so I protects it from imitation with a
patent. From the firms’ point of view, this imitation is a pure business stealing effect since it
does not allow firms to capture more surplus from consumers. Therefore, the incumbent has no

18With the interpretation based on international trade, this assumption means that firms can charge monopoly
prices for non-traded products in their countries.
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Table 3: Quality of Final Products

I’s quality E ’s quality
Access to a high-quality input? Access to I’s tacit knowledge?

Yes No
Yes qI “ λ qE “ λ qE “ λ0

No qI “ p1´ γqλ qE “ p1´ γqλ qE “ p1´ γqλ0

Notes: This table shows the quality of I’s and E ’s products as a function of whether they have
access to a high-quality input from S and to I’s tacit secrets. For S to produce an input of high
quality it needs to know I’s tacit secrets.

incentives to license it to E . The idea that firms use patents to disclose knowledge that would
be available to the public through other channels anyway is consistent with the arguments of
legal scholars that the patent system fails its disclosure function (e.g., Roin (2005)).

To sum up, I patents its codified knowledge but keeps the tacit knowledge secret. The
codified knowledge allows imitation only, and the tacit secrets are key for improving the quality
of S’s input and E ’s product.

Citations. Both S and E apply for patents on their products that do not infringe I’s patent.
Without I’s private knowledge they cite I’s patent with probabilities pSp0q ě 0 and pEp0q ě 0,
respectively. With I’s private knowledge they cite I’s patent with probabilities pSp1q ą pSp0q
and pEp1q ą pEp0q, respectively.

Contracting. The main contracting limitation is that courts cannot verify the quality of
tacit knowledge firms share with each other and quality of their products, so I cannot license
its tacit knowledge to E when it is mutually beneficial for them. Specifically, once E pays for
knowledge, I has no incentives to disclose it and courts cannot check whether I shared relevant
secrets with E . Conversely, once I shares its secrets, E might refuse to pay claiming that the
secrets are not valuable. This is a classical problem in the markets for ideas (Arrow (1962)).19

I assume that firms I and E can write contracts on inputs with S. Moreover, I and S can also
sign a confidentiality agreement and exclusive dealing. Although courts cannot verify the quality
of secrets firms share with each other, they can verify the communication between parties. A

19Arora et al. (2001) discuss how to license tacit knowledge to a non-competing firm by bundling it with
a complementary patent. In my model, once E receives I’s secrets, it can improve the quality of its product
without infringing I’s patent, so the strategy for I to sell its secrets by bundling them with its patent does
not work. I abstract from licensing agreements for three reasons. First, since a citing patent is granted, it is
unlikely to infringe the cited ones. There are exceptions to this rule but they are rare (see Scotchmer (2004)).
My personal conversations with patent attorneys also suggest that patent citations are rarely associated with
licensing payments. Second, the growth literature that measures spillovers using patent citations (e.g., Caballero
& Jaffe (1993), Akcigit & Kerr (2018)) usually assumes that citing patents do not infringe cited ones. Finally,
Arqué-Castells & Spulber (2022) show that the inter-firm network of licensing agreements has very little overlap
with the network of supplier-customer relationships.
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Figure 4: Timing

confidentiality agreement restricts S’s ability to discuss topics related to I’s technology with E .
Exclusive dealing restricts S’s ability to sell an input to E .

Timing. The game has the following timing (see also Figure 4):

t1. I and S have Nash bargaining with 50/50 split of the surplus about the following contract:

• Exclusivity pexq. The contract states whether S can sell an input to E (ex “ 0) or
not (ex “ 1).

• Confidentiality Agreement (ca). The contract defines whether S can share I’s
knowledge with E (ca “ 0) or not (ca “ 1).

t2. Firm I decides whether to share its knowledge with S. Then they have Nash bargaining
over the input price (tI) with 50/50 split of the surplus.

t3. E enters. Suppose I shared its knowledge with S. Without a confidentiality agreement
between I and S (ca “ 0), firm S decides whether to share I’s secrets with E . Then,
under non-exclusive dealing (ex “ 0) it makes a take-it-or-leave-it offer about the input
price (tE) to E .

t4. Firms I and E set downstream prices, and profits are realized.

Discussion. An important assumption is that the entrant does not participate in the
contracting between I and S in the first stage. For example, its identity is not known at
this point. This will cause an inefficiency from the firms’ point of view because I and S will
maximize their joint surplus rather than the profits of all three firms. For more on bilateral
contracting see Segal (1999).

Section 3.2 discusses various extensions of the simple model. First, I show that specific
assumptions about production, demand, and bargaining in the simple model are not crucial for
the results. Second, I consider a richer contracting space by allowing the possibility to write
contracts with stipulated damages (Aghion & Bolton (1987)). Third, I derive the equilibrium
under the restrictions on the use of confidentiality and/or exclusive contracts. Finally, I provide
a framework with two suppliers and a common customer.
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Subgame Perfect Equilibrium. If S and I do not sign an exclusive contract in the first
stage, then in the third stage S will make a take-it-or-leave-it offer to E about the input price.
The offer depends on whether firm E has access to I’s tacit knowledge or not:

tE “
1´ α

2 ¨ λ´
1´ α

2 p1´ γq ¨ λ “ 1´ α
2 γλ

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

E has access to I’s tacit knowledge (secrets)

or tE “
1´ α

2 ¨ λ0 ´
1´ α

2 p1´ γq ¨ λ0 “
1´ α

2 γλ0
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

E does not have access to I’s tacit knowledge (secrets)

S always has incentives to share I’s knowledge with E in the third stage because λ ą λ0.
These incentives come from the complementarity between S’s input and I’s technology in the
quality of E ’s product. A confidentiality agreement between I and S can prevent the knowledge
leakage to E because it contractually restricts S’s ability to communicate with E . Exclusive
dealing eliminates S’s incentives to leak I’s knowledge by restricting its ability to sell an input
to E .

In stage t2, I decides whether to share secrets with S, and then they bargain over the input
price. The upside of sharing secrets with S is that it improves the quality of S’s input. The
downsides are that E might also buy a high-quality input from S (under non-exclusive dealing,
ex “ 0), and that S might leak I’s secrets to E (under ex “ 0 and ca “ 0). For a contractual
arrangement pex, caq P t0, 1u2, I shares its tacit knowledge with S if

πoIpex, caq `
1
2

´

TSpex, caq ´ πoIpex, caq ´ π
o
Spex, caq

¯

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

I’s profit under knowledge sharing with S and contract pex, caq P t0, 1u2

ě
1´ α

2 p1´ γqλ` α ¨ p1´ γq pλ´ λ0q
looooooooooooooooooooooomooooooooooooooooooooooon

I’s profit without knowledge sharing with S
(3.1)

where the right-hand side shows I’s profit when it does not share knowledge with S. In this
case, it works with an inferior input but so as E , and E does not get I’s secrets. The left-hand
side shows I’s profit when it shares secrets with S. I and S bargain over the input price and
split the total surplus (TSpex, caq) 50{50 over the disagreement point (πoIpex, caq, πoSpex, caq).

In equilibrium, there are three possible contractual arrangements: no contract between I
and S in the first stage (ex “ 0, ca “ 0), a confidentiality agreement only (ex “ 0, ca “ 1), and
exclusive dealing (ex “ 1, ca P t0, 1u). Under exclusive dealing, S is indifferent whether to share
I’s secrets with E in stage t3 or not, and I assume that it does not share them. Therefore, in
this case a confidentiality agreement is redundant, and both arrangements pex “ 1, ca “ 0q and
pex “ 1, ca “ 1q lead to the same outcome.20

In stage t1, I and S sign a contract pex, caq that maximizes their total surplus TSpex, caq
subject to constraint (3.1) that I has incentives to share its secrets with S. Proposition 1

20If I expected a leakage of its knowledge when S is indifferent, they would sign a confidentiality agreement,
but this would not change the structure of the equilibrium. Another way to break the indifference is to assume
that there are small costs of knowledge sharing.
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summarizes the Subgame Perfect Equilibrium.

Proposition 1. The subgame perfect equilibrium contract between I and S is the following:
$

’

’

’

’

’

&

’

’

’

’

’

%

Exclusive Dealing pex “ 1, ca P t0, 1uq if α ą 1
3

CA only pex “ 0, ca “ 1q if min
"

γ
γ`2 ,

γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

*

ă α ď 1
3

Null pex “ 0, ca “ 0q if α ď min
"

γ
γ`2 ,

γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

*

(3.2)

Firm I always shares knowledge with S, and S shares I’s knowledge with E only under a non-
exclusive dealing without a confidentiality agreement (ex “ 0, ca “ 0).

Proof. For each contract, the total surplus of I and S is the following

Exclusive: TSpex “ 1, ca P t0, 1uq “ 1´ α
2 ¨ λ` α ¨ pλ´ p1´ γqλ0q ` 0 (3.3)

CA only: TSpex “ 0, ca “ 1q “
1´ α

2 ¨ λ` α ¨ pλ´ λ0q `
1´ α

2 ¨ γλ0 (3.4)

Null: TSpex “ 0, ca “ 0q “
1´ α

2 ¨ λ` α ¨ pλ´ λq `
1´ α

2 ¨ γλ (3.5)

where the first two terms represent I’s gross profits, and the last term represent S’s profits from
selling an input to E . If α ą 1

3 , then pex “ 1, ca P t0, 1uq maximizes total surplus TSpex, caq.
If 1

3 ă α ď γ
γ`2 , then pex “ 0, ca “ 1q maximizes total surplus. In both cases, condition (3.1)

is satisfied.21 If α ď γ
γ`2 , then pex “ 0, ca “ 0q maximizes total surplus, and condition (3.1) is

satisfied only if

1´ α
2 p1´ γqλ` 1

2 ¨
1´ 3α

2 γλ
looooooooooooooooooomooooooooooooooooooon

I’s profit under knowledge sharing

ě
1´ α

2 p1´ γqλ` α ¨ p1´ γq pλ´ λ0q
looooooooooooooooooooooomooooooooooooooooooooooon

I’s profit without knowledge sharing

which can be rewritten as
α ď

γ

4p1´ λ0
λ
q ` γp4λ0

λ
´ 1q

(3.6)

The equilibrium is illustrated in Figure 5, and the intuition behind Proposition 1 is the
following. For product qualitites pqI , qEq, the total sum of profits of all three firms is

Πall “
1´ α

2 pqI ` qEq ` α ¨ pqI ´ qEq “
1` α

2 qI `
1´ 3α

2 qE

21Condition (3.1) is always satisfied for pex “ 1, ca P t0, 1uq and is satisfied for pex “ 0, ca “ 1q due to
simplifying functional form assumptions (see Appendix D.1). I consider a more general case in Appendix D.2.
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Figure 5: Equilibrium as a function of pα, γq

This figure illustrates the equilibrium contract between I and S described in Proposition 1. Parameter α
measures the degree of competition between I and E , and parameter γ reflects the value of S’s input relative to
I’s and E ’s outside options.

For α ą 1
3 , it is decreasing in qE , so I and S sign exclusive dealing to minimize qE . This

mechanism is similar to the foreclosure literature (Rey & Tirole (2007)). For α ă 1
3 , the sum of

profits is increasing in both qI and qE , and is maximized under a transfer of I’s tacit knowledge
(secrets) to E , and when both firms use a high-quality input from S. Since S makes a take-it-
or-leave-it offer to E about the input price, it can extract the whole increase in surplus coming
from its input. Therefore, I and S prefer not to sign an exclusive contract: an input price to E
is greater than losses of I in profits.22

However, a knowledge transfer to E might fail for two reasons. First, since sharing of
secrets in non-contractible, I cannot be directly compensated for it. So, if (3.6) is not satisfied
(competition is too high), costs of a knowledge leakage will outweigh benefits of higher input
quality, and I will not share knowledge with S. In this case, I and S sign a confidentiality
agreement. Second, if (3.6) is satisfied, I and S might still prefer a confidentiality agreement
because S does not capture the whole increase in surplus associated with a knowledge transfer
to E . Specifically, I’s secrets increase E ’s profit by 1´α

2 pλ´ λ0q, but S can capture only
γ ¨ 1´α

2 pλ´ λ0q through its input price. Therefore, if γ is low, then sharing of I’s secrets with
E generates more losses in I’s profits relative to gains in input price tE . So, I and S prefer a
confidentiality agreement to create a commitment for S not to share I’s secrets with E .

