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Abstract

This paper uses birth records and mothers who move to quantify the importance
of place- and family-based determinants of early-life health. We find that causal place
effects explain 16 percent of geographic variation in birth weight, with family-specific
factors accounting for the remaining 84 percent. These place effects are most strongly
correlated with local levels of pollution. The improvement in birth weight from moving
to a higher-quality area compares favorably to policies that target maternal health.
However, we project limited effects of these birth weight improvements on long-run
outcomes, suggesting that lasting impacts of place operate primarily through post-
birth channels.
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1 Introduction

Infant health outcomes vary significantly within the United States. For example, the

share of infants born with low birth weight in Detroit is more than twice as high as the

share in Seattle (14 versus 6 percent; Kids Count, 2021). Given the link between outcomes

at birth and later-life outcomes, these early-life disparities across place may contribute to

spatial inequities in economic success and upward mobility (Black, Devereux and Salvanes,

2007; Chetty et al., 2014; Bharadwaj, Lundborg and Rooth, 2017).

A key challenge to understanding how location at birth might contribute to long-run

spatial inequities is identifying the relative importance of various sources of these early-life

disparities. On the one hand, these differences appear to reflect contextual factors, such

as pollution, heat, or crime rates, which could be targeted by place-based policies. On the

other hand, these gaps may also reflect household sorting on family-specific factors, including

parental education, financial resources, or maternal stress. Because these factors are often

studied in isolation, there is no comparison of the importance of family- and place-based

inputs that can be used to weigh policies that aim to reduce inequality.

This paper uses a unified framework to decompose spatial gaps in early-life health into

family- and place-based components. Using birth records from California that span three

decades, we follow mothers (hereafter “movers”) that relocate across neighborhoods, studying

whether and to what extent their child’s birth weight adjusts relative to their previous births.

Specifically, we estimate a model of birth weight that includes both mother and location

(Zip code) fixed effects, which is identified due to the presence of mothers who give birth in

multiple locations. Intuitively, the size of adjustment in birth weight after a move provides an

estimate of the importance of location-specific factors. This approach is based on Finkelstein,

Gentzkow and Williams (2016) who studied patient migration and health care utilization in

the over-65 Medicare population.
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Our main finding is that the causal impact of location explains 16 percent of the variation

in birth weight between above and below-median areas, with the remaining 84 percent of

the variation due to mother-specific factors (i.e., sorting). We find similar results when we

focus on the difference between the top and bottom quartiles or deciles. An alternative

decomposition that estimates the share of cross-Zip variance in birth weight that is due

to mother and location factors also yields a similar conclusion. That said, we estimate a

19-gram improvement in birth weight from moving from a below- to above-median area,

which compares favorably with the impact of specific policies targeting maternal health. For

example, it is up to 7, 10, and 20 times as large as the impacts of maternal access to WIC,

Food Stamps, and Medicaid, respectively (Hoynes, Page and Stevens, 2011; Rossin-Slater,

2013; Almond, Hoynes and Schanzenbach, 2011; East et al., 2021).

We extend the decomposition results by exploring heterogeneity in the effects of location.

Our analysis shows that place effects explain more of the share of variation in child health for

non-college-educated mothers, and this result holds for both white and non-white mothers.

These results are consistent with prior evidence that contextual factors such as pollution may

have stronger impacts on disadvantaged populations (Almond, Currie and Duque, 2018).

These results rely on the key assumption that changes in the family-based determinants of

birth weight do not correlate systematically with the improvement in the quality (as proxied

by birth weight) of a mother’s location. We address potential threats to this assumption

in three ways. First, we use an event study approach to study pre-trends and moves to

higher quality areas. The results show a sharp change in birth weight after a move, with no

significant trend in birth weight for children born before a move. Second, we examine the role

of confounding changes by estimating the impact of a move on predicted birth weight, which

we construct from a large number of time-varying maternal and paternal characteristics

(including proxies for economic status). Our results strongly suggest that changes in partner

choice or economic circumstances do not drive our place effect estimates. Third, we show
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that the impact of a move is similar for moves from low-to-high and high-to-low birth weight

areas. This provides support for the additive separability of mother and place effects assumed

in our model.

Finally, to shed light on the mechanisms behind the impacts of place, we study the area-

level correlates of our estimates of causal place effects. We find that the local level of ozone

is the strongest correlate of place effects in our setting. This finding broadly aligns with

studies of the causal impacts of pollution exposure on children. Correlations with the supply

of prenatal care and average maternal education are smaller, but meaningful, suggesting

potential roles for improved access to health care and the preferences of local residents.

Our study makes three contributions to the literature. First, we quantify the determinants

of infant health using a unified model that separately identifies the contributions of place

and family factors. In contrast, prior research focuses on estimating the impacts of specific

contextual or maternal (family) characteristics on early-life health. For example, a large

environmental literature estimates the effects of exposure to pollution or higher temperatures

on child outcomes and infant mortality (Chay and Greenstone, 2003; Currie and Neidell,

2005; Currie, Neidell and Schmieder, 2009; Deschenes, Greenstone and Guryan, 2009; Currie

and Walker, 2011; Currie et al., 2015; Knittel, Miller and Sanders, 2016; Alexander and

Currie, 2017; Alexander and Schwandt, 2019). Similarly, a number of studies identify the

effects of particular maternal traits, such as a mother’s highest level of completed education

(McCrary and Royer, 2011; Currie and Moretti, 2003), nutrition intake (Hoynes, Page and

Stevens, 2011; Almond, Hoynes and Schanzenbach, 2011; Rossin-Slater, 2013), or financial

resources (Dehejia and Lleras-Muney, 2004; Lindo, 2011; Hoynes, Miller and Simon, 2015) on

birth outcomes. These prior results cannot be easily aggregated to assess the overall effects

of families or place (e.g., due to unknown covariances between these factors).

Second, we add to a growing literature studying children and neighborhood effects. Pre-

vious work has shown that living in a better neighborhood during childhood and adolescence
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leads to significant improvements in adult labor market activity, criminal behavior and edu-

cation (Damm and Dustmann, 2014; Chetty, Hendren and Katz, 2016; Chyn, 2018; Chetty

and Hendren, 2018; Chetty et al., 2020a,b; Laliberte, 2021). To our knowledge, we are the

first to estimate place effects for birth weight, a key measure of early-life health. This fills

an important gap in earlier findings, which have been limited to measuring the impacts of

place on other outcomes during older ages. The projected effects on earnings from our es-

timates suggest that the impact of neighborhoods on long-run outcomes primarily operates

through post-birth exposure, rather than through in-utero development. Hence, prior evi-

dence that neighborhood exposure effects taper at younger ages likely also extends to the

critical prenatal period (Deutscher, 2020; Chetty et al., 2020a,b; Chetty and Hendren, 2018).

