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Abstract

Decarbonization and electrification will require a transformed electricity grid. Our
long-run model of entry and exit of generation and storage capacity captures crucial
aspects of the electricity industry such as time-varying demand for electricity, inter-
mittency of renewables, and intertemporal optimization of storage. We derive several
theoretical possibilities that differ in surprising ways from short-run intuition: A car-
bon tax can increase electricity consumption; cheaper storage can decrease renewable
capacity; cheaper renewables can increase carbon emissions; and an increase in elec-
tricity demand (e.g., electrification) can decrease emissions. We calibrate the model
using 2019 hourly data on demand and renewable availability for thirteen regions cov-
ering the contiguous U.S. A carbon price of $150 or more essentially eliminates car-
bon emissions. Given a modest decarbonization goal, a renewable subsidy performs
better than a nuclear subsidy, but this ranking is reversed for an ambitious decar-
bonization goal. Transmission expansion yields large emissions reductions if renewable
costs fall sufficiently, but policies promoting storage are unlikely to yield significant
benefits. Electrifying 100% of car miles traveled (thereby eliminating gasoline vehicle
carbon emissions) increases electricity-sector carbon emissions by 23-27% if vehicles
are charged at night, but could decrease electricity-sector carbon emissions if vehicles
are charged during the day.
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1 Introduction

Addressing the problem of global climate change will require radical transformations of large

segments of the economy. Fundamentally, society needs to reassess what we make and how

we make it across all industries. One key industry, electricity, currently accounts for about

a third of U.S. carbon emissions and for similar proportions throughout the world. Yet, in-

stead of shrinking the profile of this heavily polluting industry, most plans for a decarbonized

economy call for dramatically expanding this sector by electrifying everything (e.g., trans-

portation, heating, and industrial processes), while at the same time decarbonizing electricity

generation. Technological advances and cost declines in wind and solar energy have fueled

optimism about the potential for decarbonized electricity generation. Nuclear technology

is an alternative zero-carbon energy source, and advances in electricity storage technologies

may hold transformative potential. At the same time, advances in electric vehicles, heat

pumps, electrolytic hydrogen feedstocks, and heating technologies (electromagnetic, induc-

tion, infrared and ultraviolet) hold promise for electrification of other sectors.1 In short, the

electricity sector of the future may look nothing like the electricity grid of today.

This paper constructs a framework for analyzing a completely transformed electricity

grid with a long-run model of electricity consumption, generation, investment, and storage.2

A key distinguishing feature of our model is that entry and exit for all technologies respond

to the interconnected feedback effects from technological innovation, climate policy, and/or

electrification, free from the hysteresis of legacy investments and historical accidents.3 As

such, our framework provides a unique perspective on the end goal of policies for the elec-

tricity sector and can analyze and quantify the long-run effects of policy.

1See IEA (2019) and Hasanbeigi et. al. (2021) on technologies for electrification of industrial processes.
2Our model is based on Borenstein (2005) and Borenstein and Holland (2005), which analyzed the

long-run benefits of real-time pricing of electricity. We extend the original model to include intermittent
renewables and storage. See also Ambec and Crampes (2021), Gambardella et al. (2020), and Holland and
Mansur (2008) for studies of the environmental effects of real-time pricing.

3A substantial literature analyzes entry and exit from the existing electricity grid. See for example
Gillingham et al. (2021), Stock and Stuart (2021) and Palmer et al. (2011).
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Our theoretical model is analytically tractable and enables us to derive several long-

run possibilities which differ from their short-run analogs.4 First, although carbon pricing

decreases carbon emissions, it can increase overall electricity consumption in the long run

if it induces sufficient entry of low-cost clean technologies. Second, cheaper storage can

increase or decrease long-run renewable capacity. Intuitively, storage can benefit renewables

by increasing demand in low price periods, but can harm renewables by increasing supply in

high price periods. Third, a decrease in the cost of renewables may increase carbon emissions

if the renewables crowd out a zero-emission technology such as nuclear. Finally, in contrast

to short-run incremental emissions from electrification, which are positive or zero, long-run

incremental emissions can be negative if electricity usage in some periods induces entry of

renewables which offset fossil generation in other periods. These theoretical possibilities

illustrate the importance of the long-run perspective in electrification and climate policy.

To quantify the long-run effects, we calibrate our model for each of thirteen EIA electricity

regions using observed hourly demand and corresponding hourly solar and wind generation

for 2019. This calibration is distinguished by both its scope and scale. Most analyses with

national scope analyze a limited set of representative time periods (Gillingham et al. (2021),

Palmer et al. (2011), Stock and Stuart (2021)) while analyses with richer demand and

renewable representation focus on a single region or Independent System Operator (ISO)

(Gowrisankaran et al. (2016), Elliot (2021), Imelda et al. (2018)). Implicitly, we use

observed data as draws from the unknown joint distribution of shocks to demand, wind,

and solar availability. This provides realistic approximations of the underlying variation and

correlations between demand and renewable availability for the entire contiguous U.S.5

Our calibrated model shows the relevance of our theoretical results and provides ad-

ditional insights into decarbonization policies. Our baseline calibration uses capital cost

estimates for the near future, and the vast majority of generation is from natural gas.6 Car-

bon pricing reduces long-run carbon emissions by inducing a mixture of renewable and/or

4Large multi-sectoral models such as the NEMS provide a comprehensive basis for policy analysis but do
not allow for theoretical insights ( Palmer et al. (2011), Gillingham et al. (2021), Stock and Stuart (2021),
and Gagnon and Cole (2022)).

5We explore the effects of a reduced number of representative time periods in Online Appendix A.3.
6Capital costs, especially for renewables, are highly uncertain, so we consider a broad range of sensitivity

analyses and assumptions about technological progress. Coal-fired generation as a legacy technology has
no sunk cost advantage in our long-run model. Holland et al. (2020) document the decline in coal-fired

2



nuclear generation, but, consistent with our theoretical results, does not necessarily reduce

electricity consumption. We find substantial benefits from carbon pricing and almost com-

plete decarbonization with a carbon price of $150.

In the absence of carbon pricing, promoting renewable generation may be an alterna-

tive way to reduce carbon emissions from the electricity sector. In our baseline, renewable

generation is rather modest. But this baseline does not include policies such as subsidies

for renewable capacity or technological innovation, both of which can be modeled in our

framework as a reduction in renewable capital costs. We calculate that these policies can

decarbonize electricity and lead to benefits increases that are sufficient to justify substantial

innovation expenditures or potentially to rationalize direct renewable subsidies.7

Similar to renewables, nuclear energy can decarbonize electricity without carbon pricing,

but only if capital costs are reduced sufficiently: approximately a 50% cost reduction is

required in our calibration.8 If cost reductions exceed this threshold level, then nuclear

technology replaces both natural gas and renewables, and electricity is decarbonized almost

completely. However, if cost reductions do not meet the threshold, then nuclear technology

is not adopted and carbon is not reduced.9 Comparing the results for nuclear energy to

renewables shows that the relative effectiveness of policies to promote one or the other

depends on the desired stringency of the decarbonization. Given a modest decarbonization

goal, a renewable subsidy performs better than a nuclear subsidy, but this ranking is reversed

for an ambitious decarbonization goal.

Adding transmission capacity and electricity storage to the grid can also help decarbonize

electricity. Intuitively, transmission and storage would seem to benefit renewable generation

by shifting it from low value to high value locations or times.10 In our calibration, increasing

generation and Linn and McCormack (2019), Davis et al. (2021), and Heutel (2011) examine the retirement
decisions of coal plants.

7Gowrisankaran et al. (2016) estimate large benefits for solar energy in southeastern Arizona, and Call-
away et al. (2018) estimate displaced emissions by wind and solar generation. Helm and Mier (2019) present
a theoretical model of intermittent renewables. See also Weber and Woerman (2022), Eisenack and Mier
(2019), Pommeret and Schubert (2021) and Junge et al. (2022).

8Davis and Hausman (2016) study the effects of nuclear power plant closure.
9Jenkins et al. (2018) analyze the benefits of using nuclear power plants to reduce renewable curtailment

with fixed renewable capacity. In our results, nuclear power reduces renewable capacity and generation.
10The literature on the benefits of transmission is relatively small. See Cicala (2022), Fell et al. (2021),

McCalley et al. (2012), Brown and Botterud (2021), and LaRiviere and Lyu (2022). Battery storage
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transmission capacity does not generate benefits of any significant magnitude unless there are

complementary policies that reduce costs of renewable generation. In that case, transmission

can lead to substantial decarbonization by increasing renewable investment in regions with

better renewable potential. We find the largest benefit from transmission connecting wind

resources in the Midwest with demand in the East. Storage does not generate benefits of

any significant magnitude even with complementary policies that reduce costs of renewable

generation unless batteries become almost free and sufficient battery storage is constructed

to allow interseasonal storage.11 In addition, somewhat counterintuitively, we find that a

decrease in the cost of storage may lead to a decrease in renewables in some regions because

storage favors the technology with the lowest long-run average cost (adjusted for availability).

These results imply that policies promoting only transmission or only storage are unlikely

to yield significant benefits.

Our framework allows a comprehensive welfare analysis of second-best subsidies in the

absence of carbon pricing.12 Importantly, we can assess complementarities between subsidies

for batteries and for renewables. Battery subsidies are complementary to other subsidies,

but the welfare gains from second-best battery subsidies are modest. Consistent with our

earlier results, we find the largest welfare gains from subsidizing renewables and batteries

if the Social Cost of CO2 (SCC) is low, but from subsidizing renewables and nuclear if the

SCC is high.

Our last long-run effects analyze increases in demand resulting from policies that encour-

age electrification. Consistent with our theoretical results, electrification may help or hinder

decarbonization by affecting renewable capacity. In our baseline, load shocks in most hours

and locations simply increase natural gas capacity and the long-run incremental emissions

are approximately the natural gas power plant emissions rate. However, with lower renew-

able costs, we find some load shocks can increase solar capacity so that the incremental

emissions can be zero or even negative in some hours and regions.13

has been widely studied but is computationally intensive so most studies focus on a single region. See
Karaduman (2020), Butters et al. (2021), and Shrader et al. (2021).

11Butters et al. (2021) calculate larger benefits from battery storage for a fixed renewable capacity.
12Cost-minimizing grid dispatch models allow for complex ramping and transmission constraints, but do

not generally analyze welfare issues (Hawkes (2014), Raichur et al. (2015)).
13A large literature estimates short-run marginal emissions using either econometrics (Holland and Mansur

(2008); Holland et al. (2016); Graff Zivin et al. (2014); Siler-Evans et al. (2012); Fell and Kaffine (2018)) or
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The hourly variation in incremental emissions implies that the effects of large scale elec-

trification depends on the hours at which the electricity is used.14 For transportation, this

means the hours the electric vehicle (EV) is charged, i.e., the charging profile. We find

that with a convenient, nighttime charging profile and our baseline, electrifying 100% of

car vehicle miles traveled (VMT) would result in a 23% increase in electricity-sector carbon

emissions, with incremental emissions exceeding the natural gas emissions rate.15 However,

with a different charging profile, EV charging can result in very low incremental emissions.

Remarkably, if renewable costs are lower, a charging profile in which charging occurs exclu-

sively in mid-day has negative incremental emissions. In other words, charging EVs with

this profile can completely decarbonize passenger vehicle transportation and reduce carbon

emissions from the electricity sector, because it induces a dramatic entry of renewables. The

socially optimal charging profile balances emissions reductions with private surplus losses

and has positive but modest incremental emissions.

EV charging will depend on the location of charging stations. Although we do not ex-

plicitly model the build out of EV charging stations, our results imply that charging stations

that enable EV users to charge easily during the day (e.g., at work and shopping loca-

tions) will likely result in much lower long-run incremental carbon emissions than charging

stations that facilitate charging at night (e.g., at apartment buildings and on-street park-

ing locations). This highlights the importance of locational and temporal heterogeneity in

electrification policy and of investment incentives; factors which our framework is uniquely

suited to analyze.

Climate policy has reached a crucial juncture. Despite increasing recognition of urgency,

the path forward is unclear. Carbon pricing, widely recognized as an efficient policy, has not

been universally adopted and may not have the transformative potential to remedy all the

market failures associated with climate change. Other policies tend to promote particular

technologies, such as storage or renewables, without clear guidance on the interconnected

grid dispatch models (Raichur et al. (2015)). Hawkes (2014) estimates long-run marginal emissions using a
dispatch model of the British electricity grid. Holland et al. (2022) shows conditions under which short-run
marginal emissions estimates can be used to analyze emission over a 10-15 year time frame.

14Many studies analyze the effects of the timing of electrification and efficiency in the short run. See for
example Boomhower and Davis (2020).

15Holland et al. (2022) estimate that about half the emissions reduction from partial electrification of
transportation would be offset by increased electricity sector emissions.
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incentives created by the policies. Our analysis offers a novel perspective on a rich set of

transformative technologies and electrification policies in a comprehensive framework.

2 The model

Consider a long-run model in which electricity consumption, generation, storage, and gen-

eration capacity are all endogenous. Because electricity demand and renewable availability

vary across time, we model a long-run competitive equilibrium with T periods, (e.g., hours).

In a given period t electricity consumption is Qt and the hourly benefit (gross consumer

surplus) is Ut(Qt) where U ′
t > 0 and U ′′

t < 0. Define also the demand function, Dt, as the

inverse function of U ′
t defined by U ′

t(Dt(p)) ≡ p.

Electricity can be generated from I different technologies, each of which produces elec-

tricity at a constant marginal cost up to some limit based on the installed capacity. Let Ki

be technology i’s capacity, which has capital costs ri per unit. Each technology has an hourly

capacity factor fit ∈ [0,1] so that generation, qit, from technology i in hour t must satisfy

qit ≤ fitKi. The hourly capacity factors are exogenous and allow for intermittent renewable

generation (fit ≤ 1) or dispatchable generation (fit = 1 for all t).16 Let ci be the constant

marginal cost for technology i where the technologies are ordered such that ci ≤ ci+1. Each

technology may or may not have external costs, e.g., carbon emissions, associated with its

use. Accordingly we define βi ≥ 0 as the carbon emissions intensity of technology i.

Electricity may be transferred across time using a storage technology, e.g., a battery. Let

bt be the net charge added to the battery in hour t where bt < 0 indicates withdrawals from

the battery. The state of the battery, St, depends on net charges to the battery and evolves

according to St = St−1+bt.17 Battery storage cannot exceed the maximum battery capacity S̄,

so the state of the battery must satisfy 0 ≤ St ≤ S̄. The battery capacity is endogenous in the

model and has capital costs rs per unit. Electricity balance in each hour then requires that

16Alternatively we might have fit < 1 for dispatchable generation to account for forced outages.
17This assumes that storage is “perfect”, i.e., there are no conversion losses from charging or discharging

the battery and the battery state does not decay over time. We address these assumptions in the Online
Appendix A.1.
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Qt+bt ≤ ∑i qit, i.e., consumption plus net battery charge cannot exceed electricity generation

from all sources.