22If E made an offer to S, then I and S would always prefer exclusive dealing. In general, suppose that S and
E have a generalized Nash Bargaining where ψS P r0, 1s is S’s bargaining power. Then, I and S sign exclusive
dealing with a confidentiality agreement whenever α ą ψS

ψS`2 . Appendix D.2 provides more details.
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3.2 Extensions and Additional Results

This section discusses extensions and additional results to the baseline model. Section D.2
shows that the results from the simple model are robust to generalizations in the competition,
production, and bargaining structures.

Section D.3 expands the contractual space by allowing contracts with stipulated damages
(Aghion & Bolton (1987)). The ability to use stipulated damages might allow I and E to extract
more surplus from E and increase social welfare because it ensures a knowledge transfer from I
to E in cases where previously I with S signed a confidentiality agreement (see Figure 5). This
happens because I is compensated for the knowledge transfer to E through stipulated damages
while before contractual limitations prevented this compensation.

Section D.4 discusses welfare implications of restrictions on the contractual space. The
upside of this policy is that it might promote knowledge diffusion in the economy. The
downside of restrictions on the use of confidentiality agreements is that firms might start using
exclusive dealing to prevent knowledge leakages. The downside of restrictions on both
exclusive contracts and confidentiality agreements is that firms in a vertical relationship might
stop sharing knowledge with each other. I provide conditions on the market structure under
which restrictions on confidentiality or exclusive contracts generate welfare gains. It is never
optimal to ban these contracts simultaneously.

Finally, Section D.5 considers a setup with two suppliers and a common customer. Most
predictions are similar to the model with a common supplier, and I discuss them in the next
section.

3.3 Testable Predictions

The theory predicts patterns of knowledge flows in a production network that I map to the data
using patent citations. In Section 4, I test four predictions from the model:

1. Suppliers and customers are more likely to cite each other relative to similar firm-pairs
with no vertical relationship.

2. Firms sharing a common supplier or customer are more likely to cite each other relative
to firms with exclusive suppliers or customers.

3. A stronger bargaining position (γ) of the common supplier (a worse outside option of E)
is associated with a higher likelihood of a citation between its customers (I and E).

4. A higher level of competition (α) leads to less knowledge sharing between I and E .
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Remark 1. The model with two customers and a common supplier predicts that E is more
likely to cite I if it has a bad outside option to S’s input (high γ). In the framework with two
suppliers and a common customer in Appendix D.5, I assume that suppliers’ outside options of
not trading with a customer are zero. Therefore, it does not give a prediction about citations
between suppliers as a function of the bargaining position of a common customer. I leave the
framework with a more general production network for future research.

Remark 2. In the model, each firm has one patent, and sharing of secrets affects citation
probabilities between them. The framework can be extended to the case in which firms have
multiple patents. Suppose that firm S has NS patents, and each independently makes a citation
to I’s patent with probability pSp1q if S receives I’s secrets and pSp0q otherwise. The expected
number of citations to I’s patent from firm S is pSpkq ¨NS for k P t0, 1u. The empirical strategy
in Section 4.1 estimates pSp1q ´ pSp0q taking NS as given. The focus on citation probabilities
is motivated by the evidence from Section 2 that the concentration of citations is primarily
explained by differences across firms in citation rates rather than patenting. To explain the full
distribution of citations across firms one should explain not only citation probabilities (pSpkq)
but also the number of patents (NS). I leave the full analysis of ppSpkq, NSpkqq for future
research.

4 Empirical Tests

This section tests four theoretical predictions from Section 3.3. Section 4.1 tests predictions 1–3
using cross-sectional and time variation in supplier-customer relationships between companies.
Specifically, the unit of analysis is a pair of patents, and I estimate the probability of a citation
between a randomly selected pair of patents as a function of the relationship between their
assignees.

Section 4.2 tests the fourth prediction about the effect of competition on knowledge sharing.
There are at least two ways to test this prediction. The first one is a test of the equilibrium
structure: compare cross-sectional variation across industries in the competition level with
citation patterns between firms. There is a potential endogenity problem with this approach.
For example, firms in industries with less competition might also rely less on knowledge from
each other for technological reasons. The second way is a test of the equilibrium response: find
within-industry shocks to the competition levels and compare changes in citation patterns in the
model and data. I use the rise of imports from China and the instrumental variable approach
from Autor et al. (2013) to isolate plausibly exogenous industry shocks to the competition
levels. Specifically, the unit of analysis is a technological class, and I show that technologies
more exposed to the rising import competition from China experienced a faster growth in the
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concentration of citations.

Data

I use the data on utility patents granted in the U.S. Patent and Trademark Office (USPTO),
Compustat North America data on publicly traded firms, and Compustat Segments data on
the supplier-customer relationship between firms. The data are taken for the period 1976–
2019. Compustat data give information on sales, profits, employment and industry affiliation
of publicly traded firms. Compustat Segments contains data on the supplier-customer links
reported by publicly traded U.S. firms. Regulation SFAS No. 131 requires publicly traded
firms to report the identity of any customer representing more than 10% of their total sales.
Therefore, the data are constructed using the information provided by suppliers about their
customers. All details are given in appendix B.1.

These data have several limitations. First, the supplier-customer data cover only publicly
traded firms listed in the U.S. Private and foreign firms might differ from the U.S. publicly traded
firms in terms of patenting and citation practices, and this might bias the results relative to the
estimation based on the full network of firms’ relationships. The differences in rates of patenting
should not confound the results because the empirical strategy in Section 4.1 is designed to
estimate the probability of a citation between two patents from different firms conditional on
the existence of these patents. However, the differences in citation practices might introduce
a bias if these differences are not accounted by geographic and firm controls. For example,
despite filing patents in the U.S. office foreign firms might still follow citation standards of their
countries. The second limitation is a selection problem because firms are required to list only
the largest customers. As a result, the data might miss small customers and large suppliers
selling to multiple firms who do not represent more than 10% of the supplier’s revenue. I use
controls for firms’ sizes to partially alleviate this problem. Third, suppliers are not required to
report sales to their customers.23 Data on bilateral sales would be useful to construct bargaining
positions between firms in a vertical relationship. Instead, I use total sales of a supplier relative
to other firms in the same industry to proxy for its bargaining position vis-a-vis its customers.

Despite all these limitations, Compustat Segments data set is one of the best sources for
supplier-customer relationships in the U.S. over a long period of time. These data were used in
studies on propagation of shocks in production networks (Barrot & Sauvagnat (2016)), network
formation (Lim (2017)), and tests of investors’ inattention (Cohen & Frazzini (2008)).

23Computstat Segments data include a variable for the annual sales of the reporting supplier to the reporting
customer, but this variable is often missing or imputed.
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4.1 Citations in a Production Network

In this section, I test predictions 1–3 from Section 3.3. The first prediction is that firms are more
likely to cite each other if they are connected by a vertical production relationship. Second, firms
are more likely to cite others’ patents if they share a common supplier or customer. Finally, the
probability of a citation between firms sharing a common supplier is increasing in the bargaining
position of this supplier. The strength of the supplier’s bargaining position is defined by the
the customer’s outside options of not buying an input from the supplier. I proxy the bargaining
position of common suppliers by their sales share in the industry they are affiliated with. The
intuition is that the supplier’s relative size approximates the difficulty of finding an alternative
supplier for the customers.

Based on the econometric techniques from the spatial literature (Jaffe et al. (1993),
Thompson & Fox-Kean (2005), Singh & Marx (2013)), I estimate the following specification

P pyij “ 1|Iij, Xijq “ F
`

βsc ¨ Iscij ` βcs ¨ Icsij ` βcompsq ¨ Icomij psq ¨ p1` βs ¨ Sijq`

`βcompcq ¨ Icomij pcq `Xij ¨ γ
˘

(4.1)

where yij “ 1 if patent j cites patent i and zero otherwise. For a pair of patents pi, jq denote
the application year of patent j by tj. The variable Iscij (Icsij ) a dummy equal to 1 if j’s assignee
was a supplier (customer) to i’s firm in the period rtj ´ 2, tj ` 2s. The variable Icomij psq (Icomij pcq)
is a dummy equal to 1 if j’s and i’s firms shared at least one common supplier (customer) in the
period rtj´2, tj`2s. Finally, the variable Sij reflects the size of common suppliers. Specifically,
for each common supplier I compute the average sales share in its industry over the period
rtj ´ 2, tjs. If firms shared several suppliers, I take an average across their sales shares. The
variables in Xij include firm, spatial, time and technological controls.24 I use logit, probit and
linear probability models. In the linear model, I include fixed effects for the interaction between
pi, jq technological classes and i’s grant years (TechiˆTechjˆY eari) where the technology class
is defined at the group level in Cooperative Patent Classification (CPC) system. This allows to
control for differences in citation patterns across technologies and in time. I also include fixed
effects for cited and citing firms which allow to control for time-invariant differences in citation
practices across firms.

The estimation of the specification (4.1) is not computationally feasible for the universe
of all patent-pairs. Since the data on the supplier-customer links cover only publicly traded

24Specifically, firm controls include log sales of i’s assginee and log number of patents granted to i’s assignee in
the grant year of patent i, log sales of j’s assignee and log number of patents applied by j’s assignee in application
year tj . Spatial controls include log distance between inventors and a dummy whether they are in the same
country. Time controls include i’s grant year fixed effects, and dummies for a lag between j’s application year
and i’s grant year. Technology controls include a dummy whether i and j patents are in the same main subgroup
of CPC, and whether their assignees are in the same four-digit Standard Industry Classification (SIC) industry.
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firms, I restrict the sample to citations between these firms only (excluding self-citations), but
the set of all patent-pairs is still too large. I use the sampling procedure first proposed in
Jaffe et al. (1993). Specifically, for each cited-citing pair of patents I randomly select a control
patent from the set of patents that do not make a citation to the cited patent but have the
same application year, the same detailed technological class (main subgroup CPC) as the citing
patent, and belong to a firm different from the citing one.25 I use the sampling weighting
(Manski & Lerman (1977)) to ensure that estimates reflect probabilities in the sample of cited-
citing and all cited-control patent pairs, not only selected ones. Appendix B.6 provides details
on the empirical specification and data construction.