Finally, our results complement previous studies of the causal impact of place on health

spending and mortality outcomes for the elderly (Finkelstein, Gentzkow and Williams, 2016,

2021; Deryugina and Molitor, 2020). Relative to prior estimates, our findings suggest that the

share of geographic disparities in early-life health explained by place-based factors is much

smaller than the share for health spending (Finkelstein, Gentzkow and Williams, 2016) but

similar to the share for over-65 mortality (Finkelstein, Gentzkow and Williams, 2021). This

is consistent with a hypothesis in which location has a larger influence over inputs to health

capital relative to the stock of health capital. Methodologically, our analysis is closely related

to Finkelstein, Gentzkow and Williams (2016), who also use a decomposition approach to

study effects on health care spending. One advantage of our data is that it allows us to

uniquely test for and rule out potential confounds related to changes in family circumstances

or maternal income that occur after a move. This provides additional support for using a

mover-based design in this context and may extend to other settings as well.
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2 Empirical Model

The primary goal of our analysis is to estimate the shares of the differences in early-life

health across areas that stem from contextual (place-specific) factors or family characteris-

tics. To account for unobserved heterogeneity in families across places, we use a model of

child outcomes that allows for a fixed family-level component together with a fixed location

component. This model of place effects and our subsequent decomposition analysis are simi-

lar to prior research on the determinants of medical spending among the elderly (Finkelstein,

Gentzkow and Williams, 2016).1

Specifically, we assume the following model for child outcomes:

ycmjkt = αm + γj + θk + τt + ρr(m,k) + xmkβ + εcmjkt, (1)

where ycmjkt is the birth outcome for child c (e.g., birth weight) for the kth birth of mother

m who lives in location j in year t. The terms αm, γj, θk, and τt represent mother (i.e.,

family), location, birth order, and calendar year fixed effects, respectively. For mothers who

move across areas, r(m, k) = k − k∗ is an index that tracks the birth order relative to the

first post-move birth k∗. For example, r(m, k) = 0 if k is the first birth that occurs in a

new mother’s new location, and r(m, k) = −1 if k is the last birth that preceded a move.2

The term ρr(m,k) is a fixed effect for this index. For mothers who never move, we assume

ρr(m,k) = 0. We also include fixed effects for the sex of the child, xmk. Finally, εmjkt is an

error term that we assume is conditionally mean zero: E(εmjkt|m, j, k, t, xmk) = 0.

We use estimates from Equation 1 to decompose the difference in the average birth

weight across areas into family- and location-specific components. To define this formally,

1Two recent studies use similar approaches to study consumer financial health (Keys, Mahoney and
Yang, 2020) and the voting behavior of adults (Cantoni and Pons, 2019).

2Because we observe few mothers either three births before a move (r(m, k) = −3) or three births after
a move (r(m, k) = 2), we group r(m, k) = −3 with r(m, k) = −2 and r(m, k) = 2 with r(m, k) = 1.
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let yj denote the expectation of ycmjkt across mothers living in location j. Also, let ymj denote

the expectation of the part of child outcomes that is only attributable to family (mother)

characteristics. This includes the influence of all fixed traits for a given mother (i.e., αm), as

well as predictable changes in outcomes that occur across children within a mother, such as

from increasing birth order (i.e., θk + τt + ρr(m,k) + xmkβ in our model). Using this notation,

Equation 1 implies that yj = ymj + γj.

Applying these definitions, the difference in average child outcomes between locations j

and j′ is:

yj − yj′ = (γj − γj′) + (ymj − ymj′ ). (2)

Equation 2 shows that the difference in average child outcomes between locations j and j′ is

the sum of two components. The first is the place-specific component given by the difference

γj − γj′ . The second is a family-specific component given by ymj − ymj′ . It follows that our

key empirical quantity of interest, the share of the difference in outcomes between locations

j and j′ attributable to place, is:

Splace(j, j
′) =

γj − γj′
yj − yj′

. (3)

Analogously, the share attributable to family (mother) factors is:

Smom(j, j′) =
ymj − ym

′

j′

yj − yj′
. (4)

By construction, the sum of these place- and family-specific shares, Splace(j, j
′) and Smom(j, j′),

is equal to 1.

To obtain our main estimates of interest, we apply these formulas to decompose aver-

age outcomes in groups of locations, R and R′. We define the shares for these groups as

6



Splace(R,R
′) and Smom(R,R′), which we compute by replacing the j- and j′-level inputs in

the equations above with averages within R and R′, respectively. We obtain standard errors

for our estimates as the standard deviation of the quantity of interest across 50 bootstrapped

samples.

As an alternative to the additive decomposition, we decompose the variance in birth

weight across Zip codes. Here, we study the share of cross-Zip variance in birth weight

that would be eliminated in a counterfactual where average maternal characteristics were

equalized across Zips. This quantity is:

Svarmom = 1− V ar(γj)

V ar(yj)

Similarly, the change if place (Zip) fixed effects were equalized is:

Svarplace = 1−
V ar(ymj )

V ar(yj)

Note that the sum of Svarmom and Svarplace will not equal one as long as cov(ymj , γj) is nonzero. We

use a split-sample approach to estimate the variances and covariances in the above equations,

as well as to generate bootstrapped standard errors for the estimated shares.3

3 Estimation and Identification

The model in Equation 1 is identified only if the estimation sample includes movers. If

all mothers gave birth in only one location (i.e., were “non-movers”), we would not be able

to separately identify the location fixed effect γj from the unobserved heterogeneity across

3We use a split-sample approach to estimate variances and covariances. As in Finkelstein, Gentzkow
and Williams (2016), we randomly assign movers within each origin-destination pair and non-movers within
each Zip code to two approximately equal-sized subsamples, and estimate Equation 1 on each subsample.
We estimate the variance of γj and ymj as the covariance between the estimates of γj and ymj from the two
subsamples. The estimated correlation between γj and ymj is based on the estimated variance of γj and ymj
and the covariance of γj and ymj , which we compute as the average of the covariances between the estimates
of γj from one subsample and ymj from the other subsample.
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families αm. Intuitively, the key to separating these components is to observe the change in

child outcomes after a mother’s move.

Moreover, in order to interpret γj as the causal impact of place, we require that changes

in unobserved determinants of early-life outcomes are not correlated with the difference in

the average outcomes between the destination and origin chosen by a mother. For example,

this assumption would be violated if mothers who receive negative shocks (that are correlated

with child outcomes) respond by moving to areas that have worse place effects. In such a

case, we would attribute some of the mother-specific adverse shock to the effect of moving,

and thus overstate the role of place relative to family (mother) characteristics.

Although we cannot directly rule out all violations of our identifying assumption, we

implement three tests to look for evidence of potential violations. First, we use an event-

study approach to test for differences in child outcomes prior to a move. This addresses

potential concerns that pre-existing trends in infant outcomes could bias our results. To

implement this test, we rely on the following event-study model:

ycmjkt = αm +
1∑

r=−2

θr(m,k)δ̂m + ωk + νt + xmkη + εcmjkt, (5)

where δ̂m is the difference in average birth weight between the mother’s origin o(m) and

destination d(m).4 The main parameters of interest are the relative birth coefficients θr(m,k).

These parameters represent the change in the outcome ycmjkt in the years around the move

scaled relative to the local area differences in birth weights δ̂m. For instance, a positive

value of θr(m,k) implies that moving to location that has better birth outcomes is associated

with improvements in the birth outcomes of one’s own children in relative year r(m, k). We

estimate the event study using all mover mothers (although the results are the same when

including all mothers). For inference, we cluster standard errors at the mother-identifier level.

