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Abstract

This paper studies the risk of large deviations in GDP in the context of a general

nonlinear production model. It derives the probability of extreme events conditional

on the structure of the economy and the distribution of the shocks. Tail risk is

driven by complementarities in production. Increases in interconnectedness in the

presence of complementarity can simultaneously reduce the sensitivity of the economy

to small shocks while increasing the sensitivity to large shocks. Tail risk is strongest

in economies that display conditional granularity, where some sectors become highly

influential following negative shocks. For a wide class of shock distributions, all crashes

are identical, in the sense that they come with probability one from a particular

combination of shocks, which also yields a sufficient statistic for crash risk. The analysis

also characterizes what sectors are systemically risky (or conditionally granular): those

that produce inputs for a large fraction of final production and have no close substitutes.

1 Introduction

Background

If utility is concave, then the events that have the largest individual impact on welfare

are large declines in consumption. A large literature studies large movements in GDP, trying

to understand their likelihood, their sources, and their effects on welfare and other features

of the economy. Acemoglu et al. (2017), for example, show that large movements in GDP

are more likely than predicted by the normal distribution, they and Gabaix (2011) suggest

that such events could be caused by shocks to influential sectors or firms, and Barro (2006)

studies how such movements in GDP and consumption might affect asset prices.

*Northwestern University and NBER. This paper would not exist without Alireza Tahbaz-Salehi. I
appreciate helpful comments from Nicolas Crouzet, Stefano Giglio, Pooya Molavi, Fabrice Tourre, and
seminar participants at Northwestern and the Triangle Macro-Finance Workshop.
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One way to motivate this paper’s analysis is a quantile-quantile (Q-Q) plot for GDP,

which Acemoglu et al. (2017) also study. See the top panel of Figure 1. The Q-Q plot

shows that while GDP is well described by a normal distribution for middle quantiles, its

left tail is heavier than that of the normal distribution, while the right tail is lighter. At

low quantiles, where the normal distribution would be, say, 2 standard deviations below its

mean, log GDP was historically about 2.5 standard deviations lower. Conversely, where the

normal distribution would be 2 standard deviations above its mean, log GDP was only 1.8

standard deviations higher. This paper studies how and when nonlinear models can generate

such behavior – a heavy tail to the left and a normal or lighter tail to the right.

Contribution

The probability distribution of GDP is a function of the distributions of the fundamental

shocks hitting the economy and how the economy’s structure maps them into final output.

What makes understanding that mapping particularly difficult is that, except in highly

restricted cases, it is nonlinear. Past work has focused almost exclusively on linear models or

linear approximations (or at best, in Baqaee and Farhi (2019), a quadratic approximation).1

The goal of this paper is to understand the tails of the distribution of GDP (especially the

left tail) in general nonlinear models. In particular, how does the structure of the economy

determine crash risk, what types of shocks are most likely to cause crashes, and what should

we expect crashes to look like?

The paper’s core contribution is to answer those questions in the context of a general

network production model. It shows, in closed form, how large microeconomic shocks

translate into large movements in GDP. The probability distribution of the shocks and the

structure of the economy then combine to determine the probability of large deviations in

GDP, and the results show formally when the empirical behavior observed in Figure 1 arises.

The insights gained from the analysis are significantly different from those from linear and

quadratic approximations, which are ill-suited to thinking about extreme events.

As byproducts, the analysis delivers both a novel measure of tail centrality, measuring

the ability of a shock to a single economic unit, e.g. a sector or firm, to produce a large

(as opposed to small) movement in GDP, and also shows precisely what combinations of

micro shocks cause crashes. These results help clarify what factors make a firm or sector

systemically risky.

Methods

In production networks, economic units produce outputs using as inputs both labor

1Jones (2011) and Dew-Becker, Tahbaz-Salehi, and Vedolin (2021) study closed form solutions to nonlinear
models, both emphasizing the importance of complementarity and how it causes GDP to be a concave
function of primitive shocks.
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and the products of other units. The various units interact, propagating and potentially

amplifying or attenuating shocks. Importantly, the model allows for arbitrary elasticities of

substitution across inputs, which determine how shocks propagate.

Theoretical analyses of structural models typically rely either closed-form solutions in

highly restricted models, or on Taylor approximations that are only valid locally. That is,

past work has primarily relied on Hulten’s (1978) theorem, which says that sensitivity of

GDP to a sector’s shock depends only on the relative sales of the sector. For large shocks,

though, this paper shows that, except for the case of a purely log-linear model, a Taylor

series yields errors in this setting that eventually diverge to ±∞ – sales shares are no longer

sufficient statistics.

This paper also studies a series expansion, but one taken at infinity. Formally, for any

combination of shocks, the core tool in the analysis is a lemma showing that log GDP has a

linear asymptote. The asymptotic slope describes how GDP responds to large rather than

small shocks (see Figure 2). When combined with an assumption about the distribution of

the shocks, those slopes determine the probability of large movements in GDP.

Results

The paper’s key result is to show how the probability of large movements in GDP

is determined by the structure of the economy. That result has a number of immediate

implications. First, left tail risk is driven by complementarity in production. Crashes are

more likely when inputs are complements than when they are substitutes, all else equal.

Second, it allows one to find the effect of changes in interconnectedness on tail risk.

Interconnectedness increases tail risk in the presence of complementarity, while it decreases

it in the presence of substitutability. It is then simple to construct examples in which

increased interconnectedness increases the economy’s resilience to small shocks while at the

same time increasing sensitivity to large shocks.2

Third, the paper shows formally that if inputs to production are complements (consistent

with other empirical evidence), then we observe exactly the features of the Q-Q plot in Figure

1, a high slope on the left and a low slope on the right. A quantitative version of the model,

also displayed in Figure 1 (discussed in section 4.5), is able to match the data well.

For a wide range of shock distributions, all crashes are caused by a single worst-case

combination of shocks. The next core question is what determines that worst-case scenario.

Which sectors have the most damaging shocks? In past work, the answer has simply been

whichever sectors are biggest (due to Hulten’s (1978) theorem). But that answer is for

linear models (or local approximations) where the relative size of sectors is constant. The

2See Acemoglu and Azar (2020) for related work on changes in interconnectedness in production networks.
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force underlying all of this paper’s results is that what really matters is the relative size

of the sectors in extreme scenarios. A systemically important sector need not be large on

average. Rather, the model shows that what matters is whether the sector would account for

a significant fraction of output if it received an extreme shock. That is, whether the economy

is conditionally granular. As an example, I show that in a fully connected and symmetrical

network with N sectors, the average transmission of each sector’s shocks to GDP is of order

N−1 for small shocks, but of order 1 for large shocks. There is no granularity near steady-

state, but severe granularity in tail events.

For a more realistic example, take electricity and restaurants. In normal times, those

sectors are of similar size – both with Domar weights of about 0.025 – which in a linear

approximation would imply that they have similar (and small) effects on GDP. But one

lesson of Covid was that shutting down restaurants is not catastrophic for GDP,3 whereas

one might expect that a significant reduction in available electricity would have strongly

negative effects – and that those effects would be convex in the size of the decline in available

power. Electricity is systemically important not because it is important in good times, but

because it would be important in bad times.

The fact that it is universal inputs to production that have the largest systemic risk has an

important corollary, which is that tail risk in the economy can increase when the production

network becomes more interconnected. In the case where production is complementary, every

additional link in the network raises tail risk. As a recent practical example, consider the

case of semiconductors. Obviously the advent of computer technology has been massively

beneficial to the economy, but at the same time it has made essentially every sector sensitive

to the supply of semiconductors, making that sector surprisingly influential following a recent

negative shock.

The last section of the paper gives a first-pass estimate of tail centrality – the effect on

GDP of a large shock to each sector – in the data. The basic finding is that tail centrality

and sales shares – which measure local centrality – are only about 60 percent correlated, with

numerous sectors with small sales shares having large tail centralities, while many sectors

with large sales shares have small tail centralities.

Related literature

As discussed above, this paper contributes to the literature on large movements in

aggregate output, including Rietz (1988), Barro (2006), and Acemoglu et al. (2017). Barrot

and Sauvagnat (2016) and Carvalho et al. (2020) study the effects of large shocks to

individual firms due to natural disasters on production. See also related work by Fujiy,

3Consumer spending on food services and accommodations fell by 40 percent, or $403 billion between
2019Q4 and 2020Q2. Spending at movie theaters fell by 99 percent.
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Ghose, and Khanna (2021). Acemoglu et al. (2017) study how heavy tails in GDP can

be generated by the production structure of the economy in a linear setting, while Liu and

Tsyvinski (2021) consider the effects of shocks in a dynamic but still linear model.

The paper’s framework builds on the literature on production networks, going back to

Long and Plosser (1983).4 The closest link is to Baqaee and Farhi (2019), who study higher

moments of output in the same nonlinear framework. The key distinction is that that

paper analyzes output based on a second-order Taylor series approximation. Its analysis is

therefore useful for shedding light on how the structure of the economy generates asymmetry

in the local response of GDP to small shocks, but it does not speak to large deviations as

its approximation has infinitely large errors in the tails. There are also a number of recent

papers on the propagation of shocks and distortions in production networks, both empirical

and theoretical.5 A contribution of this paper is to potentially giving a way for work in those

areas to get analytic approximations where they were previously unavailable.

Taschereau-Dumouchel (2021) studies an endogenous production network and its effects

on the distribution of GDP. There is also a related literature in international trade on

endogenous value chains (e.g. Alfaro et al. (2019)).

This paper is also related to recent work on asymmetry in GDP, including Dew-Becker,

Tahbaz-Salehi, and Vedolin (2021), Dupraz, Nakamura, and Steinsson (2020), Ilut, Kehrig,

and Schneider (2018), and others. While that work primarily focuses on asymmetry at the

business cycle frequency, and hence for fairly “typical” sorts of shocks, this paper analyzes

the determinants of asymmetry in the tails, giving, for example, a potential explanation why

there are occasionally extremely large declines in output but never equally large increases.

Asymmetry appears when production features complementarity, and there is significant

empirical evidence that production is complementary.6

Outline

The remainder of the paper is organized as follows. Section 2 describes the basic structure

4That literature is large and work has studied features of networks, e.g. what makes a particular sector or
firm central and what determines the behavior of GDP. For recent representative work, in addition to other
work discussed, see Liu and Tsyvinski (2021), vom Lehn and Winberry (2021), La’O and Tahbaz-Salehi
(2021), and Bigio and La’O (2020).

5Liu (2019), Bigio and La’O (2020), and Boehm and Oberfield (2020) study the propagation of distortions
in production networks. Costello (2020) and Alfaro, Garcia-Santana, and Moral-Benito (2021) study the
propagation of credit supply shocks. Gofman, Segal, and Wu (2020) study the propagation of technology
shocks and their effects on firm risk.

6Atalay (2017) and Atalay et al. (2018) find evidence for complementarity in sectoral data, while Barrot
and Sauvagnat (2016), Boehm, Flaaen, and Pandalai-Nayar (2019), Carvalo et al. (2021), and Peter and
Ruane (2020) find complementarity in firm-level data (though in the latter pair of papers the complementarity
is only between factors (e.g. labor) and intermediate inputs, not among intermediate. The estimates appear
to depend on the time horizon considered for responses (see Ruhl (2008)).
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of the economy. Section 3 presents the result on approximating output in terms of the

exogenous shocks. That result is then used for deriving the main results on tail risk in

section 4. Section 5 uses those results to characterize the risk associated with shocks to

different sectors – developing the notion of tail centrality – and section 6 presents empirical

estimates of that risk based on the US input-output matrix. Section 7 concludes.

2 Structure of the economy

The model is static and frictionless and takes the form of a standard nested CES production

network as studied in Baqaee and Farhi (2019). There are N production units each producing

a distinct good. A unit might represent a sector, or a firm, or even just part of a sector or

firm, though I will sometimes refer to them as “sectors” as a standard shorthand. Each unit

has a CES production function of the form

Yi = ZiL
1−α
i

(∑
j

A
1/σi
i,j X

(σi−1)/σi
i,j

)ασi/(σi−1)

(1)

where Yi is unit i’s output, Zi its productivity, Li its use of labor, and Xi,j its use of good

j as an input (throughout the paper, summations without ranges are taken over 1, ..., N).7

The parameters Ai,j, normalized such that
∑

j Ai,j = 1, determine the relative importance

of different inputs. If Ai,j = 0, unit i does not use good j.

σi is the elasticity of substitution across material inputs for unit i. When σi → 1,

the production function becomes Cobb–Douglas (with the Ai,j becoming the exponents).

Though I assume a CES specification for simplicity, appendix B.3 shows that the results

also hold under much more general conditions. As discussed in Baqaee and Farhi (2019),

this structure captures arbitrary substitution patterns through nesting of the production

functions.

Last, there is representative consumer whose utility over consumption of the different

goods is

U (C1, ..., CN) =
∏
i

Cβi
i (2)

where
∑

j βj = 1 and we define a vector β = [β1, ..., βN ]′. I assume that final consumption

has a unit elasticity of substitution because it simplifies the results and because when the

7The fact that labor in (1) has a unit elasticity of substitution with material inputs is without loss of
generality – one can always specify an additional unit that converts labor into labor services, which are then
combined with other inputs with a non-unitary elasticity
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elasticity is different from 1, for large shocks the model would imply that a single production

unit becomes dominant, accounting for 100 percent of nominal output. The analysis is thus

about nonlinearity in production, rather than final demand.8

The representative agent purchases Ci units of good i with wages and inelastically supplies

a single unit of labor so that
∑

i Li = 1.