To characterize the long-run competitive equilibrium, we use the planner’s problem:

max
Qt,qit,bt,St,Ki,S̄

∑
t

[Ut(Qt) −∑
i

ciqit] −∑
i

riKi − rsS̄, (1)

subject to all the constraints. This is a straightforward constrained optimization problem,

albeit with a large number of choice variables.18 To characterize the optimum, we use the

pseudo-Hamiltonian, Ht, to write the Lagrangian, L, for (16) as:

L ≡∑
t

Ht −∑
i

riKi − rsS̄. (2)

Here Ht is defined by:

Ht ≡ Ut(Qt) −∑
i

ciqit + pt[∑
i

qit −Qt − bt] +∑
i

λit[fitKi − qit] + φt[St−1 + bt − St] + µt[S̄ − St],

where pt, λit, φt, and µt are all non-negative shadow values of the relevant constraints.19

The Kuhn-Tucker first-order conditions include

Qt ≥ 0 dL/dQt = U ′
t(Qt) − pt ≤ 0 ∀t C.S. (3)

qit ≥ 0 dL/dqit = −ci + pt − λit ≤ 0 ∀i, t C.S. (4)

dL/dbt = −pt + φt = 0 ∀t (5)

St ≥ 0 dL/dSt = φt+1 − φt − µt ≤ 0 ∀t C.S. (6)

Ki ≥ 0 dL/dKi = ∑
t

λitfit − ri ≤ 0 ∀i C.S. (7)

S̄ ≥ 0 dL/dS̄ = ∑
t

µt − rs ≤ 0 C.S., (8)

18There are (3+I)T +I +1 choice variables. Hourly periods over a year (8760 hours) and four technologies
imply over 60,000 choice variables.

19Ht is not technically the Hamiltonian of (16) because it treats the adjoint variable differently.
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where C.S. indicates a complementary slackness condition.20 The condition [3] implies that

the marginal benefit equals the shadow value pt if electricity consumption is positive. From

here on pt is called the electricity price.

The following lemmas help characterize the optimum. All proofs are in the appendix.

The first lemma characterizes supply from each technology.

Lemma 1. If ci > ci′ and qit > 0, then qi′t = fi′tKi′.

This lemma shows that if generation from a given technology is positive, then any technology

with a lower marginal cost must be generating at capacity. The hourly industry supply curve

is then a step function with the step widths determined by the installed capacity and the

hourly capacity factors.

The next lemma provides a formula for calculating the electricity price in hour t condi-

tional on battery usage and the installed capacities.

Lemma 2. If ∑i fitKi > bt, then pt = mini{max{ci, U ′
t(∑i′≤i fi′tKi′ − bt)}}.

This lemma is illustrated graphically in Figure A.1, which shows the electricity price is

determined by the intersection of the demand curve and the step function supply curve.

The third lemma characterizes the optimal battery usage.

Lemma 3. If St = 0, then pt ≥ pt+1. If 0 < St < S̄, then pt = pt+1. If St = S̄, then pt ≤ pt+1.

The lemma shows that the electricity price can fall if the battery is empty and the price can

rise if the battery is full. However, if the battery is neither empty nor full, then it could be

used to arbitrage any price differences, and therefore the equilibrium price must be constant.

Using these lemmas, we can establish a proposition that gives intuitive formulas for the

derivative of the Lagrangian with respect to installed capacity.

Proposition 1. The derivatives can be written:

dL/dKi = ∑
t

max{pt − ci,0}fit − ri = (∑
t

(pt − ci)qit − riKi) /Ki.

and dL/dS̄ = ∑t −ptbt/S̄ − rs.
20Additional conditions are the constraints and their complementary slackness conditions.
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The derivatives in Proposition 1 are simply profit per unit capacity. They create a gradient,

which is used in our numerical simulation to find the optimal capacities. In addition, setting

the derivatives equal to zero implies that ∑t(pt − ci)qit = riKi for each i and ∑t −ptbt = rsS̄,

i.e., that optimal capacity investments result in zero profit for each technology. Zero profit

is consistent with competitive entry and exit in a long-run equilibrium.

The long-run competitive equilibrium, characterized by the optimum to [16], may not be

efficient because of the external costs from carbon emissions. Accordingly, we define private

surplus as the optimized value of [16] and welfare as the private surplus minus the damages

from pollution plus net government revenue from any tax or subsidy policy. These definitions

enable us to analyze policies such as carbon taxes, technology subsidies, and electrification.

Some intuition of policy analysis from short-run models applies to the long-run. For ex-

ample, carbon pricing reduces carbon emissions, and renewables subsidies increase renewable

generation. However, the long run features many results that do not appear in short-run

models. For example, carbon taxation can increase electricity consumption. Letting τ denote

the carbon tax and ∆ denote the difference operator, we have

Result 1. If carbon taxes increase, ∆τ > 0, then emissions decrease, ∆∑i∑t βiqit < 0, but

total electricity consumption can increase or decrease, i.e., ∆∑tQt ≶ 0.

Intuitively, carbon taxation increases the costs of polluting technologies. This induces these

technologies to exit, which potentially increases electricity prices during hours in which they

are on the margin. But these higher electricity prices can induce entry of other, cleaner

technologies and drive down electricity prices in hours in which cleaner technologies are on

the margin. Higher electricity prices in some hours and lower electricity prices in other hours

can increase or decrease overall electricity consumption depending on the relative elasticities

of demand.

Electricity storage can reduce price differences across hours and thereby affect the effi-

ciency of policies. The next result shows how the equilibrium responds as storage becomes

cheaper. Defining the levelized cost of technology i as ci + ri
∑t fit

, we have:21

21Our definition of levelized cost assumes capacity factors, fit, are exogenous. Other definitions of levelized
cost assume endogenously determined capacity factors.
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Result 2. If the capital costs of storage, rs, decreases, renewable capacity can increase or

decrease. If rs = 0, then the equilibrium electricity price is the same in each period, i.e.,

pt = p̄ for all t, where p̄ is given by

p̄ = min
i

{ci +
ri

∑t fit
}.

Moreover, if the levelized cost, ci + ri
∑t fit

, is unique across technologies, then the capacity of

the technology i that satisfies the minimum is given by Ki = ∑tDt(p̄)
∑t fit

.

Although it may seem intuitive that battery storage may result in more renewables, Result 2

shows that this is not necessarily the case.22 If intermittent renewables generate electricity

in high price periods, then storage will reduce their profitability. Conversely, if they do

not, then storage will increase their profitability. In the limit, only the technology with

the lowest levelized cost is built.23 In particular, if natural gas fired generation has a lower

levelized cost than renewables, then a low-cost storage technology will drive renewables from

the equilibrium. Thus storage can help or hinder decarbonization.

Our next result relates the capital cost of renewable generation and emissions.

Result 3. If the capital cost of renewables decreases then carbon emissions can increase or

decrease, i.e., ∆∑i∑t βiqit ≶ 0.

Intuition suggests that a decrease in the cost of renewables would increase renewable capacity

and generation and hence reduce emissions. But emissions can increase if the renewable

capacity leads to a decrease in capacity for a low marginal cost zero emission technology

such as nuclear and an increase in the capacity of a polluting technology.

Another interesting difference in the short-run and long-run is the effect of increasing

demand in some periods, such as will occur with electrification. In the short run, marginal

emissions from demand increases are positive if increased electricity is supplied by a polluting

source. At best, short-run marginal emissions can be zero if price effects crowd out other

22Shrader et al. (2021) find a similar result in which storage is ineffective in reducing emissions.
23Implicitly the result assumes that the year is infinitely repeated and is in a steady state. We capture

this in our simulations by starting the year in the hour at which the battery state would be at a minimum
in the steady state with the lowest cost technology.
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electricity uses or if the increased electricity is supplied by renewables. In contrast, the

following result shows that electrification can decrease emissions in the long-run.

Result 4. If electricity demand increases in some period(s), then carbon emissions can

increase or decrease, i.e., ∆∑i∑t βiqit ≶ 0.

Increasing demand in some period puts upward pressure on the price and induces entry of

the marginal technology for that period. However, once additional capacity enters, it may

be used in other periods. Thus if the marginal technology is dirty, carbon emissions may

increase by more than the emissions rate of the marginal technology. Conversely, if the

marginal technology is clean, its entry may meet the increased demand and offset emissions

in other periods, thereby decreasing overall emissions. In addition to changes in the mix of

generation technologies, electrification also has price effects. Prices face upward pressure in

periods with demand increases but downward pressure in periods with additional capacity.

Thus, the long-run change in overall electricity usage may be greater or less than one-for-one

with electrification.

3 Model calibration and solution algorithm

To quantify long-run policy effects, we calibrate our model for a representative year, 2019,

based on hourly observed electricity consumption and hourly availability of generation from

solar and wind for thirteen EIA electricity regions.24 Using observed 2019 consumption and

renewable availability provides a realistic approximation of the underlying structural corre-

lations between electricity consumption and renewable availability both over time and over

geographic locations. The electricity regions are shown in Figure A.2. The East intercon-

nection consists of nine EIA regions: Carolinas, Central, Florida, MidAtlantic, MidWest,

New England, New York, SouthEast, and Tennesee. The West interconnection consists of

three EIA regions: California, NorthWest, and SouthWest. The Texas interconnection is a

single EIA region. We initially consider each EIA region to be independent to capture geo-

24The model could be calibrated using multiple years. We use 2019 because it is the first full year of the
EIA 930 dataset and because 2020 was abnormal due to the COVID-19 pandemic.
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graphic variation in load and renewable availability, but we later combine them to capture

the benefits of increasing transmission capacity between them.

3.1 Model calibration

Our model calibration requires us to parameterize hourly demand for our thirteen electricity

regions, estimate capital and marginal costs for our five generation technologies, estimate

capital costs for storage, and estimate hourly availability for solar and wind in each of the

thirteen regions.

3.1.1 Demand

Modeling hourly demand in each electricity region requires both assumptions about func-

tional forms and data on observed prices and quantities. We assume demand in each hour

is independent of demand in other hours and assume either a linear or iso-elastic functional

form.25 Each hourly demand function is parameterized by the observed consumption and

price and an assumed elasticity of -0.15 at the observed consumption-price pair.26 This as-

sumption on elasticity is appropriate for the planner’s problem in our theoretical model in

which consumers respond to price in each hour. Additional constraints would be needed if

the consumers’ faced regulated prices that were constant across hours.

Observed hourly demand is collected from the EIA 930 and is the total of electricity load

from all reporting entities within the EIA region for that hour. The mean observed demand

by season and hour of day is shown in Figure 1 for each EIA region. Observed hourly prices

come from multiple sources. For the regions that are organized into markets (California,

Texas, New England, MidWest, New York, MidAtlantic, and Central), we gather data on

hourly market prices for each ISO. These prices are weighted averages of real-time single bus

prices or aggregated regional hub prices. For the regions not in organized markets (Carolinas,

Florida, NorthWest, SouthEast, SouthWest, and Tennesee), we used the FERC 714 data on

25Linear demand allows for the possibility of curtailed renewable generation while iso-elastic demand serves
as a robustness check and facilitates adding demand curves across interconnecting electricity regions.

26For linear demand, D(p) = A−Bp, the two parameters are B = 0.15Q0/P0 and A = 1.15Q0 where P0 and
Q0 are the observed price and demand. For iso-elastic demand D(p) = Ap−ε the two parameters are ε = 0.15
and A = Q0/P −ε

0 , and we assume a finite choke price so that the consumer surplus integral converges.
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system lambdas for our observed prices. The mean hourly price is shown in Figure A.3 and

summary statistics are in Table A.1. The observed demands and prices show substantial

variation across hours, seasons, and regions which we assume is representative of underlying

structural demand conditions.

3.1.2 Capital and marginal costs

We consider five generation technologies: solar, wind, nuclear, combined cycle gas, and

combustion turbine (peaker) gas. The latter three are dispatchable, and the latter two

use natural gas and consequently generate carbon emissions. Combustion turbine (peaker)

gas plants have low capital costs but high marginal costs, and hence are used primarily

when electricity prices are high. Combined cycle gas plants have high capital costs but low

marginal costs, and are used for more hours.27 Our other three technologies have no carbon

emissions. Advanced nuclear has very low marginal costs but very high capital costs. Solar

and wind power both have zero marginal cost and intermediate capital costs. If they were

dispatchable, these technologies would dominate advanced nuclear. Because of intermittency,

the equilibrium may have positive capacities of nuclear as well as renewables.

Our baseline capital and marginal costs for the five generation technologies and for grid-

scale battery storage represent capacity entering service in 2026. (See Table 1.) Following

EIA (2021), our annual capital cost, ri, assumes a 30-year cost recovery period and a weighted

average cost of capital of 5.4% and includes fixed operating and maintenance and transmis-

sion costs for each technology. Marginal cost, ci, is the levelized variable cost and is primarily

fuel costs for the natural gas technologies.

The capital costs are forward looking and highly speculative. Table A.2 shows how

capital and marginal costs changed from 2014 to 2021. Over this time frame, capital costs

declined dramatically, especially for renewables: 76% for solar and 54% for wind, while

advanced nuclear capital costs declined the least. Capital costs are projected to continue

to fall. Table A.3 shows projections to 2050 for capital costs which shows large declines for

solar and for battery storage. Because of the speculative nature of these distant forecasts,

27We do not consider coal technologies. Ignoring environmental costs, coal technologies are almost dom-
inated by our combined cycle gas technology. Incorporating environmental costs from local pollution make
it unlikely that coal would be a desirable technology.
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our baseline focuses on 2026 costs, and we consider sensitivity analysis to a wide range of

assumptions.

3.1.3 Capacity factors for renewables

To calibrate hourly renewable capacity factors for 2019 conditions, we use hourly wind

and solar generation reported in the EIA 930. Unfortunately, renewable capacity, which

is required to calculate our capacity factors, is not reported in the EIA 930 and is increasing

rapidly throughout 2019. We aggregate monthly renewable generation from the EIA 923 and

monthly renewable capacity from EIA 860 across all plants built after 2010 in a region which

report to both datasets.28 Dividing these gives region-month capacity factors. We then

divide the mean hourly generation for each region by the region-month capacity factors to

calculate region-month renewable capacity. Dividing hourly generation by the region-month

capacity gives our hourly capacity factors. Figure 2 shows mean hourly capacity factors

by season and hour of day for each region, and summary statistics are in Table A.1. The

capacity factors show seasonal and hourly patterns which are consistent with estimates of

renewable availability.

3.2 Solution algorithms

We use two different approaches to solve the planner’s problem. The first approach directly

solves the planner’s problem using a publicly available quadratic programming solver.29 This

approach finds the solution relatively quickly, but can only be used when the benefit function

is quadratic and suffers from the curse of dimensionality, particularly for cases in which the

regions are combined.

The second approach uses the theoretical results to dramatically reduce the dimension-

ality of the choice vector and then use a gradient search algorithm to optimize capacity for

28The EIA 930 is missing hourly solar generation for New York and hourly wind generation for Carolinas,
Florida, SouthEast, and Tennessee. We use estimates of available renewable resources to construct capacity
factors for these regions and technologies. See Online Appendix A.2 for details.

29The particular solver that we use is described in Stellato et al. (2020) and downloaded from https:

//osqp.org/. Unlike many other quadratic programming algorithms, this one allows the objective function
to be positive semidefinite, a feature that is necessary for our problem.

14

https://osqp.org/
https://osqp.org/


each technology.30 Without a storage technology, it is relatively straightforward. For a given

vector of capacities, Lemma 2 determines the electricity price for each period. Eqs. 3 and

4 and Lemma 2, then imply electricity consumption and generation from each technology.

Adding up across all periods, gives annual profit for each technology, which Proposition 1

shows can be used to construct a gradient vector. From here, a standard gradient search

optimization is computationally efficient.31 With storage technology, we nest a storage opti-

mization algorithm within the gradient search algorithm. For a feasible vector of net charges

to the battery, Lemma 2 determines the electricity price for each period, which implies con-

sumption and generation in each period, and from which we can calculate the planner’s

objective in [16]. Then it is a matter of finding the feasible vector of net charges that max-

imizes this sum. We do this by employing a dynamic programming algorithm in which the

state variable is the discretized state of the battery and the optimization in each period

determines the net charge for the battery in that period. Based on the optimal net charge

vector, we can calculate the profit for each technology and for storage, which Proposition 1

shows can be used to construct the gradient vector including storage. We then use a gradient

search optimization with the nested battery optimization to calculate the optimal capacities

for each generation technology and for the storage technology. Overall, this second approach

is slower than the quadratic programming approach, but can be applied to more general

benefit functions and performs well even when the regions are combined.