4We measure δ̂m = ŷd(m) − ŷo(m) using leave-one-out means for our estimation sample that omit the
outcomes of mother m.
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The pattern of estimated effects from Equation 5 provides an indirect test of our main

identifying assumption. If move-induced changes in place characteristics cause changes in

child outcomes, then we should observe two patterns. First, the relative quality of one’s

destination should not be predictive of the birth outcomes of one’s own children until after a

move. This implies that the estimate of θr(m,k) should be statistically indistinguishable from

zero in any period preceding a move, i.e., r(m, k) < 0. Second, the estimates for θr(m,k) should

be nonzero for all periods following a move. The magnitude of the discontinuity in the level

of θr(m,k) after a move measures how much place-specific factors influence child outcomes.5

Finally, we conduct two exercises to rule out other potential sources of endogeneity.

One concern is that the timing of a move may be correlated with shocks to maternal and

household outcomes that affect child health. To examine this, we study the extent to which

changes in observable characteristics of mothers after a move predict post-move changes in

birth weight. This analysis provides evidence for the potential role of coinciding shocks with

a move, although we are limited to studying aspects of a mother’s life that we observe in our

data. Another concern is that the choice of destination may be endogenous. Thus, we use

an instrumental variable (IV) approach to isolate variation arising from the average change

in location quality for individuals from a given origin. The power of the instrument comes

from a regression-to-the-mean-type logic – individuals that begin in worse origins are more

likely to move to a relatively better destination, and individuals that begin in better origins

are more likely to move to a relatively better destination – similar to the IV approaches in

Chetty and Hendren (2018) and Abaluck et al. (2021). We discuss these exercises in greater

detail in Section 5.4.

5We do not observe the precise timing of moves and cannot pinpoint when the first birth occurs after a
move. Based on the average spacing between births before and after a move, a mother could be expected to
reside in a destination Zip for up to 4.5 years.
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4 Data

Our primary data source is confidential individual birth records from California from

1989–2017. The data are compiled from forms completed at birth and contain approximately

15.6 million records. For each birth, the data include infant outcomes such as birth weight

and length of gestation. In addition, the records contain information on the identity of the

mother, her residential address, and demographic characteristics such as her place of birth,

race, date of birth, educational background, and proxies for economic status (e.g., type of

insurance).

Our main outcome of interest is birth weight (measured in grams), a key measure of

early-life health that has been widely studied (Almond and Currie, 2011). Previous research

links birth weight to a range of long-run outcomes, including education, adult health, and

earnings (Black, Devereux and Salvanes, 2007; Royer, 2009; Figlio et al., 2014; Bharadwaj,

Eberhard and Neilson, 2017). We focus on birth weight because other outcomes, such as

very-low birth weight status, are rare, particularly at fine levels of geography.

To study the role of place, we use residential Zip code (ZIP-5’s) as the geographic unit.6

This unit was created by the U.S. Postal Service and represents small geographic areas

(typically with populations less than 10,000). Using this fine level of geography allows us to

capture nuanced differences across neighborhoods, such as the diffusion of knowledge about

public programs (Chetty, Friedman and Saez, 2013). Our estimation sample includes 1,689

Zip codes.

4.1 Sample

Two main restrictions define the sample of mothers for our analysis. First, we focus on

mothers who are California residents at the time of childbirth and who we observe having

6In Section 5.4, we show that our main conclusions remain the same if we focus on county as the geography
of interest.
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two-to-four births during the period covered by our records. The restriction to mothers with

multiple children is necessary so that we have multiple observations with which to infer the

mobility of mothers over time. We define a non-mover as a mother who is observed in the

same Zip code for all her births. A mover is a mother who changes Zips exactly once; we

drop mothers with multiple moves.7 Second, to reduce noise in our estimates, the sample is

restricted to mothers who live in Zip codes that contain at least 25 movers.

Table 1 reports summary statistics for all births and our estimation sample. Columns

1 and 2 show that the births in our estimation sample have broadly similar birth weight

and demographic characteristics relative to all births in California.8 Our estimation sample

includes roughly 3.7 million mothers with a total of 8.5 million births. Among this sample,

51 and 49 percent of births are to non-mover and mover mothers, respectively. Columns 3

and 4 show that movers and non-movers are substantively similar in terms of infant birth

weight and ethno-racial demographics, although movers have less education and are younger.

Figure 1 provides a Zip-level map of birth weight. The average birth weight in the median

Zip code is 3,349 grams, and the standard deviation across Zips is 59 grams. We also find a

similar distribution when we aggregate the birth records to the county level: the mean birth

weight in the median county is 3,361 grams, and the standard deviation across counties is

55 grams.

How do these statistics for California compare more broadly? Based on birth records

from the National Center for Health Statistics (NCHS) in 2004, which is roughly the median

year of our data, the mean birth weight in the U.S. is 3,291 grams, which is 1 percent less

than what we find for California (National Center for Health Statistics, 2004).9 The average

7Mothers with more than four births account for 3 percent of births in our sample. Mothers with multiple
moves are 13 percent of the sample. The results in Appendix Table A5 show that our estimates are similar
if we include mothers with multiple moves.

8Appendix Figure A1 shows that the distributions of birth weight for all births in California and in our
estimation sample are not meaningfully different.

9We calculate these statistics using the 2004 NCHS National Vital Statistics System birth files, which
include the universe of U.S. birth records and contain identifiers for counties with populations over 100,000.
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within-state standard deviation of birth weight across counties nationally is 43 grams, which

is 9 grams (21 percent) lower than our estimate for California. Overall, we interpret these

small differences as reassuring in that our setting is not particularly unusual relative to other

states.

Finally, Appendix Table A1 provides details on the types of moves in the estimation sam-

ple. The average and median distances moved are 32.5 and 8.9 miles, respectively. Roughly

28 percent of moves cross county boundaries. At the Zip level, movers’ destinations receive

an average of 7,982 mothers at some point after their first birth.

5 Main Results

5.1 Evidence on Identifying Assumptions from an Event Study

To support the causal interpretation of our estimated place effects, we examine how birth

weight evolves around the time of a move as a function of the quality of the destination.

Given our interest in early-life health, we proxy for destination quality using birth weight.

We first present non-parametric, descriptive evidence and then present the results from our

event study model.

Throughout this analysis, we characterize moves in terms of δ̂m, the estimated difference

in average birth weight between the mother’s origin and destination locations. Appendix

Figure 2 shows the distribution of δ̂m in our sample. The average for δ̂m is close to zero, and

the distribution is roughly symmetric, indicating that mothers are equally likely to move

to a better or worse location (based on average birth weight). The standard deviation is 25

grams, which is equivalent to moving from the median Zip to the 65th percentile Zip.

As an initial exploration of the effect of moving to a new area, we plot the post-move

change in birth weight for children of movers against δ̂m. The slope of this graph can be

interpreted as the extent to which moving to a location with higher average birth weight

The 2004 records are the last year to include county identifiers.
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generates improvements in the early-life health outcomes of one’s own children. If all geo-

graphic variation is due to the impact of place, we expect this plot to have a slope of 1.

Alternatively, if individual factors explain all variation in birth weight, this plot should have

a slope of 0.

The results in Figure 3 suggest that moving to a better location influences child birth

weight but to a limited degree. The slope of the fitted line is 0.11, implying that family and

maternal-specific factors explain 89 percent of the geographic variation in our measure of

early-life health. Notably, the pattern in the figure is symmetric around zero and and appears

to be linear. These findings support the assumptions of additive separability in Equation 1

and of a linear relationship between birth weight and δ̂m in Equation 5.