Throughout the paper, lower-case letters denote logs, e.g. zi = logZi. I also normalize

productivity such that zi = 0 represents, informally, the steady-state or average value.

For the main results I assume labor can be frictionlessly reallocated across sectors. The

limits go through identically with fixed labor (appendix B.4), and allowing for an upward

sloping aggregate labor supply curve is also straightforward.

Since the economy is frictionless, it can be solved either competitively or from the

perspective of a social planner.

Definition. A competitive equilibrium is a set of prices {Pi}∪W and quantities {Yi}, {Xi,j},
{Ci,j}, and {Li} such that each unit i maximizes its profits, PiYi −WLi −

∑
j PjXi,j, the

representative consumer maximizes utility, producers and the consumer take prices as given,

and markets clear: Yi = Ci +
∑

j Xj,i.

Since there is no government spending or investment, GDP is equal to aggregate consumption

expenditures. I denote logGDP by gdp.

The model does not in general have a closed form solution.

3 Large shock behavior

Evaluating the probability of large deviations in GDP requires knowing its response to large

shocks. This section describes that response. While the limiting behavior derived here may

be interesting on its own, for the purpose of this paper it is a lemma supporting the core

probability statements.

Throughout the analysis we will use a polar representation for the vector logZ = z =

[z1, z2, ...]
′, such that

z = θt (3)

where θ ∈ RN , such that ‖θ‖ = 1 (‖·‖ denoting the Euclidean norm), is a unit vector

representing a direction in productivity space and t is a scalar determining magnitude. As

8That said, this assumption is without loss of generality since one can always add a sector with a non-
unitary elasticity of substitution that produces a single final good, with β = 1 to that sector and equal to
zero for all other sectors.
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examples, θ = [..., 0, 1, 0, ...] represents a shock to a single sector, while θ = [1, 1, ...] /
√
N

represents a common shock to all sectors.

3.1 The large shock limit

Lemma 1. Part 1: There exist unique scalar-valued functions λ (θ) and µ (θ) independent

of t such that

lim
t→∞
|gdp (θt)− (µ (θ) + λ (θ) t)| = 0 (4)

See appendix A for all proofs.

Since the paper’s goal is to characterize the tails of the probability distribution of GDP,

it is natural that what will matter is how GDP responds to the very largest shocks. That is

what Lemma 1 describes.9

To provide intuition, the panels of Figure 2 plot various approximations for log GDP for

some arbitrary value of θ, with t varying along the x-axis. The negative side of the axis, for

t < 0, formally corresponds to reversing the sign of θ – i.e. t runs from 0 to ∞ on each side

and θ is replaced with −θ on the left.

When σi = 1 for all i, the model is fully linear, and there is a vector D (equal to the

sales of each sector scaled by GDP) such that λ (θ) = D′θ. When the elasticities differ from

1, the model is nonlinear. That can be locally captured by a Taylor series, as is shown

in the left-hand panel. The right-hand panel plots the approximation implied by Lemma

1. As t grows both to the left and right, log GDP approaches the two straight lines, with

λ (θ) 6= −λ (−θ). That difference is how the tail approximation captures nonlinearity.

3.2 Characterizing the slope function

Lemma 1. Part 2: The slope in equation (4) is λ (θ) = β′φ, where φ ∈ RN is the solution

to the system

φi = θi + αfi (φ) for i ∈ {1, ..., N} (5)

9Lemma 1 holds under weaker conditions than CES production functions, primarily just requiring constant
returns to scale (appendix B.3). An example of a model in which it is violated is one where labor cannot be
reallocated across sectors and it has an elasticity of substitution with material inputs smaller than 1 (such
a model does not have a solution for all levels of productivity).
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and fi : RN → R is defined as

fi (φ) =


maxj∈Si φj if σi > 1∑

j Ai,jφj if σi = 1

minφj if σi < 1

(6)

for all i, where Si ≡ {j : Ai,j > 0} is the set of inputs used by sector i. φ and λ are unique

and continuous in θ.

λ is determined by a recursion. φi will turn out to determine the output of each unit

(see section 4.6). Each unit’s output depends on its own productivity and that of its inputs.

When inputs are substitutes (σi < 1), all that matters is the weakest input. When inputs

are complements (σi > 1), all that matters is the strongest input. And when the elasticity

of substitution is 1, sector i is in the log-linear Cobb–Douglas case.

It is most notable what does not affect φ and λ (θ): the exact values of the production

weights, Ai,j, and elasticities of substitution, σj. The production weights only matter to

the extent that they are zero versus positive, determining the inputs used by each sector.

Similarly, the elasticities only matter for being greater than, less than, or equal to 1. The

form of f is due to the fact that the CES aggregator behaves like a maximum or minimum

as the scale of the inputs diverges. Complementarities, with σi < 1, amplify negative and

attenuate positive shocks, with substitutability doing the opposite.

Even though the slope λ (θ) is nonlinear in θ, it is continuous, so that two θ’s that are

close together will have similar impacts on the economy.

3.2.1 Comparative statics

Proposition. φi and λ (θ) weakly increase when any σi transitions across the possibilities

in (6) (i.e. from < 1 to = 1 to > 1)

When there is more substitutability in the economy, negative shocks become less damaging

and positive shocks create more value. Intuitively, substitutability gives greater opportunity

to use the output of relatively productive sectors.

Proposition. When the set of inputs used by sector i grows, in the sense that Si → Si ∪ j
for some j 6⊂ Si, φi and λ (θ) weakly increase if σi > 1 and decrease if σi < 1.

This result shows how the degree of interconnectedness affects the response of the economy

to shocks. Interconnectedness for a given unit is harmful if its inputs are complements, while

it is beneficial when they are substitutes. One way to state that result makes it seem obvious:
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if the number of inputs needed to produce output grows, then obviously production is more

delicate.

There is a less obvious way to put it, though: if a sector discovers an input that strongly

increases the marginal product of all of its other inputs, then production is more delicate.

Obviously such a discovery will increase output, but it also will make output in the future

sensitive to more shocks, since now shocks to the new input will matter, where they did

not previously. We will see below that while expanding the number of inputs increases

diversification locally, in the sense of making the economy respond less to small shocks, but

the result here shows that increasing the number of inputs can simultaneously increase tail

risk.

An important feature of both of the comparative statics to note is that φ and λ are not

continuous in the parameters σi and Ai,j. In particular, when any Ai,j moves from zero to

some number greater than zero, or when any σi moves from < 1 to 1 to > 1, that change

either has no effect or a discontinuous effect on φ and λ, depending on θ. So even though log

GDP is a continuous function of the parameters for any finite value of z, in the large-shock

limit, the behavior is qualitatively different, with parameter changes causing discrete changes

at the break points of 0 for the production weights and 1 for the elasticities.

3.3 Special cases

3.3.1 A solution for uniform elasticities

The case where the σi are all either above or below 1 is an important benchmark that appears

in a number of calibrations in the literature. In that special case it is possible to further

characterize λ. I take σi ≤ 1, with the results going through analogously for σi ≥ 1.10

Proposition. If σi ≤ 1 for all i, there is a finite set of N × 1 vectors Dk such that

λ (θ) = min
k
D′kθ (7)

It immediately follows that GDP is concave in that λ (θ) > 0⇐⇒ λ (θ) ≤ −λ (−θ)

The vectors Dk are known as Domar weights and give the marginal response of log GDP

to a change in productivity (in this case in the direction θ). In a linear model, where the

production network is fixed, there is a single slope determining the response to θ, so that

λ (θ) = D′θ, where D are the economy’s unique set of Domar weights. In a nonlinear model,

the Domar weights vary depending on productivity, but the proposition says that in the limit

10A slight extension of the argument shows that the same results in fact hold for σi ≤ 1.
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they only take on a finite set of values. Intuitively, that follows from the recursion defining

φ and λ in part 2 of Lemma 1. When σi < 1, sector i’s output depends only on a single

upstream sector. And there are only a finite set of possible upstream sectors.

The proposition again emphasizes how complementarity propagates negative shocks and

attenuates positive shocks, giving each the worst possible effect on output, and it will be

useful in analyzing specific models later on.11 The second part captures the concavity of GDP

and follows from the concavity of the minimum operator. It simply says that for a given

shock that increases GDP, its mirror image reduces GDP by at least as much (and usually

more). The fact that GDP is concave in a complementary economy will be an important

ingredient in generating the observed asymmetry in GDP growth in Figure 1.

3.3.2 Fully connected economy

Example. Suppose σi < 1 for all i and every sector uses inputs from every other sector (as

in, e.g., the economy in Jones (2011) and Dew-Becker, Tahbaz-Salehi, and Vedolin (2021),

among others). Then

φi = θi +
α

1− α
θmin (8)

λ (θ) = β′θ +
α

1− α
θmin (9)

where θmin = mini θi.

In the case of a fully connected production network, each sector’s φi is a linear combination

of its own productivity and that of the weakest sector, and GDP then depends on both a

linear combination of the θ’s and also the minimum. So even if, for example, the economy

is fully symmetric, with each good used in equal amounts so that all sectors have identical

Domar weights in steady-state, the effect of a shock on GDP in the tail depends additionally

on the productivity of the weakest sector. Consistent with the result in Lemma 1, the results

in this example do not depend on the exact value of any of the production parameters.

That result is the paper’s first view of the importance of conditional granularity. Even

though no sector is granular (for large N) when shocks are small, as the shocks become large,

the sector with the most negative shock becomes granular in the sense that it becomes a

uniquely important determinant of GDP.

11The minimization here is reminiscent of the worst-case network analysis in Jiang, Rigobon, and Rigobon
(2021).
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3.4 Approximation errors

This section compares Lemma 1 to local approximations.

3.4.1 Small shock approximations

A first observation is that if one’s goal is to understand asymmetry in the economy, a first-

order approximation will never be appropriate. What about a higher-order Taylor series?

Proposition. As t → ∞, the error from any Taylor series for gdp around any value of z

will diverge to ±∞ for some θ unless σi = 1 ∀ i.

If the economy has any nonlinearity, the tail approximation is always preferable when the

magnitude of shocks is sufficiently large. As ‖z‖ grows, the error in the tail approximation

converges to zero, while it diverges to ±∞ (in at least some directions) for any Taylor series.

That behavior is visualized in Figure 2.

Surprisingly, adding more terms to the Taylor series does not necessarily increase the

range of z’s for which a local approximation is superior. In general the Taylor series for a

CES aggregator has a finite domain of convergence.12 Outside some finite range for z, as

terms are added to the Taylor series the approximation diverges to ±∞ at any fixed value

of z.

3.4.2 The large-shock approximation

While Lemma 1 only guarantees accuracy as t→∞, its errors also never diverge:

Corollary. There exists a δ such that, for all θ and t

|gdp (θt)− (µ (θ) + λ (θ) t)| < δ (10)

In addition, there is a stronger form of the main limit for convergence:

Lemma 1. Part 3: Equation (4) in part 1 can be replaced by, for any j

lim
t→∞
|gdp (θt)− (µ (θ) + λ (θ) t)| tj = 0 (11)

It is not only the case that a linear approximation for gdp exists as t → ∞, but in fact

no other powers of t appear in the series expansion. The approximation errors converge to

12Specifically, in logs, consider log
∑

j wj exp (γθjt) for some exponent γ and a unit-norm vector θ. The
sum inside the log in general has zeros for complex t, meaning that the function has a pole and hence a finite
range of convergence for a given θ.
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zero exponentially fast as t → ∞, and further one can show that the rate increases with

|σi − 1|.13

Appendix B.1 describes some results on values of z for which the tail approximation is

more accurate than a Taylor series. Overall, when elasticities of substitution are closer to 1,

or when the units whose shocks are relevant in the tail (in the sense of being the argument

of (6) for some sector) have smaller production weights, the tail approximation will tend to

be less accurate for small t.

4 The risk of large deviations in GDP and their source

This section combines the approximation result with assumptions about the probability

distribution for shocks to get a probability distribution for GDP.

4.1 Shock distributions

I assume that there is a function 0 ≤ s (θ) < ∞ that determines the scale of the shocks

in direction θ. Specifically, for t greater than some t̄, t/s (θ) has a cumulative distribution

function F , with complementary CDF F̄ ≡ 1− F (note F̄ is positive and decreasing).

Where s (θ) is larger, ‖z‖ tends to be larger. For the purposes of this paper it is only

necessary to choose the distribution of z for large t (i.e. when ‖z‖ is large), with its behavior

for t ≤ t̄ left unrestricted.

I assume θ has a probability measure mθ. For the main results, the only characteristic of

mθ that matters is its support, and in typical cases it will have full support over θ.

Since z = θt is a unique decomposition, we can write the probability distribution

equivalently over z or θ and t (with t = ‖z‖ and θ = z/ ‖z‖). To formalize the above

assumptions, we set, for t > t̄

Pr [θ ∈ Θ, t/s (θ) > x] = m (Θ) F̄ (x) (12)

In order to ensure that asymmetry in the distribution of GDP comes from the structure of

the economy, in what follows I assume that m (θ) and s (θ) are symmetrical (s (θ) = s (−θ)
and m (θ) = m (−θ)).