4 Decarbonization Results

From a baseline of no electricity storage and separate EIA regions, we begin by calculating

the benefits of carbon pricing, of reducing renewable and nuclear generation capital costs,

and of expanding transmission and battery storage. Then we analyze interactions between

various policies and determine second best policies in lieu of carbon pricing.

30Borenstein (2005) presents a conceptually elegant and computationally efficient algorithm for calculating
equilibrium capacity investment. Unfortunately, that algorithm requires a strict ranking of technologies in
terms of capital and marginal costs, and with intermittent technologies, such a ranking is meaningless.

31We use the method described in Barzilai and Borwein (1988) to select the step size in each iteration.
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4.1 Carbon pricing

Without carbon pricing, our baseline calibration of the long-run equilibrium has CO2 emis-

sions of 1,107 million metric tons (mmt) per year (Table 2).32 This is 30% lower than actual

2019 CO2 emissions of 1604 mmt (Holland et al. (2022)). This difference arises because

there is no modeled coal generation (whereas coal accounted for 25% of actual 2019 electric-

ity generation) and because modeled electricity consumption is slightly lower than actual:

3716 TWh instead of 4000 TWh due to a higher modeled electricity price (the weighted

average modeled price is $38 per MWh while the actual 2019 price is $27 per MWh).33 Our

baseline long-run equilibrium shows that optimally building the electricity grid using cur-

rent technologies could reduce carbon emissions substantially even in the absence of carbon

pricing.

Carbon pricing would reduce long-run carbon emissions further (Table 2 and Figure 3).

Relative to our baseline, a carbon tax of $50 per ton of CO2 reduces long-run carbon emissions

by 50% and a $150 tax eliminates over 90% of carbon emissions from the electricity sector.34

The emissions reductions are accomplished in part by increases in the electricity price. The

electricity price increases from the baseline price of $38 per MWh to $56 per MWh with

a $200 carbon tax.35 Total electricity consumption can increase or decrease as shown in

Result 1. With linear demand, the carbon tax reduces annual electricity consumption: from

3716 TWh to 3190 TWh (15%) for a $200 carbon tax. However, with iso-elastic demand,

the relationship is not monotonic: increasing the carbon tax first decreases then increases

electricity consumption, and the $200 carbon tax only decreases electricity consumption

less than 1%. (See Panel B of Figure 3.) In the long run, carbon pricing can decarbonize

electricity without substantial decreases in electricity consumption or excessive increases in

electricity prices.

32With iso-elastic demand, CO2 emissions are 1,153 mmt. See Table A.4. We use metric tons throughout.
33Modeled electricity generation has a lower percentage of renewable generation: 4% compared to the 2019

actual share of 9%. Our baseline does not include existing renewable subsidies and portfolio standards.
34The carbon tax required for deep decarbonization is higher than that calculated by Stock and Stuart

(2021). The importance of our rich set of representative time periods in our model is explored further in
Online Appendix A.3.

35With iso-elastic demand, the electricity price rises from $38 to $60. See Table A.4.
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Decarbonization under carbon pricing arises mainly from the change in long-run mix

of generation technologies. In the baseline, natural gas plants account for 88% of total

generation (Figure 3). At carbon prices above $50 per ton, natural gas accounts for less

than half of total generation and is gradually eliminated at higher carbon prices. At carbon

prices above $100 per ton, installing nuclear capacity is optimal. Because nuclear capacity

is dispatchable and has low marginal cost, nuclear capacity displaces both renewable and

gas capacity, so that renewable generation accounts for a lower share of the generation

mix at carbon prices above $100. The generation mix differs across regions primarily due

to differences in renewable potential (see Figure 4). The Central, Midwest, Northwest,

SouthWest, and Texas regions all have good wind resources and install substantial wind

capacity at high carbon prices. All other regions install substantial nuclear capacity despite

availability of solar because solar energy cannot generate electricity at night.

Whether carbon pricing is socially beneficial depends on damages from carbon emissions

(i.e., the social cost of CO2, SCC). Because the SCC is highly uncertain, Table 2 presents

the annual welfare gains for a wide range of SCC’s ranging from $0 to $200 per ton of CO2.36

If the SCC is $0, then carbon pricing is purely distortionary, the lost private surplus exceeds

the carbon tax revenue, and carbon pricing has negative welfare gains. For a positive SCC,

the gains from carbon tax revenue and reduced damages may exceed the lost private surplus.

For any carbon price, annual welfare gains increase with higher SCCs. For any SCC, annual

welfare gains increase until the carbon price is equal to the SCC (the Pigouvian price) and

then decrease thereafter. The benefits of carbon pricing can be substantial. If the SCC is

$100, then the Pigouvian carbon price leads to $47 billion in annual welfare gains. To put

this number in perspective, it is approximately 33% of the total revenue from electricity

generation in our baseline.

4.2 Reducing capital costs of renewables and nuclear

In the absence of carbon pricing, electricity can be decarbonized by simply building renew-

able or nuclear capacity. If capital costs fall due to technological advances, then market

participants would optimally install the cheaper technology. Even without technological ad-

36Table A.4 presents the benefits for iso-elastic demand.

17



vances, public policies, such as capital subsidies, can encourage installation of renewables or

nuclear power.

Lower capital costs of solar and wind can reduce carbon emissions quite dramatically.

(See Figure 5 and Table A.5.) A 25% reduction in renewable capital costs reduces carbon

emissions by 18%; a 75% reduction in costs reduces carbon emissions by 85%; and a 95%

reduction in costs basically eliminates carbon emissions. This reduction in emissions is

primarily from the installation of wind capacity which accounts for the majority of electricity

generation when renewable capacity is cheap. At a 95% cost reduction, wind generates 76%

of electricity, and solar only generates 17% of electricity. With this level of renewables, gas

generates less than 1% of electricity and is primarily gas peaker capacity for use in the few

hours in which wind or solar are not available.37

Because renewables are not dispatchable, a substitution from natural gas to renewables

leads to an increase in total capacity. With a 95% renewable cost reduction, total capacity

is six times higher than baseline with 0.8 million MW of solar and 2.8 million MW of wind

capacity.38 However, increases in renewable generation are not proportional to increases in

capacity two reasons. First, renewable generation is increasingly installed in regions with

lower capacity factors.39 Second, substantial renewable generation is curtailed with linear

demand. If renewable capital costs are 50% lower, then about four percent of renewable

generation is curtailed. (See Figure 5.) Even lower costs leads to dramatic curtailment:

if costs are 95% below baseline, then 57% of renewable generation is curtailed.40 This

substantial curtailment is optimal because the renewable generation is very inexpensive and

is profitable in enough hours to cover its capital costs.

37The generation by region is shown in Figure A.7.
38At a rate of 5 acres of land per MW, solar capacity would require about 4 million acres which is about

five times the size of Rhode Island or about six percent of Arizona. At a rate of 40 acres per MW, wind
capacity would require 112 million acres which exceeds the size of Nebraska and Kansas combined.

39For the 95% cost reduction, solar capacity is higher than baseline by a factor of 12, but potential solar
generation is only higher by a factor of 10. Starting from a low baseline, wind capacity is higher by a factor
of 231 but potential wind generation is only higher by a factor of 170.

40Table A.6 and Figure A.6 show the case of iso-elastic demand in which, by assumption, no load is
curtailed.
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Next we quantify the benefits of a reduction in renewable capital costs.41 If renewable

costs fall due to some breakthrough technology, then society benefits because electricity

prices fall and electricity consumption increases. Thus even without accounting for climate

damages, a 75% cost reduction in renewables results in $57 billion annual benefits. (See

Table A.5.) With climate damages, the benefits are even greater: $105 billion to $246 billion

per year depending on the SCC. These benefits show substantial returns to research and de-

velopment spending that reduces the cost of renewables. Even if renewable capital costs do

not fall, public policy can still encourage renewable adoption for example by subsidizing pri-

vate capital costs.42 Without climate damages, renewable subsidies are purely distortionary,

and subsidy costs exceed the benefits. (See Table A.5.) However, with positive climate dam-

ages, subsidizing renewable capital costs may be beneficial. For example, a subsidy reducing

private renewable capital costs by 75% would cost $146 billion but would yield benefits of

over $150 billion if the SCC exceeds $100 per ton.

Decarbonization can also result from installing nuclear capacity, but only if its capital

costs fall sufficiently. Figure 6 and Table A.7 show nuclear capacity is zero unless capital costs

fall by 50% or more. However, once this threshold is reached, nuclear power becomes the

dominant power source and replaces both renewables and natural gas generation. At a 50%

reduction in nuclear capital costs, nuclear power generates 78% of electricity and benefits

exceed $100 billion for values of the SCC that are greater than $100.43 These benefits are

sufficient to offset the subsidy cost of $89 billion required to reduce private nuclear capital

costs by 50%. Thus, nuclear capacity can decarbonize electricity, but it requires substantial

cost reductions and crowds out other power sources, including renewables.

From a cost-effectiveness perspective, renewable subsidies are more cost effective for

modest carbon reductions, e.g., CO2 emissions above ∼165 mmt, because a nuclear subsidy

is ineffective. For a CO2 emissions target of ∼165 mmt, the nuclear subsidy is more cost

effective. To see this, notice the abatement cost of reducing emissions to ∼165 mmt is equal

to the benefits with a zero SCC minus the cost of the subsidy. The nuclear subsidy has

41Benefits are defined as the change in the sum of private surplus and damages from carbon emissions
evaluated at the SCC.

42A capital cost subsidy must ensure that capacity factors are not distorted. Capacity factors are exogenous
in our model.

43The generation by region is shown in Figure A.8.
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abatement costs of $80.8 billion (=8.4-89.2) and the equivalent renewable subsidy has higher

abatement costs of $89.1 billion (=57.3-146.4).44 The nuclear subsidy is also more cost

effective for an even more aggressive CO2 emissions target of ∼10 mmt.

4.3 Expanding transmission and battery storage

Transmission and battery capacity can make intermittent renewables more valuable by shift-

ing renewable electricity from low value to high value locations or times. The benefits of

these shifts will depend on renewable availability, so we analyze increasing transmission and

battery capacity both in our baseline and in scenarios with higher renewable penetration.

Our baseline assumes no transmission constraints (i.e., a single hourly electricity price)

within each EIA region but no electricity transmission between regions. To model increasing

transmission capacity, we combine load and dispatchable capacity across EIA regions but

retain renewable capacity for each EIA region to capture temporal and spatial variation in

renewable availability.45 For example, if we combine two EIA regions into a single region

then we have 7 different generation technologies: the three dispatchable technologies, two

wind technologies, and two solar technologies. We model five scenarios with increasing levels

of interconnection between the EIA regions so that Scenario 5 assumes perfect transmission

(i.e., a single hourly electricity price) throughout the entire contiguous U.S.46

Carbon emissions reductions and benefits from transmission capacity expansion are rela-

tively small in our baseline (See Figure 7 and Panel A of Table A.8). With full interconnection

(Scenario 5), carbon emissions are reduced only 15% from baseline and benefits are $7 bil-

lion to $38 billion depending on the SCC. The largest gain in benefits is between Scenarios 4

and 5 which interconnect the East/Texas and West and results in additional solar and wind

generation.

44For comparison, the minimum abatement cost of achieving emissions of ∼165 mmt can be attained by a
carbon tax. Using linear interpolation with the results in Table 2 shows that a carbon tax of approximately
∼ $125 would yield CO2 emissions of ∼166 mmt at an abatement cost of ∼$49 billion, which is about half the
abatement cost of the inefficient policies.

45This procedure follows Cicala (2022). Essentially, we are assuming sufficient transmission between
regions that there are no locational differences in prices, and hence no returns to owners of transmission
capacity. This level of transmission capacity would not be constructed by competitive markets unless trans-
mission capacity were costless.

46Scenario 5 requires capacity optimization for 29 different technologies: three dispatchable technologies,
13 wind technologies, and 13 solar technologies.
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Benefits of transmission are more substantial with higher renewable penetration. Assum-

ing a 25% reduction in renewable capital costs, additional transmission capacity decreases

carbon emissions substantially. Interconnecting the East (Scenario 3) decreases carbon emis-

sions by 50% relative to Scenario 1 ( Figure 7 and Panel B of Table A.8). Full interconnection

(Scenario 5) would reduce carbon emissions by 62% relative to Scenario 1 and generate over

$100 billion in benefits if the SCC exceeds $100. These benefits, which would need to be

compared with the costs of transmission capacity expansion, shows the advantage of allowing

electricity to move from low to high value locations.47

Moving electricity from low to high value times requires electricity storage. To see

whether storage increases renewable capacity, we present results for a variety of battery

capital costs in conjunction with baseline and reduced renewable capital costs (Figure 8 and

Table A.10).48

Four results stand out. First, the results for the model with storage at baseline costs offer

only modest benefits relative to the model without storage, regardless of the renewable costs.

Second, decreases in battery costs give higher benefits if renewable costs decrease. In Panel A

of Table A.10, differences in emissions, benefits, and renewable capacity are small except for

the case in which batteries become completely free. In Panel B, reductions in battery costs

lead to decreases in emissions and increases in benefits, but little differences in renewable

capacity (except when batteries are free). Third, if battery capacity is completely free, the

optimal battery capacity is enormous. Figure A.10 shows the cumulative battery storage

required in each region to generate all electricity from a single technology. The interseasonal

storage requires exceptionally large battery capacity which is only optimal if batteries are

costless and never justifies the required subsidies.49 Fourth, as discussed in Result 3 in

the theory section, costless batteries may not lead to any renewable capacity: at baseline

renewable costs, generation is exclusively from natural gas in most regions.50 Overall our

47Figure A.9 show the first best transmission capacity expansion, assuming a SCC of $100.
48Following Result 2, only the technology with the lowest levelized cost would be constructed if battery

costs fall 100%, i.e., are costless. These levelized costs and required capacities are shown in Table A.9.
49Battery utilization can be measured by 0.5∗∑t ∣bt∣/S̄, which can be interpreted as the number of times the

average battery is fully charged and discharged per year. For the free battery, this statistic is approximately
six indicating very low utilization of the batteries.

50The generation by region is shown in Figure A.11 for baseline renewable costs and Figure A.12 for 25%
reduction in renewable costs.
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calculations show the benefits of batteries are modest unless technological innovation can

make batteries costless.

4.4 Policy Interactions and Second Best

In our model, the only policy required to obtain the first-best outcome is the Pigouvian

carbon tax. In practice, such a policy is unlikely to be implemented due to a variety of

political, institutional, equity, and informational constraints. Instead, jurisdictions may have

multiple concurrent policies, such as a modest carbon tax coupled with renewable subsidies.

Table 3 illustrates policy interactions between carbon taxes and renewable subsidies as-

suming the SCC is $100. In this case, the first best policy is the Pigouvian carbon tax of $100

which yields welfare gains of $46.7 billion. With this carbon tax, any renewable subsidy is

purely distortionary and would reduce welfare. If however, the carbon tax is not Pigouvian,

then a renewable subsidy can increase welfare. For example, if the carbon tax is only $50,

then a renewable subsidy of 25 percent is second best and yields welfare that is only about

6 percent worse than first best.51 Conversely, in the presence of a renewable subsidy, the

second-best carbon tax may be less than Pigouvian. If a carbon tax is feasible, then the

optimal policy combination is simply the Pigouvian carbon tax. However, if a carbon tax is

not feasible, then the second-best policy combination may require complementary policies.

