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1 Introduction

For nearly a century, time-series regression with heteroskedastic and/or autocorrelated dis-

turbances has featured prominently in empirical economics research. Indeed a widely-used

estimation approach in recent decades is Ordinary Least Squares (OLS) with standard errors

adjusted to achieve consistency even with possible heteroskedasticity and/or serial correla-

tion. This is commonly called HAC (Heteroskedasticity and Autocorrelation Consistent)

regression, and we denote it by HAC.

In many cross-sectional situations, HAC regression is appropriate and has been successful.

In cross-sectional environments, sample sizes are typically large and often huge, little or no

information is available as to the form of any possible heteroskedasticity, and serial correlation

is irrelevant. In such environments HAC regression is justly emphasized (e.g. Angrist and

Pischke (2008)).

We will show that, in sharp contrast, HAC regression is a much less satisfactory approach

in time series, for three reasons:

(1) OLS parameter estimates, and hence HAC parameter estimates, are highly sub-optimal

(inefficient) in the presence of strong serial correlation, which is typical of economic

time series.

(2) HAC regression discards valuable predictive information in serially-correlated distur-

bances and hence produces sub-optimal (inefficient) forecasts. This is true even when

one ignores parameter estimation uncertainty, and it is potentially worsened – via the

inefficiency of OLS – when one accounts for parameter estimation uncertainty.

(3) HAC inference is subject to significant size distortions in all but the largest samples.

The standard (and in our view feeble) refutations of points (1) and (2) are that (1) is

inconsequential in practice if sample size is large enough (because OLS retains consistency

even if it loses efficiency), and that (2) is inconsequential if focus does not center on prediction

(obviously). But even if points (1) and (2) above are ignored or deemed inconsequential, one

must still confront (3).

Let us elaborate on point (3). HAC adjustments are based on estimates of the long-

run variance (that is, the spectrum at frequency zero) of the product of regressors and

disturbances,

Ω =
∞∑

τ=−∞

Γ(τ),



where

Γ(τ) = cov(xtut, xt−τut−τ ), τ = 0,±1, ...

The most common HAC estimation approach follows Newey and West (1987) in using a

lag-window estimator of Ω, necessitating choice of a truncation lag. The truncation lag is

implicitly restricted to low values, and by the need to use an asymptotic normal approxima-

tion, at the expense of incorrectly sized tests, as stressed by Müller (2014).

The size distortions associated with tests based on traditional Newey-West-style HAC

estimators, such as Andrews (1991), are well known. More recent work proposes HAC

procedures that yield more accurately sized tests. One important strand of literature stays

within the Newey-West framework but uses very long truncation lags (Kiefer et al., 2000;

Kiefer and Vogelsang, 2002), and another important strand moves to a different framework

involving cosine transformations (Müller, 2014; Lazarus et al., 2018). Even the newer HAC

procedures, however, continue to produce poorly-sized tests in typical economic time series

environments (small/moderate sample size, strong serial correlation).

In this paper we take a different approach, related to, but distinct from, classic but un-

derappreciated work of Den Haan and Levin (1997, 1998, 2000). We show that an alternative

and very simple dynamic regression (DynReg) procedure simultaneously solves problems (1),

(2), and (3). We proceed as follows. In section 2 we introduce and compare the HAC and

dynamic regression frameworks. In section 3 we characterize the loss of both estimation ef-

ficiency and predictive accuracy from HAC regression, and we compare DynReg. In section

4 we quantify the size distortions and power losses associated with HAC-based hypothesis

tests, and we again compare DynReg. We consider variations on the basic theme in section

5, and we conclude in section 6.

2 The HAC and Dynamic Regression Frameworks

Consider the data-generating process (DGP)

yt = x′tβ + ut, (1)

t = 1, 2, .....T , where β is a k-vector of parameters, where the k-vector xt and the scalar ut

are covariance-stationary processes with E(xtut) = 0.
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More precisely {ut} is a covariance stationary scalar process with Wold representation

ut =
∞∑
i=0

ψiεt−i, (2)

where {ψi} is a square-summable sequence of non-stochastic scalars with ψ0 = 1, {εt} is an

ergodic process such that E
(
εt | Zε

t−1

)
= 0 a.s., E

(
ε2
t | Zε

t−1

)
= σ2 a.s. with 0 < σ2 < ∞,

supt(|εt|4) < ∞, and Zε
t−1 is the sigma field generated by {εs; s ≤ t}. The conditions on

(2) allow u to be both serially correlated and conditionally heteroskedastic. In what follows

we will primarily emphasize serial correlation rather than heteroskedasticty, because serial

correlation is the unique feature of time series relative to cross sections.1

In parallel, xt is a covariance stationary k-dimensional vector process with Wold repre-

sentation

xt =
∞∑
i=0

Ψiwt−i, (3)

and corresponding V AR representation

xt =
∞∑
i=1

Πixt−i + wt, (4)

where {Ψi} and {Πi} are square-summable sequences of nonstochastic k × k matrices with

Ψ0 = I, {wt} is an ergodic k-dimensional process such that E
(
wt | Zw

t−1

)
= 0 almost surely,

E
(
wtw

′
t | Zw

t−1

)
= Ωw almost surely with |Ωw| > 0 and ||Ωw|| < ∞, supt(||wt||4) < ∞, and

Zw
t−1 is the sigma field generated by {ws; s ≤ t}.

2.1 HAC Regression

The OLS estimator of β satisfies

T 1/2(β̂OLS − β)→ N(0,M),

where

M = Q−1ΩQ−1

1Interestingly, however, cross sections do sometimes have a spatial dimension and therefore a natural
ordering in space if not in time, and spatial correlation has recently begun to receive attention from a HAC
estimation perspective, as in Müller and Watson (2021). Spatial HAC estimation is, however, beyond the
scope of this paper.
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Q = plim

(
T−1

T∑
t=1

xtx
′
t

)

Ω =
∞∑

τ=−∞

Γ(τ)

Γ(τ) = cov(xtut, xt−τut−τ ), τ = 0,±1, ...

The key object in M is Ω, the spectrum of xu at frequency zero. HAC regression delivers con-

sistent M estimation, and hence asymptotically valid inference, via consistent Ω estimation.

That is, HAC uses M̂ = Q−1Ω̂Q−1, where Ω̂ is a consistent estimator of Ω.

A large literature on consistent estimation of Ω traces at least to Hansen and Hodrick

(1980). The most popular approach, by far, is due to Newey and West (1987), who propose

lag-window estimation with linearly-decreasing (Bartlett) lag window:

Ω̂ =

(
1

T

T∑
t=1

(xtx
′
t)û

2
t +

h∑
τ=1

(
1− τ

h+ 1

)
(Γ̂τ + Γ̂−τ )

)
, (5)

where

Γ̂τ =
1

T

T∑
t=1

ûtxtx
′
t−τ ût−τ ,

the ût are OLS regression residuals, and T is sample size. Indeed, almost all leading HAC

estimators are of the form (5), distinguished only by their choice of truncation lag h.

We will explore several leading truncation lag choices, including:

(1) NW: Newey-West (5) with h = b4(T/100)2/9c+1. This h choice is a standard textbook

recommendation (e.g., Wooldridge (2015)).

(2) NW-A: Newey-West (5) with h = b0.75T 1/3c + 1. This h choice is also standard,

arising when a formula in Andrews (1991) is specialized to the case of a first-order

autoregression with coefficient 0.25.

(3) NW-LLSW: Newey-West (5) with h = b1.3T 1/2c + 1, as proposed by Lazarus et al.

(2018). Its use of T 1/2 rather than T 2/9 or T 1/3 as in NW or NW-A, respectively,

produces higher truncation lags. For example, if T = 200, then NW selects h = 5 but

NW-LLSW selects h = 19.

(4) NW-KV: Newey-West (5) with h = T , as proposed by Kiefer and Vogelsang (2002),
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which builds on Kiefer et al. (2000). h = T is of course the maximum possible trunca-

tion lag.

We also explore the Müller (2014) HAC estimator (we denote it by M), which is not in

the Newey-West family. Instead it is an orthogonal series estimator, using a type-II discrete

cosine transform to produce an equally-weighted average of projections on cosines. The M

estimator is:

Ω̂ =
1

ν

ν∑
j=1

Λ̂jΛ̂
′
j,

where

Λ̂j =

√
2

T

T∑
t=1

(xtût) cos

(
πj

(
t− 1/2

T

))
.

The M truncation parameter, ν, is the total number of cosines included in the average

projection. Lazarus et al. (2018) suggest setting ν = b0.4T 2/3c, producing the M-LLSW

estimator.

2.2 Dynamic Regression (DynReg)

An alternative to HAC regression is augmenting regression (1) with lags of y and x to capture

dynamics, in a fashion identical to an arbitrary equation in a vector autoregression. The

pth-order dynamic regression (DynReg for short) is

yt =

p∑
j=1

φjyt−j +
k∑
i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + εt, (6)

and it has p + k + kp parameters. DynReg parameter estimates and standard errors are

obtained by OLS.