13If one wanted to add further terms to the approximation, it would be necessary to approximate
log (gdp (z)− (µ (θ) + λ (θ) t)).
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4.1.1 Examples

The representation in (12) accommodates standard distributions studied in the literature

such as multivariate normality, elliptical distributions more generally, transformations of

Laplace distributed vectors, and Pareto-tailed distributions (Resnick (2007)).

In the case where z ∼ N (0,Σ), s (θ) = (θ′Σ−1θ)
−1/2

and F̄ (x) = exp (−x2/2), while

m (θ) has full support.14

If the elements of z are i.i.d. exponential random variables with mean η, then s (θ) =

1/ ‖θ‖1 and F̄ (x) = exp (−x/η).

A simple example of a distribution that does not have a representation (12) is the case

with N = 1 so that z is a scalar and z is distributed normally conditional on being positive

but exponentially conditional on being negative. Intuitively, the restriction, which can easily

be relaxed, is that the tail shape (as distinct from the scale) is the same for all θ.15

See appendix A.7 for derivations.

4.2 General result

Theorem 1. Given the distribution for z in (12), there exists a function ε (x) ≥ 0 with

limx→∞ ε (x) = 0 and an x̄ such that for x > x̄∫
Θ−

F̄

(
x− µ (θ) + ε (x)

−s (θ)λ (θ)

)
dm (θ) ≤ Pr [gdp < −x] ≤

∫
Θ−

F̄

(
x− µ (θ)− ε (x)

−s (θ)λ (θ)

)
dm (θ)

(13)

where Θ− = {θ : s (θ)λ (θ) < 0}

Theorem 1 says that, as a general matter, the CDF of logGDP is well approximated by∫
Θ−

F̄

(
x− µ (θ)

−s (θ)λ (θ)

)
dm (θ) (14)

and in fact the µ (θ) term is for typical cases also irrelevant (since x eventually dominates).

Intuitively, this says that the CDF of GDP, in the tail, depends on the average across all

shocks (
∫
dm (θ)), of the probability that each shock (θ) creates a large decline in GDP. This

is a general characterization that can be specialized further by specific choices for F̄ , m (θ) ,

and s (θ).

14Note that this is an asymptotic representation for F̄ . The error function has a representation with
polynominal terms multiplying the exponential, but they are asymptotically negligible.

15For practical purposes, if the tail decays significantly faster in some direction (z > 0 in this example),
then that can be analyzed by just setting the measure m to zero in that direction.
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4.2.1 General properties of the tail of GDP

Even without further specialization, there are general results that follow from Theorem 1.

Determinants of tail risk. First, the probability of large deviations in GDP depends on

the probability of large deviations in productivity, scaled by the limiting slope, λ (θ), showing

that the tail approximation is the correct way to analyze the economy in this setting. Other

aspects of the economy – such as the steady-state Domar weights, the precise values of the

elasticities of substitution, or terms in a Taylor expansion – are irrelevant.

A second observation is that the volatility of the shocks in different directions, captured

by s (θ), interacts with λ (θ) to determine tail risk. When the shocks are more volatile – s is

larger – tail risk is greater.

Comparative statics. The comparative statics in section 3.2.1 are useful here for

showing what makes the economy riskier.

Corollary. Any factor that weakly reduces λ (θ) for all θ also weakly reduces tail risk in the

limiting sense of Theorem 1. In particular, given the propositions from section 3.2.1, tail

risk weakly declines:

1. when any σi transitions from < 1 to 1 to > 1

2. when the set of inputs used by any sector i grows if σi > 1 or shrinks if σi < 1

The second part of the corollary shows how changes in interconnectedness affect tail

risk – interconnectedness reduces tail risk when it increases the number of substitutes and

increases tail risk when it increases the number of complements.

Skewness. We also obtain a general result on skewness.

Corollary. If the distribution of z is symmetrical,16 then when GDP is concave in the sense

that λ (θ) > 0 ⇐⇒ −λ (−θ) ≥ λ (θ), Pr [gdp < −x] ≥ Pr [gdp > x] for sufficiently large x.

In particular, that holds when σi < 1 for all i.

So under very general (but still only sufficient) conditions, as long as the elasticities are

all below 1, the left tail of GDP is heavier than the right. Concavity in production thus

robustly generates left skewness in GDP, in the limiting sense of the corollary.

Bayes’ Theorem. Fourth, Bayes’ theorem can be used to invert the probability distribution

to find out what combinations of shocks cause large movements in GDP. Again ignoring the

error term, for any subset Θ∗ of the unit sphere,

Pr [θ ∈ Θ∗ | gdp < −x]→

∫
Θ∗∩Θ−

F̄
(

x−µ(θ)
−s(θ)λ(θ)

)
dm (θ)∫

Θ−
F̄
(

x−µ(θ)
−s(θ)λ(θ)

)
dm (θ)

(15)

16I.e. s (θ) = s (−θ) and m (θ) = m (−θ).

15



as x → ∞. The values of θ most likely to appear when GDP takes an extreme value are,

naturally, those for which s (θ)λ (θ) is large – the shocks are large or GDP is sensitive to

them. That is on some level not surprising, but it formalizes the idea that one must be

careful to use the correct measure of sensitivity. What matters is not the effect of a shock

in regular times – i.e. D′ssθ, where Dss is the vector of steady-state Domar weights – but its

effect when things are extreme. The steady-state Domar weights in fact have no bearing at

all on the tail probabilities.

Finally, Theorem 1 shows how nonlinearity in the economy generates increases in tail

risk. If the economy were linear, the argument of F̄ in (13) would be x
−s(θ)D′ssθ

. When λ (θ)

is larger in magnitude than D′ssθ, there is a larger chance of a large movement in GDP.

Equation (13) shows how that would increase left tail risk in the economy relative to what

one would expect based on the steady-state Domar weights.

4.3 Interconnectedness and risk in the economy

As discussed above and in section 3.2.1, when a sector’s production is characterized by

complementarity, with σi < 1, an increase in its upstream interconnectedness, using more

inputs, weakly decreases λ (θ) for all θ. An equivalent version of that statement is that when a

sector sells to a new downstream sector, left tail risk weakly increases if the new downstream

sector has an elasticity of substitution less than 1. In other words, complementarity and

interconnectedness combine to increase left tail risk (and at the same time reduce the

probability of large booms in GDP).

But obviously the tail probabilities in Theorem 1 are not the only way to evaluate the risk

of the economy. Another interesting question is how the economy responds to small shocks,

or equivalently, what the variance of logGDP is in a first-order Taylor approximation.

Hulten’s (1978) theorem tells us

d logGDP

dzi
=

PiYi∑
j PjCj

(16)

When evaluated at z = 0, I refer to the vector over i of those derivatives as the steady-state

Domar weights, Dss. We then have the well known result that the Domar weights are related

to the production network through

D′ss = β′ (I − αA)−1 (17)

where the matrix A has representative element Ai,j. The model is set up so that the A and
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β parameters determine the Domar weights at steady-state.

When the covariance matrix of the productivity shocks is var (z) = Σ, we have, from a

first-order approximation,

var (logGDP ) ≈ D′ssΣDss (18)

How does a change in interconnectedness affect this local concept of risk? First, we have

the simple fact that D′ssΣDss is continuous in A. So any small change in A – i.e. a change in

some Ai,j from zero to a small positive number – will cause only a small change in D′ssΣDss.

But as discussed above, such a change can cause a discrete shift in the values of the function

λ, and hence in tail risk. In other words, local risk is always affected smoothly by A, but

tail risk is affected discretely by it.

Second, though, note that an increase in interconnectedness, even though it cannot reduce

tail risk, can certainly reduce the sensitivity of GDP to small shocks. Since the sum of the

Domar weights, Dss,i, is always equal to (1− α)−1, we have the following simple example:

Example. Suppose the shocks are uncorrelated (Σ is diagonal). A marginal increase in the

sales share of any sector starting from zero, if it (weakly) reduces the sales shares of all other

sectors, will reduce D′ssΣDss.

The example gives simple sufficient – and far from necessary – conditions for when adding

a new sector diversifies the economy. At the same time, though, the results above show

that adding new sector will weakly increase tail risk when the elasticity of substitution in

production is less than 1.

This section thus shows that in the model increases in interconnectedness – measured

here by the number of links in the production network ((i, j) pairs such that Ai,j > 0) –

can diversify the economy, making it less sensitive to small shocks, while at the same time

increasing tail risk.

4.4 Weibull tails

This section specializes the result in Theorem 1 to a broad class of distributional forms for

the shocks, allowing for more specific results.

A wide range of distributions, including the normal, gamma, exponential, Gumbel, and

Fréchet families all can be said to have Weibull tails, up to asymptotically negligible terms,

in the following sense:17

17For the normal distribution in particular, a better approximation for F̄ (t) is c (t− t̄)−1 exp
(
−η (t− t̄)2

)
.

The t−1 term is asymptotically dominated by the exponential, and it is straightforward to show that the
proposition in this section also holds when any powers of t multiply the exponential in F̄ .
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Definition. The shocks have a Weibull-type tail if, for t > t̄,

F̄ (t) = c exp (−η (t− t̄)κ) (19)

where c = Pr (t ≤ t̄) (20)

for parameters κ > 0 and η > 0.

Smaller κ represents heavier tails, with κ = 1 corresponding to the exponential distribution

and κ = 2 to the normal. In addition, all three types of extreme value distributions (Weibull,

Gumbel, and Fréchet) have Weibull-type tails. The Weibull family thus covers a broad range

of behaviors, including all but the very lightest (e.g. bounded) and very heaviest (Pareto or

Cauchy) tails.

Across that entire family, we have a surprisingly simple result. Denote the essential

supremum with respect to the measure m over θ of any function f (θ) by ‖f (θ)‖∞.18 In

the benchmark case where m has full support, ‖f (θ)‖∞ = maxθ f (θ) (note that it is not

the maximum of |f (θ)|). ‖f (θ)‖∞;Θ∗ denotes the essential supremum on some subset of the

sphere Θ∗.

Proposition. If the shocks have Weibull tails,

lim
x→∞

Pr [gdp < −x]1/(x
κ) = exp

(
−η
(

1

‖−s (θ)λ (θ)‖∞

)κ)
(21)

Furthermore, for any set Θ∗ such that ‖−s (θ)λ (θ)‖∞;Θ∗ < ‖−s (θ)λ (θ)‖∞,

lim
x→∞

Pr [θ ∈ Θ∗ | gdp < −x] = 0 (22)

Analogous results hold for Pr [gdp > x].

Conditional on the distribution of the shocks, the probability that GDP has an extreme

decline is determined by a sufficient statistic: the most negative value of s (θ)λ (θ). That is,

what determines tail risk is the shock with the largest negative impact on GDP – combining

both the scale of the shock, s (θ), and its effects, λ (θ). The exponential form of the

distribution for t is what causes only the single most extreme shock to end up mattering,

because F̄ is effectively infinitely convex as x→∞.

The second part of the result says that extreme realizations are driven, in probability, by

only that single most extreme shock – the θ that achieves the maximum for −s (θ)λ (θ)

18Formally, ‖f (θ)‖∞ = inf {a ∈ R : m ({θ : f (θ) > a}) = 0}.
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(under knife-edge conditions, multiple θ’s might achieve that maximum). Any θ with

−s (θ)λ (θ) < ‖−s (θ)λ (θ)‖∞ causes a crash with probability zero asymptotically.

So when shocks have Weibull tails, the most extreme events are caused by, up to knife-

edge conditions, a single shock: all crashes (and all booms) are the same. If one wants

to evaluate the risk of the economy, it is not necessary to actually know the full network

structure and how the economy responds to every possible shock. The impact of the most

influential shock, ‖−s (θ)λ (θ)‖∞, is a sufficient statistic. That result is reminiscent of the

finding in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017) that tail risk is determined by

the largest Domar weight. In the more general case here, it depends on the product of the

Domar weight in the tail with the scale of the shock.

The same comparative statics results continue to hold as above, though now really they

only matter if they affect ‖−s (θ)λ (θ)‖∞. That is, any change in the model (the elasticities

or the inputs used by sectors) that does not affect that supremum does not affect tail risk.

For the right tail, the probabilities depend on the largest positive shock, ‖s (θ)λ (θ)‖∞.

Asymmetry in λ or s – if it affects their joint maximum – will induce asymmetry in the tail

of GDP.

Appendix B.2 describes results for the case where the shocks have Pareto tails, which are

heavier than anything in the Weibull family, which still yields a closed form solution, but

with differences from the Weibull result.

4.4.1 Tail skewness

In the Weibull case we can significantly sharpen the conditions for tail asymmetry relative

to the general case:

Corollary. When the shocks have Weibull tails, the following necessary and sufficient conditions

for tail asymmetry hold:

‖−s (θ)λ (θ)‖∞ > ‖s (θ)λ (θ)‖∞ ⇔ lim
x→∞

Pr [gdp < −x]

Pr [gdp > x]
=∞ (23)

‖−s (θ)λ (θ)‖∞ < ‖s (θ)λ (θ)‖∞ ⇔ lim
x→∞

Pr [gdp < −x]

Pr [gdp > x]
= 0 (24)

When s is symmetrical, a sufficient condition for the first case is σi < 1 for all i, while a

sufficient condition for the second case is σi > 1 for all i.