The estimation results are given in Table 4. All specifications show that the probability of
a citation between two patents is higher if patents’ assignees have a supplier-customer
relationship and/or share a common supplier or customer. Moreover, the probability of a
citation between firms sharing common suppliers is increasing in the relative size of these
suppliers. Suppliers, on average, are more likely to cite customers than customers suppliers,
and sharing a customer is associated with a greater increase in the probability of a citation
relative to sharing a supplier. Columns p1q–p4q show the results for the linear probability
model. I multiply the depended variable by 100, so the estimates represent an increase in the
probability of a citation in percentage points. In general, the probability of a citation between
two randomly selected patents is very small, and this translates into small estimates of the
linear probability model. However, they are economically large. A randomly selected pair of
cited-citing patents has, on average, around 483 cited-control pairs without a citation meaning
that the probability of a citation is around 0.21%. So, being a supplier increases the
probability of a citation by 0.08%, which represents a 8{21 “ 38% proportional increase. The
Logit model provides another way to evaluate the magnitudes of the estimates. Since the
probability of a citation is low, the Logit coefficients approximate the proportional increase in
the probability of a citation. Specifically, the marginal effect of k’s variable (dummy) is

ΛpXγ ` βkq ´ ΛpXγq « βk ¨ Λ1pXγq “ βk ¨ Λ pXγq ¨ p1´ Λ pXγqq « βk ¨ Λ pXγq

where ΛpXγq “ 1
1`expp´Xγq and Λ pXγq « 0. So, being supplier to a cited firm is associated

with a 34% proportional increase in a probability of a citation between two patents, which is
25Jaffe et al. (1993) consider control patents from the same 3-digit USPC technological class. However,

Thompson & Fox-Kean (2005) argue that the 3-digit classes are too broad to capture technological similarity
between patents and propose to use the 9-digit classification. The problem with the 9-digit classification is that
it is too narrow and potentially introduces a lot of noise, leaving the majority of patents without a control one
(Henderson et al. (2005)). Unfortunately, the USPC system does not provide intermediate levels of aggregation
between 3-digit and 9-digit classes. To address both critiques, I use instead the cooperative patent classification
(CPC), which has more flexible hierarchical classification system. Specifically, I find control patents from the
same main subgroup level, which has more than 7000 categories.
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Table 4: Supply Chain Relationship and the Probability of a Citation

Empirical Specification Linear Logit Probit
(1) (2) (3) (4) (5) (6)

Supplier Cites a Customer, βsc 0.09 0.09 0.08 0.08 0.34 0.11
p0.004q p0.004q p0.003q p0.004q p0.012q p0.004q

Customer Cites a Supplier, βcs 0.05 0.05 0.05 0.07 0.27 0.09
p0.003q p0.003q p0.003q p0.003q p0.015q p0.005q

Share Common Customers, βcompcq 0.10 0.10 0.09 0.07 0.39 0.12
p0.003q p0.003q p0.002q p0.003q p0.009q p0.003q

Share Common Suppliers, βcompsq 0.02 0.01 0.02 0.03 0.04 0.01
p0.001q p0.001q p0.001q p0.001q p0.004q p0.001q

Relative Size of Common Suppliers, βs 0.54 0.59 0.51 0.47 2.28 0.76
p0.024q p0.024q p0.024q p0.025q p0.061q p0.022q

Firm Controls Yes Yes Yes Yes Yes Yes
Patent Controls Yes Yes Yes Yes Yes
Techi ˆ Techj ˆ Yeari FE Yes Yes
Firmi, Firmj FE Yes
Notes: This table shows the estimation results for the specification in (4.1). It estimates the probability of a
citation between two patents as a function of the production relationship between their assignees. The sample
is restricted to patents granted between 1976 and 2019 to publicly traded firms only and excludes self-citations.
I use the sampling procedure outlined in Jaffe et al. (1993) and Thompson & Fox-Kean (2005) to construct the
sample of cited-citing and cited-control pairs of patents. For the linear probability model, the outcome variable
is multiplied by 100. In the regressions, firm controls include log sales of i’s assignee and log number of patents
granted to i’s assignee in the grant year of patent i, log sales of j’s assignee and log number of patents applied by j’s
assignee in application year tj , and a dummy whether i and j assignees are in the same four-digit Standard Industry
Classification (SIC) industry. Patent controls include log distance between inventors and a dummy whether they
are in the same country, i’s grant year fixed effects, and dummies for a lag between j’s application year and i’s
grant year, a dummy whether i and j patents are in the same main subgroup of CPC. Standard errors are clustered
at the cited patent level. All specifications are sample-weighted (Manski & Lerman (1977)). More details are given
in Appendix B.6.

comparable to 38% in the linear probability model.

4.2 Trade with China and Concentration of Knowledge Flows

The model in Section 3 predicts that a higher level of competition leads to lower knowledge
sharing. I provide the evidence consistent with this prediction using the variation across
technologies in their exposure to the rising import competition from China. To isolate changes
in the import competition level unrelated to US demand and technological shocks, I
instrument US imports from China by Chinese exports to other high-income countries (Autor
et al. (2013)). Autor et al. (2020a) used this methodology to show that imports from China
led to the decline in corporate patenting in the manufacturing sector. I complement their
evidence by studying how imports from China affected knowledge sharing between firms.

31



1980 1985 1990 1995 2000 2005 2010 2015

40%

45%

50%

55%

60%

65%

70%

75%

80%

(a) The concentration for technological classes
with different exposure to import competition.

coef=2.09, robust SE=0.44, t=5.67

0
10

20
30

40
50

C
ha

ng
e 

(%
) i

n 
th

e 
C

on
ce

nt
ra

tio
n 

of
 C

ita
tio

ns

0 5 10 15 20
Change (%) in the Import Exposure

(b) Changes in the concentration and in the import
penetration from China.

Figure 6: Trade with China and Concentration of Citations

These figures show the relationship between the concentration of citations and the exposure to import
competition from China. Figure 6(a) shows the concentration measure from Section 2 (Figure 1) for different
technological classes divided into quartiles based on their exposure to import competition from China, ∆IPi2 in
(4.2). The concentration measure for year t shows the average concentration in years rt´4, ts. Figure 6(b) shows
the binned scatter plot of the change in the concentration of citations and the change in the import exposure
from China. The specification is weighted by the number of Compustat-matched U.S.-inventor patents in a
technology class.

Following Autor et al. (2020a), I define the measure of the trade exposure at the four-digit
Standard Industry Classification (SIC) over the two subperiods, 1991 to 1999 and 1999 to 2007,

∆IPi1 “
Mi,1999 ´Mi,1991

Yi,91 `Mi,91 ´ Ei,91
and ∆IPi2 “

Mi,2007 ´Mi,1999

Yi,91 `Mi,91 ´ Ei,91
(4.2)

where Mi,t is the U.S. imports from China for industry i and year t P t1991, 1999, 2007u, and
Yi,91`Mi,91´Ei,91 is the absorption at the start of the period (industry shipments plus imports
minus exports). For each patent, I calculate the import penetration for its technology class using
the mapping of four-digit SIC industries to technology classes implied from patents owned by
publicly traded firms as in Autor et al. (2020a).

Figure 6(a) shows the concentration measure from Section 2 (Figure 1) for different
technological classes based on their exposure to import competition from China, ∆IPi2. All
classes experienced an increase in the concentration of citations after 2000. However, the
dynamics is different based on the exposure to import competition. For classes with the least
exposure (below first quartile Q25), the concentration of citations was initially high (around
55%) and stable prior to 2000, and then it increased up to 75%. For classes with the most
exposure (above the third quartile Q75), the concentration was initially lower (around 50%),
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decreased to around 40% near 2000, and then it also increased up to 75%. So, technological
classes with the most exposure to China shock experienced faster growth in the concentration.

I follow the methodology from Section 2 to separate whether the rise in the concentration
in different classes is driven by the increasing variance across firms in patenting (N) or in
citation rates (p). In Figure C6 (Appendix C), I compare the dynamics after 2000 of the actual
concentration measure relative to the counterfactual one from the Monte-Carlo simulations. The
counterafactual concentration shows how the concentration would evolve due to the changes in
patenting across firms (N) holding the firms’ citation rates (p) fixed at the level of 2000. For
technologies least exposed to the competition from China, the actual and the counterfactual
concentration measures closely follow each other, and the changes in citation rates across firms
(p) explain about 41% of the rise in the concentration. In contrast, for the most exposed
technologies the changes in citation rates across firms (p) explain around 70% of the increase
in the concentration. Therefore, trade with China affected citation patterns primarily through
the changes in citation rates. An implication of this result is that firms’ exit from patenting
cannot fully explain the rise in the concentration of citations.

I study the change in the concentration of citations around 2000 in the regression
specifications. Specifically, I define for each technology class the average concentration
measure among patents granted in the 7-year period starting from 1977, 1984, 1991, 1998,
2005.26 Appendix B.7 provides more details. I denote the concentration measure for
technology class j and the period starting from t by Cj,t, and define the following growth
measures

∆yj1 “ 100 ¨ ln pCj,1998{Cj,1991q and ∆yj2 “ 100 ¨ ln pCj,2005{Cj,1998q

Figure 6(b) shows that technological classes more exposed to trade with China (∆IPjτ )
experienced a higher growth in the concentration of citations (yjτ ).

I estimate the following specification

∆yjτ “ β∆IPjτ ` γXj0 ` εjτ (4.3)

where τ P t1, 2u and Xj0 is the set of controls. To control for the aggregate trend in the
concentration of citations I include time fixed effects. Since the concentration measure

26Periods are 1977–1983, 1984–1990, 1991–1997, 1998–2004, 2005–2011. The sample construction for patents
is different from Autor et al. (2020a) due to the nature of the outcome variable. Autor et al. (2020a) consider
patents applied in the years 1975, 1983, 1991, 1999, 2007. Their main outcome variable is the number of
patents while in this paper it is the concentration of citations. The concentration measure has a meaningful
interpretation only for highly-cited patents. For example, the patent with one citation always has concentration
equal to one. Therefore, I focus on the set of the top 1% of the most cited patents. Since each technological
class has a small number of highly-cited patents in each year, I take the average of the concentration measure
over a 7-year period. I also do the analysis at the technology class level rather than at the firm level because
most firms have a small number of highly-cited patents.
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Table 5: Trade with China and Increase in the Concentration of Citations

p1q p2q p3q p4q p5q p6q
Panel A: OLS

∆ Tech Class Exposure 2.09 1.46 1.44 1.76 1.43 1.43
to Chinese Imports p0.44q p0.41q p0.42q p0.34q p0.39q p0.38q

Panel B: 2SLS
∆ Tech Class Exposure 2.38 1.52 1.50 1.92 1.84 1.81
to Chinese Imports p0.49q p0.50q p0.50q p0.42q p0.56q p0.58q

Time FE Yes Yes Yes Yes Yes
∆ Citations Yes Yes Yes Yes
2 Lags of outcomes Yes Yes Yes
11 sectors, 6 Tech Yes Yes
Software Patents Yes
Notes: This table shows the estimated coefficient β for the specification in (4.3). Panel
A shows the results for simple OLS regressions. Panel B shows the results for the
specification in which the import penetration from China is instrumented with Chinese
exports to non-U.S. high-income markets (Autor et al. (2020a)). Regressions consider
the effect of higher growth in import penetration from China on the increase in the
concentration of citations at the technology class level. Industry exposure to Chinese
competition is mapped to technology class exposure using the mapping implied by the
U.S. publicly traded firms in Compustat as in Autor et al. (2020a). Controls include
time fixed effects, a change in the average number of citations for a technology class, 2
lags of the outcome variable, fixed effects for 11 manufacturing sectors and for 6 main
NBER technology categories, and a dummy for software technological classes. I define
the software classes as classes where more than 50% of software subclaclasses according
to Graham & Vishnubhakat (2013). All specifications are weighted by the number of
Compustat-matched U.S.-inventor patents in a technology class. Standard errors are
clustered at the technology class level.

depends on the total number of citations, I also include the change in the average number of
citations for each technological class. Moreover, I include two lags of the outcome variable to
control for technology-specific trends prior to China shock. I also include fixed effects for 11
manufacturing sectors, and for 6 main NBER technological categories. Finally, I control for
the rising importance of software inventions (Chattergoon & Kerr (2021)). Specifically, for
each technological class I include a dummy whether it has more than 50% of software
subclasses (Graham & Vishnubhakat (2013)).

Panel A in Table 5 shows the results of simple OLS regressions, and Panel B shows the
results for the specification in which changes in US import exposure (∆IPjτ ) are instrumented
by changes in Chinese exports to non-U.S. high-income countries. In all specifications, there is a
positive and significant relationship between the changes in the import competition from China
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and the growth in the concentration of citations. Table C3 in Appendix C shows the results
from two additional placebo exercises. First, I show that the relationship between China shock
and the rise in the concentration is insignificant for non-corporate patents (e.g., universities and
government agencies). Therefore, the effect of trade competition with China is specific to the
corporate sector, and the results are unlikely to be driven by the correlation between general
technological changes and globalization. Second, I regress lag outcome variables (pre 1991) on
future changes in imports from China. The coefficients are insignificant, so the main results are
unlikely to be driven by contemporaneous changes in the technological opportunities and trade.