If ut in equation (1) is a finite-ordered AR(p) process with p known, then the DynReg

(6) holds exactly. That is, if the DGP is

yt = x′tβ + ut,

φ(L)ut = εt,

where φ(L) = 1− φ1L− φ2L
2 − ...− φpLp, then we can re-write it as

φ(L)yt = φ(L)x′tβ + εt
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or

yt =

p∑
j=1

φjyt−j +
k∑
i=1

βixi,t +

p∑
j=1

k∑
i=1

βiφjxi,t−j + εt. (7)

This is commonly called a “common factor regression” in reference to the embedded coeffi-

cient constraint (γi,j = βiφj). The usual asymptotic inference is immediately available:

T 1/2(θ̂OLS − θ)→ N(0, Q−1), (8)

where θ is the vector of dynamic regression parameters,

Q = plim

(
T−1

T∑
t=1

ztz
′
t

)
, (9)

and z′t = (yt−1, ..., yt−p, x1,t, ..., xk,t, x1,t−1, ..., xk,t−1, ..., x1,t−p, ..., xk,t−p).

Alternatively, if u is an AR(p) process with p unknown, then the DynReg (6) is ap-

proximate rather than exact, but the limiting distribution (8) remains valid if the fitted

autoregressive order is increased with sample size at a suitable rate (Grenander, 1981; Han-

nan and Deistler, 1988), as achieved by standard information criteria.

In particular, if a pmax is known such that p ≤ pmax, then a consistent selection criterion

(in the model selection sense) like BIC is a natural choice for order selection. The DynReg

BIC is

BIC = −2lnL+ log(T )(p+ k + kp). (10)

The obvious benchmark likelihood is Gaussian, in which case model rankings by (10) match

those from an “SSE version” of the BIC,

BICSSE = T log(SSE) + log(T )(p+ k + kp), (11)

where SSE is the sum of squared errors from equation (7).

Otherwise, an efficient selection criterion (in the model selection sense) like AIC is a

natural choice for order selection. The DynReg AIC is

AIC = −2lnL+ 2(p+ k + kp),

6



the Gaussian SSE version of which is

AICSSE = T log(SSE) + 2(p+ k + kp).

AIC and BIC differ only in their degrees-of-freedom penalties, with AIC penalizing less

harshly.

In closing this section, we note that we could impose fewer or more restrictions on the

DynReg (6) than presently. As for fewer restrictions, we could allow different DynReg lag

lengths for y and the xi’s. We could also allow heteroskedasticity (e.g., GARCH) in the

DynReg disturbances, which we have implicitly assumed away to focus completely on serial

correlation. Conversely, additional restrictions could be imposed. For example, one could

impose the common-factor restriction in DynReg estimation if desired.

2.3 Discussion

Now that we have introduced both HAC and DynReg, we offer some insights into their

comparative structure, which foreshadow our subsequent analysis and results in sections 3

and 4.

(1) Unlike HAC, DynReg models the serial correlation. One expects this to translate into

superior efficiency in estimation of β and superior accuracy in forecasting y. We explore

these issues in section 3.

(2) Closely related to DynReg’s modeling of serial correlation, DynReg naturally leverages

simple information criteria (BIC and/or AIC) with well-known optimality properties

for bandwidth (p) selection. HAC regression, in contrast, relies on one or another of

various “rules of thumb” for bandwidth (h or ν) selection.

(3) DynReg features an autoregressive approximation to dynamics, via its direct inclusion

of autoregressive lags. Autoregressions have become a great workhorse of empirical

dynamic economics precisely because low-ordered autoregressions routinely provide

accurate approximations in economic contexts. In contrast, HAC regression is closely

linked to low-ordered moving average approximations, by virtue of the HAC covariance

matrix construction in terms of low-ordered autocorrelations. MA(q) dynamics, in

particular, would be quickly and exactly captured by HAC regresion with h = q and

a rectangular lag window. One expects that HAC regression would quickly provide

reliable inference there, but again, if dynamics are approximately autoregressive with
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large dominant root (the leading case in macroeconomics, for example), one expects

that HAC regression would perform poorly there, except in the very large samples that

facilitate very long truncation lags.

(4) The validity of DynReg inference does not require strong exogeneity, just as HAC infer-

ence does not require strong exogenity. One of the first papers to advocate OLS HAC

was by Hansen and Hodrick (1980) who were motivated by the situation when a variable

with obervable forecast errors is regressed on explanatory variables containing lagged

forecast errors. The null hypothesis of such regressions implied MA disturbances that

implied violations of strong exogeneity. Hansen and Hodrick (1980) correctly realized

that GLS could be inconsistent in these situations, while OLS HAC was consistent,

albeit inefficient. However, this insight does not make OLS HAC preferable to DynReg.

First, the situation involving lagged observable forecast errors and issues with strong

exogeneity are a comparatively rare formulation in economic time series regression and

are by no means a justification for the automatic implementation of OLS HAC. Sec-

ond, and very importantly, the objections raised by Hansen and Hodrick (1980) are

simply overcome by the use of DynReg, where only the weak exogeneity requirement

E(xtut) = 0 is necessary for consistency.

3 On the Costs of HAC Regression’s Failure to Model

Serial Correlation

In this section we highlight and assess the inescapable losses of estimation efficiency and

forecast accuracy due to HAC regression’s failure to model serial correlation, quite apart

from the issue of whether HAC standard errors produce correctly-sized tests, which we

explore later in section 4.

Much of the analysis will by necessity proceed by Monte Carlo. We use precisely the

same data-generating process (DGP) and experimental design as Lazarus et al. (2018), with

one AR(1) covariance stationary right-hand-side variable and a covariance stationary AR(1)

error processes. More precisely,

yt = xtβ + ut

where

xt = ρxt−1 + εx,t
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and

ut = ρut−1 + εu,t,

for t = 1, ..., T , with εx,t and εu,t distributed as N(0, σ2
x) and N(0, σ2

u), respectively, and

uncorrelated at all leads and lags. We exploit invariance by setting σ2
x = σ2

u = β = 1.

We explore ρ ∈ {0, .3, .5, .7, .9, .95, .99}, which spans the relevant range for economics.

All ρ values are positive, as economic time series are generally positively serially correlated,

and they range from white noise to the very strong serial correlation often of relevance in

macroeconomics. Including white noise (ρ = 0) is convenient as way to check our Monte

Carlo against known results for the iid case.

We explore T ∈ {50, 200, 600, 2500}, which also spans the relevant range for macroe-

conomics, where structural change and other considerations tend to keep sample spans to

roughly “the most recent fifty years”; that is, sample sizes of 50 years, or 200 quarters, or

600 months, or approximately 2500 weeks. Including T = 2500 also lets us check our Monte

Carlo against known large-sample results.

We simulate exact realizations of x and u by drawing x0 and u0 from their stationary

distribution at each Monte Carlo replication. We use common random numbers whenever

appropriate. We perform 10,000 Monte Carlo replications.

We select the DynReg lag order using BIC, selecting the lag order that minimises

BIC = T log(SSE) + log(T )(2p+ 1),

which is the general BIC, (11), specialized to k = 1.

3.1 HAC vs DynReg Estimation Efficiency

HAC regression preserves OLS parameter estimates, simply adjusting standard errors, mean-

ing that it gives up on efficient estimation of β̂, instead settling for mere consistency. In

large samples the efficiency loss from using OLS is arguably inconsequential, but economic

time-series sample sizes are often small. In macroeconomics, for example, one typically has

just a couple hundred quarters of highly-serially-correlated data.