Next, Figure 4 reports event study results, where we plot estimates of the relative birth

coefficients θr(m,k). For ease of presentation, we scale the coefficients θr(m,k) to represent the

impact of moving to a destination Zip that has a 100-gram higher average birth weight than

one’s origin Zip (δm = 100). The omitted category is the relative period θr(m,k) = −1.

The figure shows a statistically significant jump in weight for the first birth after a move.

The coefficient suggests that moving to a destination with a 100-gram higher average birth

weight leads to an 11-gram improvement in the weight of one’s own child, or that roughly 11

percent of the origin-destination difference is due to the causal impact of place. Intuitively,

this effect is close to the slope in Panel (a). Moreover, the coefficient is essentially the same for

the second birth after a move, indicating that the impact of a place is relatively constant. This

pattern is contrary to the hypothesis that moving to a better location increases birth weight

by improving health behaviors, which could be expected to lead to gradual improvement in

children’s outcomes (Finkelstein, Gentzkow and Williams, 2021).

Finally, a key estimate of interest is the coefficient for the birth that occurs in relative

period θr(m,k) = −2, which constitutes our main test for the existence of pre-trends in birth

weight. We do not find detectable evidence of differential trends. The point estimate is −2.2
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and is statistically insignificant.

5.2 Decomposition Results

Our main analysis centers on a decomposition that uses the Zip-level place effect esti-

mates obtained from Equation 1.10 These estimates exploit variation in birth weight across

children of movers, as in the event study results. In what follows, we study two types of

decompositions.

First, Table 2 presents an additive decomposition of the difference in child birth weight

between areas with “high” and “low” birth weight. We vary the definition of high and

low and report results for different definitions in each column. Within each column, we

report the difference in place effects across areas (i.e., γ̂R − γ̂R′) and the share of the total

difference in birth weight attributable to place- or family- (mother) specific factors (i.e.,

Splace(R,R
′) =

γR−γR′
yR−yR′

for groups R and R′).

Column 1 decomposes the 117-gram difference in birth weight between above- and below-

median Zips. We find that 16.2 percent (19 grams) of the variation is due to place, with the

remaining 83.8 percent being due to family (maternal) factors. The standard error on our

estimate implies that we can reject a role for place that exceeds 21 percent or falls below 12

percent.

The remaining columns show similar but smaller shares attributable to place when we

examine alternative definitions of high and low birth weight locations. We consider a range

of alternatives, including comparisons of the top and bottom 25, 10, 5 and 1 percent of Zips.

Moving across columns, the difference in average birth weight increases substantially, from

193 to 725 grams. The estimated role of place is stable, ranging from 13.9 to 9 percent.

Hence, the majority of geographic differences in birth weight appears to reflect sorting of

10Appendix Figure A2 maps the estimated γj ’s, which are standardized effects relative to an excluded
Zip (90019). The estimates are roughly half positive and half negative, indicating that the omitted Zip effect
is around median.
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mothers, rather than exposure to place-specific features.

How should we think about the magnitudes of these results and the potential impacts on

other outcomes of children? The raw difference in average birth weight between the top and

bottom 10-percent of locations amounts to a 10-percent gain in infant birth weight. Previous

studies based on twin-comparisons suggest that a weight gap this large would translate

into a 5-percent of standard deviation gap in test scores and a 1-percent gap in long-run

earnings in adulthood (Black, Devereux and Salvanes, 2007; Figlio et al., 2014). In contrast,

the estimated 38-gram gain from causal place effects between top and bottom 10-percent

locations (Column 4 of Table 2), a 1.2 percent increase relative to the mean birth weight,

would be expected to lead to improvements in test scores and earnings of 0.6 percent of

a standard deviation and 0.12 percent, respectively. This is a meaningfully smaller impact

than would be implied by the raw differences across Zips. However, this gain in birth weight

compares favorably with other policies targeting maternal health, including core safety net

programs. For example, our 38-gram estimate is at least 8 times as large as the impact of

access to Food Stamps during pregnancy (Almond, Hoynes and Schanzenbach, 2011).11

Second, Table 3 presents a decomposition of the variance in birth weight across Zip codes.

The bottom of the table reports results for two scenarios: (i) the share of cross-Zip variance

in birth weight that would be eliminated if average maternal characteristics were equalized

across Zips, and (ii) the share of cross-Zip variance that would be eliminated if place fixed

effects were equalized.

The analysis shows that 89 percent of the variance in birth weight would be eliminated if

maternal characteristics were equalized. Only 15 percent of the variance would be eliminated

if place effects were equalized. There is also a small, positive correlation between ymj and

γj, indicating that mothers with more advantaged characteristics (in terms of infant birth

11Similarly, the 19-gram increase in birth weight from moving from a below- to an above-median place is
4 to 10 times as large as the estimated increase from access to Food Stamps.
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weight) tend to sort into areas that have slightly more beneficial place effects on child health.

5.3 Heterogeneity

In this section, we expand on our prior analysis by focusing on understanding the relative

importance of place for children born to specific groups of mother in terms of socioeconomic

background and race. This is broadly motivated by previous research documenting that

contextual factors such as pollution may have stronger impacts on disadvantaged populations

(Almond, Currie and Duque, 2018; Currie and Walker, 2011). Across groups, we focus on an

additive decomposition of the difference in birth weight for above and below median areas.

Appendix Table A2 presents the results, where the columns report the additive de-

composition for selected groups of mothers. Column 1 reproduces our baseline estimate

from Table 2 for comparison, while Columns 2-5 report results for mothers who are (i)

non-college-educated, (ii) college-educated, (iii) white non-Hispanic, or (iv) not-white-non-

Hispanic (“non-white”), respectively.

The most notable pattern across these subgroups is that the relative importance of place

is larger for mothers with less than a college education. For mothers with a college education,

Column 2 shows that less than 3 percent of the the birth weight gap between above and

below median Zips can be attributed to place. In contrast, Column 3 shows that place

effects account for nearly 20 percent of the variation for non-college-educated mothers.12 In

Columns 4-5, we find that the role of place is similar across white and non-white mothers.

This finding for white mothers is particularly notable given their higher levels of education

(Kane, 2004). Overall, the pattern of education results does not appear to be driven by the

fact that mothers with less education are more likely to be minorities.

12Given that non-college-educated mothers are slightly over-represented among movers (Table 1), this
suggests that our main effects may be an upper bound on the role of place in the population of California
mothers. Consistent with this, Appendix Table A3 shows that reweighting our estimates to account for this
imbalance between movers and non-movers (as in Miller, Shenhav and Grosz, 2021) reduces our estimated
effect of place by about 25 percent.
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5.4 Robustness Exercises

In this section, we provide additional evidence to support our key identifying assumption

and assess the robustness of our results. First, to test for potential shocks that could be

correlated with location quality, we create a predicted birth weight for each infant as the

fitted value from a regression of birth weight on a number of proxies for partner quality,

financial resources, or delivery complications.13 Appendix Figure A3 shows that there is

little change in predicted birth weight after a move. This suggests that the majority of

the change in birth weight after a move is likely due to place-based influences, rather than

time-varying individual covariates.14

Second, we use an IV approach to address the potential concern that the quality of a

mother’s destination may be correlated with unobserved, time-varying determinants of child

health. In particular, we instrument for the difference in average birth weight between a

mother’s origin and destination (i.e., δ̂m) using the average difference for all other mover

mothers from her same origin.15 This reduces the scope for selection bias by eliminating

variation in the change in location quality due to individual choice. Appendix Figure A4

shows that point estimates from the IV version of our event study are essentially the same

as those from our main results.16

13These covariates include an indicator for whether a father is present at the time of birth, father’s age,
indicators for whether the father completed high school and college, an indicator for having a c-section,
an indicator for having no delivery complications, and indicators for public and private insurance. Missing
father characteristics are imputed as the mean in a given calendar year.