Assuming a carbon tax is infeasible, Table 4 shows second-best single policies and the

relative welfare gains of policy combinations.52 Panel B presents the welfare gains from

each second-best policy in isolation for different SCCs. The second-best renewable subsidy

achieves higher welfare gains than either a second-best solar or wind subsidy alone and can

attain a substantial proportion of the first-best welfare gains. For a SCC of $200, the second-

best nuclear subsidy attains even higher welfare than the second-best renewable subsidy.

Combined with our earlier results, we see that from both second-best and cost-effectiveness

perspectives, the renewable subsidy is better for modest decarbonization, but the nuclear

subsidy is better for more ambitious decarbonization. In contrast to both renewable and

51A subsidy of x% means a subsidy which reduces the capital cost of the technology by x% relative to the
baseline.

52More detail on the results presented in Table 4 are presented in Tables A.10 through A.16.
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nuclear subsidies, second-best battery subsidies alone are quite ineffective and yield virtually

no welfare gains.

We say two policies are complementary if the welfare when the policies are optimized

jointly is greater than the maximum of welfare when the policies are optimized in isolation.

Panel B of Table 4 presents the welfare gains of second-best policy combinations relative

to the maximum of either policy alone.53 Batteries are touted as complementary to renew-

ables, and indeed, we find positive but modest welfare gains to battery subsidies combined

with renewable subsidies. Welfare gains are largest for battery and solar subsidies, but even

these complementary policies have lower welfare than the second-best wind subsidy. These

gains are modest despite the facts that wind is not correlated with demand and solar power

is not available at night. Interestingly, solar and wind subsidies exhibit a symmetric com-

plementarity: The second-best subsidies are each 50%.54 This symmetry is likely due to

correlations between wind and solar capacity factors and demand. To further illustrate, Fig-

ure A.13 shows the level sets for welfare as a function of the subsidies for wind and solar. The

level sets show that welfare increases most by increasing wind and solar subsidies together.

Figure A.14 shows a different pattern for renewable and nuclear subsidies. Although the

second-best combined policy subsidizes both renewables and nuclear, almost all the welfare

gains can be achieved by subsidizing only renewables.

The policy interactions also can illustrate the possibilities described in Result 3 for carbon

emissions. Figure A.15a shows level sets for carbon emissions with wind and solar capital cost

subsidies. The iso-emissions lines illustrate that increasing one of the subsidies decreases (or

holds constant) carbon emissions. In contrast, in Figure A.15b an increase in the renewable

subsidy increases carbon emissions for the nuclear subsidy of 50%.

53More formally, let WA be the second-best welfare attained by policy A when policy B is zero; let WB be
the second-best welfare attained by policy B when policy A is zero; and let WAB be the second-best welfare
attained by combining policy A and policy B. Panel C of Table 4 shows WAB −max{WA,WB}.

54Across a finer grid of subsidy values, the second-best subsidies are 48% and 49% instead of 50% and
50%.
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5 Electrification Results

A decarbonized economy requires both a decarbonized electricity sector and electrification of

other sectors. By increasing electricity demand, electrification may increase prices in some

hours and induce capacity expansion in the long run. The additional capacity may directly

affect emissions and can potentially lower prices and increase electricity consumption in other

hours. To analyze these complex interactions, we first model small increments to load and

then model large scale electric vehicle (EV) adoption. In both cases we consider baseline

costs well as lower renewable capital costs.

Electrification has different temporal and locational effects. For each hour and region, we

consider a one percent electricity load shock and determine the resulting long-run changes in

emissions, total generation, and renewable generation.55 The results are shown in Figure 9,

Figure A.16, and Figure A.17, respectively. In the baseline parameterization, there are seven

regions for which a load shock in any hour simply leads to an increase in the generation

of combined-cycle natural gas and hence emissions increase at the emissions rate of this

technology (about 0.34 mt per MWh).56 In other regions, the long-run effects depend on

the hour of the load shock. In Central, Florida, SouthEast, NorthWest, SouthWest, and

Texas, a load shock at night leads to an increase in natural gas generation, but a load shock

during the day leads to an increase in solar generation. In some regions, e.g., SouthWest

and Texas, the increase in solar generation may more than offset the load shock, decrease

natural gas generation, and lead to negative incremental emissions. Note also that load

shocks in other hours of the day may lead to an increase in natural gas generation which is

more than equivalent to the load shock and thus reduces solar generation. In these hours,

long-run incremental emissions exceed the natural gas emissions rate, e.g., for some night

and/or early morning hours in Central, Florida, NorthWest, SouthWest, and Texas.

A 25% reduction in renewable capital costs generally lowers incremental emissions. Mid-

day incremental emissions are zero or negative in all regions except New England. In regions

with substantial wind availability: e.g., Central and Texas, the incremental emissions may

55The load shock is simply a parallel shift of our linear demand for that hour of day on each day of the
year.

56The seven regions are Carolinas, MidAtlantic, MidWest, New England, New York, Tennessee, and
California.
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be zero or negative in many more hours of the day. In Central, incremental emissions are

very low in all hours of the day, and in Texas, the lower renewable capital costs shift the

hours with zero or negative incremental emissions from the mid-afternoon to late morning

due to higher wind generation. (Figure A.17). These incremental emissions illustrate the

locational and temporal differences in the effects of electrification.

Large-scale electrification, such as EV adoption, requires increases in electricity usage

across multiple hours and substantial increases in load. To analyze this, we calculate the

annual EV electricity demand by first assuming electricity use of 0.25 kWh per mile at 68

degrees Fahrenheit and adjusting for locational differences in temperature to give a county-

level electricity consumption rate per mile. We then multiply by the county-level vehicle

miles traveled (VMT) and aggregate up to the EIA region.57 Annual EV electricity demand

for each EIA region is then spread across hours assuming a charging profile. We first consider

a Convenience charging profile from EPRI which assumes EVs are charged primarily at night

and a Carbon Minimizing profile which charges primarily in the afternoon.58

Table 5 shows the effects of 50% or 100% EV adoption. For the Convenience charging

profile, using EVs for 50% of light-duty VMT would increase carbon emissions from electricity

by 12% or 130 mmt. Using EV’s for 100% of VMT (entirely eliminating gasoline-powered

vehicles and their carbon emissions) would only increase carbon emissions from electricity by

23% or 254 mmt. If we normalize by the EV electricity demand, the incremental emissions,

generation, and renewable generation show that the incremental emissions are approximately

that of natural gas, and that EV adoption does not crowd out other electricity uses but

does reduce long-run renewable generation. For the Carbon Minimizing profile, 100% EV

adoption only increases electricity sector emissions by 7% or 76 mmt. This profile has smaller

incremental emissions because it increases long-run renewable generation: each MWh of EV

demand induces 0.7 MWh of renewable generation.

If renewable capital costs are 25% lower (Panel B of Table 5), the difference between the

profiles is even starker. The Convenience profile has incremental emissions approximately

that of natural gas and reduces renewable generation. However, the Carbon Minimizing

57We use miles traveled data from the US EPA Moves model for year 2011 light duty vehicles.
58This charging profile, which is loosely based on the incremental emissions in Figure 9, has 20% of the

charging in hours 12, 13, and 14, and has 40% of the charging in hour 15.
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profile adds about 1.3 MWh of renewable generation for each MWh of EV charging which

leads to negative incremental emissions, without crowding out other electricity consumption.

This striking result shows that it is possible to completely electrify vehicle transportation

while also reducing electricity-sector carbon emissions.

Whether it is optimal to do this depends on the trade-offs between carbon emissions, other

electricity consumption, and generation costs. We evaluate these trade-offs by considering

the welfare gains from EV adoption for seven charging profiles (Table 6).59 If the SCC

is zero, then the Private Profile is optimal. This profile charges primarily at night (see

Figure A.18), has welfare gains of $71 billion, and results in carbon emissions of from the

electricity sector of 1,339 mmt (a 21% increase). If the SCC is $100 per ton, the Social Profile

is optimal. This profile charges primarily during the day (see Figure A.18), has welfare gains

of $134 billion, and results in carbon emissions of 1,243 mmt (a 12% increase). With lower

renewable capital costs (Panel B of Table 6), the results are similar: the Private Profile

increases carbon emissions by 18% and the Social Profile increases carbon emissions by 5%.

The Social Profile does not reduce carbon emissions as aggressively as charging under the

Carbon Minimizing profile would because it accounts for the effects on consumer’s surplus

and the cost of generation.

These differences across charging profiles illustrate the importance of electrification tim-

ing for long-run decarbonizaton. The hours when electricity is used can be affected by

pricing policies (e.g., time-of-use pricing) and infrastructure construction (e.g., the locations

of charging stations). Our results show that policies and infrastructure that encourage EV

charging during the daytime can contribute to decarbonization goals.

6 Conclusion

Decarbonization will require completely transforming the electricity grid, and our long-run

model can provide guidance to the end goal of policy for the electricity sector. By ignoring

59The calculation of welfare gains is described in detail in Online Appendix A.4. In addition to the
consumer surplus, generation costs, capital costs, and externalities from the electricity sector, it accounts
for the consumer surplus, operating costs, capital costs and externalities from driving gasoline vehicles. It
does not account for the any cost to the consumers of charging vehicles at inconvenient times.
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legacy investments and transition costs, we can construct a simple and transparent frame-

work for understanding the long-run effects of carbon policy in the electricity sector and of

electrification. By capturing crucial aspects of the electricity industry such as time-varying

demand, renewable intermittency, costly storage, and generation capacity, this framework

can provide novel and realistic policy assessments.

Our theoretical model demonstrates that several surprising long-run effects are feasible

with regards to carbon taxes, storage, and electrification. For example, a carbon tax could

increase electricity consumption. This would require that time periods when load is saturated

with renewable generation to become much more price sensitive: several companies, like

WattTime, are now providing data when renewables are likely marginal. If this leads to

greater consumption during these times, then this theoretical possibility could materialize.

Second, we note that cheaper storage could decrease renewable capacity investment. Unless

renewables become notably cheaper than combined cycle gas turbines, our calibrated model

shows that renewables would be driven out of the market in most parts of the US if batteries

are very inexpensive. Finally, we note that expected electricity demand growth (for example,

due to greater EV penetration) could potentially decrease total emissions in the electricity

sector. Using our calibrated model, we show that this is feasible if the EV charging is done

in the daytime. Large adoption of charging stations in shopping centers and workplaces

may facilitate this. However, current charging patterns are mostly in the evening, and this

charging pattern leads to greater use of fossil fuels and a crowding out of renewables.

Beyond testing these theoretical predictions, our calibrated model provides quantitative

predictions regarding key climate policies. We demonstrate that high carbon prices would

lead to a national portfolio mix of nuclear, wind, and solar, albeit with notable heterogeneity

across regions. Renewable subsidies outperform nuclear subsidies for modest decarboniza-

tion goals, but the ranking is reversed for ambitious goals. Transmission expansion reduces

emissions only if paired with renewables polices. In particular, linking Midwest wind and

Southwest solar to load centers has large environmental benefits. Batteries may be com-

plements with renewables if both are subsidized. Note that this is consistent with current

policy that allows the investment tax credit to apply to batteries that are co-located with

solar investment (which also uses the Investment Tax Credit).
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Our results show the surprising conclusion that the benefits of batteries are modest unless

technological innovation dramatically decreases their capital costs. This is perhaps at odds

with the intuition that batteries are required to integrate renewable generation into the grid.

Some of features of the model, in particular the assumption that there is a non-zero demand

elasticity and the fact that our observed renewable capacity factors may not accurately

characterize the full distribution, may suggest that our results understate the benefits for

batteries. But other features of the model may suggest our results overstate the benefits of

batteries. We have assumed that there are no losses charging the battery, there are no losses

storing energy in the battery across periods, the battery can be fully charged or discharged

in single time period, and battery operation is done with perfect foresight. Evaluating these

assumptions further will take additional study, but it is not obvious that one would dominate

the other.60

Although it is known that the environmental effects of electric vehicle adoption depend

on the timing of charging (Holland et al. (2022)), our results, taken in conjunction with this

previous literature, show that these effects also depend on the time horizon of the analysis.

In the short run, the emissions-minimizing time to charge is when renewables are curtailed

or when coal is less likely to be on the margin. In the long run, charging only during times

with high renewable capacity factors induces entry and may result in negative emissions from

the grid. Accounting for the tension between the long run and short run in a unified model

of the transition to electric vehicles would be an interesting direction for future research.

Our modeling framework has several important caveats. Many of our parameter calibrations

are highly uncertain, so sensitivity analysis is crucial. We use a small but non-zero price

elasticity which assumes that prices clear electricity markets. In extreme circumstances, non-

price rationing occurs in electricity markets, and this might be an additional benefit from

storage which is not accounted for in our model. Legacy technologies and transition costs

may play a role in the feasibility of grid investments. More detailed demand calibrations

and modeling of transmission congestion are important possible extensions of our work. In

addition, actual solar and wind generation data for several missing regions would allow better

60See Section A.5 for a preliminary analysis of the effect of demand elasticity.
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capacity factor estimates. Given these caveats, our theoretical and calibration results provide

important insights for long-run electricity policy which short-run analysis cannot assess.
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Appendix: Proofs

Lemma 1 If ci > ci′ and qit > 0, then qi′t = fi′tKi′.
Proof : Suppose qi′t < fi′tKi′ . This implies that λi′t = 0 which then implies that pt ≤ ci′ . But
qit > 0 implies that pt = ci + λit ≥ ci, which contradicts the assumption ci > ci′ . ∎

Lemma 2 If ∑i fitKi > bt, then pt = mini{max{ci, U ′(∑i′≤i fi′tKi′ − bt)}}.
Proof : For notational simplicity, assume the technologies have unique costs. Because
Lemma 1 implies a unique ordering of the technologies, let ρit ≡ U ′(∑i′≤i fi′tKi′ − bt) be
the marginal benefit if all technologies with marginal cost less than or equal to ci generate at
capacity and if net battery charging is bt. Falling marginal benefit implies that ρit > ρ(i+1)t
for all i. Moreover, it is easy to show that technology i operates at capacity in period t if
ρit > ci.

Let technology ι be the highest cost technology with qιt > 0 in period t. It is easy to see
that ριt < cι+1 (otherwise technology ι + 1 would be utilized) and that ρ(ι−1)t > cι (otherwise
technology ι would not be utilitized).