We present the estimation efficiency results in Table 1. The key object of interest is

REest, the efficiency of DynReg relative to HAC,

REest =
MSE(HAC)

MSE(DynReg)
.
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Table 1: Bias, Variance, MSE, and Efficiency of DynReg relative to OLS,
Autoregressive Disturbances, BIC DynReg Lag-Order Selection

T=50

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0007 -0.0002 0.0005 -0.0007 -0.0029 0.0026 -0.0292

DynReg 0.0003 -0.0009 -0.0008 -0.0012 -0.0036 -0.0004 -0.0012

Variance
HAC 0.0204 0.0248 0.0343 0.0587 0.2348 0.8037 9.6973

DynReg 0.0216 0.025 0.0255 0.0238 0.0245 0.0255 0.0253

MSE
HAC 0.0204 0.0248 0.0343 0.0587 0.2348 0.8036 9.6972

DynReg 0.0216 0.025 0.0255 0.0238 0.0245 0.0255 0.0253

(0; 0.3) (0; 0.7) (1; 1.3) (1; 1.4) (1; 1.5) (1; 1.5) (1; 1.6)

REest 0.9462 0.993 1.342 2.4695 9.5837 31.5066 383.3278

T=200

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0001 0.0010 0.0010 -0.0009 -0.0020 0.0024 0.0046

DynReg 0.0001 0.0002 0.0009 -0.0010 -0.0005 -0.0002 -0.0003

Variance
HAC 0.0051 0.0061 0.0085 0.0145 0.0514 0.1526 2.7592

DynReg 0.0051 0.0053 0.0052 0.0052 0.0051 0.0053 0.0052

MSE
HAC 0.0051 0.0061 0.0085 0.0145 0.0514 0.1526 2.7589

DynReg 0.0051 0.0053 0.0052 0.0052 0.0051 0.0053 0.0052

(0; 0) (1; 1) (1; 1) (1; 1) (1; 1) (1; 1) (1; 1)

REest 0.9991 1.1508 1.6162 2.7929 10.0494 28.7381 535.1801

T=600

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0008 -0.0002 -0.0004 0.0004 -0.0007 -0.0028 -0.0062

DynReg -0.0008 -0.0001 -0.0001 -0.0001 -0.0005 -0.0003 0.0004

Variance
HAC 0.0017 0.002 0.0029 0.0049 0.0168 0.0431 0.9138

DynReg 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

MSE
HAC 0.0017 0.002 0.0029 0.0049 0.0168 0.0431 0.9138

DynReg 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

(0; 0) (1; 1) (1; 1) (1; 1) (1; 1) (1; 1) (1; 1)

REest 0.9999 1.2002 1.6605 2.8961 10.1162 26.0652 541.6975

T=2500

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0001 -0.0001 -0.0001 0.0001 0.0004 -0.0004 -0.0005

DynReg -0.0001 -0.0001 -0.0002 0.0001 -0.0003 0.0001 -0.0001

Variance
HAC 0.0004 0.0005 0.0007 0.0012 0.0039 0.0087 0.1959

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MSE
HAC 0.0004 0.0005 0.0007 0.0012 0.0039 0.0087 0.1958

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

(0; 0) (1; 1) (1; 1) (1; 1) (1; 1) (1; 1) (1; 1)

REest 1.0000 1.2090 1.6925 2.9168 9.6878 21.9029 493.2473

Notes: The data-generating process is yt = xt+ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All shocks are N(0, 1), or-
thogonal at all leads and lags. REest is the estimation efficiency of DynReg relative to OLS: REest=MSE(OLS)/MSE(DynReg).
We perform 10000 Monte Carlo replications. The median and mean BIC-selected DynReg lags appear in parentheses. See text
for details.
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We also show MSE, bias, and variance for both HAC and DynReg.2

Let us begin directly with the bottom-line REest results. For any fixed sample size T ,

REest is increasing in serial correlation strength ρ. Consider, for example, a leading case like

T = 200 corresponding, to fifty years of quarterly data. For ρ = 0, REest = 1, as it should

since there is no serial correlation. REest grows quickly as ρ increases, however, reaching 2.8

when ρ = 0.7 and 28.7 when ρ = 0.95.

In contrast, for any fixed serial correlation strength ρ, REest stabilizes quickly in sample

size T and remains approximately constant. Consider, for example, a realistic case like ρ =

0.9. REest remains at approximately REest = 10 for all sample sizes T ∈ {50, 200, 600, 2500}.
Hence REest is clearly driven by serial correlation strength and not by sample size.

Now consider separately the HAC and DynReg MSEs that underlie REest is composed.

For any fixed sample size T , MSE(HAC) is strongly increasing in serial correlation strength ρ

(because the HAC estimator ignores serial correlation), whereas MSE(DynReg) is invariant

to serial correlation strength (because the DynReg estimator controls for serial correlation).

That is why the REest ratio is also strongly increasing in ρ, as documented earlier.

In contrast, for any fixed serial correlation strength ρ, both MSE(HAC) and MSE(DynReg)

decrease with sample size T (as they must, since both the HAC and DynReg estimators are

consistent), but they decrease proportionately, so that the REest ratio is invariant to T , as

documented earlier.

Finally, let us examine the bias and variance components that underlie the MSEs. First

consider bias. Both the HAC and DynReg estimators are theoretically unbiased for any

serial correlation strength and sample size, and the Monte Carlo confirms the theory: the

estimated biases are always negligible and invariant to ρ.3

Now consider variance. HAC variance increases sharply with serial correlation strength

(because HAC ignores serial correlation), whereas DynReg variance does not (because Dyn-

Reg controls for serial correlation), and both variances decrease with sample size (by con-

sistency), but they do so proportionately. Assembling all the variance results reveals that

they drive the MSE results. That is, comparative HAC vs DynReg MSE patterns, and hence

ultimately comparative REest patterns, are driven by entirely by variance.

2Note that we can simply speak of “HAC” for now, rather than worrying about particular HAC estimators
like NW, NW-A, and so on, because all HAC estimators simply use the OLS estimator of β. Particular HAC
estimators will have particular effects on the standard errors of β̂, but not on β̂ itself, which always remains
just β̂OLS .

3Moreover the estimated biases decrease with T , as expected, by consistency.

11



Figure 1: Estimation Efficiency of DynReg Relative to HAC Regression,
Autoregressive Disturbances, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn
from the stationary distribution. Values for ρ = 0.99 are not shown in the plot due to their relative extreme
magnitude as shown in Table 1 and 2. See text for details.

3.2 HAC vs DynReg Forecast Accuracy

Explicit modeling of autocorrelation can be used for improved prediction. OLS-HAC esti-

mators neglect this and therefore produce suboptimal forecasts. First consider the case of

known parameters, which we can solve analytically. As before the DGP is

yt = xt + ut

xt = ρxt−1 + εx,t

ut = ρut−1 + εu,t,

with all shocks N(0, 1) and orthogonal at all leads and lags. In an obvious notation, the

optimal forecast accounting for serial correlation in u is

yoptt+1,t = xt+1,t + ut+1,t

= ρxt + ρut.
(12)

The corresponding forecast error is eoptt+1 = εx,t+1+εu,t+1, with variance σ2
opt=2.

12



Table 2: Forecast Accuracy of DynReg relative to OLS,
Autoregressive Disturbances, BIC DynReg Lag-Order Selection

Relative Prediction Efficiency (REpred)

T ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

50 0.989 1.042 1.160 1.452 3.033 5.865 391.908

200 0.997 1.051 1.168 1.476 3.121 5.698 47.361

600 1.000 1.047 1.152 1.505 3.214 5.605 25.569

2500 1.000 1.049 1.163 1.469 3.101 5.656 25.648

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. REpred is the predictive efficiency of DynReg relative to OLS:
REpred=MSPE(OLS)/MSPE(DynReg), where MSPE is 1-step-ahead mean squared prediction error. We perform 10000 Monte
Carlo replications. See text for details.

The suboptimal forecast, failing to account for serial correlation in u, is just the first

term in (12),

ysuboptt+1,t = ρxt.

The corresponding forecast error is esuboptt+1 = εx,t+1+ut+1, with variance σ2
subopt=1+ 1

1−ρ2 .

Both forecasts are unbiased, so the relative prediction efficiency (relative MSPE) is just

the relative variance, which is

REpred =
σ2

subopt

σ2
opt

=
1

2
+

1

2(1− ρ2)
. (13)

REpred is bounded below by 1, which occurs when ρ=0, and REpred→∞ monotonically as

ρ→1. Crucially, note that REpred is effectively the predictive efficiency of DynReg relative to

HAC, because DynReg produces the optimal forecast (which exploits serial correlation) and

HAC produces the suboptimal forecast (which ignores serial correlation).

We now consider the case of estimated parameters, which is more complicated. In Table 2

we show REpred estimated by Monte Carlo, accounting for parameter estimation uncertainty.

For all but the most extreme cases (e.g., T = 50 with ρ = 0.99) the Monte Carlo results are

almost identical to the analytic result (13) that ignores parameter estimation uncertainty.4

Hence REpred depends strongly on ρ but not on T . More precisely, for any T we of course

4This is because the effects of parameter estimation uncertainty on MSPE vanish quickly (like 1/T rather
than 1/

√
T ), as is well known. Hence the earlier-documented poor estimation efficiency of HAC relative to

DynReg, although a large problem for some purposes, is not an important problem for forecasting.
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obtain REpred = 1 in the white noise case (ρ = 0), but then REpred grows quickly in ρ, and

for any ρ, REpred stabilizes extremely quickly in T and is basically constant.

4 On the Performance of HAC-Based Hypothesis Tests

Now we consider the finite-sample properties of hypothesis tests associated with the various

procedures. We first consider test sizes, after which we consider rejection frequencies.

4.1 Size

We show estimated size distortions for a 5% test of H0: β=1 numerically in Table 3 and

graphically in the response surfaces of Figure 2.5 There are three key results:

(1) Tests based on OLS are incorrectly sized for all (ρ, T ) combinations except when ρ = 0,

and the size distortions become huge as ρ grows.