5 Conclusion

This paper shows that patents play a limited role in the diffusion of knowledge, and patent
citations provide a poor measure of knowledge spillovers. I argue that patent citations reflect
intentional knowledge sharing between business partners. I develop and test a theory of how
common suppliers and customers might diffuse knowledge across competitors.

Much of the literature on economic growth (Jones (2005), Aghion et al. (2014)) is based on
the idea of knowledge spillovers, and their systematic measurement relies on patent citations
(Trajtenberg & Jaffe (2002)). The evidence in this paper raises concerns whether spillovers in
the growth models can be disciplined by patent citations. The inability to measure knowledge
externalities brings back the critique by Krugman (1991) that “. . . there is nothing [in the
data] to prevent the theorist from assuming anything about them that she likes”. Patent
citations still provide valuable information about collaboration between firms, but the growth
theories are often focused on creative destruction (competition) rather than creative
construction (cooperation). More studies of strategic alliances between firms coupled with
patent citations can bring new insights about innovations and technological progress.
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A Case Studies: Combining Secrecy and Patenting

On May 5th 2021, the U.S. administration announced that it would support the temporary
waiver of IP rights on messenger RNA technology for Covid-19 vaccines. The announcement
generated a lot of debates whether this policy can increase the production of vaccines. Many
IP lawyers and scholars argue that one of the problems is that patents do not disclose enough
information for the replication of the mRNA technology.27

“ ‘A waiver helps to keep generic manufacturers safe from patent litigation. But
they won’t even get to that stage without the cooperation of the inventors.’ On top
of that, not all that you need to produce these vaccine generics is patented and,
thus, disclosed in the patent application. Much is protected against competitors not
via patent law but by keeping it secret. ‘You can’t force the company that hold
these secrets to pass it on to you.’ ”

The practice of combining trade secrets and patents in chemical innovations has a long
history. Arora (1997) describes how dyestaff producers in the first half of the 20th century
patented codified individual chemical compounds but kept tacit knowledge on how to combine
these compounds secret. The same approach was used by ammonia producers:

“The Haber-Bosch process for ammonia, a truly significant process innovation, was
protected by more than 200 patents that covered the apparatus, temperatures, and
pressures, but avoided particulars about the catalysts employed or their preparation.
The catalyst was critical to the successful operation of the process, and keeping it
secret significantly increased the expense and time for firms trying to circumvent
the Haber-Bosch patent . . .”

Combining secrecy with patents seems to be inconsistent with the disclosure requirements
of patents. For example, inventors should disclose their preferred method for carrying out
the invention (“best mode”) in order to “restrain inventors from applying for patents while at
the same time concealing from the public preffered embodiments of the inventions they have
in fact conceived.”28 However, given high uncertainty about the limits of this requirement
firms try minimize the amount of disclosed knowledge. For instance, in Fonar Corp vs. Gen.
Elec. Co. case (software) inventors did not disclose their source code, and in Amgen, Inc.

27The quote is taken from the interview with Jayashree Watal, a professor at the Georgetown University
School of Law in Washington D.C., who worked for more than three decades at the WTO secretariat (“Three
Crises and One Waiver”, Verfassungsblog, May 7th, 2021. For additional discussions, see also “The COVID-19
Vaccine Patent Waiver: The Wrong Tool for the Right Goal”, Bill of Health, Petrie-Flom Center at Harvard
Law School, May 5h, 2021.

28See Teleflex, Inc. v. Ficosia N. Am. Corp., 299 F.3d 1313, 1330 (Fed. Cir. 2002).
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vs. Chungai Pharm. Co. case (biotech) inventors did not disclose the specific cell lines used
in their products.29 In both cases, courts supported the inventors. Jorda (2008) provides a
general discussion on the limits of the “best mode” requirement from a legal point of view.
For example, it applies only to the knowledge that inventors had at the time of patent filing.
Given that patents are often filed at the early stage of research, preferred embodiments are
often discovered later. In the case C&F Packing Co. v. IBP, Inc., C&F had “developed
a process for making and freezing a precooked sausage for pizza toppings” that was superior
to existing technologies.30 C&F got two patents: one on the equipment and another on the
process itself. After that they continued to improve the technology but kept it secret. C&F
shared these secrets under a confidentiality agreement with a supplier who leaked them to its
customer, Pizza Hut. The court ordered Pizza Hut to pay 10.9$ million to C&F for trade secret
misappropriation.

B Data Appendix

B.1 Data Details

Patents. The main source of patent data is PatentsView. Autor et al. (2020a) provide a
matching of patent assignees to Compustat firm names for publicly traded firms. I use their
existing matching of assignee names to Computstat firms for the period 1976–2014 to extend it
for years up to 2019. For the rest of the patents, I follow the procedure outline in Autor et al.
(2020a) for cleaning and standardizing firm names (e.g., replace “Incorporated” with “INC”).
Finally, I matched around 100 thousand patents manually for the largest assignees.

Suppliers and Customers. I take the supplier-customer data from Compustat Segments
data set. For publicly traded firms, it lists names of the main customers, which are mostly other
firms but can also be government agencies. Regulation SFAS No. 131 requires publicly traded
firms to report the identity of any customer representing more than 10% of their total sales.
Using Compustat Segments, Barrot & Sauvagnat (2016) constructed a data set of suppliers and
customers for the U.S. publicly traded firms for the period 1976–2013. I extend their data up
to 2019 by manual inspection of Compustat Segments data.

29Fonar Corp. v. Gen. Elec. Co., 107 F.3d 1543, 1549 (Fed. Cir. 1997) and Amgen, Inc. v. Chungai
Pharm. Co., 927 F.2d 1200, 1212 9Fed. Cir. 1991).

30C&F Packing Co. v. IBP, Inc., 224 F.3d 1296 (Fed. Cir. 2000).
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B.2 Details to Section 2: Concentration of Patent Citations

Section B.2.1 provides details on the construction of the concentration measure. Section B.2.2
gives details on the Monte-Carlo exercise that equates citation rates across firms. Section B.2.3
discusses the Monte-Carlo exercise that equates citation rates and the number of patents across
firms across firms. Section B.2.4 gives details on how to identify “specific” patents that are
used in Section 2.4. Section B.2.5 provides details on the concentration of citations for scientific
publications.

B.2.1 Construction of the Concentration Measure

The concentration measure from Figure 1 is constructed in the following way. First, I identify
the top 1% of the most cited patents within each grant year and technology class. Second,
for these patents I compute the share of citations coming from the most citing firm. Finally, I
aggregate these measures within and across technology classes.

The first step is to identify the top 1% of the most cited patents. Denote ykm “ 1 if patent
m P P makes a citation to patent k P P and ykm “ 0 otherwise, where P is the set of all
granted patents. Each patent has an assignee (owner) or in rare cases (around 3%) multiple
assignees. For the majority of patents, the assignee is a corporate firm but it can also include
universities, government agencies, and individual inventors. In the second step, I will compute
the distribution of citations across different organizations, so I exclude citations from individual
inventors and patents with missing assignee information.31 Each patent k P P has a grant year
tgk and a primary technology class ck. I define the technology class at the group level in the
Cooperative Patent Classification (primary class is a class listed first in the patent file). Denote
the set of all groups in Cooperative Patent Classification (CPC) system by CPC. For each
patent k P P , I compute the number of citations within a 5-year window from a grant day

nk “
ÿ

mPTk

ykm where Tk “ tm P P : Grant Datem ´Grant Datek ď 5 ¨ 365 Daysu (B.1)

For each grant year t and technology class c, I define the set of all granted patents receiving at
least one citation

Ωt,c “ tk P P : tgk “ t and ck “ c and nk ą 0u

and take the top 1% of patents in terms of the number of citations within this set. Denote it
31Formally, I set ykm “ 0 where patent m belongs to an individual inventor and does not have have an assignee

information.
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by Ωtop
t,c , and define the “Main” sample as top patents for all years and technology classes:

Main “
 

Ωtop
t,c

(

cPCPC and t“1976...2014

In the second step, for each patent in the Main sample I compute the share of citations
coming from the most citing organization. To account for patents with multiple assignees, I
define a weighted citation as ywkm “ ykm{Fm where Fm is the number of assignees for patent m.
Define the number of citations to patent k P P from organization i as

nk,i “
ÿ

mPi,mPTk

ywkm

where m P i means that organization i is an assignee for patent m P P . Then, the concentration
measure for patent k P P is

Ck “ max
i

"

nk,i
nk

*

In the third step, I aggregate these measures. Specifically, within each grant year (t) and
technology class (c) I compute a simple average across patents32

Cpt, cq “ 1
|Ωtop

t,c |

ÿ

kPΩtopt,c

Ck (B.2)

where |Ωtop
t,c | is the number of patents in Ωtop

t,c . Then I aggregate across technological classes
using the weighted average of Cpt, cq where weights are defined by the number of patents in each
Ωtop
t,c ‰ H

Cptq “
ÿ

cPCPC

|Ωtop
t,c |

ř

cPCPC |Ω
top
t,c |

Cpt, cq (B.3)

The variable Cptq for t “ 1976 . . . 2014 is shown in Figure 1.

B.2.2 Monte-Carlo Simulations to Equalize Citation Rates Across Firms

The details of the Monte-Carlo simulations that equate citation rates across firms are the
following. First, for each patent from the Main sample I take the citing patents and identify
control patents that have the same application year, geographical location of inventors, and
detailed technological class. Second, for each patent I randomize citation links across citing
and control patents. Then for each patent I compute the concentration measure on the
simulated sample. Third, I repeat this procedure 300 times to construct the distribution of

32The results are robust if instead of a simple average I use a citation-weighted average, or median instead of
an average.
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concentration measures. Finally, I aggregate different moments of this distribution in a way
similar to the actual concentration measure.

In the first step, I divide all granted patents into disjoint groups based on common
observational characteristics. Each patent k has an application year tak, a geographical location
of the majority of inventors `k, and the detailed technological class c̃k. I define the
geographical location at the state level if an inventor is located in the U.S., and at the country
level if an inventor is located outside the U.S. For example, the location for an inventor living
in Cambridge, MA, USA is pUSA,MAq, and for an inventor living in Berlin, Germany is
Germany. If a patent has several inventors in different locations, I define the location for a
patent based on the location of the majority of inventors. In the case of a tie, I take the
location based on the alphabetical order. For a detailed technology class, I take the main
subgroup level in CPC, which has more than 7000 categories. It is nested within a group level,
ĆCPC Ă CPC where ĆCPC is the set of all main subgroups in CPC. I define the characteristics as
a triple h “ pta, `, c̃q, and each patent is assigned to a unique group of characteristics. Define
the set of all characteristics as

H “

!

h “ pta, `, c̃q : ta P All Observed Application Years, ` P All Observed Locations, c̃ PĆCPC
)

For each h “ pta, `, c̃q P H, denote the group of patents with these characteristics by Pphq such
that

P “
ď

hPH
Pphq and Pphq X Pph1q “ H for h ‰ h1

For each k PMain, I take the set of citing patents

Citingk “ tm P P : ykm “ 1 and m P Tku (B.4)

Denote the number of citations to patent k from patents with characteristics h by nkphq. For
each h P Hk, I equate citation rates across firms. Formally, for each h P Hk I randomize
nkphq citations across all patents that have characteristics h and satisfy the 5-year window time
constraint. Denote the set of these patents by Pkphq:

Pkphq “ tm P Pphq : m P Tku

where Tk is defined in (B.1). The Monte-Carlo exercise takes nkphq random patents from the
set Pkphq and assigns citations to these patents. Under this randomization patents in Pkphq
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from different firms make a citation to patent k with the same probability

pkphq “
nkphq

|Pkphq|

I repeat the randomization procedure 300 times, and each time I compute the counterfactual
concentration of citations for patent k. Denote the concentration measure for patent k in round
s by RCk,s. I compute the median and the 95th quantile based on the distribution tRCk,su300

s“1,
which are denote by RCkpq95q and RCkpq50q. Then I aggregate these measures across patents
in the same way as with the actual concentration, see equations (B.2) and (B.3).