For technology ι, we know that the electricity price is pt = cι if cι > ριt and pt = ριt
if ριt > cι. This implies that pt = max{cι, ριt}. Now for technology i < ι, generation is at
capacity so max{ci, ρit} = ρit. Alternatively, for technology i > ι, generation is zero, which
is less than capacity, so max{ci, ρit} = ci. Combining implies that mini{max{ci, ρit}} =
min{ρ1t, ρ2t, ..., ρ(ι−1)t, pt, c(ι+1), c(ι+2), ..., cI} = pt.∎

Lemma 3 If St = 0, then pt+1 ≤ pt. If 0 < St < S̄, then pt+1 = pt. If St = S̄, then pt+1 ≥ pt.
Proof : First note that φt = pt. If St = 0, then µt = 0, so the first order condition inequality
directly implies that pt+1 − pt = φt+1 − φt ≤ 0. If 0 < St < S̄, then µt = 0 and the inequality
binds from the complementary slackness condition so pt+1 − pt = 0. If St = S̄, then µt ≥ 0 and
0 = pt+1 − pt − µt ≤ pt+1 − pt, so pt+1 ≥ pt. ∎

Proposition 1 The derivatives can be written:

dL/dKi = ∑
t

max{pt − ci,0}fit − ri = (∑
t

(pt − ci)qit − riKi) /Ki.

and dL/dS̄ = ∑t −ptbt/S̄ − rs.
Proof : From the first-order conditions, we have that pt − ci ≤ λit. Because λit ≥ 0 we have
λit ≥ max{pt − ci,0}. Proof by contradiction shows that λit = max{pt − ci,0}. Summing over
all t establishes the first formula.61 The second formula follows because qit = 0 if pt < ci, qit =
fitKi if pt > ci and qit ∈ [0, fitKi] if pt = ci. For each of these three cases: first, pt < ci implies
max{pt − ci,0}fit = 0 = (pt − ci)qit; second pt = ci implies max{pt − ci,0}fit = 0 = (pt − ci)qit;
and third pt > ci implies max{pt − ci,0}fit = (pt − ci)fit = (pt − ci)qit/Ki. Summing over all t
establishes the second formula.

For the battery, Lemma 3 allows us to identify a charging cycle, C: the time period over
which the price falls when the battery is empty, the price is flat while the battery charges,

61Suppose λit > max{pt − ci,0}. Then λit > 0 which implies that qit = fitKi > 0 which implies λit = pt − ci
which is a contradiction.
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the price increases while the battery is full, and then the price is flat while the battery
discharges completely. For this charging cycle C, let p be the lower price when the price
battery is charging, and let p̄ be the higher price when then battery discharges. To evaluate

∑t∈C µt, first note that µt = 0 if St < S̄ and µt = pt+1 − pt if St = S̄. In the charging cycle,
µt = 0 except when the price is rising. During this time, the sequence of µt will be pt1 − p,
pt2 − pt1 , pt3 − pt2 , ..., p̄ − ptn , which implies that ∑t∈C µt = p̄ − p. To evaluate ∑t∈C −ptbt, first
note that bt is zero while the price is falling. Then while the price is flat and the battery is
charging, bt > 0 and ∑−ptbt = −pS̄. While the price is rising bt = 0 so ∑−ptbt = 0. Finally

while the price is flat and the batter is discharging, bt < 0 and ∑−ptbt = p̄S̄. Thus for the
charging cycle C, ∑t∈C −ptbt = (p̄− p)S̄. Dividing by S̄ and summing over all charging cycles
establishes the result.∎

Result 1 If carbon taxes increase, ∆τ > 0, then emissions decrease, ∆∑i∑t βiqit < 0, but
total electricity consumption can increase or decrease, i.e., ∆∑tQt ≶ 0.
Proof : The first statement follows directly from the increase in costs of any polluting
technology.

To show that total electricity consumption can increase or decrease, consider a two period
model with two dispatchable technologies. Assume technology 1 has zero marginal cost and
zero emissions, but technology 2 has positive marginal cost and positive emissions. Let
H indicate the high demand period and L indicate the low demand period. It is easy to
verify that both technologies are used and the equilibrium prices are pH = c2 + β2τ + r2

and pL = r1 − r2 − c2 − β2τ if DL(pL) < DH(pH) and pL < c2 + β2τ . Now consider ∆τ > 0.
Clearly ∆pH = β2∆τ > 0 and ∆pL = −β2∆τ < 0 which implies that ∆(DH(pH) +DL(pL)) ≈
D′
H∆pH +D′

L∆pL = β2∆τ(D′
H −D′

L) which can be positive or negative. For example, if the
demand is period L is very elastic, then (D′

H −D′
L) > 0. In this case, the increase in demand

in period L exceeds the decrease in demand in period H so total consumption increases.∎

Result 2 If the capital costs of storage, rs, decreases, renewable capacity can increase or
decrease. If rs = 0, then the equilibrium electricity price is the same in each period, i.e.,
pt = p̄ for all t, where p̄ is given by

p̄ = min
i

{ci +
ri

∑t fit
}.

Moreover, if the levelized cost, ci + ri
∑t fit

, is unique across technologies, then the capacity of

the technology i that satisfies the minimum is given by Ki = ∑tDt(p̄)
∑t fit

.
Proof : We begin by showing that if rs = 0, then pt is constant for all t. Suppose pt > pt′
for some t and t′. This implies that U ′

t(Qt) > U ′
t′(Qt′) so the objective in (2) could be

increased by marginally increasing Qt and decreasing Qt′ . Because rs = 0, this marginal
change is feasibly by keeping qit fixed and (costlessly) increasing S̄ if necessary. Therefore,
pt is constant at some value p̄.

Because price is constant, Prop. 1 and Eq. (7) imply dL/dKi = ∑t max{pt − ci,0}fit − ri =
(p̄ − ci)∑t fit − ri ≤ 0 for all i which implies that p̄ = mini{ci + ri

∑t fit
}.

To determine the optimal capacity, note that consumption Qt is determined by U ′
t(Qt) = p̄

so annual consumption is ∑tQt = ∑tDt(p̄). The perfect battery implies that generation from
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the single technology is always at capacity. Annual consumption equal to annual generation
implies that ∑tDt(p̄) = ∑t fitKi which can be solved for Ki.

To show that renewable capacity can increase or decrease if rs decreases, consider a two
period model with two technologies: gas, g, and renewable, r, where renewable generation
is only available in the high-demand period. Suppose initially the cost of storage rs is large
enough that storage will not be used. If cg + rg > rr > cg, then it is easy to verify that the
equilibrium has positive capacity for both technologies and has a high-demand period price of
pH = rr and a low-demand period price of pL = cg+(rg+cg−rr) and capacities Kg =DL(pL) and
Kr =DH(pH)−Kg. If rs decreases to zero, the equilibrium price approaches min{cg+rg/2, rr}.
If cg + rg/2 < rr, then gas is the only technology used, and renewable capacity must decrease.
Conversely, if cg + rg/2 > rr, then only renewable generation is used, and renewable capacity
must increase.62 ∎

Result 3 If the capital cost of renewables decreases then carbon emissions can increase or
decrease, i.e., ∆∑i∑t βiqit ≶ 0.
Proof : Proving that cheaper renewables decrease carbon emissions is straightforward. Here
we prove that ∆∑i∑t βiqit can be positive with an example with two time periods, A and
B, equal demand in each time period, and three technologies. Technology 1 (renewable)
is available only in period A, i.e., has capacity factors f1A = 1 and f1B = 0. Technology 2
(nuclear) and Technology 3 (gas) are dispatchable. Assume c1 = c2 = 0 and β1 = β2 = 0 but
c3 > 0 and β3 > 0. Further assume c3 + r3 < r2 < 2c3 + r3 which implies that Technology 3 is
cheaper for satisfying demand in only one period, but Technology 2 is cheaper for satisfying
two periods.

If r1 is large such that r1 > r2/2, then it is easy to see that the equilibrium has only
Technology 2 with prices pA = pB = r2/2 and zero emissions. If r1 falls slightly such that
r2/2 > r1 > r2 − c3 − r3, then the equilibrium has Technologies 1 and 2, has prices pA = r1 and
pB = r2−r1, and still has zero emissions. However, if r1 falls further such that r1 < r2−c3−r3,
then the equilibrium has Technologies 1 and 3, has prices pA = r1 and pB = c3 + r3, and has
positive emissions. ∎

Result 4 If electricity demand increases in some period(s), then carbon emissions can
increase or decrease, i.e., ∆∑i∑t βiqit ≶ 0.
Proof : As in the preceding proof, consider a two period model with two dispatchable tech-
nologies. Assume technology 1 has zero marginal cost and zero emissions, but technology
2 has positive marginal cost and positive emissions. Let H indicate the high demand pe-
riod and L indicate the low demand period. With no taxes, it is easy to verify that both
technologies are used and the equilibrium prices are pH = c2 + r2 and pL = r1 − r2 − c2 if
DL(pL) <DH(pH) and pL < c2. Note also that K1 =DL(pL) and K1 +K2 =DH(pH) so emis-
sions are only in period H and are β2K2. Importantly, note that pL and pH are determined
by ri and ci so they are not affected by increments to demand.

62For example, suppose DH = 6 − pH ; DL = 5 − pL; cg = 1; and rr = 2. If rg = 3, then without storage
pH = 2;pL = 3 and storage increases Kr. On the other hand, if rg = 1.5, then without storage pH = 2;pL = 1.5
and storage decreases Kr.
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Now consider an increment δ to demand in period H. Since prices are unaffected, K1

is also unaffected, and ∆K2 = δ > 0. But this implies that the change in emissions, βδ, is
positive.

Now consider an increment δ to demand in period L. Since pL is unaffected, ∆K1 = δ.
But because pH is also unaffected, we have ∆K2 = −δ < 0, which implies that the change in
emissions, −βδ, is negative.∎
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Tables and Figures

Tables

Table 1: Capital and Marginal Costs for Different Technologies

Overnight Annual Marginal CO2

Cost Capital Cost Cost Emissions
($/kW) ($/MW) ($/MWh) (tons/MWh)

Gas Combustion Turbine 585 54,741 44.13 0.526
Gas Combined Cycle 871 79,489 26.68 0.338
Advanced Nuclear 5,852 528,307 2.38 0
Wind (onshore) 1,426 132,602 0 0
Solar PV 878 83,274 0 0
Battery Storage 205∗ 18,935∗ 0 0

Notes: Source EIA (2021) “Table 1b. Estimated unweighted levelized cost of electricity (LCOE) and
levelized cost of storage (LCOS) for new resources entering service in 2026 (2020 dollars per megawatthour)”.
“Overnight Cost” is the levelized capital cost in Table 1b adjusted for the capacity factor and capital recovery
factor assuming a 30-year cost recovery period and a weighted average cost of capital (WACC) of 5.4%.
“Annual Capital Cost” is the sum of the levelized capital, fixed O&M, and transmission costs from Table 1b
adjusted for the capacity factors. “Marginal Cost” is the levelized variable cost from Table 1b. Capital cost
of battery storage is in MWh. All dollar amounts in the paper are in 2020 dollars.

Table 2: Benefits of carbon pricing

Carbon Electricity Annual Welfare Gains ($ billions)
Price Price CO2 for SCC of

($/ton) ($/MWh) (mmt) $0 $50 $100 $150 $200
0 37.65 1,107 0.0 0.0 0.0 0.0 0.0

50 50.92 554 -16.1 11.6 39.3 66.9 94.6
100 55.92 254 -38.6 4.1 46.7 89.4 132.0
150 56.52 78 -59.7 -8.2 43.2 94.7 146.1
200 56.04 26 -68.7 -14.6 39.5 93.6 147.6

Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Elec-
tricity price is the quantity-weighted average price. Welfare gains are relative to the baseline without carbon
pricing and include lost private surplus plus gains from carbon tax revenue and from reduced carbon emissions
evaluated at the assumed SCC.
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Table 3: Welfare gains of carbon tax and renewable subsidy interactions with battery

Carbon Tax Renewable Subsidy
0 0.1 0.25 0.5 0.75 0.95

0 0.0 4.7 16.7 36.9 6.5 -193.8
10 6.8 12.5 31.8 38.0 2.7 -195.8
25 17.1 29.1 40.4 38.1 -2.3 -198.5
50 40.2 43.8 45.3 34.8 -8.5 -202.0
75 46.6 47.4 45.6 30.7 -13.1 -204.4
100 48.1 47.3 44.0 27.0 -16.2 -206.4
125 47.0 46.1 41.1 24.1 -18.3 -208.4

Notes: Welfare gains ($ billions annually) are relative to baseline with storage and are gains in private
surplus plus gains from reduced carbon emissions evaluated at the assumed SCC of $100 minus any subsidy
expenditures plus revenue from any carbon tax. A carbon tax of $100 and renewable subsidy of zero is first
best.
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Table 4: Second-best policies

Annual Welfare Gains ($ billions)
for SCC of

Policy $50 $100 $150 $200

Panel A: First best
Pigouvian Carbon Tax 11.91 48.12 97.56 151.89

Panel B: Second-best subsidy
Renewable 6.23 36.88 70.42 103.97

[25] [50] [50] [50]

Solar 3.47 17.55 33.34 54.43
[25] [50] [50] [75]

Wind 3.26 26.63 53.86 81.10
[25] [50] [50] [50]

Nuclear 0.00 13.34 60.75 108.17
[40] [50] [50] [50]

Battery 0.05 0.20 0.34 0.49
[25] [25] [25] [25]

Panel C: Relative gains of second-best subsidy combination
Battery and Renewable 0.14 0.48 2.02 5.06

[25,25] [25,50] [50,50] [75,50]

Battery and Solar 0.08 0.44 2.43 7.19
[25,25] [25,50] [50,50] [50,75]

Battery and Wind 0.08 0.13 0.50 0.90
[25,25] [25,50] [25,50] [50,50]

Battery and Nuclear 0.00 0.37 1.46 3.18
[25,0] [25,50] [50,50] [50,50]

Renewable and Nuclear 0.00 0.12 5.25 6.19
[25,0] [50,50] [50,50] [50,50]

Solar and Wind 2.76 10.25 16.56 22.87
[25,25] [50,50] [50,50] [50,50]

Notes: Welfare gains are relative to baseline with storage and are gains in private surplus plus gains from
reduced carbon emissions evaluated at the SCC minus any subsidy cost plus revenue from any carbon tax.
Panel B shows welfare of the second-best single policy. Panel C shows the maximum welfare gain from the
two complementary policies relative to the best that can be attained by either policy in isolation. Numbers
in brackets are the second-best policy values in percentage cost reduction.
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Table 5: Effects of electric vehicle adoption

Electricity Incremental Incremental Incremental
Charging EV Price CO2 Emissions Generation Renewables

Profile Share ($/MWh) (mmt) (mt/MWh) (MWh/MWh) (MWh/MWh)

Panel A: Baseline renewable capital costs
0% 37.65 1,107 . . .

Convenience
50% 37.54 1,237 0.38 0.99 -0.13
100% 37.07 1,361 0.37 0.98 -0.11

Carbon Minimizing
50% 35.29 1,139 0.09 0.96 0.71
100% 31.58 1,183 0.11 0.98 0.72

Panel B: 25% reduction in renewable capital costs
0% 36.51 903 . . .