(2) The various NW and M HAC corrections reduce but do not eliminate the size distortion.

In particular, important distortion generally remains in the economically crucial region

of ρ ∈ [0.6, 0.99], depending on the sample size and the precise NW version used. NW

and NW-A are worst, M-LLSW and NW-LLSW are better, and NW-KV is best.

(3) Tests based on DynReg, in contrast, are correctly sized for all (ρ, T ) combinations, even

with extremely strong autocorrelation.

4.2 Rejection Frequencies and Power

Only tests that are correctly sized for all (T, ρ) combinations are of real interest, because

only correctly-sized tests produce unambiguously interpretable rejections. DynReg satisfies

this requirement, and HAC regression does not. One could simply stop here, but it may

be of interest to compare rejection frequencies in a few laboratory environments where the

DGP is known.

In Figure 3 we show rejection frequency curves for a fixed sample size T = 200 and

ρ ∈ {0.0, 0.3, 0.5, 0.7, 0.9, 0.95}. We include in the figure only the tests based on NW-KV,

5The response surfaces use a larger set of ρ and T values than used elsewhere. In particular,
we compute empirical size distortions for the 5% test of H0 : β = 1 for all combinations of ρ ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99} and T ∈ {50, 200, 500, 1000, 1500, 2000, 2500}. Then,
based on the grid of empirical size distortions for all (ρ, T ) combinations, we fit response surfaces.
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Table 3: Empirical size of nominal 5% t-test of H0: β=1,
Autoregressive Disturbances, BIC DynReg Lag-Order Selection

T=50
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.048 0.072 0.127 0.242 0.564 0.774 0.970
NW h = b4[T/100]2/9c+ 1 0.079 0.089 0.119 0.169 0.421 0.674 0.953
NW-A h = b0.75T 1/3c+ 1 0.073 0.083 0.116 0.180 0.452 0.702 0.958
NW-LLSW h = b1.3T 1/2c+ 1 0.118 0.123 0.149 0.179 0.359 0.603 0.938
NW-KV h = T 0.053 0.061 0.072 0.092 0.189 0.388 0.879
M-LLSW ν = b0.41T 2/3c 0.055 0.064 0.073 0.080 0.197 0.455 0.914
DynReg – 0.055 0.072 0.073 0.060 0.063 0.066 0.067

T=200
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.049 0.073 0.135 0.247 0.544 0.727 0.955
NW h = b4[T/100]2/9c+ 1 0.060 0.063 0.081 0.114 0.280 0.498 0.916
NW-A h = b0.75T 1/3c+ 1 0.060 0.063 0.081 0.114 0.280 0.498 0.916
NW-LLSW h = b1.3T 1/2c+ 1 0.082 0.085 0.095 0.107 0.176 0.319 0.858
NW-KV h = T 0.049 0.052 0.058 0.061 0.089 0.136 0.671
M-LLSW ν = b0.41T 2/3c 0.051 0.054 0.056 0.067 0.113 0.238 0.847
DynReg – 0.050 0.055 0.049 0.053 0.050 0.055 0.051

T=600
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.052 0.071 0.137 0.248 0.536 0.688 0.944
NW h = b4[T/100]2/9c+ 1 0.056 0.055 0.074 0.092 0.219 0.380 0.878
NW-A h = b0.75T 1/3c+ 1 0.056 0.055 0.072 0.087 0.199 0.353 0.868
NW-LLSW h = b1.3T 1/2c+ 1 0.069 0.066 0.074 0.080 0.116 0.171 0.746
NW-KV h = T 0.047 0.045 0.050 0.053 0.061 0.069 0.429
M-LLSW ν = b0.41T 2/3c 0.055 0.050 0.056 0.058 0.083 0.136 0.756
DynReg – 0.052 0.048 0.056 0.051 0.051 0.049 0.051

T=2500
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.050 0.075 0.128 0.249 0.535 0.673 0.924
NW h = b4[T/100]2/9c+ 1 0.052 0.053 0.061 0.074 0.150 0.263 0.771
NW-A h = b0.75T 1/3c+ 1 0.053 0.054 0.060 0.070 0.129 0.229 0.748
NW-LLSW h = b1.3T 1/2c+ 1 0.057 0.059 0.061 0.064 0.069 0.095 0.475
NW-KV h = T 0.050 0.046 0.051 0.049 0.052 0.052 0.144
M-LLSW ν = b0.41T 2/3c 0.050 0.051 0.053 0.056 0.056 0.082 0.535
DynReg – 0.050 0.049 0.047 0.049 0.048 0.049 0.048

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. We perform 10 000 Monte Carlo replications. See text
for details.
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Figure 2: Empirical Size Distortion of Nominal 5% t-Test of H0: β=1,
Autoregressive Disturbances, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10 000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure 3: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Autoregressive Disturbances, T = 200, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10 000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure 4: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Autoregressive Disturbances, ρ = 0.5, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10 000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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M-LLSW and DynReg because, as shown in Table 3, other HAC-based tests are over-sized for

most values of ρ. NW-KV, M-LLSW, and DynReg, in contrast, are approximately correctly

sized when T = 200 for ρ ≤ 0.7 so we can actually compare power for ρ ∈ {0.0, 0.3, 0.5, 0.7}.
For ρ = 0.9 and ρ = 0.95 the HAC tests are over-sized, so rejections are not purely indicative

of “power,” but the rejection frequency curves may nevertheless be informative, so we show

curves for ρ = 0.9 and ρ = 0.95 as well.

There are three basic results regarding finite-sample rejection frequencies:

(1) For null and moderate values of ρ (0, .3, .5 .7) we can compare the power of NW-KV,

M-LLSW and DynReg. The HAC tests are dominated by DynReg, and the DynReg

dominance increases with ρ.

(2) DynReg dominance increases with ρ not because DynReg power curves are shifting up,

but because the HAC power curves are shifting down and flattening. That is, the

DynReg rejection curves are approximately invariant to ρ, attaining, for example, unit

power at approximately the same alternative value (β = 1.3) regardless of the value

of ρ. HAC rejection frequencies, in contrast, increase progressively less quickly as

dynamics become progressively more persistent. Effectively the DynReg information

criteria nail the proper DynReg lag order, regardless of ρ, whereas the HAC procedures

struggle to produce adequate corrections as the dynamics become progressively more

persistent.

(3) Despite the fact that NW-KV and M-LLSW are over-sized in the high serial correlation

environments of ρ = 0.90 and ρ = 0.95, they nevertheless reject much less often that

DynReg under the alternative.

In Figure 4 we show power curves for ρ = 0.5 and sample sizes T = 50, 200, 600, 2500. Of

course all curves shift up as T increases, but DynReg always dominates.

5 Additional Analysis

In this section we provide additional analysis that supports and enhances our main earlier

conclusions. First, we explore a DGP with moving-average, as opposed to autoregressive,

dynamics. Second, we explore a DGP characterized by weak, but not strong, exogeneity.
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5.1 Moving Average Disturbances and/or AIC DynReg Order Se-

lection

In this subsection we consider results obtained using moving average (MA) disturbances,

rather than autoregresive ones, as well as lag selection using AIC, given by T log(SSE) +

2(2p + 1), rather than BIC. For the MA case we use a single-lag with parameter values

ρ ∈ {0, .3, .5, .7, .9, .95, .99}. All these results are presented in Appendix Tables A1 to C2

and Figures A1 to C3.

We start by looking at estimation results. Allowing for AIC with its less parsimonious lag

selection properties (Table B1) leads to slightly less favourable results for DynReg. However,

its superiority compared to HAC estimation remains overwhelming. Finally, the use of an

MA structure for ut (Tables A1 and C1) produces far fewer problems for HAC estimation.

This is potentially due to the fact that MA structures induce less pronounced autocorrelation

patterns, but also because the structure of HAC inference promotes fine behaviour in MA

environments. While DynReg and HAC have comparable performance in this case, the fact

that MA error terms induce much better behaved estimation patterns, suggests that such

errors are not a cause of concern, unlike the clear problematic issues associated with AR

errors and HAC estimation.

Moving on to the size performance and considering AIC lag selection (Table B2), we note

that again we obtain slightly less favourable results for DynReg with marginally increased

rejection probabilities for small sample sizes. Nevertheless, its superior performance com-

pared to HAC remains overwhelming. The use of an MA structure for ut (Tables A2 and

C2) produces, as for estimation, fewer problems for HAC inference, suggesting again that

MA error structures should not be an important focus for our analysis.

Finally, commenting on the rejection probabilities under the alternative hypothesis, re-

sults for AIC lag selection and MA structures for ut (Figures A1 to C3) retain the relative

performance patterns noted earlier. DynReg remains better performing, apart from the case

of the very pronounced MA error structure where HAC inference has a very slight power

advantage probably driven by the need for DynReg, to have a lag structure with many lags

to capture this form of autocorrelation.