B.2.3 Monte-Carlo Simulations to Equalize Citation Rates and Patenting Across
Firms

The Monte-Carlo exercise that equates both citation probabilities and patenting is similar to
the one from Section B.2.2 except the details on the randomization of citations. In the exercise
that equates citation probabilities only, nkphq citations are allocated randomly across patents
in Pkphq. Therefore, firms with more patents in Pkphq are more likely to cite patent k. To
equate patenting, I assume that nkphq citations are allocated randomly to firms with the same
probability. Formally, denote by Fkphq the set of firms that have at least one patent in Pkphq.
Each citation out of nkphq is randomly allocated to firm j P Fkphq with probability

1
|Fkphq|

where |Fkphq| is the number of firms in Fkphq.

B.2.4 Identifying “Specific” Patents

In Sections 2.4 and B.4, I identify patents where inventors were likely to have access to some
private knowledge relative to others. Formally, the procedure is the following. Monte-Carlo
simulations from Section B.2.2 construct the distribution of counterfactual concentration
measures tCk,su300

s“1 for each patent k P Main. I call citing patents m P Citingk “specific” to
patent k P Main if they are responsible for the majority of citations from a particular firm,
and the concentration measure for patent i P Main exceeds the 95th quantile in the
Monte-Carlo simulations. Formally,

m P Citingk is “specific” to k PMainô m P i “ arg max
j

"

nk,j
nk

*

and Ck ą RCkpq95q
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where m P i means that patent m is assigned to firm i, and RCkpq95q denotes the 95th quantile
of the distribution tCk,su300

s“1.

B.2.5 Concentration for Scientific Publications

Figure C3 compares the concentration of citations for patents and scientific publications. To
construct the concentration measure for publications, I use Microsoft Academic Graph data
(Marx & Fuegi (2020)). The concentration measure is constructed in a way similar to the
measure for patents. For each year between 1976 and 2014 and each scientific discipline in
Web of Science classification, I track citations within a five-year window for the top 1% of the
most cited publications. For each patent, the concentration is defined as a share of citations
coming from the most citing organization. These organizations are predominantly universities.
To reduce the computational burden I take a random 10% sample of publications from the set
of the most cited ones. Then, I take the average of the concentration measures within a field
of science, and the average across fields of science weighted by the number of publications in
each field. The purple squared line in C3 shows the average concentration measure for the most
cited publications.

B.3 Movement of Inventors and Citation Patterns

To distinguish whether the concentration of citations is driven by firms or inventors, I track
citations of inventors who worked for multiple companies. I compute the concentration measure
similar to the one in Section 2.1 but within inventors-movers, and then I do the decomposition
of the concentration measure similar to the one in Section 2.2. This exercise follows the same
procedure as the Monte-Carlo exercises in Sections B.2.2 and B.2.3 except that the sample is
restricted to inventors who worked in multiple companies, and citations are randomized within
an inventor.

To increase the sample size, I consider all citations rather than the ones within a five year
window. As a result, I consider the trend in citation patterns for cited granted patents until
2009, so that they have 10 years to accumulate citations. I also focus on the sample of patents
granted to publicly listed firms in Compustat.33 Moreover, I exclude patents assigned to multiple
companies because it is impossible to distinguish which company an inventor represents.

For each patent, I compute the distribution of citations across inventors. I leave only patents
33Matching of patents to Compustat firms is cleaner in a sense that I use the data from Autor et al. (2020a)

to control for potential subsidiary-parent relationship. If a patent is granted to a subsidiary of a certain firm,
I match it to the parent company. Therefore, when the same inventor has patents in two firms in Compustat,
these firms are more likely to represent different organizations relative to cases where the same inventor has
patents in two private firms or foreign firms not listed in the U.S.
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that received at least 20 citations from one inventor. The results are robust to other thresholds.
This is done in order to ensure greater variability in the concentration measure. For example,
if an inventor cited a patent only one time, then this patent would always receive a citation
from one firm only, and the within-inventor concentration measure would always be 100%. For
each citing patent, I find all patents that were filed by the same inventor in the same U.S state
or foreign country and the same main subgroup category in Cooperative Patent Classification
system.34 Patents should also be applied in the same time period: I find all patents applied
in the period rtaj , taj ` 2s where taj is the application year of the citing patent. Then, I equate
citation rates across firms by randomizing citations within each inventor across all these patents
with similar characteristics: citing ones and control patents that are observationally similar to
the citing ones. The procedure is the same as in Section B.2.2. I remove citing patents where
no inventor worked in at least two companies and filed for similar patents. To equate citation
rates and patenting, I randomize citations across firms that had observationally similar patents
filed by the same inventor. The procedure is the same as in Section B.2.3.

The final data set is the following. Each cited patent has at least one citing inventor who
filed similar patents in multiple firms. I compute the actual concentration of citations within
each of these citing inventors (if there are many). Next, I compute the same concentration in
Monte-Carlo simulations where citations are allocated randomly. For each cited patent, I take
the average of the concentration measures across all citing inventors-movers. This gives within-
inventor actual and counterfactual average concentrations of citations for each cited patent.
Then, I aggregate within and across technological classes in a way similar to Section 2. Figure
2(b) shows the results. The average within-inventor concentration measure is significantly higher
relative to the 95th quantile of the same measure in Monte-Carlo simulations. This means that
citations are driven by firms rather than inventors: inventors tend to cite different patents in
various companies despite doing similar technologies.

B.4 Details to Section 2.4: Value of Citations for the Most Citing
Firm

Section 2.4 estimates a regression of the firm’s growth in sales and profits on the composition of
its patent portfolio. For firm f and year t, this portfolio includes the total number of granted
patents, Nft, and the number of patents making at least one citation to the top 1% of the most
cited patents, N g

ft. Specifically,

N g
ft “ | tm P P : there is k PMain such that m P Citingku |

34If there are several inventors in the citing patent, I do this procedure for each of them.
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where P is the set of all granted patents, the sample Main is defined in Section B.2.1, and the
sample Citingk is defined in (B.4). Finally, the firm’s portfolio of patents includes the number of
“specific” patents N c

ft that are responsible for the majority of citations to a highly-concentrated
patent in the Main sample. The precise definition is given in section B.2.4.

The details of specification (2.2) are the following. The outcome variable yf,t represents
sales (Compustat variable “sale”) or profits (Compustat variables: “sale” ´ “cogs”). Both
variables are deflated by CPI (“ 100 for 1982 year). Variables in Xft include firm employment
(Compustat variable “emp”), firm capital stock (Compustat variable “ppegt” deflated by the
NIPA price of equipment), and a lag of profit or sales. All variables are winsorized at the 1%
level using annual breakpoints. The variable ζipfq,t is an industry-year fixed effect where industry
is defined using historical 4-digit SIC classification. For years with missing industry information
I take the industry for the nearest year. Standard errors are clustered by firm and year.

B.5 Robustness to Section 2: Concentration of Citations

Panel (a) in Figure C7 shows that the concentration of citations is similar if we restrict the
sample to corporate patents only. I also consider different thresholds for the most cited patents:
top 5% and 10%. Finally, I exclude the sample of citing patents that are assigned to superstar
firms. Specifically, in each year and group level in Cooperative Patent Classification I find top
1% of firms in terms of the number of patents, and exclude their patents from the sample of citing
patents. Panel (b) shows that the results are robust if one uses the citation-weighted average
or the median instead of the average to aggregate concentration measures within technological
classes. Panel (c) shows that the results are the same when I exclude self-citations of firms
to itself, so the concentration is driven by citations between firms rather than self-citations.
Kuhn et al. (2020) argue that the quality of citations as a measure of knowledge flows has
declined over time due to a small number of patents responsible for a large share of backward
citations. Panel (c) shows that the results on the concentration are robust when I exclude
top 1% of patents in terms of the number of backward citations. Finally, I exclude citations
between patents sharing a common law firm to ensure that the concentration is not driven by
lawyers citing themselves. I also group citations from patents from the same within-country
family (continuations, continuations-in-part, divisionals) as a single citation. This ensures that
the rise in concentration is not driven by increasing patent families. Finally, for the period
after 2001 I separate citations made by patent examiners and non-examiners. Figure C8 shows
the concentration based on citations from patent examiners is around two times lower than the
concentration based on citations from non-examiners.35

35The USPTO started to separate examiner and non-examiner citations only around 2001.
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I also check whether citations are not driven by lawyers. Specifically, I track citations of
lawyers who worked in multiple firms similar to the movement of inventors in Section B.3. The
only difference is that there is no data for the location of lawyers, so I consider patents which
are filed by the same lawyer in at least two companies, have a similar application period, and
are classified to the same main subgroup in Cooperative Patent Classification system. Figure
C9 shows that the actual concentration of citations across firms is around 95% within lawyers
who represented similar companies. It is significantly higher relative to the 95th quantile of the
concentration measure where citation rates are equated across companies within a lawyer.

B.6 Details to Section 4.1: Citations in a Production Network

Section 4.1 estimates the probability of a citation between two patents as a function of the
network relationship between firms that own them. I impose the following restrictions on the
set of all citations between patents granted between 1976 and 2019. First, since the supplier-
customer data is available for the U.S. publicly traded firms only, I leave only cited and citing
patents owned by a publicly traded U.S. firm. Second, to control for truncation that older
patents have more time to accumulate citations I consider only citations within a 10 year
window. Third, to focus on citations between firms I exclude self-citations. Finally, I remove
cited patents granted after 2014 to allow patents to accumulate some citations.36 Formally,
denote by ykm “ 1 if patent m makes a citation to patent k and ykm “ 0 otherwise. Denote the
grant year of patent k by tgk, the assignee of a patent k by fk. I focus on the following set of
cited-citing pairs

Cited-Citing Set “
!

pk,mq P P2 : ykm “ 1,Grant Datem ´Grant Datek ď 10 ¨ 365,

tgk ď 2014, fk ‰ fm

)

Next, following Jaffe et al. (1993), Thompson & Fox-Kean (2005), Singh & Marx (2013) I
construct the control set of patents that have similar characteristics to citing ones. For each
citing patent, I define the control set as all patents with the same application year, from the
same main subgroup CPC class, and coming from a different firm. Formally, denote by tak the
application year of patent k, and by c̃k the main subgroup CPC class of patent k. Then the

36In all regression specifications, I use year fixed effects, which also control for differences in citations for
patents granted in different years. I take the patents until 2014 in order to keep the sample of patents used for
the computation of the concentration measure. I consider citations within a 10 year window (rather than 5) in
order to increase the sample size. The results are robust when I restrict citations to be within a 5-year window,
or take granted patents until 2009.
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cited-control set for a pair pk,mq P Cited-Citing Set is

Control Setk,m “ tr P P : tar “ tam, c̃r “ c̃m, fr ‰ fm, fr ‰ fku

I randomly choose one patent from Control Setk,m, denote it by rpk,mq. Then the cited-control
set is

Cited-Control Set “
!

pk, rq P P2 : there is m P P such that pk,mq P Cited-Citing Set,

and r “ rpk,mq
)

The estimation of (4.1) is done on the following sample of patent pairs

Sample “ Cited-Citing SetY Cited-Control Set

For estimation of (4.1) I use the data on supplier-customer relationships. The details of the
construction of this data are given in appendix B.1. Denote the first year when firm A reports
firm B as a customer by tfirst, and the last year by tlast. In rare cases, there might be gaps in
years when A reports B as a customer, but this is likely to be caused by the 10%-threshold for
reporting explained in Appendix B.1. Therefore, I assume that firm A is supplier to firm B in
all years between tfirst and tlast.

Controls include the spatial proximity between inventors. I define the distance (in nautical
miles) between two patents by taking the minimum out of all pairwise distances between patents’
inventors. I include a dummy whether two patents come from the same country or not. The
country for a patent is defined by the country of the majority of inventors as in section B.2.2.
The controls also include a dummy whether cited and citing patents are in the same main
subgroup of CPC, and dummies for a lag between a citing (control) application year and cited
grant year.