Convenience
50% 36.40 1,032 0.38 0.98 -0.13
100% 35.98 1,148 0.36 0.98 -0.08

Carbon Minimizing
50% 34.68 857 -0.13 0.99 1.39
100% 30.57 842 -0.09 1.02 1.32

Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Incre-
mental emissions is the change in emissions relative to the change in EV demand; incremental generation is
the change in generation relative to the change in EV demand; and incremental renewables is the change in
generation from wind plus solar relative to the change in EV demand.
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Table 6: Welfare gains of 100% electric vehicle adoption

Electricity Annual Welfare Gains ($ billions)
Charging Price CO2 for SCC of

Profile ($/MWh) (mmt) $0 $50 $100 $150 $200

Panel A: Baseline renewable capital costs
Convenience 37.07 1,361 68.2 96.2 124.2 152.2 180.2

Carbon Minimizing 31.58 1,183 45.4 82.3 119.2 156.1 193.0
Flat 37.65 1,340 68.5 97.6 126.7 155.7 184.8

Solar Profile 37.00 1,254 64.4 97.7 131.1 164.5 197.8
Wind Profile 37.64 1,344 68.4 97.3 126.2 155.1 183.9

Private Profile 37.30 1,339 71.1 100.2 129.3 158.4 187.5
Social Profile 36.81 1,243 66.5 100.4 134.4 168.3 202.2

Panel B: 25% reduction in renewable capital costs
Convenience 35.98 1,148 60.4 88.9 117.3 145.8 174.2

Carbon Minimizing 30.57 842 36.0 79.8 123.5 167.3 211.0
Flat 36.52 1,103 60.2 90.9 121.6 152.3 183.0

Solar Profile 36.02 964 55.1 92.7 130.4 168.1 205.8
Wind Profile 36.51 1,111 60.2 90.6 120.9 151.2 181.6

Private Profile 36.09 1,066 62.5 95.0 127.6 160.2 192.7
Social Profile 35.71 946 55.9 94.4 133.0 171.6 210.1

Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Annual
welfare gains are for 100% EV adoption relative to zero EV adoption. The “Flat” profile has equal charging
in all hours; the “Solar Profile” has charging proportional to the average solar capacity factor for that hour
in that region; the “Wind Profile” has charging proportional to the average wind capacity factor for that
hour in that region; the “Private Profile” charges EVs to maximize welfare assuming no carbon damages;
and the “Social Profile” charges EVs to maximize welfare assuming the SCC is $100.
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Figures

Figure 1: Mean hourly observed demand by season and hour of day for each
EIA region.
Notes: Demand in thousands of MWh.
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Figure 2: Mean hourly capacity factors by season and hour of day for each EIA
region.
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(a) Linear demand.

(b) Iso-elastic demand.

Figure 3: Carbon pricing aggregated across all regions.
Notes: Baseline parameterization with no storage and no interregional transmission. Results aggregated
across all regions.
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Figure 4: Carbon pricing for each region.
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission.
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Figure 5: Reduction in renewable capital costs.
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Results
aggregated across all regions. Generation is utilized generation, and the percentages show the percent of
potential renewable generation which is curtailed (not utilized).
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Figure 6: Reduction in nuclear capital costs.
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Results
aggregated across all regions.
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(a) Baseline renewable capital costs.

(b) 25% reduction in renewable capital costs.

Figure 7: Scenarios increasing transmission.
Notes: Baseline parameterization with iso-elastic demand and no storage. The Baseline (Scenario 1) has 13
distinct transmission regions. Scenario 2 has 5 distinct transmission regions: NE, SE, MW, Texas, and West.
Scenario 3 has 3 distinct transmission regions: East, Texas, and West. Scenario 4 has 2 distinct transmission
regions: East plus Texas, and West. Scenario 5 has 1 unified transmission region for the whole country.
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(a) Baseline renewable capital costs.

(b) 25% reduction in renewable capital costs.

Figure 8: Reduction in battery capital costs.
Baseline parameterization with linear demand and no interregional transmission aggregated across all re-
gions.
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Figure 9: Incremental emissions by hour-of-day load shocks for each EIA region.
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Sce-
narios show 10% and 25% reductions in renewable capital costs. Vertical axis is the change in emissions
(lbs/kWh) across all hours from a one percent shock to load in only hour h each day of the year.
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Online Appendices

A.1 Model with imperfect storage

The main model assumes that storage is perfect, e.g., that there are no conversion losses

from charging or discharging a battery and that the battery state does not decay over time.

These assumptions may be more or less appropriate for different storage technologies, e.g.,

batteries, pumped hydropower storage, molten salt storage, flywheels, etc.

Here we extend the model in the main text to account for imperfect storage. Let β ∈ [0,1]

denote the conversion loss from charging or discharging the battery. Let α ∈ [0,1] denote

the battery state decay rate. Let bct ≥ 0 be the electricity drawn from the grid to charge

the battery in period t and bdt ≥ 0 be the electricity injected into the grid from the battery

discharge in period t. The state of the battery, St, depends on charges and discharges to the

battery and evolves according to

St = αSt−1 + (1 − β)bct − (1 + β)bdt.

The electricity balance in each period requires that Qt + bct − bdt ≤ ∑i qit, i.e., consumption

plus net battery charge cannot exceed electricity generation from all sources.

With these modifications to the planner’s problem, the new Kuhn-Tucker first-order

conditions are

Qt ≥ 0 dL/dQt = U ′
t(Qt) − pt ≤ 0 ∀t C.S. (9)

qit ≥ 0 dL/dqit = −ci + pt − λit ≤ 0 ∀i, t C.S. (10)

bct ≥ 0 −pt + (1 − β)φt ≤ 0 ∀t C.S. (11)

bdt ≥ 0 pt − (1 + β)φt ≤ 0 ∀t C.S. (12)

St ≥ 0 dL/dSt = αφt+1 − φt − µt ≤ 0 ∀t C.S. (13)

Ki ≥ 0 dL/dKi = ∑
t

λitfit − ri ≤ 0 ∀i C.S. (14)

S̄ ≥ 0 dL/dS̄ = ∑
t

µt − rs ≤ 0 C.S. (15)
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A.2 Renewable capacity factors for missing regions

The EIA 930 is missing hourly solar generation for New York and hourly wind generation for

Carolinas, Florida, SouthEast, and Tennessee. To estimate capacity factors for these missing

regions we use the following procedures. For New York solar, we use the NREL National Solar

Radiation Database (NSRDB) which provides half hour values for Direct Normal Irradiance

(DNI) in watts per square meter. We use Boston (ISONE) and Philadelphia (PJM/MIDA) as

comparisons to generate capacity factors for New York (NYISO). First we collapse the DNI

data by hourly average and market. We then regress capacity factor on DNI for ISONE and

PJM/MIDA for daylight hours. Using these regression results, we predict capacity factors

for NYISO and bound these predictions between 0 and 1 (set to zero if DNI is zero).

To determine the wind capacity factors in Carolinas, Florida, SouthEast, and Tennessee,

we collect data on wind speed from NREL (for the year 2014) by site and by hour for

wind potential at different heights.63 In particular, we use wind speed at 80 meters. For

every county centroid in the US, we find the NREL site closest to the centroid, giving one

observation per county per hour. Then we use an equation from the engineering literature to

convert wind speed into an estimated capacity factor by county by hour (ECFH).64 Next we

collapse to an annual average by county, de-mean by state, and create deciles of the residual

for each county.

EPA’s EGRID 2014 data indicates which counties actually have wind turbines. We

calculate what share of counties with wind turbines that are in each decile. In other words,

we determine the probability of building a turbine in each decile (PBTEC). Now using the

ECFH, we take the weighted average across a region using PBTEC. This gives us capacity

factors at the region hourly level, which we call RECFH. The last step is to compare the

predicted capacity factors in the regions for which we have actual capacity factor data for

2019. We calculate the average difference between the 2019 data and the 2014 predictions,

by month and hour. Then we add this “bias” back onto the RECFH in regions for which we

63https://www.nrel.gov/grid/wind-toolkit.html
64See equation (23) in Dioyke, C, 2019, “A new approximate capacity factor method for matching wind

turbines to a site: case study of Humber region, UK”, International Journal of Energy and Environmental
Engineering, https://doi.org/10.1007/s40095-019-00320-5.

2

https://doi.org/10.1007/s40095-019-00320-5 


do not have actual 2019 capacity factor data. Finally these predictions are bounded by zero

and one.

A.3 Aggregation using NEMS time periods

A key feature of our model is that we specify a rich set of representative time periods for

demand and renewables. By basing our calibration on observed hourly demand and renew-

able availability, our model allows for realistic correlations between demand and renewable

availability. Other models consider far fewer representative time periods, which effectively

assumes that electricity demand and renewable availability are constant over many hours.

For example, the base model in NEMS uses only nine representative time periods for each

region with additional submodules available for better modeling of renewables. To see the

effects of coarsening the number of time periods, we apply the NEMS methodology for se-

lecting time periods to our data and re-run the analysis using nine distinct demand curves

(instead of 8760) and nine capacity factors (instead of 8760) for solar and for wind. The nine

time periods in NEMS are constructed from three seasons (Summer, Winter, Fall/Spring),

and three time periods within each season (Peak, Intermediate, Base). The Peak time period

consists of hours in season for which electricity load is in the 99th percentile or above, the

Intermediate time period consists of hours for which the electricity load is between the 50th

and the 99th percentile, and the Base consists of hours in which the electricity load is in the

50th percentile or below (see EIA (2020), pg. 32). Following these definitions, we coarsen

our data by taking the average of electricity load and price over all hours in a NEMS period

and use these averages to define nine distinct demand curves. We use the same procedure

to coarsen data on renewable capacity factors.65

Using these coarsened time periods, we first analyze the effects of carbon pricing. Fig-

ure A.4 shows that a $50 carbon tax almost completely decarbonizes electricity with almost

all electricity from wind or solar. This result is quite different from our main results in

Figure 3 but is similar to Stock and Stuart (2021) who use a modified version of the NREL

65Since 2019 NEMS has added a ReStore submodule with 576 hours to model the usage of storage and
renewables that they then feed back into the nine demand functions.
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ReEDS model and find that a $40 carbon tax achieves robust decarbonization. Unfortu-

nately, the levels of renewable generation from our model with the NEMS time periods are

quite unrealistic. Figure A.5 shows the results by region and shows regions, namely, Florida

and SouthEast, which are entirely solar, which is infeasible without substantial electricity

storage. While these differences warrant further study, they are indicative of the importance

of modeling a rich set of representative time periods for demand and renewables.

A.4 Calculation of Welfare gains from 100% EV Fleet

Consider an initial equilibrium in which the electricity sector is defined by the model in the

paper and the automobile transportation sector consists of only gasoline vehicles. Welfare

associated with electricity use is give by gross consumer surplus (CSe) minus costs of electric-

ity Coste (the sum of marginal and capital costs) minus damages from electricity emissions

De. Welfare associated with gasoline vehicle use is given by gross consumer surplus (CSGV )

minus operating costs (CostGV ) minus damages from emissions (DGV ) minus gasoline vehicle

capital costs (VGV ). In the initial equilibrium total welfare is given by

W = (CSe −Coste −De) + (CSGV −CostGV −DGV − VGV ) .

Next consider a new equilibrium in which the gasoline vehicle fleet is replaced by an electric

vehicle fleet (EV). Total welfare in the new equilibrium is given by

W = (CSe +CSEV −Coste −De) − VEV ,

where CSEV is the gross consumer surplus from driving EV’s and VEV is the capital cost of

EV’s. Taking the difference between the two welfare equations gives

∆ = (∆CSe −∆Coste −∆De) + (CSEV −CSGV ) +CostGV +DGV − (VEV − VGV ) .

The first term on the right hand side calculated from the model in the paper. We assume

that the consumer surplus of driving the two types of cars is approximately the same, and we
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determine the cost of operating the gasoline fleet, the damages from operating the gasoline

fleet, and the capital premium for electric vehicles using data in Table A.17. We have

CostGV = 313g/mile

8887g/gallon
∗ 2600.406 billion miles ∗ $3/gallon = $274.76 billion,

DGV = 313g/mile ∗ metric ton

1000000g
∗ SCC ∗ 2600.406 billion miles,

KEV −KGV = $10689.57 ∗ 17 million cars/year = $181.72 billion.

A.5 Comparison to a capacity expansion model

In our model, consumers respond to real-time electricity prices. If the price of electricity

increases, then the consumption of electricity decreases, albeit by a small amount, given our

assumed price elasticity of −.15. Thus we have a consumer benefit function and the planner

maximizes the difference between benefits and costs. In contrast, papers such as Junge et

al. (2022) employ a capacity expansion model. Here electricity demand is perfectly inelastic

and the planner minimizes the cost of meeting the fixed quantity of electricity demanded.

The inflexibility of demand may give rise to greater benefits from battery storage. To test

this hypothesis, we consider a capacity expansion version of the long-run model in the main

text. Here the planner solves

max
qit,bt,St,Ki,S̄

∑
t

[−∑
i

ciqit] −∑
i

riKi − rsS̄, (16)

subject to the same constraint set as in the main paper except that Qt is no longer a choice

variable and is fixed at Q̄t so that the production constraint becomes

Q̄t + bt ≤ ∑
i

qit.

We solve this problem by employing a standard linear programming algorithm and we apply

the exact same simulation data as in the main paper. The results are shown in Table A.18.
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Comparing the results to Table A.10 we see that fixing demand does generally give greater

benefits to batteries.

Online Appendix Tables and Figures

Online Appendix Tables
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Table A.1: Summary statistics of hourly capacity factors and observed demand conditions

Capacity Factors Observed Observed
Region Solar Wind Demand Price
East

Carolinas 0.21 0.27 25,460 25.83
(0.28) (0.16) ( 5,443) ( 7.35)

Central 0.24 0.43 30,839 22.56
(0.31) (0.20) ( 5,278) (32.08)

Florida 0.23 0.19 27,552 19.55
(0.29) (0.09) ( 7,239) ( 4.53)

MidAtlantic 0.19 0.33 91,361 25.47
(0.26) (0.22) (15,759) (20.29)

MidWest 0.18 0.35 80,790 24.85
(0.24) (0.19) (12,091) (17.21)

New England 0.16 0.30 13,503 30.85
(0.24) (0.21) ( 2,428) (20.29)

New York 0.18 0.31 17,789 25.15
(0.23) (0.25) ( 3,198) (15.17)

SouthEast 0.23 0.23 27,759 20.39
(0.30) (0.14) ( 5,998) ( 2.39)

Tennessee 0.21 0.27 18,190 22.13
(0.30) (0.18) ( 3,743) ( 8.41)

West
California 0.27 0.27 30,187 35.23

(0.33) (0.19) ( 6,149) (26.20)
NorthWest 0.27 0.31 39,982 21.13

(0.33) (0.15) ( 5,526) (21.72)
SouthWest 0.29 0.38 11,923 27.48

(0.32) (0.21) ( 3,406) ( 5.19)
Texas

Texas 0.24 0.40 43,798 29.69
(0.31) (0.21) ( 9,769) (70.63)

Notes: Unweighted mean over 8760 hours with standard deviation in parenthesis. Observed demand in
MWh, price in $ per MWh. Prices are truncated at $1000 and $10 per MWh.
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Table A.2: Capital and Marginal Costs for Different Technologies Over Time

2014 2015 2016 2017 2018 2019 2020 2021
Combined cycle

Annual Capital 162359 161683 152297 150393 135193 76978 86315 79489
Marginal Cost 51.29 59.54 42.48 41.08 34.00 32.47 27.21 26.68

Combustion turbine
Annual Capital 98938 99246 90970 90684 81582 63652 59288 54741
Marginal Cost 79.24 88.41 68.79 67.61 58.81 55.86 44.87 44.13

Wind (onshore)
Annual Capital 277511 257806 246797 234672 223749 207297 141682 132602

Solar PV
Annual Capital 320907 304792 202555 192929 169527 157360 91869 83274

Battery Storage
Annual Capital NA NA NA NA NA NA NA 84087

Advanced nuclear
Annual Capital 749146 726830 787741 742188 693446 551739 579158 528307
Marginal Cost 13.30 13.55 12.34 12.62 9.82 9.79 9.17 2.38

Notes: Source EIA (2021) .