5.2 Weak Exogeneity

Our Monte Carlo has thus far featured a DGP with strongly exogenous regressors, despite

the fact that DynReg only assumes weak exogeneity. Before presenting some simulations for
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this case, we set the scene for this analysis. To do this, let zt = (x′t, ut)
′ and assume that

zt =
∞∑
i=0

Ξiεt−i, (14)

where εt = (ε′x,t, εu,t)
′. Of course, it is clear that in this case OLS estimation of (1) will not

be consistent unless Ξi are of the form

(
Ξxi 0

0 Ξui

)
. On the other hand, for sufficiently

long lag orders, p, the DynReg model retains its form given in (6), and repeated below for

ease of reference.

yt =

p∑
j=1

φjyt−j +
k∑
i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + εu,t, (15)

A proof of this result follows easily given, e.g., Theorem 1.2.1. of Hannan and Deistler

(1988). Clearly, DynReg remains consistent, unless E(εx,tεu,t) 6= 0. Now we analyze a DGP

with only weakly exogenous regressors that illustrates this point. In particular, we set(
xt

ut

)
=

(
0.5 0.2

0.3 0.4

)(
xt−1

ut−1

)
+

(
εx,t

εu,t

)
. (16)

where (εx,t, εu,t)
′ ∼iid N(0, I). Table 4 reports results for this simulation design. It is clear

that DynReg retains its attractive properties, including the absence of any bias, whereas

OLS estimation is biased as expected given the above analysis.

6 Concluding Remarks

This paper has considered issues surrounding the application of OLS regression with HAC

standard errors, in time-series environments. While the HAC methodology is very sensible

in many cross section regression situations, it is not generally an effective procedure in time

series regressions. Such regressions usually possess persistent autocorrelation. This causes

HAC regressions to be very inefficient and sub-optimal in terms of parameter estimation

and inference. HAC produces inefficient conditional predictions and leads to significant size

distortions and reduced power in hypothesis testing of regression parameters. These problems

are largely avoided by the use of dynamic regressions (DynReg), which are easily implemented

and also avoid issues arising from the violation of strong exogeneity assumptions. The
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Table 4: Estimation Statistics and Rejection Frequencies for a DGP with Weak Exogeneity

T=50

Estimation Statistics Rejection Frequencies t-test H0: β = 1

Bias HAC 0.2904 Test β = 1 β = 0.8
DynReg 0.0180 OLS 0.5549 0.1936

Variance HAC 0.0317 NW 0.5140 0.1747
DynReg 0.0295 NW-A 0.5207 0.1792

MSE HAC 0.1160 NW-LLSW 0.5353 0.2038
DynReg 0.0298 NW-KV 0.3390 0.1098

(1; 1.3) M-LLSW 0.3407 0.1082
REest 3.8958 DynReg 0.0986 0.2792

T=200

Estimation Statistics Rejection Frequencies t-test H0: β = 1

Bias HAC 0.3017 Test β = 1 β = 0.8
DynReg -0.0001 OLS 0.9669 0.3984

Variance HAC 0.0079 NW 0.9370 0.2967
DynReg 0.0051 NW-A 0.9370 0.2967

MSE HAC 0.0990 NW-LLSW 0.9309 0.2933
DynReg 0.0051 NW-KV 0.7503 0.1764

(1; 1.0) M-LLSW 0.8824 0.2174
REest 19.5859 DynReg 0.0477 0.7927

T=600

Estimation Statistics Rejection Frequencies t-test H0: β = 1

Bias HAC 0.3066 Test β = 1 β = 0.8
DynReg 0.0001 OLS 1.0000 0.7219

Variance HAC 0.0027 NW 1.0000 0.5928
DynReg 0.0017 NW-A 1.0000 0.5864

MSE HAC 0.0967 NW-LLSW 0.9999 0.5694
DynReg 0.0017 NW-KV 0.9780 0.3764

(1; 1.0) M-LLSW 0.9999 0.5141
REest 58.6061 DynReg 0.0474 0.9978

T=2500

Estimation Statistics Rejection Frequencies t-test H0: β = 1

Bias HAC 0.3074 Test β = 1 β = 0.8
DynReg 0.0003 OLS 1.0000 0.9967

Variance HAC 0.0007 NW 1.0000 0.9891
DynReg 0.0004 NW-A 1.0000 0.9884

MSE HAC 0.0951 NW-LLSW 1.0000 0.9858
DynReg 0.0004 NW-KV 1.0000 0.8707

(1; 1.0) M-LLSW 1.0000 0.9836
REest 232.1908 DynReg 0.0511 1.0000

Notes: The data-generating process is yt = βxt+ut, xt = φ1,1xt−1+φ1,2ut−1+εx,t, ut = φ2,1xt−1+φ2,2ut−1+
εu,t, t = 1, ..., T and (φ1,1, φ1,2, φ2,1, φ2,2) = (0.5, 0.2, 0.3, 0.4). All shocks are N(0, 1), orthogonal at all leads
and lags. The median and mean BIC-selected DynReg lags appear in parentheses. We perform 10000 Monte
Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from the
stationary distribution. See text for details.
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significant advantages of using DynReg are demonstrated with detailed simulations, which

cover a range of practical and implementation issues.
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Appendices

A Additional Monte Carlo: MA Errors, BIC Selection

Table A1: Bias, Variance, MSE, and Efficiency of DynReg relative to OLS
Moving Average Disturbances, BIC DynReg Lag-Order Selection

T=50

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0007 -0.0002 0.0002 0.0005 -0.0016 -0.0008 -0.0004

DynReg 0.0003 -0.0009 -0.0009 -0.0011 -0.0044 0.0001 -0.0018

Variance
HAC 0.0204 0.024 0.0277 0.0269 0.0137 0.007 0.001

DynReg 0.0216 0.025 0.0274 0.0292 0.035 0.0382 0.0377

MSE
HAC 0.0204 0.024 0.0277 0.0269 0.0137 0.007 0.001

DynReg 0.0216 0.025 0.0274 0.0292 0.035 0.0382 0.0377

(0; 0.3) (0; 0.8) (1; 1.4) (2; 2.2) (2; 3.2) (2; 3.4) (2; 3.5)

REest 0.9462 0.9606 1.0103 0.921 0.3922 0.1834 0.027

REpred 0.9899 1.0445 1.1001 1.2495 1.4047 1.4208 1.4723

T=200

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0001 0.0001 0.0009 -0.0007 -0.0002 -0.0001 -0.0001

DynReg 0.0001 0.0003 0.0006 -0.0011 -0.0001 -0.0004 -0.0009

Variance
HAC 0.0051 0.0058 0.0067 0.0064 0.0032 0.0017 0.0002

DynReg 0.0051 0.0053 0.0055 0.0057 0.006 0.0065 0.0066

MSE
HAC 0.0051 0.0058 0.0067 0.0064 0.0032 0.0017 0.0002

DynReg 0.0051 0.0053 0.0055 0.0057 0.006 0.0065 0.0066

(0; 0.0) (1; 0.9) (1; 1.5) (2; 2.5) (4; 3.6) (4; 3.8) (4; 3.9)

REest 0.9991 1.0991 1.22 1.1318 0.5299 0.2525 0.0307

REpred 0.9993 1.0403 1.1297 1.2451 1.4090 1.4555 1.4831

T=600

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0008 -0.0001 -0.0006 0.0001 -0.0004 -0.0002 0.0000

DynReg -0.0008 0.0000 0.0000 -0.0001 -0.0003 -0.0002 0.0005

Variance
HAC 0.0017 0.0019 0.0023 0.0021 0.0011 0.0006 0.0001

DynReg 0.0017 0.0017 0.0018 0.0018 0.0018 0.0019 0.0020

MSE
HAC 0.0017 0.0019 0.0023 0.0021 0.0011 0.0006 0.0001

DynReg 0.0017 0.0017 0.0018 0.0018 0.0018 0.0019 0.0020

(0; 0.0) (1; 1.1) (2; 2.1) (3; 3.5) (6; 5.7) (6; 6.3) (6; 6.5)

REest 0.9999 1.1476 1.2967 1.1807 0.6042 0.3105 0.0364

REpred 0.9990 1.0539 1.1404 1.2408 1.3901 1.4434 1.4886

T=2500

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0001 -0.0001 -0.0001 0.0000 0.0000 -0.0001 0.0000

DynReg -0.0001 -0.0001 -0.0002 0.0001 -0.0002 0.0002 0.0001

Variance
HAC 0.0004 0.0005 0.0005 0.0005 0.0003 0.0001 0.0000

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MSE
HAC 0.0004 0.0005 0.0005 0.0005 0.0003 0.0001 0.0000

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

(0; 0.0) (2; 1.7) (3; 2.9) (5; 5.0) (10; 9.8) (11; 11.6) (12; 12.6)