B.7 Details to Section 4.2: Import Competition from China

Section 4.2 estimates how import competition from China affected citations patterns. For this
exercise, I follow the methodology in Autor et al. (2020a) (Appendix B.3) for the analysis at
the technology class level. Specifically, I do the following.

First, I take the set of the top 1% of the most cited patents (Main sample defined in appendix
B.2.1). For the specification with corporate patents, I leave only patents assigned to corporate
firms (both public and private). As in the previous sections, denote by fk the assignee of patent
k and by tak the application year of patent k. I group patents into five 7-year periods based on
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the application year. Formally, I define the following sets

S1977 “ tk PMain : fk P Corporate, tak P r1977, 1983su

S1984 “ tk PMain : fk P Corporate, tak P r1984, 1990su

S1991 “ tk PMain : fk P Corporate, tak P r1991, 1997su

S1998 “ tk PMain : fk P Corporate, tak P r1998, 2004su

S2005 “ tk PMain : fk P Corporate, tak P r2005, 2011su

where the sample Main is defined in Section B.2.1.
Second, for each set St and each technology class I compute the aggregated concentration

measure. I take the simple average across concentration measures. Autor et al. (2020a) provides
a mapping between USPC technological classes and SIC industries. Moreover, there exists a
matching from USPC to NBER technology categories that will be used as controls. Therefore,
for technology classes I use the USPC system. Denote the aggregate concentration measure for
technology class j and set St by Cj,t.

Third, given the constructed Cj,t the analysis proceeds as described in Section 4.2. Data
construction with non-corporate patents is the same except that in the first step I leave only
non-corporate patents from the Main sample.

B.8 Joint Innovations Between Suppliers and Customers

In this section, I consider the dynamics of joint innovations between suppliers and customers. I
focus on patents with multiple assignees where at least two of these assignees are from publicly
traded firms in Compustat. Around 3% of patents granted in the USPTO since 1976 have at least
two assignees. Multiple assignees on a patent mean that there are several organizations sharing
property rights on a patent. To study the joint research between suppliers and customers, I
compute two statistics. First, among patents with multiple assignees I compute the share of
patents in which assignees have a vertical relationship. Panel (a) of Figure C5 shows that the
share of joint patents between suppliers and customers among all joint patents has significantly
increased over time. However, this rise might be caused by changes in the reporting requirements
in 10-K files. In other words, the increase in the share of joint patents among suppliers and
customers might be driven by greater disclosure of supplier-customer relationships over time
rather than by greater activity in joint innovations. To address this concern, in Panel (b) I plot
the share of supplier-customer pairs who had joint patents in a particular period relative to the
total number of supplier-customer pairs in this period. This panel shows that the share of firms
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who reported a vertical relationship and had joint patents has increased over time.

C Figures and Tables
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(b) Distribution of the Increase Across Classes

Figure C1: Concentration of Citations Within Technological Classes

Panel (a) shows the aggregate concentration of citations that is driven by changes within technological classes.
In the baseline specification, I aggregate concentration measures across classes by taking an average weighted
by the number of patents in a class. The dotted red line shows the concentration in which the average across
classes is unweighted. In Panel (b), for each technology class (a group category in CPC) I compute the ratio of
the average concentration between 2009 and 2014 to the average concentration between 1976 and 2000. Panel
(b) shows the distribution of the increase in the concentration measure across classes.
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(b) Number of Citations and Concentration

Figure C2: Number of Citations and Concentration

Panel (a) shows the average number of citations by years. Panel (b) shows the relationship between the average
number of citations and the concentration. The dotted line shows the relationship based on patents granted
in all years. The lines with circles and asterisks show the results for patents granted before and after 2000,
respectively.
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Figure C3: Concentration of Citations: Patents, Monte-Carlo, and Publications

This figure shows the average concentration of citations for the most cited patents and scientific publications
between 1976 and 2014. For each cited patent and publication, the concentration is defined as the share of
citations coming from the most citing organization. For patents the most citing organization is usually a
corporate firm, and for scientific publications it is usually a university. The most citing patents are defined in
the following way. For each patent, I track its citations within a 5 year from a grant date, and for each grant
year and the group level in Cooperative Patent Classification, I take the top 1% of the most cited patents. The
most citing scientific publications are defined in a similar way. For each year and the scientific field in Web of
Science classification, I take the top 1% of the most cited publications where citations are taken within a 5 year
from the publication year. Since the number of publications is much larger relative to the number of patents, to
reduce the computational requirements I take a random sample of 10% publications from the most cited ones.
The solid blue line shows that the actual concentration of patent citations. The dotted (red) line, the starred
(brown) line, and the circled (green) line show the medians of the concentration measure where citation rates
are equalized across firms. They are constructed using Monte-Carlo simulations where citations are allocated
randomly across all patents observationally similar to the citing patents (see Section 2.2 and Appendix B.2.2).
The dotted line shows the median counterfactual concentration from the baseline specification in Section 2.2,
the starred line shows the median concentration when patents with similar characteristics are grouped based
a location of the majority of inventors, an application year, and on a broader technological class level (group
CPC). The circled line shows the median concentration in which patents with similar characteristics are grouped
based only on an application year, and on a narrow technological class level (main subgroup CPC). The squared
purple line shows the concentration of citations for scientific publications.
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Figure C4: Decomposition of the Concentration of Citations Based on the Textual Similarity
Between Patents

This figure shows the decomposition of the concentration of citations described in Section 2.2 and Figure 2(a)
where instead of technological classes I group patents based on their textual similarity. Specifically, for each
citing patent I find patents with the same application year, and then I choose at most 200 patents closest in
terms of the textual similarity based on the data from Arts et al. (2018). Finally, among the selected patents I
choose the ones where the majority of inventors are from the same location as for the citing patent. Then, I do
Monte-Carlo exercises described in Section 2.2.
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Figure C5: Joint Innovations Between Suppliers and Customers

Panel (a) shows the share of joint patents between suppliers and customers among all joint patents. Panel (b)
shows the share of supplier-customer pairs who had joint patents in a particular period relative to the total
number of supplier-customer pairs in this period.
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Figure C6: Trade with China. Actual Concentration vs. Counterfactual One with Equalized
Citation Rates

This figure shows the concentration measure from Section 2 (Figure 1) for different technological classes divided
into quartiles based on their exposure to import competition from China, ∆IPi2 in (4.2). The solid lines show
the concentration measures over time for the technologies most (the blue line) and least (the green line) exposed
to competition from China. The dashed lines show the counterfactual concentration measures that are evolved
due to changes in patenting across firms holding firms’ citation rates fixed at the level of 2000. Formally, for
patents granted after 2000 I compute the median concentration measures in the in the Monte-Carlo simulations
where citations are allocated randomly across patents observationally similar to citing ones (see B.2.2). I add
the difference between the actual and the counterfactual concentration measures in 2000.
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(a) Corporate patents, top 1%, top 10%, exclude
superstar firms in patenting
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(b) Alternative aggregation: citation-weighted
average and median within classes.
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(c) Exclude Self-Citations and top patents in terms
of backward citations.
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(d) Exclude Citations from common lawyers and
group patents from one family.

Figure C7: Robustness for the Concentration of Patent Citations

These figures show robustness exercises for the concentration measure in Figure 1. Panel (a) shows that the
concentration of citations in the sample of corporate patents only. I also consider different thresholds for the
most cited patents: top 5% and 10%. Finally, I exclude the sample of citing patents superstar firms. Specifically,
in each year and group level in Cooperative Patent Classification I find top 1% of firms in terms of the number
of patents, and exclude their patents from the sample of citing patents. Panel (b) shows the results if one
uses the citation-weighted average or the median instead of the average to aggregate concentration measures
within technological classes. Panel (c) shows the concentration in the sample without self-citations of firms to
themselves. It also shows the concentration in the sample without top 1% of patents in terms of the number
of backward citations. Figure (d) shows the results in the sample without citations between patents sharing
a common law firm. I also group citations from patents from the same within-country family (continuations,
continuations-in-part, divisionals) as a single citation.
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Figure C8: Concentration of Citations: Examiners vs. Non-examiners

This figure shows the concentration of citations across firms in which I separate citations from examiners and
non-examiners. The USPTO started to distinguish citations from examiners in 2001. The dashed lines show
95th quantiles of the same measures in Monte-Carlo simulations in which citation probabilities are equalized
across firms.
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Figure C9: Concentration of Citations for Lawyers Who Represented Several Firms

This figure shows the concentration of citations across firms within lawyers who represented multiple companies. I
compare patents with similar characteristics: the same main subgroup level in Cooperative Patent Classification,
the same geographical location (states in the U.S., and countries for foreign inventors), and application time
(within 2 years from the citing application year). The solid line shows the actual aggregate within-lawyer
concentration of citations across firms measured by the share of citations coming from one firm only. The
dashed line shows the 95th quantile of the same measure in Monte-Carlo simulations where citations are allocated
randomly within an inventor.

Table C1: Distribution of Citations across firms for IBM/Novellus’s patent 6126798.

Citing Firm % of Citations Relationship to IBM Source
Novellus Systems 64% Supplier Compustat Segments, Lim (2009)
Lam Research 16% Supplier IBM’s website

Applied Materials 11% Supplier Lim (2009)
Semitool Inc 3% Supplier Compustat Segments, Lim (2009)

Toshiba, Ebara 2% Share a Supplier Compustat Segments
Entegris Inc 0.05% Joint Collaboration Entegris’s website

IBM 0.05% Self-Citations —
Other 3% No Info —
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Table C2: Distribution of Citations across firms for Motorola’s patent 5391517.

Citing Firm % of Citations Relationship to Motorola Source
Semitool Inc 13% Supplier Compustat Segments

ASM International 11% Semitool’s Industry Compustat
IBM 9% Share a Supplier Compustat Segments

Applied Materials 7% Supplier Compustat Segments
U.S. Navy 7% No Info —

Taiwan Semiconductor
Manufacturing 5% Share a Supplier Compustat Segments

Advanced Micro Devices 4% Share a Supplier Compustat Segments
Intel Corp 4% Share a Supplier Compustat Segments
Motorola 4% Self-Citations —

Other Suppliers 3% Suppliers Compustat Segments
Other Firms

Sharing a Supplier 17% Share a Supplier Compustat Segments

Other Firms 7% No Info —

Table C3: Placebo Tests: Trade with China and Increase in the Concentration of Citations

Non-Corporate Patents Lag Outcomes
p1q p2q p3q p4q p5q p6q p7q p8q p9q

∆ Tech Class Exposure 0.83 0.79 0.74 1.67 1.68 ´0.10 ´0.10 ´0.71 ´0.82
to Chinese Imports p0.71q p0.70q p0.64q p1.28q p1.30q p0.71q p0.72q p1.25q p1.25q

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
∆ Citations Yes Yes Yes Yes Yes Yes Yes
2 Lags of outcomes Yes Yes Yes
11 sectors, 6 Tech Yes Yes Yes Yes
Software Patents Yes Yes
Notes: This table shows the results for the falsification tests in specification (4.3) and Table 5. Changes in US import
exposure are instrumented with Chinese exports to non-U.S. high-income markets (Autor et al. (2020a)). In columns
(1)–(4), I regress the change in the concentration of citations for non-corporate patents on the changes in import
competition from China. In columns (5)–(7), I regress the change in the concentration measure pre-period (pre 1991)
on future changes in import exposure. Standard errors are clustered at the technology class level. All specifications
are weighted by the number of Compustat-matched U.S.-inventor patents in a technology class.
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D Theory Appendix

D.1 Proposition 1: I’s profits under different contracts

If I and S sign exclusive dealing with a confidentiality agreement, then under knowledge sharing
I’s profits in the final stage will be

πIpex “ 1,ca “ 1q “ 1´ α
2 p1´ γqλ` αp1´ γq pλ´ λ0q`

`
1
2

´1´ α
2 λ` α pλ´ p1´ γqλ0q ´

1´ α
2 p1´ γqλ´ αp1´ γq pλ´ λ0q

¯

“
1´ α

2 p1´ γqλ` αp1´ γq pλ´ λ0q `
1` α

4 γλ

(D.1)

If I and S sign a confidentiality agreement only, then under knowledge sharing I’s profits
in the final stage will be

πIpex “ 0, ca “ 1q “ 1´ α
2 p1´ γqλ` α ¨max t0, p1´ γqλ´ λ0u`

`
1
2 ¨max

"

0,
´1´ α

2 γλ` αpλ´ λ0q ´ α ¨ |p1´ γqλ´ λ0|
¯

*

“

$

&

%

1´α
2 p1´ γqλ` αpλ´ λ0q `

1´3α
4 γλ if α ¨

`

3γ ´ 4p1´ λ0
λ
q
˘

ď γ

1´α
2 p1´ γqλ if α ¨

`

3γ ´ 4p1´ λ0
λ
q
˘

ą γ

(D.2)

If I and S do not sign any contract in the first stage, then under knowledge sharing I’s
profits in the final stage will be

πIpex “ 0, ca “ 0q “ 1´ α
2 p1´ γqλ`

`
1
2 ¨max

"

0,
´1´ α

2 λ` αpλ´ λq ´
1´ α

2 p1´ γqλ´ α pλ´ p1´ γqλq
¯

*

“
1´ α

2 p1´ γqλ`max
"

0, 1´ 3α
4 γλ

*

(D.3)

In all cases, the first line is I’s outside option, the second line is a half of the gain in the
total surplus of I and S, and the third line is a simplified expression.