Table A.3: Projections of Annual Overnight Capital Costs by Technology

Technology 2021 2026 2035 2050
Combined cycle 65125 63482 55154 44637
Combustion turbine 48273 45899 39152 31184
Wind (onshore) 86273 86128 76116 62491
Solar PV 83839 71338 58266 43603
Battery Storage 79294 58628 43830 37846
Advanced nuclear 431123 413851 354285 273892

Notes: Source EIA (2021) . These annual capital costs do not include fixed operating and maintenance and
transmission costs.
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Table A.4: Benefits of carbon pricing (Iso-elastic demand)

Carbon Electricity Annual Welfare Gains ($ billions)
Price Price CO2 for SCC of

($/ton) ($/MWh) (mmt) $0 $50 $100 $150 $200
0 38.26 1,153 0.0 0.0 0.0 0.0 0.0
50 51.90 659 -14.4 10.3 34.9 59.6 84.3
100 57.85 344 -38.5 2.0 42.4 82.9 123.3
150 59.75 151 -61.7 -11.6 38.5 88.6 138.7
200 60.29 81 -73.4 -19.8 33.8 87.3 140.9

Notes: Baseline parameterization with iso-elastic demand, no storage, and no interregional transmission.
Electricity price is the quantity-weighted average price. Welfare gains are relative to the baseline without
carbon pricing and include lost private surplus plus gains from carbon tax revenue and from reduced carbon
emissions evaluated at the assumed SCC.

Table A.5: Benefits of reducing renewable capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy
Reduction Price CO2 for SCC of Cost

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 $ bill
0 37.65 1,107 0.0 0.0 0.0 0.0 0.0 0.0
25 36.51 903 3.6 13.8 24.0 34.2 44.4 7.7
50 30.69 446 21.4 54.5 87.6 120.6 153.7 51.5
75 20.07 165 57.3 104.5 151.6 198.7 245.9 146.4
95 6.14 10 113.8 168.6 223.5 278.3 333.2 424.4

Notes: Baseline parameterization with linear demand, no storage, no interregional transmission, and no
carbon tax. Electricity price is the quantity-weighted average price. Benefits are relative to the baseline
and are gains in private surplus plus gains from reduced carbon emissions evaluated at the assumed SCC.
“Subsidy Cost” is the subsidy that would be required to induce an equivalent renewable capacity without
innovation.
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Table A.6: Benefits of reducing renewable capital costs (Iso-elastic demand)

Cost Electricity Annual Benefits ($ billions) Subsidy
Reduction Price CO2 for SCC of Cost

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 $ bill
0 38.26 1,153 0.0 0.0 0.0 0.0 0.0 0.0
25 37.12 960 3.6 13.2 22.9 32.5 42.2 7.4
50 31.05 488 21.2 54.4 87.7 121.0 154.2 52.3
75 18.33 212 58.2 105.3 152.3 199.4 246.4 149.3
95 4.11 48 116.1 171.3 226.6 281.8 337.1 435.6

Notes: Baseline parameterization with iso-elastic demand, no storage, no interregional transmission, and no
carbon tax. Electricity price is the quantity-weighted average price. Benefits are relative to the baseline
and are gains in private surplus plus gains from reduced carbon emissions evaluated at the assumed SCC.
“Subsidy Cost” is the subsidy that would be required to induce an equivalent renewable capacity without
innovation.

Table A.7: Benefits of reducing nuclear capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy
Reduction Price CO2 for SCC of Cost

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 $ bill
0 37.65 1,107 0.0 0.0 0.0 0.0 0.0 0.0
25 37.65 1,107 0.0 0.0 0.0 0.0 0.0 0.0
40 37.65 1,107 0.0 0.0 0.0 0.0 0.0 0.0
50 34.71 169 8.4 55.3 102.2 149.1 196.0 89.2
75 19.10 5 63.4 118.6 173.7 228.8 283.9 190.3

Notes: Baseline parameterization with linear demand, no storage, no interregional transmission, and no
carbon tax. Electricity price is the quantity-weighted average price. Benefits are relative to the baseline
and are gains in private surplus plus gains from reduced carbon emissions evaluated at the assumed SCC.
“Subsidy Cost” is the subsidy that would be required to induce an equivalent nuclear capacity without
innovation.
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Table A.8: Benefits of increasing transmission

Electricity Annual Benefits ($ billions) Subsidy
Transmission Price CO2 for SCC of Cost

Scenario ($/MWh) (mmt) $0 $50 $100 $150 $200 $ bill

Panel A: Baseline renewable capital costs
Baseline 38.26 1,153 0.0 0.0 0.0 0.0 0.0 N.A.

Scenario 2 38.00 1,126 1.4 2.7 4.1 5.4 6.8 N.A.
Scenario 3 37.74 1,101 2.6 5.2 7.8 10.4 13.0 N.A.
Scenario 4 37.50 1,097 3.7 6.5 9.2 12.0 14.8 N.A.
Scenario 5 36.59 1,000 7.4 15.0 22.7 30.3 37.9 N.A.

Panel B: 25% reduction in renewable capital costs
Scenario 1 37.12 960 3.6 13.2 22.9 32.5 42.2 7.4
Scenario 2 35.90 804 7.9 25.3 42.7 60.1 77.5 11.5
Scenario 3 33.88 454 15.0 49.9 84.9 119.8 154.8 21.1
Scenario 4 33.43 424 16.8 53.2 89.7 126.1 162.6 22.0
Scenario 5 31.76 363 22.3 61.8 101.4 140.9 180.4 22.8

Notes: Baseline parameterization with iso-elastic demand, no carbon tax, and no storage. Electricity price
is the quantity-weighted average price. In panel A the benefits are relative to the baseline and are gains
in private surplus plus gains from reduced carbon emissions evaluated at the assumed SCC. In panel B the
benefits are relative to baseline and are gains in private surplus plus gains from reduced carbon emissions
evaluated at the assumed SCC. “Subsidy Cost” is the subsidy that would be required to induce an equivalent
renewable capacity without innovation. The Baseline (Scenario 1) has 13 distinct transmission regions.
Scenario 2 has 5 distinct transmission regions: NE, SE, MW, Texas, and West. Scenario 3 has 3 distinct
transmission regions: East, Texas, and West. Scenario 4 has 2 distinct transmission regions: East plus Texas,
and West. Scenario 5 has 1 unified transmission region for the whole country.
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Table A.9: Levelized cost and capacities with costless battery capacity

Levelized Cost Generation Capacity Battery Capacity Carbon
($/MWh) (GW) (TWh) Tax

Region Solar Wind Solar Wind Gas Solar Wind Gas ($/Ton)
East

Carolinas 45.93 55.37 105 74 23 20 21 9 30
Central 39.94 35.16 95 55 24 29 18 9 0
Florida 41.97 81.00 100 77 24 12 11 15 18
MidAtlantic 50.29 45.72 388 230 82 88 95 23 29
MidWest 54.07 43.05 360 196 73 110 70 17 22
New England 59.22 50.06 62 35 12 17 12 5 42
New York 53.62 49.05 64 38 13 13 14 6 39
SouthEast 41.83 66.81 97 76 23 18 18 15 18
Tennessee 45.19 56.56 62 44 14 18 13 7 28

West
California 35.25 55.52 93 82 25 37 46 19 0
NorthWest 35.20 48.62 79 59 21 38 23 18 0
SouthWest 32.61 40.23 38 28 11 11 13 9 0

Texas
Texas 38.86 37.84 154 95 39 27 37 27 6

Notes: “Levelized Cost” and “Generation Capacity” are calculated from the formulas in Result 2 assuming
baseline renewable costs. Levelized cost for combined cycle gas is $35.75 per MWh. “Generation Capacity”
is the capacity, Ki, required from technology i if technology i is the only technology. “Battery Capacity”
is the minimum battery capacity, S̄, required if technology i is the only technology. “Carbon Tax” is the
minimum carbon tax required to make the levelized cost of combined cycle gas greater than the levelized
cost of solar or wind. Total U.S. battery storage in 2019 is approximately 0.0017 TWh.
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Table A.10: Benefits of reducing battery capital costs and renewable capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Battery Renew

Panel A: Baseline renewable capital costs
Baseline 37.65 1,107 0.0 0.0 0.0 0.0 0.0 N.A. N.A.

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0 N.A.
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3 N.A.
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5 N.A.
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8 N.A.
100 35.55 897 11.5 22.0 32.6 43.1 53.6 4,343 N.A.

Panel B: 25% reduction in renewable capital costs
No Storage 36.51 903 3.6 13.8 24.0 34.2 44.4 N.A. 7.7

0 36.49 895 3.8 14.4 25.0 35.7 46.3 0.0 7.9
25 36.44 886 4.1 15.1 26.2 37.2 48.3 0.4 8.0
50 36.33 871 4.8 16.6 28.3 40.1 51.9 2.0 8.4
75 35.97 840 6.4 19.8 33.2 46.6 59.9 8.2 9.1
100 31.08 74 26.1 77.8 129.5 181.2 232.9 7,823 .

Panel C: 50% reduction in renewable capital costs
No Storage 30.69 446 21.4 54.5 87.6 120.6 153.7 N.A. 51.5

0 30.62 433 21.9 55.6 89.3 123.1 156.8 0.0 52.0
25 30.52 420 22.4 56.7 91.1 125.4 159.8 0.7 52.5
50 30.26 395 23.5 59.1 94.8 130.4 166.0 3.5 53.7
75 29.29 292 27.1 67.9 108.6 149.4 190.2 20.3 60.0
100 20.80 0 63.6 119.0 174.3 229.7 285.1 8,767 .

Panel D: 75% reduction in renewable capital costs
No Storage 20.07 165 57.3 104.5 151.6 198.7 245.9 N.A. 146.4

0 19.92 147 58.0 106.0 154.0 202.1 250.1 0.0 147.1
25 19.72 134 58.8 107.4 156.1 204.7 253.4 1.1 147.7
50 19.29 110 60.5 110.4 160.3 210.1 260.0 5.4 148.5
75 17.90 52 66.1 118.9 171.7 224.5 277.3 31.0 146.8
100 10.41 0 104.2 159.6 214.9 270.3 325.7 9,349 .

Notes: Baseline parameterization with linear demand, no interregional transmission, and no carbon tax.
Electricity price is the quantity-weighted average price. Benefits are relative to the baseline and are gains in
private surplus plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Cost” is
the subsidy that would be required to induce an equivalent battery capacity (Battery) or renewable capacity
(Renew) without innovation.
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Table A.11: Benefits of reducing battery capital costs and carbon tax

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200

Panel A: Carbon Tax 0
Baseline 37.65 1,107 0.0 0.0 0.0 0.0 0.0 N.A.

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8

Panel B: Carbon Tax 50
No Storage 50.92 554 -16.1 11.6 39.3 66.9 94.6 N.A.

0 50.81 537 -16.3 12.2 40.7 69.3 97.8 0.0
25 50.70 525 -16.3 12.8 41.9 71.1 100.2 0.8
50 50.42 502 -16.3 14.0 44.3 74.6 104.8 3.4
75 49.53 436 -16.8 16.8 50.4 84.0 117.6 14.2

Panel C: Carbon Tax 100
No Storage 55.92 254 -38.6 4.1 46.7 89.4 132.0 N.A.

0 55.48 221 -40.0 4.3 48.6 92.9 137.3 0.0
25 55.09 201 -40.6 4.7 50.0 95.3 140.6 1.9
50 54.09 169 -40.9 6.0 52.9 99.8 146.7 9.2
75 51.47 116 -39.0 10.5 60.1 109.6 159.2 31.1

Panel D: Carbon Tax 150
No Storage 56.52 78 -59.7 -8.2 43.2 94.7 146.1 N.A.

0 55.57 46 -61.0 -7.9 45.2 98.2 151.3 0.0
25 54.96 37 -60.3 -6.8 46.7 100.2 153.8 2.6
50 53.64 31 -57.4 -3.6 50.2 104.0 157.8 11.5
75 50.68 20 -50.5 3.9 58.2 112.6 166.9 36.9

Panel E: Carbon Tax 200
No Storage 56.04 26 -68.7 -14.6 39.5 93.6 147.6 N.A.

0 54.82 2 -68.3 -13.0 42.2 97.5 152.7 0.0
25 54.31 1 -66.2 -10.9 44.4 99.7 155.0 2.8
50 53.14 2 -62.1 -6.9 48.4 103.6 158.9 11.3
75 50.32 5 -53.0 2.1 57.3 112.4 167.5 37.8

Notes: Baseline parameterization with linear demand and no interregional transmission. Electricity price is
the quantity-weighted average price. Benefits are relative to the baseline and include lost private surplus plus
gains from carbon tax revenue and from reduced carbon emissions evaluated at the assumed SCC. “Subsidy
Cost’ is the subsidy that would be required to induce an equivalent battery capacity without innovation.
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Table A.12: Benefits of reducing battery capital costs and solar capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Battery Solar

Panel A: Baseline solar capital costs
Baseline 37.65 1,107 0.0 0.0 0.0 0.0 0.0 N.A. N.A.

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0 N.A.
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3 N.A.
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5 N.A.
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8 N.A.

Panel B: 25% reduction in solar capital costs
No Storage 36.84 1,000 2.7 8.1 13.5 18.9 24.2 N.A. 4.7

0 36.84 993 2.9 8.6 14.3 20.0 25.7 0.0 4.8
25 36.82 988 3.1 9.1 15.1 21.1 27.0 0.4 4.9
50 36.74 976 3.7 10.3 16.8 23.4 29.9 1.7 5.1
75 36.43 946 5.2 13.3 21.4 29.4 37.5 7.9 5.8

Panel C: 50% reduction in solar capital costs
No Storage 34.20 800 10.9 26.3 41.6 57.0 72.3 N.A. 24.7

0 34.19 788 11.2 27.2 43.2 59.2 75.2 0.0 25.2
25 34.12 775 11.7 28.3 44.9 61.6 78.2 0.6 25.8
50 33.91 741 12.8 31.1 49.4 67.7 86.0 3.5 27.7
75 32.66 571 16.9 43.7 70.5 97.4 124.2 25.5 38.9

Panel D: 75% reduction in solar capital costs
No Storage 29.39 698 26.5 46.9 67.4 87.8 108.3 N.A. 56.8

0 29.31 676 27.1 48.7 70.3 91.8 113.4 0.0 58.1
25 29.12 649 28.1 51.0 73.9 96.8 119.7 1.5 60.4
50 28.19 504 31.4 61.6 91.8 122.0 152.1 14.0 75.7
75 23.84 185 45.4 91.5 137.7 183.8 229.9 65.9 117.9

Notes: Baseline parameterization with linear demand and no interregional transmission. Electricity price is
the quantity-weighted average price. Benefits are relative to the baseline and include lost private surplus
plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Cost” is the subsidy
that would be required to induce an equivalent battery capacity (Battery) or solar capacity (Solar) without
innovation.
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Table A.13: Benefits of reducing battery capital costs and wind capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Battery Wind

Panel A: Baseline wind capital costs
Baseline 37.65 1,107 0.0 0.0 0.0 0.0 0.0 N.A. N.A.

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0 N.A.
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3 N.A.
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5 N.A.
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8 N.A.

Panel B: 25% reduction in wind capital costs
No Storage 37.24 992 1.1 6.8 12.6 18.3 24.1 N.A. 3.7

0 37.23 987 1.3 7.3 13.3 19.3 25.3 0.0 3.7
25 37.18 983 1.5 7.8 14.0 20.2 26.5 0.4 3.7
50 37.07 975 2.1 8.7 15.3 21.9 28.5 1.7 3.9
75 36.78 970 3.7 10.5 17.4 24.3 31.1 8.0 4.4

Panel C: 50% reduction in wind capital costs
No Storage 32.95 566 13.7 40.7 67.8 94.8 121.9 N.A. 41.4

0 32.91 559 13.9 41.3 68.8 96.2 123.6 0.0 41.6
25 32.83 552 14.3 42.0 69.8 97.6 125.4 0.5 42.1
50 32.61 538 15.2 43.6 72.1 100.5 129.0 2.8 43.3
75 32.05 508 17.6 47.5 77.4 107.4 137.3 11.3 45.5

Panel D: 75% reduction in wind capital costs
No Storage 23.34 267 45.1 87.2 129.2 171.2 213.2 N.A. 135.9

0 23.24 256 45.5 88.1 130.7 173.3 215.8 0.0 136.4
25 23.07 243 46.2 89.4 132.7 175.9 219.1 1.0 137.3
50 22.67 218 47.7 92.2 136.6 181.1 225.5 4.6 139.5
75 21.70 172 51.6 98.3 145.1 191.8 238.6 18.4 145.0

Notes: Baseline parameterization with linear demand and no interregional transmission. Electricity price
is the quantity-weighted average price. Benefits gains are relative to the baseline and include lost private
surplus plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Costs” is the
subsidy that would be required to induce an equivalent battery capacity (Battery) or wind capacity (Wind)
without innovation.
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Table A.14: Benefits of reducing battery capital costs and nuclear capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Battery Nuclear

Panel A: Baseline nuclear capital costs
Baseline 37.65 1,107 0.0 0.0 0.0 0.0 0.0 N.A. N.A.