The condition ‖−s (θ)λ (θ)‖∞ > ‖s (θ)λ (θ)‖∞ says that the largest negative effects of

shocks are larger in magnitude than the largest positive effects. If that is true log GDP

is skewed left. When the opposite condition holds, it is skewed right. As in the corollary
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in section 4.2, a sufficient condition for left tail skewness (in the limiting sense) is that

production is complementary, while if production displays substitutability – σi > 1 – then

there is right tail skewness. In other words, for a complementary economy with Weibull-type

shocks, large booms in GDP are infinitely rare compared to large declines.

In the case of the next two specific examples, it is possible to further characterize the tail

distribution of GDP.

4.4.2 Gaussian shocks, conditional granularity, and the Q-Q plot

This example shows how complementarity can generate excess tail risk and the behavior

observed in Figure 1. First, note that for small shocks, we have the usual first-order

approximation that gdp ≈ D′ssθ, implying

var (gdp) ≈ D′ssΣDss for z ≈ 0 (25)

where Σ is the covariance matrix of the shocks.

Example. Suppose z ∼ N (0,Σ). If σi ≤ 1 for all i, then the left tail of GDP is determined

by

‖−s (θ)λ (θ)‖∞ = max
n

√
D′nΣDn (26)

Pr [gdp < −x] → c exp

(
−1

2

x2

D′nΣDn

)
(27)

as x → ∞. Denoting the argument for the maximum in (26) by n∗, the shock causing left

tail events is θ ∝ −ΣDn∗.

As noted above, the tail distribution of GDP remains Gaussian. Instead of the local

variance, D′ssΣDss, though, the left tail probabilities are as though the variance is maxnD
′
nΣDn.

That is, instead of the steady-state Domar weights, the left tail probabilities depend on the

worst possible Domar weights, in the sense that they generate the largest variance of any

feasible network.19 Whereas a linear approximation implies that GDP is globally Gaussian,

the tail approximation shows that such an approximation misses important deviations from

Gaussianity in the tails.

19Note also that in the special case of a linear model (σi = 0 for all i), the tail approximation yields the
correct result that the effective variance in both the left and right tails is D′ssΣDss.

As an example, suppose gdp =
∑

j zj and the zj are i.i.d. normal. Then the results here say that extreme

realizations of GDP are due to θ = [1, 1, ...]N−1/2. That result in fact holds for Weibull tails more generally
as long as κ > 1. See Nair, Wierman, and Zwart (2020), Proposition 3.1.
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The example also shows that it is possible to calculate the vector of shocks, θ, that causes

the largest declines in GDP. Tail events are caused by simultaneous shocks to all sectors, with

the magnitude of the shocks lining up with their variances interacted with the worst-case

Domar weights.

To see how conditional granularity drives tail risk, note that it is always the case that the

sum of the Domar weights in this model is equal to 1/ (1− α). But tail risk is determined by

a quadratic function of the Domar weights. So economies with the largest tail risk maximize

a quadratic function of Dn subject to a linear adding up constraint, which will intuitively

be maximized when a few of the Domar weights become relatively large.

While it is possible to obtain closed form results for the left tail, the associated optimization

for the right tail does not have a closed form solution. However, we can say that

‖s (θ)λ (θ)‖2
∞ ≤ D′ssΣDss ≤ ‖−s (θ)λ (θ)‖2

∞ (28)

That is, the mass in the left tail is always at least as large as that implied by the steady-state

Domar weights (with the inequality strict when the elasticities are strictly less than 1), while

the mass in the right tail is weakly smaller than that implied by Dss, due to the concavity of

GDP. That result has important implications for the Q-Q plot in Figure 1, which we return

to in a moment. First, though, there is an interesting special case that is solvable by hand.

Example. Suppose the shocks are i.i.d. normal with variance σ2, so that s (θ) = σ.

In addition, assume the network is fully connected and symmetrical, so that Ai,j = βi = 1/N

for all i, j. Then

λ (θ) =
∑
i

N−1θi +
α

1− α
min
j
θj (29)

and

1. (Local to steady-state): Dss,i = N−1/ (1− α) and
√
D′ssΣDss = N−1/2σ/ (1− α)

2. (Right tail): ‖s (θ)λ (θ)‖∞ = N−1/2σ/ (1− α), which is attained at θi = N−1/2 for all i

3. (Left tail): ‖−s (θ)λ (θ)‖∞ = σα/ (1− α) +O
(
N−1/2

)
, which is attained when θi ∝ N−1

for all i except a single value, where it is proportional to N−1 + α/ (1− α)

Sector i’s Domar weight is the coefficient on θi in (29).

The assumption of a completely connected network appears elsewhere, and the perfect

symmetry, though not necessary, is convenient and has appeared in, for example, Jones

(2011).

The example shows both how diversification works in the model, and also how it differs

in the tails. Local to steady-state, i.e. where the model is well described by a first order
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approximation, we end up with the expected result that output has a standard deviation of

order N−1/2.

For the right tail we obtain exactly the same result – the right tail probabilities match

those for the normal distribution with standard deviation N−1/2σ/ (1− α), the same as near

the steady-state. The shock that causes right tail events is one where all sectors have an

equal increase in productivity, which is because of the dependence of output on θmin. Booms

occur when all sectors simultaneously receive positive shocks. The core intuition behind

diversification is that the odds that all sectors get a big shock simultaneously is small, which

applies both near steady state and also for positive shocks, so that large booms are very

rare.

On the other hand, for output to fall significantly productivity only needs to fall in a

single sector. So in this case as N grows there is actually no diversification in the tail at all.

The left-tail probabilities are as though the volatility of output is simply σα/ (1− α). Booms

are rare because productivity rising in all sectors simultaneously is relatively unlikely. But

productivity falling in one sector is not surprising at all, making crashes much more likely.

Q-Q plots. Going back to the Q-Q plot again, then, in this model we would expect

to see that the plot would have a similar slope at middle and high quantiles, while the

slope would be much higher at low quantiles. Both this example and the previous one

show how the nonlinearity in the model is able to generate excess tail risk, even with

Gaussian shocks, while this section gives an example where the excess risk is entirely at

low quantiles. That asymmetry is consistent with Figure 1, and it does not appear in the

results of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), where symmetrically distributed

shocks generate symmetrical tails for GDP (and also where heavy tails in shocks are required

for heavy tails in GDP).

Conditional granularity. That said, the mechanism here actually retains an interesting

connection to Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), as well as Gabaix (2011) and

Acemoglu et al. (2012). Local to the steady-state and in the right tail, the Domar weights

are proportional to N−1 – each sector is equally important. But in the left tail, the sector

with the most negative shock has a weight of N−1 +α/ (1− α). That is, there is conditional

granularity. While the model is structurally symmetrical, so that all sectors on average carry

the same weight and have the same size, following an extreme shock any given sector can

become large and, by itself, have a major impact on the economy.

Overall, this section’s examples contain a number of the paper’s most important practical

results. They show how complementarity generates asymmetry in output, how it can

generate excess tail risk and match the Q-Q plot in Figure 1, and why what matters is
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not just steady-state or average granularity that has been studied in the past, but also

conditional granularity.

4.4.3 Exponential tailed shocks and the maximum Domar weight

Next, consider the case of i.i.d. Laplace distributed shocks (i.e. exponentially distributed

with a 1/2 probability of a positive or negative sign), again with complementary production.

Example. Suppose the shocks are i.i.d. Laplace distributed with scale parameter η, so that

s (θ) = 1/ ‖θ‖1 (where ‖·‖1 here is the vector L1-norm) and m (θ) again has full support. If

σi ≤ 1 for all i, then

‖−s (θ)λ (θ)‖∞ = max
n

max
j
Dn,j (30)

Pr [gdp < −x] → exp

(
−η x

maxn maxj Dn,j

)
(31)

where Dn,j is the jth element of the vector Dn

The i.i.d. Laplace case is also studied by Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017).

In the context of a linear model (σi = 1), they find that the maximum Domar weight,

maxj Dss,j, is critical for determining how heavy the tail of the distribution of GDP is. I find

that remains true here, but what matters is the maximum value that any Domar weight can

take under any circumstances.20

So it need not be the case that maxj Dss,j is large – the condition in Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2017). Rather, there just needs to be some Domar weight that can

be large in some situation. That maximum – the maximum of the maximums – is what

determines tail risk in general nonlinear models. A fully linear model is the special case

where the set {Dn} is just the singleton Dss.

For example, take electricity. Its steady-state Domar weight is not particularly large

empirically (see section 6) – it is certainly not the largest sector in the economy. But

one can imagine a scenario in which electricity – or some other energy sector – receives a

large negative shock, becomes a limiting input in production, and then becomes much more

expensive. That is the type of scenario that these limits show is important for driving the

largest declines in GDP in this model.

20In the case where σi = 1 for all i ≥ 0, {Dn} is just the singleton Dss and we recover their original result.
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4.5 Simulated Q-Q plots and conditional granularity

The results so far show that network models can qualitatively match the features of Figure

1. This section asks whether they can plausibly do so quantitatively.

I begin from the quantitative network model simulated by Baqaee and Farhi (2019),

which uses a 76-sector input-output matrix to calibrate the production and consumption

weights. As in their calibration, I set the elasticity of substitution across inputs to 0.001

(see also Rubbo (2021)). I also assume that labor is combined relatively inelastically with

material inputs with an elasticity of 0.3.21 In addition, following Baqaee and Farhi (2018),

I assume that labor cannot be reallocated across sectors. See appendix B.4 describing how

the analytic results continue to hold in that case. In order to generate realistically large

deviations, it helps to have tails for the shocks that are slightly longer than normal, so I

assume that they are Laplace distributed (consistent with empirical evidence from Atalay,

Drautzburg, and Wang (2018)). The correlations are set based on the historical covariances

of sector level TFP growth, while the scale is set to match the empirical standard deviation

for detrended real GDP. Finally, in order to keep the network from being too dense with

connections, I set the production weights, ai,j, to zero when they are less than 0.05.

The red line in the top panel of Figure 1 shows the Q-Q plot from simulated data, while

the blue crosses are the sample Q-Q plot for HP-detrended log GDP for the period 1947–

2019. The gray line plots the Q-Q plot for a simulation of a fully linear version of the same

model (i.e. with all elasticities set to 1). The curvature of the gray line comes from the fact

that the Laplace tails are longer than Gaussian tails.

The model fits the shape of the empirical data well, and the deviation from the gray line

shows how complementarity induces concavity in production (that concavity reduces the

mean squared fitting error to the data for the nonlinear model by 55 percent compared to

the linear model). In both the model and the data, the left tail is heavier than implied by the

normal distribution while the right tail is closer to Gaussian or slightly lighter, though the

model does not fully capture the lightness of the right tail. The asymmetry in the model and

data is inconsistent with the results of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), but,

as discussed above, arises naturally here in the presence of complementarities in production.

Consistent with the predictions from the previous sections, in the middle part of the plot,

the model and data quantiles are well described by the normal distribution.

A second notable prediction of the model is that the left tail is associated with increased

21As noted above, in the context of the theoretical analysis this corresponds to assuming that there is
a sector that produces labor services, and it is labor services that have an elasticity with other inputs of
0.3. As a computational matter, I follow Baqaee anf Farhi’s (2019) methods, which allow for general CES
patterns.
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granularity To see that, the bottom panel of Figure 1 plots the expected value of the

maximum Domar weight conditional on output being at a given level. Under the linear

model, the Domar weights are constant, so the gray line in the bottom panel is perfectly

flat. In the nonlinear model, though, consistent with the theoretical analysis, the maximum

Domar weight grows significantly as output falls. Quantitatively, the largest Domar weight

is on average equal to 0.21 when output is at low quantiles compared to 0.135 at middle and

high quantiles. That rise is concentrated at very low quantiles – starting at 2-3 standard

deviations below the mean.

4.6 What do crashes look like?

The analysis so far has discussed only the behavior of aggregate output.

Proposition. Under the conditions of Lemma 1, unit output and prices follow

lim
t→∞

t−1 log Yi = φi (θ) (32)

lim
t→∞

t−1 logPi = −φi (θ) (33)

where φi is the same function as in Lemma 1 part 2.

In extreme events, unit output and prices are determined by the same recursion that

determines aggregate output. That result is reminiscent of what one obtains in the usual

Cobb–Douglas case (and they must match exactly when σi = 1 ∀ i). For large shocks, unit

output and prices move inversely with each other. As usual, they depend on productivity

shocks upstream.

Example. In the symmetric example from section 4.4.2,

φi = θi +
α

1− α
θmin (34)

Whenever σi < 1, sector i’s output depends, in the limit, on its own productivity and

that of its weakest input. That is the way that productivity shocks propagate. When the

network is fully connected, then every sector necessarily has the same weakest input, so their

outputs all depend on θmin. So in addition to θmin driving aggregate output, it also acts like

a common shock to the output and prices of all other sectors. Even though a large decline

in output has as its source a shock to a single sector, one would still observe output falling

and prices rising (relative to wages) in all sectors, with the changes somewhat larger in the

shocked sector, but not qualitatively different.
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5 Which sectors are influential?

The analysis so far has allowed for generic mixtures of shocks through the vector θ. But a

natural question is how large shocks to individual sectors affect GDP. Where are large shocks

most damaging? In other words, what makes a sector systemically risky, in the sense that a

shock to that unit of the production network may be prone to propagate to the rest of the

economy? What sectors have the potential to become granular?