REest 1.0000 1.1598 1.3240 1.2481 0.6137 0.3373 0.0525

REpred 0.9998 1.0391 1.1382 1.2496 1.4049 1.4281 1.4642

Notes: The data-generating process is yt = xt+ut, xt = ρxt−1+εx,t, ut = εu,t+ρεu,t−1, t = 1, ..., T . All shocks are N(0, 1), or-
thogonal at all leads and lags. REest is the estimation efficiency of DynReg relative to OLS: REest=MSE(OLS)/MSE(DynReg).
REpred is the predictive efficiency of DynReg relative to OLS: REpred=MSPE(OLS)/MSPE(DynReg), where MSPE is 1-step-
ahead mean squared prediction error. We perform 10000 Monte Carlo replications. The median and mean BIC-selected DynReg
lags appear in parentheses. See text for details.
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Table A2: Empirical size of nominal 5% t-test of H0: β=1
Moving Average Disturbances, BIC DynReg Lag-Order Selection

T=50
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.048 0.067 0.102 0.124 0.148 0.169 0.167
NW h = b4[T/100]2/9c+ 1 0.079 0.086 0.106 0.113 0.120 0.122 0.096
NW-A h = b0.75T 1/3c+ 1 0.073 0.083 0.103 0.108 0.115 0.117 0.095
NW-LLSW h = b1.3T 1/2c+ 1 0.118 0.121 0.140 0.145 0.160 0.167 0.130
NW-KV h = T 0.053 0.061 0.070 0.075 0.086 0.089 0.064
M-LLSW ν = b0.41T 2/3c 0.055 0.062 0.070 0.074 0.083 0.089 0.058
DynReg – 0.055 0.071 0.083 0.078 0.086 0.087 0.083

T=200
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.049 0.070 0.098 0.129 0.148 0.162 0.166
NW h = b4[T/100]2/9c+ 1 0.060 0.064 0.070 0.074 0.077 0.086 0.080
NW-A h = b0.75T 1/3c+ 1 0.060 0.064 0.070 0.074 0.077 0.086 0.080
NW-LLSW h = b1.3T 1/2c+ 1 0.082 0.084 0.088 0.092 0.098 0.116 0.111
NW-KV h = T 0.049 0.051 0.056 0.056 0.057 0.074 0.086
M-LLSW ν = b0.41T 2/3c 0.051 0.054 0.055 0.060 0.062 0.079 0.074
DynReg – 0.050 0.055 0.053 0.054 0.055 0.062 0.055

T=600
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.052 0.068 0.103 0.125 0.157 0.162 0.160
NW h = b4[T/100]2/9c+ 1 0.056 0.054 0.066 0.062 0.070 0.070 0.070
NW-A h = b0.75T 1/3c+ 1 0.056 0.054 0.065 0.062 0.069 0.069 0.070
NW-LLSW h = b1.3T 1/2c+ 1 0.069 0.065 0.073 0.070 0.080 0.085 0.101
NW-KV h = T 0.047 0.047 0.050 0.051 0.054 0.058 0.103
M-LLSW ν = b0.41T 2/3c 0.055 0.049 0.056 0.052 0.062 0.065 0.074
DynReg – 0.052 0.048 0.056 0.052 0.051 0.051 0.052

T=2500
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.050 0.070 0.097 0.130 0.150 0.161 0.164
NW h = b4[T/100]2/9c+ 1 0.052 0.053 0.058 0.061 0.057 0.057 0.064
NW-A h = b0.75T 1/3c+ 1 0.053 0.053 0.057 0.060 0.056 0.057 0.065
NW-LLSW h = b1.3T 1/2c+ 1 0.057 0.058 0.060 0.062 0.059 0.064 0.086
NW-KV h = T 0.050 0.048 0.049 0.053 0.047 0.055 0.074
M-LLSW ν = b0.41T 2/3c 0.050 0.051 0.053 0.055 0.050 0.052 0.068
DynReg – 0.050 0.050 0.048 0.049 0.049 0.049 0.049

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. We perform 10000 Monte Carlo replications. See text
for details.
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Figure A1: Empirical Size Distortion of Nominal 5% t-Test of H0: β=1,
Moving Average Disturbances, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure A2: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Moving Average Disturbances, T = 200, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure A3: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Moving Average Disturbances, ρ = 0.5, BIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Table A3: Bias, Variance, MSE, and Efficiency of DynReg relative to OLS
Moving Average Disturbances, BIC DynReg Lag-Order Selection, Negative ρ

T=50

ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

Bias
HAC -0.0008 0.0007 0.0003 -0.0010 -0.0009 0.0001 -0.0001

DynReg -0.0002 0.0000 -0.0012 -0.0009 -0.0040 0.0004 0.0016

Variance
HAC 0.0110 0.0080 0.0071 0.0070 0.0078 0.0072 0.0032

DynReg 0.0144 0.0183 0.0246 0.0284 0.0349 0.0379 0.0393

MSE
HAC 0.0110 0.0080 0.0071 0.0070 0.0078 0.0072 0.0032

DynReg 0.0144 0.0183 0.0246 0.0284 0.0349 0.0379 0.0393

(0; 0.3) (0; 0.8) (1; 1.4) (2; 2.2) (2; 3.2) (2; 3.4) (2; 3.5)

REest 0.7630 0.4398 0.2905 0.2473 0.2244 0.1902 0.0826

T=200

ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

Bias
HAC -0.0003 -0.0001 0.0004 -0.0007 -0.0004 0.0002 0.0004

DynReg -0.0002 0.0000 0.0007 -0.0013 -0.0003 0.0002 -0.0007

Variance
HAC 0.0027 0.0018 0.0015 0.0014 0.0016 0.0017 0.0011

DynReg 0.0029 0.0049 0.0055 0.0057 0.0061 0.0064 0.0066

MSE
HAC 0.0027 0.0018 0.0015 0.0014 0.0016 0.0017 0.0011

DynReg 0.0029 0.0049 0.0055 0.0057 0.0061 0.0064 0.0066

(0; 0.0) (1; 0.9) (1; 1.5) (2; 2.5) (4; 3.6) (4; 3.8) (4; 3.9)

REest 0.9314 0.3566 0.2752 0.2501 0.2602 0.2607 0.1719

T=600

ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

Bias
HAC -0.0004 -0.0002 -0.0002 -0.0005 -0.0003 0.0000 -0.0001

DynReg -0.0005 0.0000 -0.0001 -0.0001 -0.0005 -0.0001 0.0004

Variance
HAC 0.0009 0.0006 0.0005 0.0004 0.0005 0.0005 0.0005

DynReg 0.0009 0.0017 0.0018 0.0017 0.0018 0.0019 0.0020

MSE
HAC 0.0009 0.0006 0.0005 0.0004 0.0005 0.0005 0.0005

DynReg 0.0009 0.0017 0.0018 0.0017 0.0018 0.0019 0.0020

(0; 0.0) (1; 1.1) (2; 2.1) (3; 3.5) (6; 5.7) (6; 6.3) (6; 6.5)

REest 0.9752 0.3393 0.2725 0.2526 0.2683 0.2832 0.2396

T=2500

ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

Bias
HAC 0.0000 0.0000 -0.0001 0.0001 -0.0002 0.0001 0.0001

DynReg 0.0000 0.0000 -0.0002 0.0001 -0.0002 0.0001 -0.0001

Variance
HAC 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

DynReg 0.0002 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MSE
HAC 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

DynReg 0.0002 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

(0; 0.0) (2; 1.7) (3; 2.9) (5; 5.0) (10; 9.8) (11; 11.6) (12; 12.6)

REest 0.9916 0.3406 0.2841 0.2516 0.2722 0.2849 0.3179

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. REest is the estimation efficiency of DynReg relative
to OLS: REest=MSE(OLS)/MSE(DynReg). We perform 10000 Monte Carlo replications. The median and
mean BIC-selected DynReg lags appear in parentheses. See text for details.
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Table A4: Empirical size of nominal 5% t-test of H0: β=1
Moving Average Disturbances, BIC DynReg Lag-Order Selection, Negative ρ