If I does not share its knowledge with S, then its profits in the final stage will be

πI pNo Sharingq “ 1´ α
2 p1´ γqλ` αp1´ γq pλ´ λ0q (D.4)

For α ą 1
3 , I and E prefer to sign exclusive dealing, and I’s profits under knowledge sharing
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with exclusive dealing are higher under knowledge sharing with S than without sharing. Under
α ď 1

3 , I’s profits under a confidentiality agreement exceed its profits without knowledge sharing.
For the case without a contract (Null), I shares knowledge with S under condition (3.6).

D.2 Generalizations in the Competition, Production, and
Bargaining Structures

In this section, I consider an extension of the simple model in the competition, production and
bargaining structures. Denote by hI “ 1 if I uses a high-quality input from S (and shares its
secrets with S) and hI “ 0 otherwise, hE “ 1 if E uses a high-quality input from S and hE “ 0
otherwise, ` “ 1 if S leaks I’s secrets to E and ` “ 0 otherwise. I extend the competition and
production structures by considering a more general mapping from e “ phI , hE , `q to downstream
profits, πIpeq and πEpeq.37 I also consider a generalized Nash bargaining between parties: denote
by ψI and ψE the bargaining powers of S in negotiations with I and E , respectively.

In Section 3.1, the supplier always has incentives to share I’s knowledge with E in the third
stage. In the general framework, S has incentives to shares I’s knowledge with E if its input is
complementary to I’s knowledge in E ’s profits

∆πE p¨, ` “ 1q ą ∆πEp¨, ` “ 0q (D.5)

where ∆πE p¨, `q “ πE phI “ 1, hE “ 1, `q ´ πE phI “ 1, hE “ 0, `q. In this case, S can bargain a
higher input price from E (tEp`q “ ψE ¨ ∆πE p¨, `q) under knowledge sharing (` “ 1). Assume
that (D.5) is satisfied.

I’s incentives to share its secrets with S in the second stage depend on its expectations on
whether E will have access to a high-quality input (hE P t0, 1u) and whether S will leak I’s
secrets to E (` P t0, 1u). I shares its secrets with S if

πI phI “ 0, hE , `q ` p1´ ψIq ¨
´

TSphE , `q ´ TS
o
phE , `q

¯

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

I’s profits under knowledge sharing with S

ą πI phI “ 0, hE “ 0, ` “ 0q
looooooooooooooomooooooooooooooon

I’s profits without knowledge sharing

(D.6)

37There are minimal assumptions on profits: πIpeq (πEpeq) is increasing (decreasing) in hI and decreasing
(increasing) in phE , `q. That is, firm I values a high-quality input from S, and its profit is lower if firm E uses
I’s knowledge and a high-quality input from S. Firm E values a high-quality input from S and the knowledge
from I, but its profit is lower if I uses a high-quality input. In Section 3.1, profits are the following

πIphI , hE , `q “
1´ α

2

´

1´ γ ¨ p1´ hIq
¯

λ` α
”

λ´ p1´ p1´ hEqγq ¨ p` ¨ λ` p1´ `qλ0q
ı

πEphI , hE , `q “
1´ α

2

´

1´ γ ¨ p1´ hEq
¯

¨ p` ¨ λ` p1´ `qλ0q
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where TSphE , `q “ πI phI “ 1, hE , `q`ψE ¨∆πEphI “ 1, hE , `q is a joint surplus of I and S when
I uses a high-quality input from S, and TSophE , `q “ πI phI “ 0, hE , `q`ψE ¨∆πoEphI “ 0, hE , `q

is a joint surplus of I and S when I does not use a high-quality input from S.
A contract pex, caq between I and S in the first stage will define the equilibrium ph‹E , `

‹q.
Exclusive dealing (ex “ 1) restricts S’s ability to sell its input to E (h‹E “ 1 ´ ex), and a
confidentiality agreement (ca “ 1) restricts S’s ability to communicate with E (`‹ “ 1´ ca). I
and S choose a contract to maximize their joint surplus subject to condition (D.6) that I has
incentives to share its secrets with S in Stage 2 (hI “ 1):

ph‹E , `
‹
q “ arg max

phE ,`q

!

πI phI “ 1, hE , `q ` ψE ¨∆πEphI “ 1, hE , `q
)

subject to (D.6)

The predictions in the extended model are similar to the simple one. First, the stronger
outside option (lower ∆πEp¨q holding πIp¨q fixed) leads to the equilibrium without knowledge
sharing. Second, higher competition between I and E leads to the equilibrium without
knowledge sharing. The competition can be measured based on the responsiveness of
πIphI , hE , `q to changes in phE , `q.

D.3 Richer Contracting: Stipulated Damages

In Section 3.1, I and S can sign exclusive dealing and a confidentiality agreement. These
contracts prevent S from selling an input to E and sharing I’s secrets with E . In this section, I
consider the possibility of stipulated damages (Aghion & Bolton (1987)) where I and S specify
a fee F for breaking a contract. This might allow I and E to extract more surplus from E .

Suppose that in the first stage I and S sign exclusive dealing with a confidentiality agreement
and specify a fee F that S has to pay to I for breaking this contract. Assume I shares its
knowledge with S, and that after E enters, S can propose E to pay F in order to break the
contract between I and S. If E agrees to pay F , then S will share I’s secrets with E and
will make a take-it-or-leave-it offer about the input price tE “ 1´α

2 λ ´ 1´α
2 p1 ´ γqλ “ 1´α

2 γλ.
Therefore, E agrees to pay F if

F ă F ‹ “
1´ α

2 λ´ tE ´
1´ α

2 p1´ γqλ0 “
1´ α

2 p1´ γq pλ´ λ0q

Assume that in the case of indifference E agrees to pay F . Then, the joint surplus of I and S
under the contract with stipulated damages is

1´ α
2 λ` tE ` F

‹
“

1´ α
2 pλ` γλ0q `

1´ α
2 pλ´ λ0q
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which maximizes the joint surplus of I and S for α ă 1
3 (compare to (3.3) – (3.5)). To sum

up, for α ą 1
3 firms I and S sign exclusive dealing without stipulated damages (or set them

F ą F ‹). In this case, only S learns I’s secrets. For α ă 1
3 , firms I and S sign exclusive dealing

and a confidentiality agreement with stipulated damages F “ F ‹. In this case, both S and E
learn I’s secrets.

The ability to use stipulated damages increases social welfare because it ensures a knowledge
transfer from I to E in cases where previously I with S signed a confidentiality agreement (see
Figure 5). This happens because I is compensated for the knowledge transfer to E through
stipulated damages while before contractual limitations prevented this compensation.

D.4 Welfare Implications of Restrictions on Vertical Contracts

The model in Section 3.1 predicts the equilibrium vertical contract as a function of the
competition level (α) and the supplier’s bargaining position (γ). In this section, I study the
welfare properties of the equilibrium and policies that can increase social welfare. Social
welfare is defined as the sum of consumer and producer surpluses and is determined by the
consumers’ willingness to pay

SW pqI , qEq “
1´ α

2 ¨ pqI ` qEq ` α ¨max tqI , qEu

where qI and qE are qualities of products from firms I and E , respectively.
The game in Section 3.1 has four possible outcomes with different welfare implications.

First, both E and S learn I’s private knowledge, and E uses a high-quality input from S. This
is a socially optimal outcome that gives the largest total welfare. It is achieved when I and S
do not sign any contracts in the first stage (neither exclusive dealing nor a confidentiality
agreement), and I shares knowledge with S. The second outcome is when only S learns I’s
private knowledge, but E can still use S’s high-quality input. This equilibrium has lower
welfare because E-product is of lower quality. This happens when I and S sign a
confidentiality agreement. The third outcome is when only S learns I’s private knowledge and
E uses a low-quality input. This equilibrium gives lower welfare than the previous two cases
because firm E works with an inferior input and without I’s knowledge. This happens when I
and S sign exclusive dealing. The final outcome is when nobody learns I’s secrets, and both I
and E work with an inferior input. However, this outcome is never an equilibrium if I and S
can sign exclusive dealing. To sum up, the equilibrium outcomes (contracts) can be ranked in
terms welfare as

Null ąw CA ąw Exclusive ąw No Knowledge Sharing
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(Only S learns I’s secrets)
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1

1
3

1

γ

α

Null
(Both E and S)

Exclusive Dealing
(Only S learns I’s secrets)

(b) Ban on CAs

1

1
3

1

γ

α

CA
(Only S) Null

(Both E and S)

CA
(Only S learns I’s secrets)

No knowledge sharing
(Nobody learns I’s secrets)

(c) Ban on Exclusive Dealing

1

1
3

1

γ

α

Null
(Both E and S)

No knowledge sharing
(Nobody learns I’s secrets)

(d) Ban on Both

Figure D10: Equilibrium Under Restrictions on Vertical Contracts

Panel (a) shows the equilibrium without any policy interventions (Proposition 1). Panels (b), (c), and (d) show
the equilibrium under the restrictions on the use of confidentiality agreements, exclusive dealing, and both,
respectively. Hatched areas show the regions where the equilibrium has changed due to a policy regulation.
Colors reflect an equilibrium that has replaced the initial one.

Policy. Proposition 1 shows that the socially optimal equilibrium arises only under a low
level of competition (low α) and high quality of the supplier’s input (γ). I discuss benefits
and costs of three potential policy interventions: the restrictions on the use of confidentiality
agreements, the restrictions on the use of exclusive contracts, and the restrictions on both. The
equilibrium in each of these cases is described in Proposition 2.

Proposition 2. Consider the model with a common supplier who can sell inputs to two
downstream firms from Section 3.1. With restrictions on the use of confidentiality agreements,
the equilibrium contract between I and S is

$

’

&

’

%

Exclusive Dealing if α ą γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

Null if α ď γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

(D.7)
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Under exclusive dealing only S learns I’s secrets, and without any contract between I and S
both S and E learn I’s secrets.

With restrictions on the use of exclusive dealing, if α ¨
`

4λ0
λ
´ 1

˘

ą 1, then I will not
share its secrets with S regardless of whether they have a confidentiality agreement or not. If
α ¨

`

4λ0
λ
´ 1

˘

ď 1, the equilibrium contract is
$

’

’

&

’

’

%

Confidentiality Agreement if α ą min
"

γ
γ`2 ,

γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

*

Null if α ď min
"

γ
γ`2 ,

γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

* (D.8)

Under a confidentiality agreement only S learns I’s secrets, and without any contract between
I and S both S and E learn I’s secrets.