As discussed above, Hulten’s theorem says that local centrality – the impact of a small

shock to a unit on GDP – is exactly the sales share of the unit. This section measures the

importance of units based on how large shocks to their productivity affect GDP, which is

typically closer to the spirit of the question being asked when trying to evaluate systemic

risk. Those two measures will often be very different.

Definition. The left and right tail centralities of unit i are, respectively,

γLi ≡ lim
∆zi→−∞

∆gdp

∆zi
(35)

γRi ≡ lim
∆zi→∞

∆gdp

∆zi
(36)

where ∆ denotes a deviation from steady-state (zi = 0 ∀ i)

The tail centralities measure how systemic a large shock to a given unit is in the sense of

passing through to GDP. A unit with a large left tail centrality is one where a large negative

shock has a large effect on GDP. While the tail centralities are defined without any reference

to the results developed so far, those results still apply directly to it.

Corollary. Let ei denote a vector equal to 1 in element i and zero otherwise. Then in the

notation of Lemma 1,

γLi = −λ (−ei) (37)

γRi = λ (ei) (38)

As in Lemma 1, an immediate consequence of this result is that while tail centralities

depend on whether each industry’s intermediate inputs are substitutes or complements, they

do not depend on the exact values of the corresponding elasticities of substitution. Similarly,

except for the knife-edge case of σi = 1, input-output linkages only matter via the identities

of each industry’s suppliers, and the intensities of such relationships are immaterial for tail

centralities.
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Comparative statics

More importantly, the recursive characterizations in Lemma 1 yield comparative static

results on how various structural features of the economy shape tail centralities. In particular,

the comparative statics results from section 3.2.1 for λ (θ) apply here, with results for γLi

and γRi just being special cases.

First, a sector’s left tail centrality weakly decreases and its right tail centrality weakly

increases when any elasticity of substitution – not just its own – transitions from either

σj < 1 to σj = 1 or from σj = 1 to σj > 1. That result can be further sharpened: the

only elasticities of substitution that affect γLi and γRi are those of units downstream of i

(with a sector j being downstream if i ∈ S (j), or if there is a sector k ∈ S (j) such that

k is downstream of i). A sector that is strictly upstream of i is unaffected by the shock ei

since the recursion defining φ looks only upstream – this is the usual result that productivity

shocks propagate downstream.

The second result is on interconnectedness. When the number of inputs used by a sector

j with σj < 1 increases, or the number used by a sector with σj > 1 decreases, γLi weakly

increases and γRi weakly decreases. The next section gives a stronger characterization of how

connections matter in the case where σi < 1 for all i.

5.1 Results under complementary production

Consider an economy in which all elasticities of substitution in production are less than 1:

σi < 1 for all i. Assume also that Ai,i ∈ (0, 1), which guarantees that every unit uses at least

two inputs, one of which is its own output (which is true for 88 percent of sectors according

to the BEA). The Ai,j are otherwise unconstrained.

Using the result from Lemma 1 part 2, it is then immediate that γRi = βi ∀ i. When

a unit gets a sufficiently positive shock, it eventually has no downstream impacts, affecting

GDP only through its direct effect on consumption.

While positive unit shocks eventually die out, negative unit shocks propagate, since

production in all units is complementary. That implies that

γLi =
1

1− α

n∑
j=1

βjα
dmin(j,i) (39)

where dmin(j, i) is the length of the shortest upstream path from i to j.22 In the complementary

economy, a unit’s left tail centrality is measured by its average downstream closeness to final

22I.e. if i 6= j and Ai,j > 0, dmin (i, j) = 1. If Ai,j = 0, but there exists a k such that Ai,k > 0 and
Ak,j > 0, then dmin (i, j) = 2. Etc.
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consumption. In equation (39), γLi involves the sum across units of each unit’s consumption

weight times a term, αdmin(j,i), that decreases in the number of upstream steps from that unit

back to i.

Equation (39) answers the question of what types of units have high tail centrality under

complementarity: those that are direct suppliers to producers of a large fraction of GDP (and

that do not have substitutes). Interestingly, these results also imply that tail centralities (and

hence fragility) increase when the economy is more connected, as in the fully symmetrical

example from above.

More generally, all of the following will increase γLi :

1. An increase in the number of units downstream of i or an increase in their share of

GDP

2. A decrease in the number of steps between unit i and the units downstream of it

3. An increase in the share of expenditures on material inputs, α.

Intuitively, the results in this section suggest that the out-degree of a unit – the number

of units directly downstream of it – would be closely linked to tail centrality. Define the

weighted out-degree of a unit to be

degi ≡
∑

j:i∈S(j)

βj (40)

Proposition. Left tail centrality satisfies

1

1− α
(βi + α degi) ≤ γLi ≤

1

1− α
(
βi + α degi +α

2 (1− degi)
)

(41)

So tail centrality is related to out-degree, with out-degree giving upper and lower bounds

for tail centrality.

Finally, we can continue the example of the symmetric economy from above.

Example. In the symmetric example from section 4.4.2, Dss,i = N−1/ (1− α), γLi = N−1 +

α/ (1− α), and γRi = N−1.

In the symmetric complementary economy, every sector, as discussed above, has a small

steady-state Domar weight. The right tail centralities are even smaller, though still proportional

to N−1. The left tail centrality of every sector is the same, though, and stays large even as

N grows. this again emphasizes how a highly interconnected network can be well diversified

near steady state but at the same time display effective underdiversification in the tail, with

every sector being systemically risky, with the ability to drive down all of GDP.
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6 Measuring tail centrality

This section measures left tail centrality empirically and compares it to the Domar weights

or sales shares that have been studied in past work. I study the sector detail input-output

tables from 2012 reported by the BEA. The tables have 379 private sectors.23 For this paper’s

purposes, it is important to use a detailed version of the input-output tables because at higher

levels of aggregation, the sectors become very strongly connected. The disaggregated table

has much more sparse links.

Define an Ai,j coefficient to be positive, so that there is an upstream link, if sector i

spends at least 0.5 percent of its expenditures on materials for the output of sector j. We

set α = 1/2 in calculating γLi . Finally, the βi parameters are calculated from the fraction of

nominal final expenditure going to each sector.

Figure 3 plots Domar weights (nominal output divided by nominal GDP) against left tail

centralities. There is a weak positive correlation of 0.23, but the figure makes apparent that

the distributions are very different. There are a few sectors, such as Petroleum Refineries,

that have sales shares noticeably higher than most others. But there are numerous sectors

with tail centralities close to 0.5. 13 sectors have γLi > 0.8 max
(
γLi
)
, while only two have

Dss,i > 0.8 max (Dss,i).

One can also see that the top sectors by Domar weight have very different tail centralities

– Petroleum Refineries at 0.41, Oil and Gas Extraction at 0.25, and Hospitals at 0.06.

Oil and Gas Extraction is lower because it is one more step up the supply chain from

refineries. Hospitals are low because they produce almost entirely final output – they are

not an important input for any sector.

Table 1 further examines the top sectors sorted by sales and tail centrality. The top panel

lists the top by tail centrality. Their most common feature is that they are universal inputs.

The first is electricity, which is why it has appeared frequently as an example. The second

highest tail centrality is for legal services – again, simply because every sector purchases

legal services. Does it make sense to claim that a large negative shock to the legal services

sector could cause a crash in GDP? That result is surprising but, on reflection, reasonable.

There is ample evidence that legal institutions are necessary for the growth of the economy.

All aspects of business rely on property rights and contract enforcement. If, for some reason,

the legal system literally shut down and legal services were actually no longer available to

firms, it is entirely plausible that there would be massive declines in output.

23We exclude customs duties, funds and trusts, real estate sectors, management services, and employment
services. Management services are almost entirely offices of holding companies, while employment services
represent staffing agencies, so we take both as representing more appropriately relatively generic labor input.
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One potential concern with that argument is that the input-output tables do not actually

measure things like enforcement of property rights or the use of courts; they just measure

expenditures on lawyers by firms. That actually illustrates a key advantage of γLi : measuring

it does not require measuring all of each sector’s expenditures on each input. All that we

need to know is that a sector uses some input. And the input-output tables are certainly

correct that all sectors directly use legal services.

In addition to utilities (electricity, communications) and professional services like lawyers

and accountants, the last major category of sectors that appears repeatedly among the top

sources of tail risk is financial institutions. Just as with legal services, all firms use financial

services in one way or another (as do essentially all households). The analysis here thus helps

explain why the financial sector would be a relevant source of crashes throughout history

– when financial services are disrupted, every firm in the economy faces more difficulty in

production.

There is past work examining, both in models and in the data, the effects of shocks to

the energy sector, financial services, and legal and accounting institutions. The analysis here

shows how those shocks are linked: they all represent shocks to inputs that are used nearly

universally, which is why they might have effects larger than would be implied just from

looking at their average sales shares. Table 1 shows that the tail centralities are at least an

order of magnitude larger than the Domar weights, if not more.

The bottom section of table 1 reports the top sectors sorted by sales share. As discussed

above, not all have particularly high tail centralities for two reasons: some are too far

upstream, like Oil and Gas Extraction, while others produce just final outputs, like Hospitals,

Offices of Physicians, Pharmaceuticals, and Scientific R&D.

The empirical analysis overall shows that tail centralities are very different from Domar

weights. They are much larger, and among the top sectors closely related to out-degree. The

sectors with the highest tail centrality are not necessarily those with the highest sales, but

those that sell to the most sectors downstream. They represent utilities, professional and

financial services, and petroleum products.

7 Conclusion

This paper studies large deviations in GDP in the context of a general nonlinear network

production model. Its core result is to characterize the tail of the distribution of GDP

based on the structure of the economy and the distribution of the shocks that affect it. For

shocks with Weibull tails, a category that encompasses almost all distributions used in both
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theoretical and applied work, what determines tail risk in the economy is a single sufficient

statistic that measures the most damaging possible combination of shocks.

The simple statement of the core idea is that what determines tail risk is the structure

of the economy in the tail. For example, while granularity near steady-state affects the

dynamics of the economy, what determines tail risk is whether the economy displays granularity

in the tail. The paper shows how that can easily happen even in a perfectly symmetrical

economy where all sectors are of equal size at steady-state.

A closely related point is that to understand the systemic risk of a sector – whether a

large shock to it will spill over into the rest of the economy – one needs to understand the

importance of the sector not on average but rather conditional on the occurrence of a large

shock. The analysis shows that it is upstream sectors that produce inputs for a large fraction

of GDP that are most systemically risky, while sectors that produce final outputs do not

produce systemic risk.

More generally, the paper provides a theoretical foundation for analyzing tail risk in

other settings. It shows how to construct an approximation for the dynamics of the economy

that, rather than being valid only for small shocks, is valid explicitly for large shocks. That

approximation can then be combined with assumptions about the shape of the tail of the

shock distribution to yield a description of the tail behavior of the full economy.
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A Proofs

The proofs are organized by section, so that the unnumbered results from the main text are

referred to by the section they appear in.

A.1 Lemma 1

The assumption that aggregate labor supply is inelastic and normalized to one implies that

real GDP is

GDP = W/P0 (42)

where W is the wage and P0 is the price of the consumption bundle. the index 0 indicates

consumption (P0 might be called a pseudo-price, since it is the cost of the consumption

bundle, but not of an actual individual good). I use lower-case letters to denote logs, so

p0 = logP0, etc. Setting labor to be the numeraire, so that W is normalized to 1, the CES

preferences for the consumer immediately imply

p0 =
N∑
j=1

βipi (43)

gdp = −p0 (44)

Similarly, marginal cost pricing by the producers implies that the log price of good i is

pi = −zi +
α

1− σi
log

(
N∑
j=1

Aij exp ((1− σi) pj)

)
(45)

Now define φi = − limt→∞(1/t) log pi and set the vector φ ≡ [φ1, ..., φN ]. If that limit exists

and is finite (a claim established below), then diving by t and taking limits of both sides of

equations (43) and (45) gives

lim
t→∞

t−1gdp = β′φ (46)

φi = θi + αfi (φ) (47)

where the mapping fi : RN → R is defined in equation (6). So then as long as the system

for φ has a unique and finite solution, there is a unique and finite λ in Lemma 1.

To show that the system has a unique solution (guaranteeing that φ is also finite), define

35



a mapping g : RN → RN such that the ith element of the vector g (φ) is

gi (φ) = θi + αfi (φ) (48)

The set of solutions for φ is the set of fixed points for g, so we must just show that g has a

unique fixed point. That follows from the Banach fixed point theorem if gi is a contraction.

It is straightforward to confirm the Blackwell’s sufficient conditions hold here, giving the

result. The continuity of the solution follows from the continuity of g in θ. This completes

the proof of part 2 of the lemma.

To get the constant µ (θ), consider a series expansion, pi = −µi−φit+ o (1) (as t→∞).