14We find similarly small effects when we expand the index to include indicators for whether the mother
worked in the last year and whether she received any WIC for the pregnancy, which are only available after
2007, and limit our analysis to 2007 and onward. See Appendix Figure A5.

15Broadly similar approaches appear in other recent papers. For example, Chetty and Hendren (2018)
study long-run earnings for children whose families move to new locations. As a robustness check, they
reproduce their main exposure effect estimates by predicting the change in location quality using other
movers from a child’s origin. Relative to their approach, we innovate by combining an IV approach with an
event study framework. This uniquely allows us to examine the validity of the instrument by testing whether
predicted changes in location quality affect birth weight for children born before a mother moves.

16Notably, the IV estimate for the coefficient for the birth that occurs in relative period θr(m,k) = −2 is
not statistically significant. This favors the plausibility of the exclusion restriction in our setting.
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Third, since average birth weight may be noisily measured at the Zip code level, we

conduct an analysis of place effects at the county-level, and summarize these results using

our event study specification. Appendix Figure A6 shows that our qualitative results are quite

robust when we focus on county moves. That said, these estimates are somewhat larger than

our baseline effects, suggesting that the causal effect of place accounts for roughly 30 percent

of geographic variation at the county level.17

Fourth, we examine whether our results are sensitive to changes in the functional form of

our model (logs or levels). Estimating our model in logs allows for the possibility that there

could be interactions between mother effects and place effects (i.e., that mothers that tend

to have smaller infants (low αi) may be benefited more by moving to a high-birth-weight Zip

code than mothers that tend to have larger infants (high αi)). Appendix Figure A7 shows

that re-estimating our event-study model with log birth weight as an outcome and δ̂m defined

in logs, produces very similar effects to our main effects.

Fifth, we address the potential concern that fertility is correlated with a mother’s location

choice. For example, if mothers are less likely to have a birth when they move to a lower-

quality location (smaller δ̂m) and the effects of place are heterogeneous across mothers,

then the estimated post-move changes in birth weight could confound such differences in

unobserved selection into having a birth across locations with the causal impacts of place.

We examine these types of fertility responses by testing whether the quality of a mother’s

destination, δ̂m, is a significant predictor of a total completed fertility, controlling for fixed

maternal characteristics.18 Appendix Table A6 shows that an 100-gram increase in δ̂m is

associated with a substantively small and statistically insignificant decline in completed

17One possible explanation for these larger effects is that cross-county moves may cover longer-distances
and entail larger shifts in the local environment. Consistent with this, Appendix Table A4 shows that longer-
distance Zip-level moves, relative to shorter-distance moves, have larger impacts on birth weight.

18Controls include fixed effects for mother race; whether a mother has a college education; the age of a
mother’s first birth; and the parity of the first child born after a move.
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fertility.19 This provides strong evidence that selective fertility is not a factor in our estimates.

Finally, we consider whether changes in our sample criteria or data construction might

affect our estimates. To start, Appendix Figure A8 reports event study analyses using bal-

anced subsamples of our main sample of mothers. This allows us to verify that the pattern of

estimates across births is not influenced by differences in the composition of mothers identi-

fying the coefficients. We produce separate sets of estimates using the three possible balanced

samples: mothers that have two births with one birth occurring after a move; mothers that

have three births with two births occurring after a move; and mothers that have three births

with two births occurring before a move. Across these samples we estimate a very similar

increase in birth weight post-move and continue to find no detectable evidence of pre-trends.

Next, Appendix Table A5 demonstrates that our decomposition results are not meaningfully

changed when we expand our sample to include mothers that move multiple times.

6 Mechanisms: Correlates of Place Effects

This section provides a descriptive analysis to study the specific factors that drive the

place effects on birth weight that we have documented. Specifically, we estimate the correla-

tion of the estimates γ̂j from Equation 1 and proxies for four types of contextual factors that

have been analyzed in prior studies of infant health: (1) demographic and economic measures,

such as racial composition and household income; (2) crime rates, to capture community-

stress, the potential for exposure to in-utero violence, and social capital; (3) proxies for

access to general health and prenatal care, such as the number of hospital beds per capita

and obstetrician-gynecologists (OB-GYNs) per capita; and (4) environmental measures such

as temperature and pollution (particulate matter and ozone). We standardize each measure

to have a mean zero and standard deviation of 1. Note that each of these place factors

is either measured at the Zip- or county-level depending on data availability. Appendix B

19The estimate is also economically small when controls are not included.
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provides details on each measure and the underlying data sources.

Figure 5 summarizes our correlational results for place effects.20 It plots the bivariate

correlation (and 95-percent confidence interval) between the Zip-level place effect estimates

and each place characteristic. The most striking result from this graph is that the level of

pollution in an area has a significant and large correlation with its estimated place effect.

The correlation for ozone is particularly sizable at −0.35. While the correlation for particular

matter (PM2.5) is smaller, it is still among the largest magnitude correlations. Zip codes that

have higher crime rates also have less beneficial place effects. In terms of health care access,

the number of OB-GYNs per capita has a significant positive correlation that is relatively

large at 0.17. Finally, demographic, economic, and temperature measures tend to have smaller

correlations.21 Of these, the largest coefficient is for maternal education (the share of mothers

with a college degree), which may reflect the fact that higher-educated women have higher

levels of civic engagement and greater support for progressive policies (Milligan, Moretti and

Oreopoulos, 2004; Gillion, Ladd and Meredith, 2020).

7 Discussion and Conclusion

This paper uses birth records and a movers-based research design to estimate the relative

importance of place- and family-based determinants of early-life health. We find that place

accounts for the minority of geographic disparities in birth weight. Even so, the gain in birth

weight from moving to a higher-quality location (as proxied by higher average birth weight)

compares favorably with other policies targeting maternal health, including core safety net

20We also explore correlations between our Zip-level estimates of mother effects (i.e., ymj ) and means for
specific maternal characteristics. Appendix Figure A9 shows that family (mother) effects on birth weight
is moderately correlated with the share of non-White mothers (-0.30 correlation). Correlations are smaller
in magnitude for the remaining characteristics. Appendix Table A7 reports results from a decomposition
exercise that suggests observable maternal characteristics explain a small share of the difference in birth
weight between above and below median Zips.

21While we find smaller correlations for factors outside of pollution and OB-GYN access, many of these
correlations are larger than those used to explain variation in health spending place effects in Finkelstein,
Gentzkow and Williams (2016) (which are typically below 0.05).
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programs. A descriptive analysis suggests that causal place effects are most related to the

presence of airborne pollutants, particularly ozone; the availability of prenatal care; and the

level of maternal education.