With restrictions on the use of confidentiality agreements and exclusive dealing, both S and
E learn I’s secrets if

α ď
γ

4p1´ λ0
λ
q ` γp4λ0

λ
´ 1q

(D.9)

and nobody learns I’s secrets otherwise.
The socially optimal regulation of confidentiality agreements and exclusive dealing is

$

’

’

’

’

&

’

’

’

’

%

Ban on CA if α ď γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

Ban on Exclusive Dealing if α ď γ

4p1´λ0
λ
q`γp4λ0

λ
´1q

and α ¨
`

4λ0
λ
´ 1

˘

ď 1

No Restrictions if α ¨
`

4λ0
λ
´ 1

˘

ą 1

(D.10)

Proof. With restrictions on confidentiality agreements, I and S have two options: sign exclusive
dealing or do not sign any contracts. Under exclusive dealing, S cannot gain from knowledge
sharing with E because it does not sell an input to it. I assume that in this case it does not
share I’s secrets with E .

Joint surplus of I and S is higher without a contract relative to exclusive dealing if

1´ α
2 λ`

1´ α
2 γλ ě

1´ α
2 λ` α pλ´ p1´ γqλ0q ô α ď

γ

2
`

1´ λ0
λ

˘

` γ
`

2λ0
λ
` 1

˘

Without a contract, I has incentives to share its secrets with S if condition (D.9) is satisfied.
The derivation is the same as in Proposition 1. Since

γ

4p1´ λ0
λ
q ` γp4λ0

λ
´ 1q

ď
γ

2
`

1´ λ0
λ

˘

` γ
`

2λ0
λ
` 1

˘ for any γ P r0, 1s

I and S sign exclusive dealing only when (D.9) is not satisfied. This leads to the equilibrium
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contract given in (D.7).
With restrictions on exclusive dealing, I and S have two options: sign a confidentiality

agreement or do not sign any contracts. For α ď 1
3 , the equilibrium contract is the same as

in Proposition 1 because these two options dominate exclusive dealing. For α ą 1
3 , I does not

share its secrets with S without any contract. Under a confidentiality agreement it shares them
only it its profit under sharing (D.2) is greater than the profit without knowledge sharing (D.4).
This condition can be simplified to

α ¨

ˆ

4λ0

λ
´ 1

˙

ď 1 (D.11)

If (D.11) is satisfied, then the equilibrium contract is described in (D.8). Otherwise, I does not
share its secrets with S.

Finally, with restrictions on both exclusive dealing and confidentiality agreements, I
compares its profit under knowledge sharing (D.3) relative to the profit without sharing (D.4).
This condition is given in (D.9).

The analysis above leads to the optimal regulation in (D.10).

Panel (b) of Figure D10 shows the equilibrium under the restriction on the use of
confidentiality agreements (CA). In this case, only an exclusive contract is available to I and
S in the first stage. Hatched areas in Panel (b) show the regions pα, γq where the equilibrium
has changed due to a policy regulation. Colors reflect an equilibrium that has replaced the
initial one. If the initial equilibrium is inefficient due to a confidentiality agreement, the ban
on CA can achieve a socially optimal outcome if I would continue sharing its secrets with S
without any contract (condition (3.6)). Otherwise, I and S sign exclusive dealing that gives
lower social welfare relative to the initial equilibrium because E does not get access to I’s
secrets and works with an inferior input.

Panel (c) shows the equilibrium under the restriction on the use of exclusive contracts. If the
initial equilibrium is inefficient due to exclusive dealing (α ą 1

3), the ban on exclusive contracts
can never achieve the socially optimal outcome, but it can increase welfare by providing firm E
the access to the high-quality input from S. However, for sufficiently high level of competition
(α) this ban might lead to lower welfare because I refuses to share its secrets with S.

Panel (d) shows the equilibrium under the restriction on both confidentiality agreements
and exclusive contracts. In this case, I shares knowledge with S only if the competition (α) is
low enough and the gain in the input quality (γ) is high enough (condition (3.6)). Otherwise,
I does share its secrets with anybody, and this gives the lowest possible welfare.
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No Restrictions

Figure D11: Optimal policy as a function of pα, γq

This figure illustrates the optimal restrictions on confidentiality and exclusive contracts as a function of pα, γq.
Parameter α measures the degree of competition between I and E , and parameter γ reflects the value of S’s
input relative to I’s and E ’s outside options.

Summary. Optimal Policy

Figure D11 illustrates the optimal set of restrictions on confidentiality and exclusive contracts
in the model with a common supplier from Section 3.1. The precise characterization is given in
equation (D.10). If the competition between I and E is high, the restriction on exclusive dealing
can only decrease welfare because I will not share its knowledge with S. For the intermediate
level of competition, the ban on exclusive dealing can increase welfare because it allows E to
get access to a high-quality input from S. However, the planner should leave confidentiality
agreements to ensure that I continues to share its knowledge with S. If the competition is low,
the restriction on confidentiality agreements will increase welfare only when the input from S
is sufficiently valuable relative to I’s and E ’s outside options (high γ).

Notice that for the social planner who does not know the details of the economy pα, γ, λ0{λq

it is never optimal to simultaneously ban both the exclusive and confidentiality contracts. If the
economy is such that the restrictions on vertical contracts can lead to the first best outcome,
the ban on confidentiality agreement will be sufficient. Otherwise, the simultaneous restriction
on both types of contracts will lead to the equilibrium with no knowledge sharing.

From a policy perspective, the framework with a common customer who can buy inputs from
several suppliers is different from the environment with a common supplier who can sell inputs
to multiple downstream firms. In the model from Section D.5, a customer who can buy inputs
from several suppliers signs a confidentiality agreement or exclusive dealing with the incumbent
supplier in order to create incentives for this supplier to share its private knowledge. They do
not use these contracts to increase their total surplus by excluding another supplier. Therefore,
the restrictions on vertical contracts can only decrease welfare because firms will stop sharing

72



knowledge with each other.
The results in this section should be interpreted with caution because they are based on

the highly stylized framework. The central idea is that contractual arrangements between firms
affect the diffusion of knowledge in the economy, and there is a room for policy interventions.
The analysis of a more general environment is a fruitful area for future research.38

D.5 Two Suppliers and a Common Customer

Suppose an incumbent input supplier (I) and a buyer (B) expect the entry of a new supplier
(E). To produce a final product, B needs three inputs to perform a continuum of measure 1 of
tasks. A share 1´α

2 of tasks requires one unit of an input from I, and a share 1´α
2 requires an

input from E . A share α P p0, 1q of tasks requires an additional third input from either I or E .
B’s gross profits are the following

ΠB “ UI ¨
1´ α

2 qI ` UE ¨
1´ α

2 qE ` U ¨ αq̃

where qI and qE are input qualities of I and E , respectively; UI “ 1 (UE “ 1) if B buys a
specialized input for 1´α

2 tasks from I (E) and UI “ 0 (UE “ 0) otherwise; U “ 1 and q̃ “ qI

(q̃ “ qE) if B buys a third input for α tasks from I (E) and U “ 0 otherwise.
I has private knowledge about a valuable technology. If B learns I’s secrets, it can better

accommodate I’s input in its production and the input’s quality to B is qI “ 1. Otherwise, I’s
input quality is qI “ 1´ γ where γ P r0, 1s. There are also two ways how B can use I’s secrets
to improve E ’s input in the final production. First, without sharing I’s secrets with E it can use
them to better accommodate E ’s input in the production and improve it from qE “ p1 ´ γqλ0

to qE “ λ1 where λ0 ď λ1 ď 1. Second, B can also share I’s secrets with E to get the input
quality qE “ 1.

The timing and contracting are the same as in Section 3.1. First, I and B have a Nash
Bargaining with 50{50 split of the surplus over exclusive dealing (B only buys an input from I)
and a confidentiality agreement (B does not communicate with E about I’s secrets). Second, I
decides whether to share its secrets with B, and then they have a Nash Bargaining with 50{50
split of the surplus over the input price. Third, B decides whether to share I’s secrets with E (if
it is not restricted by a confidentiality agreement), and makes a take-it-or-leave-it offer about
the input price (if it is not restricted by exclusive dealing).

The equilibrium is summarized in Proposition 3 and in Figure D12. Some predictions are
similar to the model with a common supplier. In particular, lower competition (α) and greater
importance of knowledge sharing (γ) lead to the equilibrium where all firms learn I’s secrets.

38See Whinston (2006, ch. 4) for the comprehensive review of the literature on exclusionary vertical contracts.
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Figure D12: Equilibrium in the Model with Two Suppliers and a Common Customer

This figures illustrates the equilibrium contract between I and B described in Proposition 3 in Appendix ??.
Parameter α measures the degree of competition between I and E , and parameter γ reflects the value of I’s
input in B’s production.

However, there are differences between common suppliers and customers in incentives to sign
exclusive dealing and confidentiality agreements. The common supplier might want to maximize
the difference between product qualities of its customers because they compete with each other.
So, it might prefer to sign exclusive dealing to create a commitment that it will not sell inputs
to E and will not share I’s secrets with E . On the other hand, profits a common customer are
increasing in the quality of inputs from all its suppliers. So, the common customer (B) does not
have incentives to create such a commitment, and it signs exclusive dealing or a confidentiality
agreement only to encourage a supplier to share private knowledge with it.

Proposition 3. The equilibrium contract in the model from Section D.5 is the following

Contract “

$

’

’

’

&

’

’

’

%

Exclusive with CA if α ą γ
2pλ1´λ0q`γp2λ0´1q

CA only if γ
2p1´λ0q`γp2λ0´1q ă α ď γ

2pλ1´λ0q`γp2λ0´1q

No Contract if α ď γ
2p1´λ0q`γp2λ0´1q

(D.12)

Firm I always shares knowledge with B, and B shares I’s secrets with E only when I and B do
not sign any contract in the first stage.

Proof. Joint surplus of I and B under different contracts is the following

Exclusive, CA: TSpex “ 1, ca “ 1q “ 1´ α
2 ` α (D.13)

CA Only: TSpex “ 0, ca “ 1q “ 1´ α
2 ` α `

1´ α
2 p1´ γqλ1 (D.14)

No Contract: TSpex “ 0, ca “ 0q “ 1´ α
2 ` α `

1´ α
2 “ 1 (D.15)
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I and B sign a contract that maximizes their joint surplus subject to the constraint that I
has incentives to share its secrets with B. If I shares its secrets with B, then its profit under
different contracts will be the following

πIpex “ 1, ca “ 1q “ 1
2 ¨

´1´ α
2 ` α

¯

“
1` α

4
πIpex “ 0, ca “ 1q “ 1

2 ¨
´1´ α

2 ` α ´ αλ1

¯

“
1` α

4 ´
α

2λ1

πIpex “ 0, ca “ 0q “ 1
2 ¨

´1´ α
2 ` α ´ α

¯

“
1` α

4 ´
α

2

If I does not share its secrets with B, then its profit will be

πI pNo Sharingq “ 1
2

ˆ

1´ α
2 ` α ¨ p1´ λ0q

˙

¨ p1´ γq “ 1` α
4 p1´ γq ´ α

2λ0p1´ γq

Under exclusive dealing with a confidentiality agreement, I always has incentives to share its
secrets with B. Under a confidentiality agreement only, it shares its secrets if

1` α
4 γ ě

α

2 pλ1 ´ p1´ γqλ0q ô α ď
γ

2pλ1 ´ λ0q ` γp2λ0 ´ 1q (D.16)

Without any contract in the first stage, I shares its secrets with B if

1` α
4 γ ě

α

2 p1´ p1´ γqλ0q ô α ď
γ

2p1´ λ0q ` γp2λ0 ´ 1q (D.17)

The joint surplus of I and B is always higher with less contractual restrictions. Therefore, they
sign a contract so that I has incentives to share its secrets with B. The combination of (D.16)
and (D.17) gives the contract in (D.12).
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