T=50

Truncation Lag ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

OLS – 0.046 0.014 0.007 0.003 0.005 0.010 0.033

NW h = b4[T/100]2/9c+ 1 0.080 0.056 0.043 0.030 0.034 0.058 0.199

NW-A h = b0.75T 1/3c+ 1 0.075 0.044 0.034 0.021 0.025 0.042 0.146

NW-LLSW h = b1.3T 1/2c+ 1 0.118 0.101 0.087 0.070 0.077 0.125 0.394

NW-KV h = T 0.062 0.049 0.040 0.029 0.030 0.055 0.285

M-LLSW ν = b0.41T 2/3c 0.061 0.057 0.054 0.042 0.046 0.088 0.440

DynReg – 0.059 0.051 0.065 0.068 0.075 0.081 0.083

T=200

Truncation Lag ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

OLS – 0.052 0.011 0.004 0.002 0.002 0.004 0.028

NW h = b4[T/100]2/9c+ 1 0.063 0.040 0.034 0.023 0.024 0.031 0.167

NW-A h = b0.75T 1/3c+ 1 0.063 0.040 0.034 0.023 0.024 0.031 0.167

NW-LLSW h = b1.3T 1/2c+ 1 0.087 0.074 0.067 0.059 0.059 0.077 0.339

NW-KV h = T 0.053 0.048 0.046 0.040 0.040 0.043 0.252

M-LLSW ν = b0.41T 2/3c 0.060 0.050 0.049 0.045 0.043 0.053 0.325

DynReg – 0.056 0.049 0.053 0.055 0.055 0.058 0.055

T=600

Truncation Lag ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

OLS – 0.053 0.013 0.004 0.001 0.001 0.001 0.018

NW h = b4[T/100]2/9c+ 1 0.056 0.042 0.034 0.023 0.023 0.026 0.114

NW-A h = b0.75T 1/3c+ 1 0.057 0.044 0.037 0.026 0.025 0.030 0.127

NW-LLSW h = b1.3T 1/2c+ 1 0.070 0.063 0.065 0.050 0.055 0.061 0.226

NW-KV h = T 0.050 0.048 0.049 0.041 0.043 0.042 0.151

M-LLSW ν = b0.41T 2/3c 0.053 0.049 0.053 0.043 0.044 0.047 0.193

DynReg – 0.054 0.048 0.056 0.050 0.050 0.050 0.054

T=2500

Truncation Lag ρ = 0 ρ = −0.3 ρ = −0.5 ρ = −0.7 ρ = −0.9 ρ = −0.95 ρ = −0.99

OLS – 0.051 0.011 0.004 0.001 0.000 0.001 0.007

NW h = b4[T/100]2/9c+ 1 0.053 0.042 0.037 0.030 0.027 0.030 0.069

NW-A h = b0.75T 1/3c+ 1 0.053 0.043 0.039 0.032 0.030 0.033 0.076

NW-LLSW h = b1.3T 1/2c+ 1 0.058 0.057 0.054 0.051 0.053 0.056 0.117

NW-KV h = T 0.049 0.046 0.046 0.047 0.048 0.046 0.073

M-LLSW ν = b0.41T 2/3c 0.052 0.050 0.049 0.046 0.047 0.047 0.085

DynReg – 0.051 0.049 0.047 0.050 0.047 0.050 0.049

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. We perform 10000 Monte Carlo replications. See text
for details.
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B Additional Monte Carlo: AR Errors, AIC Selection

Table B1: Bias, Variance, MSE, and Efficiency of DynReg relative to OLS
Autoregressive Disturbances, AIC DynReg Lag-Order Selection

T=50

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0007 -0.0002 0.0005 -0.0007 -0.0029 0.0026 -0.0292

DynReg 0.0024 -0.0003 -0.0025 -0.0039 -0.0061 0.0006 0.0003

Variance
HAC 0.0204 0.0248 0.0343 0.0587 0.2348 0.8037 9.6973

DynReg 0.0434 0.0453 0.0464 0.0453 0.0461 0.0492 0.0475

MSE
HAC 0.0204 0.0248 0.0343 0.0587 0.2348 0.8036 9.6972

DynReg 0.0434 0.0453 0.0464 0.0453 0.0461 0.0492 0.0475

(9; 6.6) (9; 6.9) (9; 7.1) (9; 7.3) (9; 7.4) (9; 7.4) (9; 7.4)

REest 0.4707 0.5481 0.7395 1.2968 5.0925 16.3235 204.1635

REpred 0.9893 1.0417 1.1605 1.4520 3.0330 5.8646 391.9083

T=200

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0001 0.0000 0.0010 -0.0009 -0.0020 0.0024 0.0046

DynReg -0.0002 -0.0001 0.0007 -0.0011 -0.0009 0.0005 -0.0003

Variance
HAC 0.0051 0.0061 0.0085 0.0145 0.0514 0.1526 2.7592

DynReg 0.0071 0.0072 0.0071 0.0073 0.0071 0.0073 0.0071

MSE
HAC 0.0051 0.0061 0.0085 0.0145 0.0514 0.1526 2.7589

DynReg 0.0071 0.0072 0.0071 0.0073 0.0071 0.0073 0.0071

(8; 13.2) (10; 14.2) (10; 14.2) (10; 14.1) (11; 14.4) (12; 14.5) (13; 14.7)

REest 0.7222 0.8407 1.1840 1.9882 7.2732 20.8362 388.0916

REpred 0.9969 1.0510 1.1678 1.4758 3.1211 5.6978 47.3609

T=600

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0008 -0.0002 -0.0004 0.0004 -0.0007 -0.0028 -0.0062

DynReg -0.0009 -0.0001 0.0000 -0.0001 -0.0005 -0.0003 0.0003

Variance
HAC 0.0017 0.0020 0.0029 0.0049 0.0168 0.0431 0.9138

DynReg 0.0017 0.0017 0.0018 0.0017 0.0017 0.0017 0.0017

MSE
HAC 0.0017 0.0020 0.0029 0.0049 0.0168 0.0431 0.9138

DynReg 0.0017 0.0017 0.0018 0.0017 0.0017 0.0017 0.0017

(1; 4.0) (2; 5.2) (2; 5.1) (2; 5.1) (2; 5.0) (2; 5.2) (2; 5.0)

REest 0.9729 1.1644 1.6106 2.8058 9.8082 25.1653 523.3413

REpred 0.9996 1.0470 1.1524 1.5047 3.2144 5.6054 25.5608

T=2500

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0001 -0.0001 0.0001 0.0001 0.0004 -0.0004 -0.0005

DynReg -0.0001 0.0001 -0.0002 0.0001 -0.0003 0.0001 -0.0001

Variance
HAC 0.0004 0.0005 0.0007 0.0012 0.0039 0.0087 0.1959

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MSE
HAC 0.0004 0.0005 0.0007 0.0012 0.0039 0.0087 0.1958

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

(1; 2.9) (2; 4.0) (2; 3.9) (2; 4.0) (1; 3.8) (1; 3.8) (1; 3.8)

REest 0.9933 1.2016 1.6800 2.9048 9.6350 21.7653 490.6450

REpred 0.9991 1.0493 1.1625 1.4686 3.1010 5.6562 25.6477

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T .
All shocks are N(0, 1), orthogonal at all leads and lags. REest is the estimation efficiency of DynReg
relative to OLS: REest=MSE(OLS)/MSE(DynReg). REpred is the predictive efficiency of DynReg relative to
OLS: REpred=MSPE(OLS)/MSPE(DynReg), where MSPE is 1-step-ahead mean squared prediction error.
We perform 10000 Monte Carlo replications. The median and mean AIC-selected DynReg lags appear in
parentheses. See text for details.
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Table B2: Empirical size of nominal 5% t-test of H0: β=1
Autoregressive Disturbances, AIC DynReg Lag-Order Selection

T=50
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.048 0.072 0.127 0.242 0.564 0.774 0.970
NW h = b4[T/100]2/9c+ 1 0.079 0.089 0.119 0.169 0.421 0.674 0.953
NW-A h = b0.75T 1/3c+ 1 0.073 0.083 0.116 0.180 0.452 0.702 0.958
NW-LLSW h = b1.3T 1/2c+ 1 0.118 0.123 0.149 0.179 0.359 0.603 0.938
NW-KV h = T 0.053 0.061 0.072 0.092 0.189 0.388 0.879
M-LLSW ν = b0.41T 2/3c 0.055 0.064 0.073 0.080 0.197 0.455 0.914
DynReg – 0.074 0.078 0.078 0.073 0.076 0.084 0.079

T=200
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.049 0.073 0.135 0.247 0.544 0.727 0.955
NW h = b4[T/100]2/9c+ 1 0.060 0.063 0.081 0.114 0.280 0.498 0.916
NW-A h = b0.75T 1/3c+ 1 0.060 0.063 0.081 0.114 0.280 0.498 0.916
NW-LLSW h = b1.3T 1/2c+ 1 0.082 0.085 0.095 0.107 0.176 0.319 0.858
NW-KV h = T 0.049 0.052 0.058 0.061 0.089 0.136 0.671
M-LLSW ν = b0.41T 2/3c 0.051 0.054 0.056 0.067 0.113 0.238 0.847
DynReg – 0.062 0.061 0.062 0.067 0.060 0.064 0.061

T=600
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.052 0.071 0.137 0.248 0.536 0.688 0.944
NW h = b4[T/100]2/9c+ 1 0.056 0.055 0.074 0.092 0.219 0.380 0.878
NW-A h = b0.75T 1/3c+ 1 0.056 0.055 0.072 0.087 0.199 0.353 0.868
NW-LLSW h = b1.3T 1/2c+ 1 0.069 0.066 0.074 0.080 0.116 0.171 0.746
NW-KV h = T 0.047 0.045 0.050 0.053 0.061 0.069 0.429
M-LLSW ν = b0.41T 2/3c 0.055 0.050 0.056 0.058 0.083 0.136 0.756
DynReg – 0.055 0.049 0.058 0.052 0.052 0.050 0.054

T=2500
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.050 0.075 0.128 0.249 0.535 0.673 0.924
NW h = b4[T/100]2/9c+ 1 0.052 0.053 0.061 0.074 0.150 0.263 0.771
NW-A h = b0.75T 1/3c+ 1 0.053 0.054 0.060 0.070 0.129 0.229 0.748
NW-LLSW h = b1.3T 1/2c+ 1 0.057 0.059 0.061 0.064 0.069 0.095 0.475
NW-KV h = T 0.050 0.046 0.051 0.049 0.052 0.052 0.144
M-LLSW ν = b0.41T 2/3c 0.050 0.051 0.053 0.056 0.056 0.082 0.535
DynReg – 0.050 0.051 0.047 0.050 0.049 0.048 0.049

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. We perform 10000 Monte Carlo replications. See text
for details.
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Figure B1: Empirical Size Distortion of Nominal 5% t-Test of H0: β=1,
Autoregressive Disturbances, AIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by AIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure B2: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Autoregressive Disturbances, T = 200, AIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by AIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.