Overall, our main finding that place accounts for a relatively small share of the variation in

early-child health provides two contributions to the literature. First, relative to past estimates

of the role of place in health, our estimate is at the lower end of the spectrum. At the higher

end, Finkelstein, Gentzkow and Williams (2016) find that place effects account for at least 54

percent of the gap in seniors’ health care utilization across Hospital Referral Regions (large

collections of Zip codes). On the lower end, Finkelstein, Gentzkow and Williams (2021)

find that 15 percent of the variance in elderly mortality across commuting zones would be

eliminated by equalizing place effects. Our estimates suggest that the share of birth weight

explained by place is one-third as large as the share for health care utilization and the same

as the share for mortality. This is consistent with an intuitive hypothesis that place is more

influential for flows of health inputs than for stocks of health capital.

Second, our results complement prior studies that estimate the effects of exposure to

higher-quality neighborhoods at older ages. This literature finds a large role for neighbor-

hood effects on long-run outcomes. For example, Chetty et al. (2020a) find that 62 percent

of the variance in the expected income rank of children across areas is due to causal place

effects.22 However, the majority of prior place-based benefits appears to accrue during adoles-

cence, with smaller impacts during early-childhood (Deutscher, 2020; Chetty et al., 2020b).

Consistent with this, our back-of-the-envelope calculation indicates that in-utero exposure

to place likely exerts a relatively limited influence on long-run outcomes. Collectively, these

results suggest that childhood place effects on long-run outcomes operate primarily through

post-birth mechanisms, such as schools or neighborhood peer effects.

22Similarly, Baran, Chyn and Stuart (2020) study education in 1940 and find that equalizing place effects
would reduce the variance of schooling for Black children across counties by half.
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Finally, one caveat for comparing our work to previous studies is that we study a single

state, while others estimate place effects using national data. This may lead us to estimate

smaller place effects if, for example, maternal health policies differ more across-states than

within-states. This could be relevant for California, which has implemented several initiatives

to standardize maternal health care (Main, Markow and Gould, 2018). However, the fact

that the standard deviation of county birth weight in California (34 grams) is similar to the

national average (43 grams), may make this less of a concern.
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8 Figures and Tables

Table 1: Summary Statistics

(1) (2) (3) (4)

All: Estimation sample:

All All Non-movers Movers

Infant birthweight 3333.372 3334.398 3317.194 3352.445
(577.5) (582.8) (599.7) (563.9)

Black mother 0.063 0.054 0.040 0.068
(0.244) (0.226) (0.196) (0.252)

White, non-Hispanic mother 0.327 0.350 0.366 0.334
(0.469) (0.477) (0.482) (0.472)

Hispanic mother 0.482 0.471 0.461 0.480
(0.500) (0.499) (0.499) (0.500)

Asian mother 0.087 0.086 0.095 0.077
(0.281) (0.281) (0.293) (0.266)

Mother has HS degree 0.722 0.750 0.762 0.738
(0.448) (0.433) (0.426) (0.439)

Mother has college degree 0.226 0.257 0.296 0.216
(0.418) (0.437) (0.457) (0.412)

Maternal age 27.950 28.129 28.740 27.487
(6.255) (6.053) (6.044) (5.997)

Observations 15,318,718 8,458,047 4,330,242 4,127,805

Notes: This table presents summary statistics based on birth records from California
(1989-2017). Column 1 provides statistics for all births. Columns 2-4 provide statistics
for the estimation sample that we use for our main analysis.
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Table 2: Additive Decomposition of Geographic Differences in Birth Weight

(1) (2) (3) (4) (5)

Top vs.
Bottom

50%

Top vs.
Bottom

25%

Top vs.
Bottom

10%

Top vs.
Bottom

5%

Top vs.
Bottom

1%

Diff. in avg. birth weight (grams):

Overall 116.890 193.478 295.756 387.602 725.233
Due to place 18.897 26.982 37.832 40.676 64.949
Due to family (mother) 97.993 166.496 257.923 346.926 660.284

Share of difference due to:

Share due to place 0.162 0.139 0.128 0.105 0.090
(0.023) (0.024) (0.027) (0.032) (0.038)

Share due to family (mother) 0.838 0.861 0.872 0.895 0.910

Notes: This table presents additive decomposition results. All results are based estimates of Equation 1,
where the dependent variable is birth weight (in grams). Each column defines a set of areas R and R′. The
first row reports estimates of the difference in average birth weight between two areas (i.e., yR − yR′). The
second row reports the estimated difference due to place effects (i.e., γR − γR′). The third row reports the
estimated difference due to family (mother) characteristics (i.e., ymR − ymR′). Standard errors (in parentheses)
are calculated using a mother-level bootstrap approach that has 50 repetitions.
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Table 3: Variance Decomposition of Geographic Differences in Birth Weight

(1)

Estimates

Variances of birth weight (grams):

Birth weight 8,984.977
Place effects 963.706
Family (mother) effects 7,666.727

Corr. of average place and family effects 0.065
(0.069)

Share of variance reduced if:

Family (mother) effects were made equal 0.893
(0.080)

Place effects were made equal 0.147
(0.132)

Notes: This table presents variance decomposition results. All results are based estimates of Equa-
tion 1, where the dependent variable is birth weight (in grams). We use a split-sample approach
to estimate variances and covariances as detailed in Section 3. The first row reports the variance
of zip-code average birth weight (i.e., yj). The second, third and fourth rows report the variance
of place effects (i.e., γj), variance of family (mother) effects (i.e., ymj ), and the correlation of place
effects and family effects. The final two rows report the shares of the variance in birth weight that
would be reduced if zip-level place effects were made equal and if family (mother) effects were
made equal, respectively. Standard errors (in parentheses) are calculated using a mother-level
bootstrap approach that has 50 repetitions.
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Figure 1: Average Birth Weight by Zip Code

Notes: This figure provides a map of average birth weight (in grams) at the zip
code level. The legend indicates the level of birth weight with dark blue and dark
red colors indicating places with the highest and lowest birth weight, respectively.
White areas are Zip codes where there are no mothers that meet our baseline
sample criteria (always being in California; always being in a zip code with at
least 25 movers; and either never moving or moving once across births). Note that
average birth weight is winsorized at the 1 percent level to limit the influence of
outliers.
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Figure 2: Distribution of Destination-Origin Difference in Average Child Birth Weight
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Notes: This figure shows the kernel density of the destination-origin difference in
average child birth weight (δ̂m) for mothers who move across zip codes.
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Figure 3: Destination-Origin Differences in Average Child Birth Weight
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Notes: This figure shows the relationship between changes in birth weight before
and after a move and the type of move that a mother experiences. For each mover,
we calculate the difference δ̂m in average birth weight between their destination
and origin zip codes and group the data into 20 bins. The x-axis displays the
mean of δ̂m. The y-axis reports binned averages of the change in birth weight for
the children born before and after the move. The line of best fit is obtained from
an OLS regression using the underlying mother-level sample.
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Figure 4: Event Study Analysis of Child Birth Weight
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Notes: This figure reports the coefficient estimates of θ̂r(m,k) from Equation 5. The
coefficient for the birth that occurs immediately before the move is normalized
to 0. The x-axis indicates the birth order relative to the mother’s move, r(m, k).
Each dot is a point estimate and represents the impact on birth weight measured
in grams. The dashed vertical lines surrounding each dot are estimates of the
95-percent confidence interval. To reduce noise in the figure, the coefficient shown
at “-2” on the x-axis includes the second and third birth prior to a move (i.e.,
r(m, k) = −2 and r(m, k) = −3) and the coefficient shown at “1” on the x-axis
includes the second and third birth births after a move (i.e., r(m, k) = 1 and
r(m, k) = 2). Standard errors are clustered at the mother-identifier level.
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Figure 5: Correlates of Spatial Variation in Place Effects on Birth Weight
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Notes: This figure shows the correlation of estimates of place effects based on
Equation 1 and place characteristics. For each characteristic listed on the y-axis,
the dots report the point estimate of the correlation and the horizontal lines show
the 95-percent confidence intervals based on robust standard errors. Details on
each measure and the underlying data sources are provided in Appendix B.
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Online Appendix