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0 N.A.
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3 N.A.
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5 N.A.
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8 N.A.

Panel B: 25% reduction in nuclear capital costs
No Storage 37.65 1,107 -0.0 -0.0 -0.0 -0.0 -0.0 N.A. 0.0

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0 0.0
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3 0.0
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5 0.0
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8 0.0

Panel C: 40% reduction in nuclear capital costs
No Storage 37.65 1,107 0.0 0.0 0.0 0.0 0.0 N.A. 0.0

0 37.65 1,104 0.1 0.3 0.5 0.7 0.9 0.0 0.0
25 37.63 1,101 0.3 0.7 1.0 1.3 1.6 0.3 0.0
50 37.56 1,100 0.8 1.2 1.5 1.9 2.3 1.5 0.0
75 37.35 1,106 2.1 2.2 2.2 2.3 2.3 6.8 0.0

Panel D: 50% reduction in nuclear capital costs
No Storage 34.71 169 8.4 55.3 102.2 149.1 196.0 N.A. 89.2

0 34.70 155 8.6 56.2 103.8 151.4 199.0 0.0 90.0
25 34.65 143 8.9 57.1 105.3 153.5 201.8 0.5 90.7
50 34.51 121 9.7 59.0 108.3 157.6 207.0 2.3 92.5
75 34.18 97 11.5 62.0 112.6 163.1 213.6 8.2 95.4

Panel E: 75% reduction in nuclear capital costs
No Storage 19.10 5 63.4 118.6 173.7 228.8 283.9 N.A. 190.3

0 19.10 4 63.6 118.8 174.0 229.1 284.3 0.0 188.8
25 19.06 1 63.9 119.3 174.6 229.9 285.2 0.5 187.6
50 18.98 0 64.8 120.1 175.5 230.9 286.2 2.3 184.9
75 18.78 0 66.5 121.9 177.3 232.6 288.0 7.6 181.8

Notes: Baseline parameterization with linear demand and no interregional transmission. Electricity price is
the quantity-weighted average price. Benefits are relative to the baseline and include lost private surplus
plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Cost” is the subsidy that
would be required to induce an equivalent battery capacity (Battery) or Nuclear capacity (Nuclear) without
innovation.
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Table A.15: Benefits of reducing nuclear capital costs and renewable capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Renew Nuclear

Panel A: Baseline nuclear capital costs
0 37.65 1,104 0.0 0.0 0.0 0.0 0.0 0.0 N.A.
25 36.49 895 3.7 14.1 24.6 35.0 45.4 7.9 N.A.
50 30.62 433 21.7 55.3 88.8 122.4 155.9 52.0 N.A.
75 19.92 147 57.9 105.7 153.6 201.4 249.2 147.1 N.A.

Panel B: 25% reduction in nuclear capital costs
0 37.65 1,104 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 36.49 895 3.7 14.1 24.6 35.0 45.4 7.9 0.0
50 30.62 433 21.7 55.3 88.8 122.4 155.9 52.0 0.0
75 19.92 147 57.9 105.7 153.6 201.4 249.2 147.1 0.0

Panel C: 40% reduction in nuclear capital costs
0 37.65 1,104 -0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 36.49 895 3.7 14.1 24.6 35.0 45.4 7.9 0.0
50 30.62 433 21.7 55.3 88.8 122.4 155.9 52.0 0.0
75 19.92 147 57.9 105.7 153.6 201.4 249.2 147.1 0.0

Panel D: 50% reduction in nuclear capital costs
0 34.70 155 8.5 55.9 103.3 150.7 198.1 0.0 90.0
25 34.27 183 10.2 56.2 102.3 148.3 194.4 4.4 76.0
50 30.51 330 22.1 60.8 99.5 138.1 176.8 47.4 15.1
75 19.92 147 57.9 105.7 153.6 201.4 249.2 147.1 0.0

Panel E: 75% reduction in nuclear capital costs
0 19.10 4 63.5 118.5 173.5 228.5 283.5 0.0 188.8
25 19.10 2 63.6 118.6 173.7 228.7 283.8 0.3 187.0
50 18.96 0 64.5 119.7 174.9 230.0 285.2 3.6 180.3
75 17.33 0 70.4 125.6 180.7 235.9 291.1 49.4 131.1

Notes: Baseline parameterization with linear demand and no interregional transmission. Electricity price is
the quantity-weighted average price. Benefits are relative to the baseline and include lost private surplus
plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Cost” is the subsidy
that would be required to induce an equivalent renewable capacity (Renew) or nuclear capacity (Nuclear)
without innovation.
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Table A.16: Benefits of reducing solar costs and wind capital costs

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Solar Wind

Panel A: Baseline wind capital costs
0 37.65 1,104 0.0 0.0 0.0 0.0 0.0 0.0 N.A.
25 36.84 993 2.8 8.3 13.8 19.3 24.8 4.8 N.A.
50 34.19 788 11.1 26.9 42.7 58.5 74.3 25.2 N.A.
75 29.31 676 27.0 48.4 69.8 91.1 112.5 58.1 N.A.

Panel B: 25% reduction in wind capital costs
0 37.23 987 1.1 7.0 12.8 18.6 24.5 0.0 3.7
25 36.49 895 3.7 14.1 24.6 35.0 45.4 4.6 3.3
50 33.94 712 11.7 31.3 50.9 70.5 90.0 24.0 2.9
75 29.25 651 27.1 49.8 72.4 95.1 117.7 57.2 1.0

Panel C: 50% reduction in wind capital costs
0 32.91 559 13.8 41.0 68.3 95.5 122.7 0.0 41.6
25 32.42 505 15.6 45.6 75.5 105.5 135.4 3.4 39.6
50 30.62 433 21.7 55.3 88.8 122.4 155.9 17.7 34.2
75 27.06 383 33.9 69.9 105.9 141.9 177.9 47.2 28.4

Panel D: 75% reduction in wind capital costs
0 23.24 256 45.4 87.8 130.2 172.6 215.0 0.0 136.4
25 23.14 237 46.0 89.4 132.7 176.1 219.4 1.5 132.4
50 22.31 193 49.3 94.8 140.4 185.9 231.5 11.4 122.7
75 19.92 147 57.9 105.7 153.6 201.4 249.2 35.8 111.3

Notes: Baseline parameterization with linear demand and no interregional transmission. Electricity price is
the quantity-weighted average price. Benefits are relative to the baseline and include lost private surplus
plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Cost” is the subsidy
that would be required to induce an equivalent solar capacity (Solar) or wind capacity (Wind) without
innovation.

Table A.17: Parameters for EV welfare calculations

Name Value Source Notes
CO2 emissions 313 g/mile Holland et al. (2021) 2015 model year vehicles
VMT 2600.406 billion miles Holland et al. (2021) Light duty vehicles
Capital premium 10689.57 Holland et al. (2021) Premium for 2017 model year
Vehicle sales 17 million cars /year
Gasoline price $3/gallon
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Table A.18: Benefits of reducing battery capital costs and renewable capital costs: Cost
minimization

Cost Electricity Annual Benefits ($ billions) Subsidy Cost
Reduction Price CO2 for SCC of $ bill

(%) ($/MWh) (mmt) $0 $50 $100 $150 $200 Battery Renew

Panel A: Baseline renewable capital costs
Baseline 37.82 1,234 0.0 0.0 0.0 0.0 0.0 N.A. N.A.

0 37.72 1,232 0.4 0.5 0.6 0.7 0.8 0.0 N.A.
25 37.68 1,224 0.6 1.0 1.5 2.0 2.4 0.2 N.A.
50 37.57 1,217 1.0 1.8 2.7 3.5 4.3 1.6 N.A.
75 37.06 1,212 3.1 4.1 5.2 6.3 7.3 12.8 N.A.
100 32.99 990 19.4 31.6 43.8 56.0 68.1 4,569 N.A.

Panel B: 25% reduction in renewable capital costs
No Storage 36.92 1,045 3.6 13.0 22.5 31.9 41.3 N.A. 6.7

0 36.78 1,027 4.2 14.5 24.9 35.2 45.6 0.0 7.2
25 36.68 1,016 4.6 15.5 26.4 37.2 48.1 0.5 7.5
50 36.45 984 5.5 18.0 30.4 42.9 55.4 2.7 8.5
75 35.88 946 7.8 22.2 36.5 50.9 65.3 11.7 9.6
100 29.03 80 35.4 93.0 150.7 208.4 266.1 8,183 36.1

Panel C: 50% reduction in renewable capital costs
No Storage 33.51 606 17.3 48.7 80.1 111.4 142.8 N.A. 45.7

0 33.15 584 18.8 51.3 83.7 116.2 148.7 0.0 46.9
25 32.94 565 19.6 53.1 86.5 120.0 153.4 1.2 48.3
50 32.44 531 21.7 56.8 92.0 127.1 162.3 5.9 50.3
75 31.22 448 26.6 65.8 105.1 144.4 183.7 23.9 55.0
100 19.40 0 74.1 135.7 197.4 259.1 320.8 8,640 78.0

Panel D: 75% reduction in renewable capital costs
No Storage 25.64 306 49.0 95.4 141.7 188.1 234.5 N.A. 128.6

0 25.14 289 51.0 98.2 145.4 192.7 239.9 0.0 128.5
25 24.83 270 52.3 100.4 148.6 196.8 244.9 1.9 129.8
50 24.14 245 55.0 104.4 153.8 203.3 252.7 7.2 131.5
75 22.36 168 62.2 115.5 168.7 222.0 275.3 36.2 133.7
100 9.70 0 113.1 174.8 236.5 298.1 359.8 8,640 117.1

Notes: Baseline parameterization with no interregional transmission, and no carbon tax. Electricity price
is the total cost divided by total production. Benefits are relative to the baseline and are gains in private
surplus plus gains from reduced carbon emissions evaluated at the assumed SCC. “Subsidy Cost” is the
subsidy that would be required to induce an equivalent battery capacity (Battery) or renewable capacity
(Renew) without innovation.
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Figure A.1: Illustrative supply and demand with market clearing price pt.
Notes: To illustrate Lemma 2, this figure assumes no storage and three technologies with capacity factors
equal to one. The electricity price is determined by the intersection of the smooth demand curve U ′

t and the
step function supply curve. For this example, the equation for pt from the lemma is

pt = min{max{c1, U ′

t(K1)},max{c2, U ′

t(K1 +K2)},max{c3, U ′

t(K1 +K2 +K3)}

which is the minimum of three max expressions. The solid and unfilled circles indicate the values to be
compared inside each of the max expressions, with the solid circles indicating the resulting maximum values.
Thus pt = min{U ′

t(K1), U ′

t(K1 +K2), c3}, i.e., the minimum over the solid circles. In the figure, the demand
curve intersects the supply curve at the vertical portion corresponding to the total capacity of the first two
technologies, i.e. pt = U ′

t(K1 +K2).

]
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Figure A.2: Map of EIA regions.

Figure A.3: Mean hourly observed price by season for each EIA region.
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Figure A.4: Carbon pricing with NEMS time periods.
Notes: Baseline parameterization with linear demand for nine NEMS time periods, no storage, and no
interregional transmission aggregated across all regions.
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Figure A.5: Carbon pricing with NEMS time periods for each region
Notes: Baseline parameterization with linear demand for nine NEMS time periods, no storage, and no
interregional transmission.
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Figure A.6: Reduction in renewable generation capital costs (Iso-elastic de-
mand).
Notes: Baseline parameterization with iso-elastic demand, no storage, and no interregional transmission
aggregated across all regions.
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Figure A.7: Reduction in renewable generation capital costs for each region
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission.
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Figure A.8: Reduction in nuclear generation capital costs for each region (Linear
demand)
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission.

27



(a) Baseline renewable capital costs.

(b) 25% reduction in renewable capital costs.

Figure A.9: First best transmission scenarios with SCC=100.
Notes: Baseline parameterization with iso-elastic demand and no storage. The Baseline (Scenario 1) has 13
distinct transmission regions. Scenario 2 has 5 distinct transmission regions: NE, SE, MW, Texas, and West.
Scenario 3 has 3 distinct transmission regions: East, Texas, and West. Scenario 4 has 2 distinct transmission
regions: East plus Texas, and West. Scenario 5 has 1 unified transmission region for the whole country.
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Figure A.10: Cumulative battery storage relative to Jan 1 for each region.
Notes: Assumes linear demand, free battery capacity, and a single generation technology. Required battery
capacity is the range.
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Figure A.11: Reduction in battery capital costs for each region
Notes: Baseline parameterization with linear demand and no interregional transmission. First bar has no
battery, second bar has battery with baseline costs, third bar has battery with 25% reduction in capital
costs, and so on.
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Figure A.12: Reduction in battery capital costs for each region (25% renewable
capital cost reduction)
Notes: Linear demand, no interregional transmission, and 25% reduction in renewable capital costs. First
bar has no battery, second bar has battery with baseline costs, third bar has battery with 25 % reduction in
capital costs, and so on.
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Figure A.13: Iso-Welfare curves as a function of wind and solar subsides
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Red is
the highest value for welfare and blue is the lowest. Illustrates the results in Table 4.
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Figure A.14: Iso-Welfare curves as a function of nuclear and renewable subsides
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Red is
the highest value for welfare and blue is the lowest. Illustrates the results in Table 4.
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(a) Carbon emissions as a function of wind and solar subsides

(b) Carbon emissions as a function of nuclear and renewable subsides

Figure A.15: Comparison of carbon emission contours
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Illus-
trates the results in Table 4.
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Figure A.16: Incremental generation from each technology by hour-of-day load
shocks for each EIA region.
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. Vertical
axis is the change in generation of each technology (MWh/MWh) across all hours from a one percent shock
to load in only hour h each day of the year.
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Figure A.17: Incremental generation from each technology by hour-of-day load
shocks for each EIA region (25% renewable capital cost reduction).
Notes: Parameterization with linear demand, no storage, no interregional transmission, and 25% renewable
capital cost reduction. Vertical axis is the change in generation of each technology (MWh/MWh) across all
hours from a one percent shock to load in only hour h each day of the year.
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Figure A.18: Private and socially optimal EV charging profiles for each region.
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. “Pri-
vate” charging profile optimizes benefits assuming no carbon damages. “Social” charging profile optimizes
benefits assuming the SCC is $100 per mt.
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Figure A.19: Private and socially optimal EV charging profiles for each region
(25% renewable capital cost reduction).
Notes: Baseline parameterization with linear demand, no storage, and no interregional transmission. “Pri-
vate” charging profile optimizes benefits assuming no carbon damages. “Social” charging profile optimizes
benefits assuming the SCC is $100 per mt.
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