Inserting that into (45) taking limits, and using (47) yields

−µi − φit = −zi +
α

1− σi
log

(
N∑
j=1

Aij exp ((1− σi) (−µj − φjt))

)
(49)

µi =
α

σi − 1
log

 ∑
j∈j∗(i)

Ai,j exp ((σi − 1)µj)

 (50)

where

j∗ (i) ≡

{
{j : φj = mink∈Si φk} if σi < 1

{j : φj = maxk∈Si φk} if σi > 1
(51)

and Si is the set of inputs of sector i (i.e. Si ≡ {j : Ai,j > 0}). The results for the Cobb–

Douglas case following using similar analysis. It is again straightforward to confirm that µ

is the fixed point of a contraction mapping. For GDP, the same analysis gives

µ0 =
N∑
j=1

βiµi (52)

To show parts 1 and 3, consider the next term in a series expansion,24 pi = bit
−1 +µi +

24Formally this is a Laurent series since it has both positive and negative powers of t. The terms in the
expansion for tj with j > 1 must be zero because otherwise the first limit in this section would not converge.

One way to think about this is that it is an expansion in τ = t−1 aroud τ = 0. There is a pole at τ = 0
since log GDP and all log prices go to ±∞. The τ−1 terms remove the pole, at which point we just have a
standard Taylor series in τ . Part 4 of Lemma 1 says that all terms in that Taylor series of order higher than
0 (i.e. everything but the constant) is equal to zero.
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φit+ o (t−1), and take limits as t→∞,

pit− (µi + φit) t =

(
−θit+

α

1− σi
log

(
n∑
j=1

Ai,j exp ((1− σi) pj)

)
− µi − φit

)
t (53)

bi = lim
t→∞

(
−θit+ α

1−σi log
(∑n

j=1Ai,j exp ((1− σi) (bjt
−1 + µj + φjt+ o (t−1)))

)
−µi − φit

)
t(54)

bi = lim
t→∞

[{
α

1−σi log
(∑n

j=1 Ai,j exp ((1− σi) (bjt
−1 + µj + (φj − fi (φ)) t+ o (t−1)))

)
−µi

}
t

]
(55)

The recursion from above for µi immediately implies that the limit of the term in braces is

zero. Applying L’Hopital’s rule then yields the result that the whole limit is equal to zero.

The same analysis goes through for terms of any order, so that we have the statement from

part 3 of theorem 1. Part 1 is a special case. �

A.2 Theorem 1

We have

gdp (z) = µ (θ) + λ (θ) t+ ε (t, θ) (56)

where ε (t, θ) is an error that converges to 0 as t→∞ (from Lemma 1).

Now define

ε̄ (x) = max
θ

max
t>

x+µ(θ)
−λ(θ)

|ε (t, θ)| (57)

Consider its limit as t → ∞. Since the right-hand side is continuous in t, the limit can be

passed through the maximum and we have

lim
x→∞

ε̄ (x) = 0 (58)

Now note that

Pr [gdp < −x | θ] = Pr

[
t+

ε (t, θ)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]

(59)
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where λ (θ) < 0. In addition,

Pr

[
t+

ε̄ (x)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]
≤ Pr

[
t+

ε (t, θ)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]
≤ Pr

[
t− ε̄ (x)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]

Pr

[
t >

x+ µ (θ) + ε̄ (x)

−λ (θ)
| θ
]
≤ Pr [gdp < −x | θ] ≤ Pr

[
t >

x+ µ (θ)− ε̄ (x)

−λ (θ)
| θ
]

(60)

By integrating over the measure for θ (i.e. applying Fubini’s theorem),

Pr [gdp < −x] =

∫
Θ

Pr [gdp < −x | θ] dm (θ) (61)

from which the result follows directly. �

A.3 Propositions in section 3.2.1

Define f 0 : RN+1 → RN+1 to be the vectorized version of the function in (6). Define a

transformation T 0φ = θ + αf 0 (φ), with φ0 = T 0φ0 the fixed point of that transformation.

After changing some σi, we have a new transformation f 1. First, take the case with σi

transitioning from below 1 to being equal to 1 or more Then, necessarily,

T 1φ ≥ T 0φ (62)

for any φ, element-by-element, from which the first proposition follows.

The second proposition holds by the same argument. For example, suppose σi < 1 and

the set Si grows. Again, define a T 2 for the model with the larger Si. We have

T 2φ ≤ T 0φ (63)

for any φ, element-by-element, which establishes the second proposition.

A.4 Proposition in section 3.3.1

Define a set of N×N matrices An representing restricted versions of the production network.

For each An, each sector is restricted to using just one of its inputs, so that every An has a

single value of 1 in each row and is otherwise equal to zero, with links (1’s) only appearing

where Ai,j > 0. The set over all n of {An} represents every possible restricted network.25 If

25The index n runs from 1 to the product of the number of inputs used by each each sector.
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σi = 1, then sector i always uses the same mix of inputs, and the ith row of An is equal to

Ai,· for every n.

Now define φ∗ and n∗

n∗ = arg min
n
β′ (I− αAn)−1 θ (64)

φ∗ = (I− αAn∗)
−1 θ (65)

where 1N×1 is a vector of 1’s. That implies

φ∗ = θ + αAn∗φ
∗ (66)

Suppose An∗ is not the solution to the recursion from Lemma 1 for φ∗. Then, clearly,

element-by-element Tφ∗ ≤ φ∗ (where T is the operator Tφ ≡ θ + αf (φ)), and whatever

the solution is for φ in Lemma 1, it will be, element-by-element, weakly smaller than φ∗.

But that solution is always of the form (I− αAn)−1 θ, leading to a contradiction with the

original construction of φ∗. So φ∗ must be the solution to the recursion with Tφ∗ = φ∗. The

result for GDP then follows immediately.

A.5 Proposition in section 3.4.1

The proposition follows from the fact that GDP has a linear asymptote with a constant

that is different from zero. Any finite-order Taylor series necessarily diverges infinitely far

from the asymptote unless gdp is actually linear. This is obvious when the order of the

approximation is greater than 1, since eventually the higher order terms dominate. A linear

approximation also eventually diverges in the nonlinear case since the slope of gdp at t = 0

is not the same as at ±∞.

A.6 Corollary in section 3.4.2

Based on the results above, given δ there exists a t∗ such that |gdp (θt)− (µ (θ) + λ (θ) t)| < δ

for t > t∗. For t < t∗,

|gdp (θt)− (µ (θ) + λ (θ) t)| ≤ |gdp (θt)|+ |µ (θ) + λ (θ) t| (67)

≤ max
t≤t∗
|gdp (θt)|+ |µ (θ)|+ |λ (θ)| t∗ (68)

So the fact that gdp is finite for any finite t gives the result. �
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A.7 Distribution examples in section 4.1.1

A.7.1 Multivariate normal

Suppose z ∼ N (0,Σ). The probability density of z is then proportional to exp (−z′Σ−1z/2).

Now note that when z = θt, we have

t = ‖z‖ (69)

θ = z/ ‖z‖ (70)

Now consider exp
(
− (t/s (θ))2 /2

)
. The main text claims that in this case s (θ) = (θ′Σ−1θ)

−1/2
.

So then

exp
(
− (t/s (θ))2 /2

)
= exp

(
−
(
‖z‖

(
z′Σ−1z′ ‖z‖−2)1/2

)2

/2

)
(71)

= exp
(
−z′Σ−1z′/2

)
(72)

as desired.

The last point is that the text claims that the complementary CDF of t is exp
(
− (t/s (θ))2 /2

)
,

even though the results above are for the PDF. It is straightforward to show through

integration by parts that the complementary CDF has the form∫ ∞
x

exp
(
−b2/2

)
db = exp

(
−x2

)(1

x
+ o

(
x−2
))

(73)

The x−1 term can be added to the analysis for the tail probabilities and it has no effect since

it is dominated by the exponential.

A.7.2 I.i.d. Exponential distribution

In this case, the probability density is exp (−‖z‖1 /η), where ‖·‖1 is the L1-norm. So in this

case,

exp (− (t/s (θ)) /η) = exp

(
−
(
‖z‖

∥∥∥∥ z

‖z‖

∥∥∥∥
1

)
/η

)
(74)

= exp (−‖z‖1 /η) (75)

again as desired.

A similar result holds for i.i.d. Weibull variables more generally, with the L1-norm

replaced by the Lκ norm where κ is the Weibull shape parameter.
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A.8 Second corollary in section 4.2

Recall the notation from the proof of Theorem 1 that

gdp (θt) = µ (θ) + λ (θ) t+ ε (θ, t) (76)

and that |ε (θ, t)| < ε̄ (x) for t > x+µ(θ)
−λ(θ)

. We want to compare Pr [gdp < −x] with Pr [gdp > x].

Define ε′ (x) = max (ε̄ (x) , ε̄ (−x)). We have the bounds

Pr [gdp < −x] ≥
∫
θ:λ(θ)<0

F̄

(
x− µ (θ) + ε′ (x)

−s (θ)λ (θ)

)
dm (θ) (77)

Pr [gdp > x] ≤
∫
η:λ(η)>0

F̄

(
x− µ (η)− ε′ (x)

s (η)λ (η)

)
dm (θ) (78)

Now first note that, for θ such that λ (θ) < 0,

x− µ (−θ)− ε′ (x)

s (−θ)λ (−θ)
−x− µ (θ) + ε′ (x)

−s (θ)λ (θ)
=

(
1

s (−θ)λ (−θ)
− 1

−s (θ)λ (θ)

)
x+
−µ (−θ)− ε′ (x)

s (−θ)λ (−θ)
−−µ (θ) + ε′ (x)

−s (θ)λ (θ)
(79)

So there exists an x̄ such that for x > x̄, the argument of F̄ in the integral for (77) is smaller

than that in (78) for any given θ. In addition,

m ({η : λ (η) > 0}) ≤ m ({θ : λ (θ) < 0}) (80)

which yields the result.

A.9 Proposition in section 4.4

The statement of Theorem 1 is∫
θ:λ(θ)<0

F̄

(
x− µ (θ) + ε (x)

−s (θ)λ (θ)

)
dm (θ) ≤ Pr [gdp < −x] ≤

∫
θ:λ(θ)<0

F̄

(
x− µ (θ)− ε (x)

−s (θ)λ (θ)

)
dm (θ)

(81)

In this case we have

F̄ (s) = c exp (−β (t− t̄)κ) (82)

where c = Pr (t ≤ t̄) (83)

If the limits of the two integrals in (81) are the same, then that limit is also the limit

for Pr [gdp < −x]. This section gives the derivation for the right-hand side limit, with the
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arguments holding equivalently on the left with the sign of ε (x) reversed.

We have(∫
θ:λ(θ)<0

F̄

(
x− µ (θ)− ε (x)

−s (θ)λ (θ)

)
dm (θ)

)1/xκ

(84)

=

[∫
θ∈Θ

exp

(
−
(

1

−s (θ)λ (θ)
− ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)xκ
dm (θ)

]1/xκ

(85)

Now consider the limit as x→∞. I show that the limit of the right-hand side is the essential

supremum of exp
(
−
(

1
−s(θ)λ(θ)

)κ)
with respect to the measure m (θ) (i.e. the measure of

the set of θ such that exp
(
−
(

1
s(θ)λ(θ)

)κ)
is above the essential supremum is zero). Denote

that by
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞

.

The structure of this proof is from Ash and Doleans-Dade (2000), page 470, with the

addition of the convergence of the argument of the integral with respect to x.

Define, for notational convenience,

f (θ) = exp

(
−
(

1

s (θ)λ (θ)

)κ)
(86)

f (θ;x) = exp

(
−
(

1

s (θ)λ (θ)
− ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)
(87)

Lemma A1. limx→∞ ‖f (θ;x)‖∞ = ‖f (θ)‖∞.

Proof. f (θ;x) → f (θ) pointwise trivially. The difference |f (θ;x)− f (θ)| is bounded due

to the facts that ε (x) and µ (θ) are bounded and that f (θ;x) is decreasing in s (θ)λ (θ)

(for sufficiently large x), which is bounded from above (and below, by zero). f (θ;x) then

converges uniformly to f (θ), from which ‖f (θ;x)‖∞ → ‖f (θ)‖∞ follows, since, using the

reverse triangle inequality,

|‖f (θ;x)‖∞ − ‖f (θ)‖∞| ≤ ‖f (θ)− f (θ;x)‖∞ (88)

�

Lemma A2. lim supx→∞

[∫
θ∈Θ

f (θ;x)x
κ

dm (θ)
]1/xκ

≤ ‖f (θ)‖∞

Proof. We have (except possibly on a set of measure zero)

‖f (θ;x)‖xκ ≤ ‖‖f (θ;x)‖∞‖xκ
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Taking limits of both sides

lim
x→∞
‖f (θ;x)‖xκ ≤ lim

x→∞
‖‖f (θ;x)‖∞‖xκ (89)

= lim
x→∞
‖f (θ;x)‖∞ (90)

= ‖f (θ)‖∞ (91)

where the second line follows from the fact that ‖f (θ;x)‖∞ is constant and the third line

uses lemma A1. �

Lemma A3. lim infx→∞

[∫
θ∈Θ

f (θ;x)x
κ

dm (θ)
]1/xκ

≥ ‖f (θ)‖∞

Proof. Consider some η > 0, and setA =
{
θ ∈ Θ : exp

(
−
(

1
−s(θ)λ(θ)

)κ)
≥
∥∥∥exp

(
−
(

1
−s(θ)λ(θ)

)κ)∥∥∥
∞
− η
}

.

Consider also the setA′ =
{
θ ∈ Θ : exp

(
−
(

1
s(θ)λ(θ)

− ±ε(x)+µ(θ)
x

1
λ(θ)
− t̄

x

)κ)
≥
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞
− η
}

.