A Appendix Tables and Figures

Table A1: Distribution of Distance Between Origin and Destination

(1)

Average Move Distance (mi.) 32.528
25th Percentile of Move Distance (mi.) 4.214
50th Percentile of Move Distance (mi.) 8.937
75th Percentile of Move Distance (mi.) 22.552
Share of Moves that Cross Counties 0.279

Observations 13,480,833

Notes: This table presents summary statistics for the average and percentiles of the
distance of moves for movers in our estimation sample. Distance is measured as the miles
between centroids of the origin and destination Zip codes for each mover.
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Table A2: Additive Decomposition of Geographic Differences in Birth Weight, By Group

(1) (2) (3) (4) (5)

All
College

Educated
Non-college
Educated White Non-white

Diff. in avg. birth weight (grams):

Overall 116.903 174.594 123.221 129.137 158.040
Due to place 18.897 4.567 23.994 23.730 9.042
Due to family (mother) 98.006 170.027 99.227 105.407 148.998

Share of difference due to:

Share due to place 0.162 0.026 0.195 0.184 0.150
Share due to family (mother) 0.838 0.974 0.805 0.816 0.667

Notes: This table presents additive decomposition results for selected groups of mothers. All estimates are
based on dividing areas based on those that have above and below median birth weight. For comparison,
Column 1 reproduces our estimate for all mothers from Table 2. Columns 2-6 report results for college edu-
cated, non-college, white, and non-white mothers, respectively. All results are based estimates of Equation 1,
where the dependent variable is birth weight (in grams). The first row reports estimates of the difference
in average birth weight between two areas (i.e., yR − yR′). The second row reports the estimated difference
due to place effects (i.e., γR − γR′). The third row reports the estimated difference due to family (mother)
characteristics (i.e., ymR − ymR′).
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Table A3: Impact of Reweighting Estimates of Place to Account for Covariate Imbalance
Across Movers and Non-Movers

(1) (2)
Baseline Model Reweighted

Dest-Origin Diff. in BW (100’s of grams) x Post 11.228∗∗∗ 7.970∗∗∗

(1.033) (2.605)

Observations 4,127,506 3,967,122

Notes: This table presents estimates of the within-mother change in birth weight around a move, scaled
by the destination-origin change in quality, δ̂j . We estimate the following equation: ycmjkt = αm + θδ̂m ×
postmk + ωk + νt + xmkη+ εcmjkt, which replaces the relative birth order dummies in our event study model
with postmk, an indicator for the births that occur after a mother’s move. The key coefficient of interest is
θ, the parameter on δ̂m × postmk. We estimate this equation without weights (Column 1), as in our main
analysis, and applying weights to correct for imbalance in maternal covariates between movers and non-
movers (Column 2). We follow Miller, Shenhav and Grosz (2021) and generate the weights as the product
of (i) the inverse of the probability of being a mover (estimated from fitted values from a logit model that
includes fixed effects for maternal race/ethnicity and maternal education, and a linear term in maternal

age) and (ii) the inverse of the within-mother variance in δ̂m × postmk. Standard errors are clustered at the
mother-identifier level.
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Table A4: Impacts of Place on Birth Weight by Distance of Move

(1)
Estimate

Dest-Origin Diff. in BW (100’s of grams) x Post x Move 0-5 mi 5.797∗∗

(2.529)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move 5-10 mi 2.281
(2.349)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move 10-25 mi 7.641∗∗∗

(2.105)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move at least 25 mi 22.812∗∗∗

(1.791)

Mean of outcome 3351.288
Individuals 4,027,112

Notes: This table presents estimates of the within-mother change in birth weight around a move, scaled by
the destination-origin change in quality, δ̂j , and allowing this effect to vary by the distance of the move.

We estimate the following equation: ycmjkt = αm + θ1δ̂m × postmk ×Move05 + θ2δ̂m × postmk ×Move510 +

θ3δ̂m×postmk×Move1025+θ4δ̂m×postmk×Move25pl+ωk +νt +xmkη+εcmjkt. This equation replaces the
relative birth order dummies in our event study model with postmk, an indicator for the births that occur
after a mother’s move, and allows the coefficient on the δ̂m × postmk interaction to vary for mothers that
move (i) up to 5 miles, Move05; (ii) between 5-10 miles, Move510; (iii) between 10-25 miles, Move1025; or
(iv) more than 25 miles, Move25pl. The key coefficients of interest are θ1, θ2, θ3, and θ4, the parameters

on the interactions between δ̂m × postmk and each of the distance of move variables. Standard errors are
clustered at the mother-identifier level
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Table A5: Additive Decomposition of Geographic Differences in Birth Weight, Robustness
to Including Multiple Movers

(1) (2) (3) (4)

Main Estimation Sample Including Multiple Movers

Top vs.
Bottom

50%

Top vs.
Bottom

25%

Top vs.
Bottom

50%

Top vs.
Bottom

25%

Diff. in avg. birth weight (grams):

Overall 116.903 193.514 116.903 193.514
Due to place 18.897 26.982 22.184 33.651
Due to family (mother) 98.006 166.532 94.720 159.863

Share of difference due to:

Share due to place 0.162 0.139 0.190 0.174
Share due to family (mother) 0.838 0.861 0.810 0.826

Notes: This table presents additive decomposition results for mothers. For comparison, Columns 1 and 2
reproduces our estimate for all mothers from Table 2. All results are based estimates of Equation 1, where
the dependent variable is birth weight (in grams). Each column defines a set of areas R and R′. The first
row reports estimates of the difference in average birth weight between two areas (i.e., yR−yR′). The second
row reports the estimated difference due to place effects (i.e., γR−γR′). The third row reports the estimated
difference due to family (mother) characteristics (i.e., ymR − ymR′).
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Table A6: Test for Differences in Fertility by Destination-Origin Difference in Average Birth
Weight

(1) (2)

Controls added:

None Mom Chars.