For any η such that A has positive measure, there exists an x̄ (η) sufficiently large that A′ has

positive measure for all x > x̄ (η) due to the continuity of exp
(
−
(

1
s(θ)λ(θ)

− ±ε(x)+µ(θ)
x

1
s(θ)λ(θ)

− t̄
x

)κ)
and the fact that exp

(
−
(

1
s(θ)λ(θ)

− ±ε(x)+µ(θ)
x

1
λ(θ)

)κ)
→ exp

(
−
(

1
s(θ)λ(θ)

)κ)
as x→∞.

It is then the case that for x > x̄ (η)

∫
θ∈Θ

exp

(
−
(

1

λ (θ)
− ±ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)xκ
dm (θ) (92)

≥
∫
A′

exp

(
−
(

1

λ (θ)
− ±ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)xκ
dm (θ) (93)

≥
(∥∥∥∥exp

(
−
(

1

λ (θ)

)κ)∥∥∥∥
∞
− η
)xκ

µ (A′) (94)

Since µ (A′) > 0 from the definition of
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞

(ignoring the trivial case of

a constant value for exp
(
−
(

1
s(θ)λ(θ)

)κ)
), and since the above holds for any η > 0,

lim inf
x→∞

[∫
θ∈Θ

exp

(
−
(

1

s (θ)λ (θ)
− ±ε (x) + µ (θ)

x

1

λ (θ)
− t̄

x

)κ)xκ]1/xκ

dm (θ) ≥
∥∥∥∥exp

(
−
(

1

s (θ)λ (θ)

)κ)∥∥∥∥
∞

(95)

�

Proof of the proposition: Since both the lim inf and lim sup are equal to
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞

,

the limit is also.

For the second part, in the set Θ∗, there exists an η such that |−s (θ)λ (θ)| < ‖−s (θ)λ (θ)‖∞−
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η. Therefore

∫
θ∈Θ∗

exp
(
−
(
x+ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)∫
θ

exp
(
−
(
x−ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)
≤ Pr [θ ∈ Θ∗ | gdp < −x] ≤

∫
θ∈Θ∗

exp
(
−
(
x−ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)∫
θ

exp
(
−
(
x+ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)

(96)

Again, we show that both sides of the inequality have the same limit. For a sufficiently large

x,

∫
θ∈Θ∗

exp
(
−
(
x±ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)∫
θ∈Θ

exp
(
−
(
x±ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)
≤

∫
θ∈Θ∗

exp

(
−
(

x±ε(x)−µ(θ)

(‖−s(θ)λ(θ)‖∞−η)
− t̄
)κ)

dm (θ)∫
θ∈Θ:|λ(θ)|>|λ(θ)|−η/2 exp

(
−
(
x−±ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)

≤
exp

(
−
(

x−±ε(x)−µ(θ)

−(‖s(θ)λ(θ)‖∞−η)
− t̄
)κ)

exp

(
−
(

x−±ε(x)−µ(θ)

−(‖s(θ)λ(θ)‖∞−η/2)
− t̄
)κ) 1

m ({θ ∈ Θ : |λ (θ)| > ‖λ (θ)‖∞ − η/2})
(97)

→ 0 (98)

�

A.10 First example in section 4.4.2: Gaussian tails

The aim is to find maxθ̃:‖θ̃‖
2
=1

∥∥∥−s(θ̃)λ(θ̃)∥∥∥. Now note that bλ
(
θ̃
)

= λ
(
bθ̃
)

, and hence

s
(
θ̃
)
λ
(
θ̃
)

= λ
(
θ̃s
(
θ̃
))

. We can then apply a change of variables, with θ = θ̃s
(
θ̃
)

. Note

that θ̃ = θ/ ‖θ‖, so we have

max
θ̃:‖θ̃‖=1

∥∥∥−s(θ̃)λ(θ̃)∥∥∥ = max
θ:‖θ/s(θ/‖θ‖)‖=1

‖−λ (θ)‖ (99)

Now in this particular case,

‖θ/s (θ/ ‖θ‖)‖ =
∥∥∥θ (θ′Σ−1θ

)1/2 ‖θ‖−1
∥∥∥ (100)

=
(
θ′Σ−1θ

)1/2
(101)

The Lagrangian is then

max
θ

max
n

(−D′nθ)−
γ

2

(
θ′Σ−1θ − 1

)
(102)
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where γ is the multiplier on the constraint on θ. Reversing the order of the optimization

gives

min
n

min
θ
D′nθ +

γ

2

(
θ′Σ−1θ − 1

)
(103)

θ = −γ−1ΣDn (104)

where the second line uses the first-order condition. Solving for the constraint for a given θ

yields

θ = − 1√
D′nΣDn

ΣDn (105)

(recall that θ here does not have norm 1 but instead satisfies θ′Σ−1θ = 1).

Finally, the value of the objective (which is equal to
∥∥∥−s(θ̃)λ(θ̃)∥∥∥) is

∥∥∥−s(θ̃)λ(θ̃)∥∥∥ = −D′nθ (106)

=
√
D′nΣDn (107)

A.11 Second example in section 4.4.2: symmetric economy

The complete symmetry of the economy, along with the fact that output is homogeneous of

degree 1/ (1− α) in the vector of productivities immediately implies thatDss,i = N−1/ (1− α)

for all i.

It is straightforward to confirm that φi = θi + α
1−αθmin, where θmin = mini θi. Combining

that with the final utility function yields

λ (θ) =
∑
i

N−1θi +
α

1− α
θmin (108)

For the right tail, the Lagrangian is

max
θ
λ (θ)− γ

2

(∑
i

θ2
i − 1

)
= max

θ

∑
i

N−1θi +
α

1− α
θmin −

γ

2

∑
i

θ2
i (109)

That problem is nonconvex and is solved at the point θi = N−1/2 for all i. That yields

‖σλ (θ)‖∞ =
1

1− α
σN−1/2 (110)
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For the left tail, the optimization is

max
θ
−
∑
i

N−1θi −
α

1− α
θmin −

γ

2

(∑
i

θ2
i − 1

)
(111)

The first-order condition gives

θi =


− N−1√

(N−1)N−2+(N−1+ α
1−α)

2 for i 6= imin

− N−1+ α
1−α√

(N−1)N−2+(N−1+ α
1−α)

2 for i = imin
(112)

where imin = arg mini θi. Note that this solution for θi is obviously not unique – imin can

be equal to any integer between 1 and N . To find σλ (θ), we have

‖−σλ (θ)‖∞ = σ
N−1 + 2N−1 α

1−α +
(

α
1−α

)2√
(N − 1)N−2 +

(
N−1 + α

1−α

)2
(113)

= σ
α

1− α
+O

(
N−1/2

)
(114)

where x = O
(
N−1/2

)
⇔ |x| ≤MN−1/2 for all x greater than some x0 and for some constant

M .

A.12 Proposition in section 4.6

To prove this, we will show that the claimed set of limits (along with a third additional

result) is consistent with the model’s equilibrium conditions. The limits are

lim
t→∞

yj
t

= lim
t→∞

cj
t

= lim
t→∞

−pj
t

= φj (115)

and the equilibrium conditions are

Yi = exp (zi)L
1−α
i

(∑
j

A
1/σi
i,j X

(σi−1)/σi
i,j

)ασi/(σi−1)

(116)

Yj = Cj +
∑
i

Xi,j (117)

Pj = P0C
1/σ0β

1/σ0
j C

−1/σ0
j (118)

Pj = αPi exp (zi) (Yi/ exp (zi))
(α−(σi−1)/σi)/αAi,jX

−1/σi
i,j (119)

1 = (1− α)PiYi/Li (120)
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We first prove some small lemmas. Define

j∗ (i) ≡

{
arg minj∈S(i) φj if σi < 1

arg maxj∈S(i) φj if σi > 1
(121)

For σi = 1, set φj∗(i) = fi (φ).

Lemma A4. If φj∗(i) + σi
(
φj − φj∗(i)

)
≤ φj for all j ∈ S (i)

Proof. First suppose σi < 1. Then φj − φj∗(i) ≥ 0 and σi < 1, from which the result

immediately follows. To see the result for σi > 1, note that

φj∗(i) + σi
(
φj − φj∗(i)

)
= φj + (1− σi)

(
φj − φj∗(i)

)
(122)

Since 1 − σi > 0 and φj − φj∗(i) ≤ 0 in this case the result again follows. It holds trivially

for σi = 1. �

Lemma A5. fi
([
φj∗(i) + σi

(
φj − φj∗(i)

)])
= φj∗(i)

Proof. If σi > 1, then fi = maxj∈S(i). Note that φj∗(i) + σi
(
φj − φj∗(i)

)
≤ φj, and φj∗(i) =

maxj∈S(i) φj. Then the result immediately follows. Suppose σi < 1. Then fi = minj∈S(i) and

φj∗(i) = minj∈S(i) φj. In this case, φj∗(i) + σi
(
φj − φj∗(i)

)
≤ φj∗(i), with equality if j = j∗ (i),

again giving the result. �

This result follows since fi (aφ+ c) = afi (φ) + c for any constants a and c.

To prove the result, we also need the use of inputs. We guess that

lim
t→∞

xi,j
t

= φj∗(i) + σi
[
φj − φj∗(i)

]
(123)

We need to verify that the above, along with the solution in the proposition, satisfies, in the

limit, the equilibrium conditions (116)-(120).

We first take limits of the equilibrium conditions. For any variable gj, define

φg,j ≡ lim
t→∞

gj
t

(124)

Inspection of equation (120) shows that, given the guesses for φp,i and φy,i, we must

have φl,i = 0.

Dividing the equilibrium conditions (equations (116)-(120), respectively) by t and taking
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limits as t→∞ yields

φy,i = θi + (1− α)φl,i + αfi ([φx,i,j]) (125)

φy,j = max
{
φc,j,max

i
φx,i,j

}
(126)

φj = φ0 + σ−1
0 φc − σ−1

0

(
φj∗(0) + σ0

[
φ0 − φj∗(0)

])
(127)

φp,j = φp,i + θi +
α− (σi − 1) /σi

α
(φy,i − θi)− σ−1

i φx,i,j (128)

0 = φp,i + φy,i − φl,i (129)

Equation (125) holds using Lemma A5 and the recursion for φi. Equation (126) holds

trivially using the guesses and Lemma A4. Equations (127)-(129) hold trivially after inserting

the various guesses.

A.13 Proposition in section 5.1

The left-hand inequality follows from assuming that the sectors immediately downstream of

i have no other downstream users (except final output). The right-hand inequality follows

from assuming that the remainder of GDP that is not immediately downstream of sector i’s

users is a single step further downstream. �

B Extensions and additional results

B.1 Which is the right approximation to use?

The usual Taylor approximation is around z = 0, while this paper focuses on z → ∞. As

z grows, the tail approximation is eventually superior, so for any statements about limiting

probabilities as log gdp→ ±∞, it is the correct representation. But at what point does that

transition happen? To shed light on that question, first note that gdp (0) = 0. So to know

the size of the error from using the tail approximation when z = 0, we need to know the

constants µ (θ).

Lemma B6. Part 4: The constant in equation (4) is µ (θ) = µ0, where the vector µ solves

the recursion

µi = − α

σi − 1
log

 ∑
j∈j∗(i)

Ai,j exp ((σi − 1)µj)

 (130)
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with

j∗ (i) ≡


{j : φj = mink∈Si φk} if σi < 1

{j : φj = maxφk} if σi > 1

{j} if σi = 1

(131)

The constant, µ (θ), thus increases when the elasticity of substitution is closer to 1 and

when the upstream source of shocks is units that are relatively small (have small Ai,j). Those

factors cause the tail approximation to have a relatively larger error as t→ 0.

The concave case

In the case where gdp is globally concave in the shocks – σi ≤ 1 ∀ i – a stronger result is

available. The error for the tail approximation then is smaller than for the first-order Taylor

series when

t >
µ (θ)

D′ssθ − λ (θ)
(132)

The tail approximation is superior if t is sufficiently large – larger when the constant µ (θ)

is larger or the gap between the local and tail approximations, D′ssθ − λ (θ), is smaller.

Furthermore, in that case, appendix ?? shows that µ (θ) > 0 and that it is increasing as any

of the σi moves closer to 1.

That immediately implies that when any elasticity gets closer to 1, the cutoff point gets

larger, since σi has no impact on λ and Dss. The closer are the various elasticities to 1, the

larger the shocks have to be in order for the tail approximation to be superior to a local

approximation.

It is less clear what the effects of the Ai,j parameters on the cutoff is because they affect

both µ and Dss. Note, though, that (in the concave case), when λ (θ) < 0 – i.e. when

thinking about shocks that reduce GDP – the tail approximation cannot possibly be the

better of the two until µ (θ) + λ (θ) t < 0, and the point where that happens necessarily

increases as the A parameters for the minimizing units (i.e. the units j ∈ j∗ (i) for some i)

decline.

B.2 Power law tails

In the case of power law tails, the measure m (θ) and scale s (θ) have the same effect on the

distribution, so we can normalize s (θ) = 1.