Dest-Origin Diff. in BW (100’s of grams) -0.008∗∗∗ -0.001
(0.001) (0.001)

Mean of outcome 2.367 2.368
Observations 1,743,865 1,705,598

Notes: This table presents results from mother-level regressions where the outcome is the
total completed fertility of each mother and the key regressor of interest is the destination-
origin difference in average child birth weight (δ̂m) for each mother. Column 1 includes
no additional covariates; while Column 2 includes fixed effects for mother race, whether
a mother has a college education, the age of a mother’s first birth, and the parity of the
first child born after a move. Robust standard errors are shown in parenthesis.
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Table A7: Share of Birth Weight Gaps Explained by Observable Maternal Characteristics

(1) (2) (3) (4)

Avg.
Mother’s

Education

Avg.
Mother’s

Age

Share
Non-white

Share on
Medi-Cal

Regression Coef. -31.213 -3.886 -103.480 -1,110.806
Diff. in Mom Characteristic -0.033 -0.307 -0.155 -0.000
Share 0.009 0.010 0.137 0.001

Notes: This table presents results for the difference in birth weight between areas that can be explained
by differences in specific maternal characteristics. All results are based on dividing areas based on those
that have above- and below-median birth weight. Each column provides results where the focus is on a
specific Zip-level mean of a maternal characteristic observed in birth records. We estimate the role of a given
maternal characteristic by regressing family (mother) effects (i.e., ymj ) on a Zip-level mean. These estimates
are reported in the first row. The Zip-level differences in the given maternal characteristic are reported in
the second row. The third row reports our estimate of the share explained by the given characteristic which
is defined as the product of the first and second rows divided by the raw difference in birth weight between
above and below median Zips, as in Finkelstein, Gentzkow and Williams (2016).
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Figure A1: Distribution of Birth Weight for all Mothers and Estimation Sample
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Notes: This figure shows the kernel densities for the birth weight of children born
to all mothers in California (from 1989 to 2017), all mothers in our estimation
sample, and mover mothers in our estimation sample.
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Figure A2: Estimated Place Effects
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Notes: This figure provides a map of the estimated Zip code place effects in
standard deviation units. The legend indicates the level of birth weight with dark
blue and dark red colors indicating zip codes with the highest and lowest estimated
effects (relative to the omitted zip code, 90019), respectively. Zip codes with no
color are not included in our estimation of zip code fixed effects. Note that the Zip
code effects are winsorized at the 1 percent level to limit the influence of outliers.
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Figure A3: Predicted Infant Birth Weight Around a Move
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Notes: This figure shows coefficients from our event study model (Equation 5)
in which the dependent variable is predicted infant birth weight. We generate
predicted birth weight for each infant as the fitted value from a regression of
birth weight on an indicator for whether a father is present at the time of birth,
father’s age, indicators for whether the father completed high school and college,
an indicator for having a C-section, an indicator for no delivery complications
during the birth, and indicators for public and private insurance. Missing father
characteristics are imputed as the mean in a given calendar year. See the notes
for Figure 4 for additional details about the interpretation of the estimates.
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Figure A4: Event Study Analysis of Birth Weight Using an Instrument for Changes in
Location Quality
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Notes: This figure shows coefficients from our event study model (Equation 5)

in which we instrument for the change in mother m’s location quality δ̂m. The
instrument is based on computing the leave-out average of δ̂m using all mover
mothers from a given origin zip and excluding the focal mother. Standard errors
are clustered at the origin zip code level. The first stage coefficients and standard
errors are 0.988 (s.e. = 0.004), 1.00 (s.e. = 0.0007), and 1.00 (s.e. = 0.003) for the
estimates two periods before a move, one period after a move, and two periods
after a move, respectively. See the notes for Figure 4 for additional details about
the interpretation of the estimates.
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Figure A5: Predicted Infant Birth Weight Around a Move Using Additional Covariates
(2007 on)

−
1

0
−

5
0

5
1

0
1

5
C

o
e

ff
ic

ie
n

t 
o

n
 [

B
W

(d
e

s
t)

−
B

W
(o

ri
g

in
) 

(1
0

0
’s

 o
f 

g
ra

m
s
)]

−2 −1 0 1
Birth order relative to move (grouped)

Notes: This figure shows coefficients from our event study model (Equation 5)
when we use predicted infant birth weight as an outcome. We generate predicted
birth weight using the baseline prediction model (described in the notes of Ap-
pendix Figure A3), augmented with additional covariates that include indicators
for whether the mother worked in the last year and whether she received any
WIC for the pregnancy. See the notes for Figure 4 for additional details about
the interpretation of the estimates.
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Figure A6: Event Study of Birth Weight using Moves Across Counties
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Notes: This figure reports the coefficient estimates of θ̂r(m,k) from Equation 5
where we define moves as a change in a mother’s county of residence. See the
notes for Figure 4 for additional details about the interpretation of the estimates.
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Figure A7: Event Study of Log Birth Weight
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Notes: This figure shows coefficients from our event study model (Equation 5) in
which we set log birth weight as the dependent variable. See the notes for Figure
4 for additional details about the interpretation of the estimates.
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Figure A8: Event Studies of Birth Weight Around a Move Using Balanced Samples
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Notes: This figure shows coefficients from the event study model specified in
Equation 5) using subsamples of mothers that are balanced in event time to
estimate subsets of the event study coefficients. We study three subsamples. The
black solid dots report estimates based on the sample of mothers that have two
births and one occurs after a move; the grey hollow dots report estimates based
on the sample of mothers that have three births and one occurs prior to a move
while two occur after a move; and the grey solid diamonds report estimates based
on the sample of mothers that have three births where two occur prior to a move
and one occurs after a move. See the notes for Figure 4 for additional details
about the interpretation of the estimates.
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Figure A9: Correlates of Spatial Variation in Family (Mother) Effects
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Notes: This figure shows the correlation of estimates of family (mother) effects
(i.e., ymj ) based on Equation 1 and Zip-level means of specific maternal charac-
teristics observed in the birth records. For each characteristic listed on the y-axis,
the dots report the point estimate of the correlation and the horizontal lines show
the 95-percent confidence intervals based on robust standard errors. Details on
each measure and the underlying data sources are provided in Appendix B.
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B Additional Data Description

This appendix provides details on the data sources that we use to construct measures of
place characteristics. We use measures at the Zip or county geographic levels to analyze the
correlates of the causal place effects in Section 6.

1. Pollution: We rely on Zip-level measures of particular matter (PM2.5) and ozone from
the CalEnviroScreen (version 1.1) database. The CalEnviroScreen database was created
by the California Office of Environmental and Health Hazard Assessment (OEHHA).
The PM2.5 measure is the annual mean concentration (average of quarterly means)
over the three year period 2007-2009. The ozone measure is the portion of the daily
maximum eight-hour ozone concentration over the federal eight-hour standard (0.075
ppm), averaged over the three year period 2007-2009.

2. Criminal Justice: We rely on county-level measures of arrests for violent and all types
of crime per 100,000 persons. Arrest data are available from the California Department
of Justice (DOJ) Criminal Justice Statistics Center (CJSC). We compute the average
annual number of arrests for violent and all types of crime for the period 1990-2015.
We use population statistics from the U.S. Census Bureau to calculate the number of
arrests per 100,000 persons.

3. Demographics and Economic Characteristics: We rely on Zip-level measures of
median income, the poverty share, and the share of Black residents from the 2000
Decennial Census. The Zip-level data was downloaded from the IPUMS National His-
torical Geographic Information System (NHGIS) (Manson et al., 2021). In addition,
we also calculate the Zip-level share of mothers with a college degree using the birth
records from California (1989-2017) for all of the mothers in our estimation sample.

4. Health Care: We rely on county-level measures of the per capita number of hospital
beds and obstetrician-gynecologists (OB-GYNs) from the Area Health Resource Files
(AHRF).
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