Proposition. Suppose s is distributed according to a power law for t > t̄:

F̄ (t) = c (t/t̄)−κ (133)

where c = Pr (y ≥ ȳ) (134)
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with s (θ) = 1. Define Θ+ ≡ {θ : λ (θ) > 0} and Θ− analogously. Then

1.

lim
x→∞

Pr [gdp < −x] /
(
ct̄κx−κ

)
=

∫
Θ−

(−s (θ)λ (θ))κ dm (θ) (135)

lim
x→∞

Pr [gdp > x] /
(
ct̄κx−κ

)
=

∫
Θ+

(s (θ)λ (θ))κ dm (θ) (136)

2.

lim
x→∞

Pr [θ ∈ Θ∗ | gdp < −x] =

∫
Θ∗−

(−s (θ)λ (θ))κ dm (θ)∫
Θ−

(−s (θ)λ (θ))κ dm (θ)
(137)

lim
x→∞

Pr [θ ∈ Θ∗ | gdp > x] =

∫
Θ∗+

(s (θ)λ (θ))κ dm (θ)∫
Θ+

(s (θ)λ (θ))κ dm (θ)
(138)

So when the shocks have power law tails, equation (135) gives two results for the tail of

GDP. First, GDP has, in the limit, a power law tail with the same decay rate as the shocks,

κ. Second, the probability of a large deviation in gdp depends on an average (with respect

to the measure m) across all possible shocks of the tail slope, λ (θ). When the tail slopes

tend to be larger, the probability of a large deviation in GDP is larger.

The integral on the right-hand side of (135) thus gives a formal measure of the fragility

of the economy. Recall that λ (θ) comes from theorem 1 and depends only on the structure

of the economy, not the shock distribution. So the integral shows how the structure of the

economy determines the probability of a large decline in GDP. Economies in which that

integral are larger have greater risk of large declines – in a sense are more fragile. The

parameter κ affects the relative weighting of the integral. When κ is small, it is essentially

an average of λ (θ) (with respect to the measure m (θ)). When κ is larger, on the other hand,

the integral is determined more and more by the largest values of λ (θ).

Equation (136) gives the probability of a large increase in GDP. The tail shape is again

κ. Differences in the probability of large increases in large declines are determined by the

average value of λ (θ) when λ (θ) is positive versus negative. Asymmetry in the distribution

of GDP comes from asymmetry in the tail slopes.

Applying Bayes’ rule as above yields the second part of the result. The probability of any

a large deviation in GDP being caused by any particular combination of shocks, θ, depends

on the value of λ (θ) relative to the average value, again scaling by κ and with respect to the

measure m. When κ is relatively small, shocks are very heavy tailed, so that in some sense

any combination becomes close to equally likely (that is the κ → 0 limit). On the other
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hand, as κ → ∞, only the θ that has the largest λ (θ) has any likelihood of causing a large

deviation in GDP.

A special case within the general Pareto tail is if the unit shocks are i.i.d.. Then the

measure m (θ) puts mass only on the axes – Pr [θ = ei] = 1/N , and Pr [θ ∈ Θ∗] = 0 for any

set Θ∗ that does not contain one of the ei (Resnick (2007), section 6.5.1). In that case, the

above formulas specialize to

lim
x→∞

Pr [gdp < −x] /
(
cs̄κx−κ

)
= N−1

∑
i

(
−γLi

)κ
(139)

lim
x→∞

Pr [θ = −ei | gdp < −x] =

(
−γLi

)κ
N−1

∑
i (−γLi )

κ (140)

With independent Pareto tails, then, the left tail distribution for GDP depends on the left tail

centralities, and the right tail of GDP on the right tail centralities. That immediately yields

a prediction for asymmetry in GDP: any time the left tail centralities are uniformly larger

than the right tail centralities – e.g. if all elasticities of substitution are less than 1 – the

distribution of gdp will be skewed left in the sense that the Pr [gdp < −x] /Pr [gdp < x] > 1.

B.2.1 Proof of Proposition B.2

We have

F̄ (s) = c (t/t̄)−κ (141)

where c = Pr (t ≥ t̄) (142)

Inserting those into the formula from theorem 1, we again show that the integrals have the

same bound. The bound is now∫
θ∈Θ:λ(θ)<0

(
x+ ε (x) + µ (θ)

−xs (θ)λ (θ)

)−κ
dm (θ) ≤ Pr [gdp < −x] /

(
ct̄κx−κ

)
≤
∫
θ∈Θ:λ(θ)<0

(
x− ε (x) + µ (θ)

−xs (θ)λ (θ)

)−κ
dm (θ)

(143)

with limit

lim
x→∞

∫
θ∈Θ:s(θ)λ(θ)<0

(
− (s (θ)λ (θ))−1 + x−1±ε (x) + µ (θ)

−s (θ)λ (θ)

)−κ
dm (θ) (144)
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Again, recall that the ±ε (x) term is bounded, as are λ (θ) and µ (θ) (since Θ is compact).

The argument of the integral therefore converges uniformly, since∥∥∥∥∥
(
− (s (θ)λ (θ))−1 + x−1±ε (x) + µ (θ)

−s (θ)λ (θ)

)−κ
− (− (s (θ)λ (θ))κ)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
(
−λ (θ)−1 + x−1±ε (x) + µ (θ)

− (s (θ)λ (θ))

)−1
∥∥∥∥∥
κ

∞

+‖−s (θ)λ (θ)‖κ∞

≤

∥∥∥∥∥−s (θ)λ (θ)

(
1 +
±ε (x) + µ (θ)

x

)−1
∥∥∥∥∥
κ

∞

+ ‖−s (θ)λ (θ)‖κ∞ (145)

≤ ‖−s (θ)λ (θ)‖κ∞

∥∥∥∥ x

x+ infθ∈Θ {µ (θ)}

∥∥∥∥κ
∞

+ ‖−s (θ)λ (θ)‖κ∞ (146)

with the last line being bounded. Passing the limit through the integral yields the result

from the text. The second claim is again an application of Bayes’ rule. �

B.3 Relaxing the CES assumption

This section extends the baseline result to a broader class of production functions and shows

that theorem 1 holds with no modification.

Consider the same competitive economy as in the main analysis, with the only difference

that each sector’s production need not be CES. Rather, just assume that it each sector

has constant returns to scale. Again, without loss of generality, assume that labor and

materials are combined with a unit elasticity of substitution. Those assumptions imply that,

in competitive equilibrium, the price of good i is given by

Pi =
1

Zi
W 1−α(Ci(P1, . . . , Pn))α (147)

where Zi is the productivity shock to industry i, Ci is a homogenous function of degree

one, and α < 1. In addition to the intermediate-input-producing industries, there is also

an industry with cost function C0 that produces a final good, which is then sold to the

representative consumer. Therefore, the final good price, P0, also satisfies equation (147),

with the convention that α0 = 1 and Z0 = 1.

The only additional assumption imposed on Ci is that

lim
t→∞

1

t
logCi (exp (φlt) , exp (φ1t) , ..., exp (φnt)) = f̃i (φl, φ1, ..., φn) (148)
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for some function f̃i. A sufficient condition for that limit to exist is that

lim
t→∞

d

dt
Ci (exp (φlt) , exp (φ1t) , ..., exp (φnt)) (149)

exists. That is, it is sufficient that the gradients of the cost functions have limits, but even

that is not strictly necessary. The restriction of Ci to the CES family leads to the set of

functions fi that appear in theorem 1.

Theorem 2. Under the assumptions of this section, and with z = θt,

lim
t→∞

(gdp (z)− λ (θ) t) t−1 = 0 (150)

where λ (θ) = φ0 and φ ∈ RN+1 is a function of θ that is implicitly defined by the system of

equations

φi = θi + αf̃i (φ) for i ∈ {0, 1, ..., N} (151)

This result shows that what ultimately determines the behavior of GDP for extreme

shocks is the limiting slope of the sector-level cost functions.

Proof. The price of good i is

pi = − log zi + αi logCi (exp (p)) (152)

Let

φi = − lim
t→∞

t−1pi (153)

we maintain for the moment that this limit exists and is finite and verify that later. Then

t−1pi = −θ + αit
−1 logCi (exp (p)) (154)

φi = −θ + αi lim
t→∞

t−1 logCi (exp (p)) (155)

= −θ + αifi (φ) (156)

where the second line takes the limit as t → ∞ and the third line uses the definition of fi

along with the continuity of Ci and the price function.

Note also that the price of the final good is

logGDP = − logP = f0 (φ) t+ o (t) (157)
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Finally, to show that a solution to the system exists, define

ĝi (φ) = θi + αifi (φ) (158)

This has a unique solution if ĝ is a contraction. To see why that is true, we just check

Blackwell’s sufficient conditions of monotonicity and discounting. Monotonicity holds simply

because the cost function itself is assumed to be monotone. Constant returns in the function

Ci also imply that f (φ+ a) = f (φ) + a. Since αi < 1, ĝi has the discounting property,

making it a contraction, so we can then apply the Banach fixed point theorem. �

B.4 Fixed labor

Assume labor is normalized to 1 and the elasticity of substitution at the household level is

1. Then the production function, resource constraint, and FOCs are

Yi = exp (zi)

(∑
j

ai,jx
γi
i,j

)α/γi

(159)

Yj = cj +
∑
i

xi,j (160)

pj = bjc
−1
j (161)

pj = αpi exp (zi) (yi/ exp (zi))
(α−γi)/α ai,jx

γi−1
i,j (162)

We assume productivity in each sector is

log zi = θit (163)

with t→∞. Define φ to be the solution to the recursion

φi = θi + αfi (φ) (164)

Proposition. We have the following limits,

lim
t→∞

log yj
t

= lim
t→∞

log cj
t

= lim
t→∞

− log pj
t

= φj (165)

Proof. The result can be proven by simply verifying that it satisfies the equilibrium conditions.
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An additional result we need is the use of inputs, xi,j. The limit is

lim
t→∞

log xi,j
t

= φj∗(i) +
1

(1− γi)
[
φj − φj∗(i)

]
(166)

where

j∗ (i) =

{
arg minj∈S(i) φj if γi < 0

arg maxj∈S(i) φj if γi > 0
(167)

We need to verify that the above, along with the solution in the proposition, satisfies the

limits of the two FOCs, the resource constraint, and the production function.

We first take limits of the equilibrium conditions. For any variable gj, define

φg,j ≡ lim
t→∞

log gj
t

(168)

First, a small lemma:

φx,i,j ≤ φj (169)

To see why, first suppose γi < 0. Then φj − φj∗(i) ≥ 0 and 1
(1−γi) < 1, from which the result

immediately follows. To see the result for γi > 1, note that

φx,i,j = φj∗(i) +
1

(1− γi)
(
φj − φj∗(i)

)
(170)

= φj +
γi

(1− γi)
(
φj − φj∗(i)

)
(171)

Since γi
1−γi > 0 and φj − φj∗(i) ≤ 0 in this case, the result again follows. It holds trivially for

γi = 0. Furthermore, note that

fi (φx,i,j) = φj∗(i) (172)

Then the limits of the three equilibrium conditions and the production function are

(equations (159) to (162), respectively)

φy,i = ζi + αifi (φx,i,j) (173)

φy,j = max
{
φc,j,max

i
φx,i,j

}
(174)

φp,j = −φc,j (175)

φp,j = φp,i + ζi +
αi − γi
αi

(φy,i − ζi) + (γi − 1)φx,i,j (176)

where the first equation uses equation (169). The first and second equations hold because

of (172). The third is trivial. The fourth holds by substituting in the various φ terms and

55



using the recursion defining φ. �
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Figure 1: Normal quantile-quantile plot
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Notes: The empirical series is for HP-detrended log GDP, 1947–2019.
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Figure 2: Linear, quadratic, and tail approximations
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(a) Small-shock approximations
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(b) Large-shock approximation
Notes: The x-axis is log productivity and the y-axis log aggregate output. The x-axis may represent
productivity in a single sector, or it could be the scale of a shock that affects productivity in multiple
sectors. The concavity in GDP in this example is consistent with an economy featuring complementarities.
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Figure 3: Domar weights and tail centralities

Notes: The x-axis is the Domar weight of each sector. The y-axis is the left tail centrality. The data is the
2012 BEA input-output table. The top four sectors according to both centrality measures are labeled.
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Table 1: Top sectors by left tail centrality and sales share

Largest by left tail centrality
Sector γLi Sales share
Electric power generation, transmission, and distr. 0.462 0.031
Legal services 0.435 0.021
Advertising, public relations, and related services 0.425 0.023
Accounting, tax prep., bookkeeping, and payroll serv. 0.412 0.011
Monetary authorities and depository credit intermed. 0.412 0.028
Petroleum refineries 0.409 0.066
Other plastics product manufacturing 0.399 0.009
Services to buildings and dwellings 0.387 0.009
Architectural, engineering, and related services 0.384 0.017
All other misc. prof., scientific, and tech. serv. 0.382 0.005
Management consulting services 0.380 0.014

Largest by sales share
Sector γLi Sales share
Petroleum refineries 0.409 0.066
Hospitals 0.062 0.062
Oil and gas extraction 0.250 0.048
Scientific research and development services 0.036 0.036
Insurance carriers, except direct life 0.371 0.032
Electric power generation, transmission, and distr. 0.462 0.031
Offices of physicians 0.030 0.030
Pharmaceutical preparation manufacturing 0.183 0.030
Monetary authorities and depository credit intermed. 0.412 0.028
Advertising, public relations, and related services 0.425 0.023
Other financial investment activities 0.282 0.022
Notes: Sales shares and tail centralities calculated from the 2012 BEA input-output tables.
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