34



Figure B3: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Autoregressive Disturbances, ρ = 0.5, AIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = ρut−1 + εu,t, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by BIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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C Additional Monte Carlo: MA Errors, AIC Selection

Table C1: Bias, Variance, MSE, and Efficiency of DynReg relative to OLS
Moving Average Disturbances, AIC DynReg Lag-Order Selection

T=50

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0007 -0.0002 0.0002 0.0005 -0.0016 -0.0008 -0.0004

DynReg 0.0024 -0.0010 -0.0020 -0.0028 -0.0062 -0.0001 0.0009

Variance
HAC 0.0204 0.0240 0.0277 0.0269 0.0137 0.0070 0.0010

DynReg 0.0434 0.0456 0.0472 0.0467 0.0502 0.0558 0.0551

MSE
HAC 0.0204 0.0240 0.0277 0.0269 0.0137 0.0070 0.0010

DynReg 0.0434 0.0456 0.0472 0.0467 0.0502 0.0558 0.0551

(9; 6.6) (9; 7.0) (9; 7.4) (9; 7.8) (10; 8.5) (10; 8.7) (10; 8.7)

REest 0.4707 0.5252 0.5864 0.5760 0.2733 0.1254 0.0185

REpred 0.9899 1.0445 1.1001 1.2495 1.4047 1.4208 1.4723

T=200

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC 0.0001 0.0001 0.0009 -0.0007 -0.0002 -0.0001 0.0000

DynReg -0.0002 -0.0001 0.0005 -0.0006 -0.0010 0.0002 -0.0005

Variance
HAC 0.0051 0.0058 0.0067 0.0064 0.0032 0.0017 0.0002

DynReg 0.0071 0.0072 0.0073 0.0076 0.0081 0.0085 0.0085

MSE
HAC 0.0051 0.0058 0.0067 0.0064 0.0032 0.0017 0.0002

DynReg 0.0071 0.0072 0.0073 0.0076 0.0081 0.0085 0.0085

(8; 13.2) (11; 14.6) (15; 15.7) (20; 17.6) (25; 21.7) (27; 23.4) (28; 24.3)

REest 0.7222 0.8077 0.9131 0.8420 0.3924 0.1947 0.0236

REpred 0.9993 1.0403 1.1297 1.2451 1.4090 1.4555 1.4831

T=600

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0008 -0.0001 -0.0006 0.0001 -0.0004 -0.0002 0.0000

DynReg -0.0009 0.0000 0.0000 -0.0001 -0.0004 -0.0003 0.0002

Variance
HAC 0.0017 0.0019 0.0023 0.0021 0.0011 0.0006 0.0001

DynReg 0.0017 0.0017 0.0018 0.0018 0.0018 0.0019 0.0020

MSE
HAC 0.0017 0.0019 0.0023 0.0021 0.0011 0.0006 0.0001

DynReg 0.0017 0.0017 0.0018 0.0018 0.0018 0.0019 0.0020

(1; 4.0) (3; 6.0) (4; 7.4) (7; 10.1) (16; 17.6) (21; 21.3) (24; 23.3)

REest 0.9729 1.1143 1.2583 1.1562 0.5966 0.3076 0.0356

REpred 0.9990 1.0539 1.1404 1.2408 1.3901 1.4434 1.4886

T=2500

ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias
HAC -0.0001 -0.0001 -0.0001 0.0000 0.0000 -0.0001 0.0000

DynReg -0.0001 0.0000 -0.0002 0.0001 -0.0003 0.0002 -0.0001

Variance
HAC 0.0004 0.0005 0.0005 0.0005 0.0003 0.0001 0.0000

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MSE
HAC 0.0004 0.0005 0.0005 0.0005 0.0003 0.0001 0.0000

DynReg 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

(1; 2.9) (3; 5.3) (5; 7.1) (9; 10.7) (21; 21.4) (27; 26.8) (29; 28.6)

REest 0.9933 1.1532 1.3178 1.2469 0.6212 0.3429 0.0529

REpred 0.9998 1.0391 1.1382 1.2496 1.4049 1.4281 1.4642

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1+, t = 1, ..., T .
All shocks are N(0, 1), orthogonal at all leads and lags. REest is the estimation efficiency of DynReg
relative to OLS: REest=MSE(OLS)/MSE(DynReg). REpred is the predictive efficiency of DynReg relative to
OLS: REpred=MSPE(OLS)/MSPE(DynReg), where MSPE is 1-step-ahead mean squared prediction error.
We perform 10000 Monte Carlo replications. The median and mean AIC-selected DynReg lags appear in
parentheses. See text for details.
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Table C2: Empirical size of nominal 5% t-test of H0: β=1
Moving Average Disturbances, AIC DynReg Lag-Order Selection

T=50
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.048 0.067 0.102 0.124 0.148 0.169 0.167
NW h = b4[T/100]2/9c+ 1 0.079 0.086 0.106 0.113 0.120 0.122 0.096
NW-A h = b0.75T 1/3c+ 1 0.073 0.083 0.103 0.108 0.115 0.117 0.095
NW-LLSW h = b1.3T 1/2c+ 1 0.118 0.121 0.140 0.145 0.160 0.167 0.130
NW-KV h = T 0.053 0.061 0.070 0.075 0.086 0.089 0.064
M-LLSW ν = b0.41T 2/3c 0.055 0.062 0.070 0.074 0.083 0.089 0.058
DynReg – 0.074 0.078 0.078 0.071 0.068 0.077 0.073

T=200
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.049 0.070 0.098 0.129 0.148 0.162 0.166
NW h = b4[T/100]2/9c+ 1 0.060 0.064 0.070 0.074 0.077 0.086 0.080
NW-A h = b0.75T 1/3c+ 1 0.060 0.064 0.070 0.074 0.077 0.086 0.080
NW-LLSW h = b1.3T 1/2c+ 1 0.082 0.084 0.088 0.092 0.098 0.116 0.111
NW-KV h = T 0.049 0.051 0.056 0.056 0.057 0.074 0.086
M-LLSW ν = b0.41T 2/3c 0.051 0.054 0.055 0.060 0.062 0.079 0.074
DynReg – 0.062 0.061 0.064 0.064 0.058 0.061 0.059

T=600
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.052 0.068 0.103 0.125 0.157 0.162 0.160
NW h = b4[T/100]2/9c+ 1 0.056 0.054 0.066 0.062 0.070 0.070 0.070
NW-A h = b0.75T 1/3c+ 1 0.056 0.054 0.065 0.062 0.069 0.069 0.070
NW-LLSW h = b1.3T 1/2c+ 1 0.069 0.065 0.073 0.070 0.080 0.085 0.101
NW-KV h = T 0.047 0.047 0.050 0.051 0.054 0.058 0.103
M-LLSW ν = b0.41T 2/3c 0.055 0.049 0.056 0.052 0.062 0.065 0.074
DynReg – 0.055 0.048 0.058 0.052 0.051 0.053 0.056

T=2500
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS – 0.050 0.070 0.097 0.130 0.150 0.161 0.164
NW h = b4[T/100]2/9c+ 1 0.052 0.053 0.058 0.061 0.057 0.057 0.064
NW-A h = b0.75T 1/3c+ 1 0.053 0.053 0.057 0.060 0.056 0.057 0.065
NW-LLSW h = b1.3T 1/2c+ 1 0.057 0.058 0.060 0.062 0.059 0.064 0.086
NW-KV h = T 0.050 0.048 0.049 0.053 0.047 0.055 0.074
M-LLSW ν = b0.41T 2/3c 0.050 0.051 0.053 0.055 0.050 0.052 0.068
DynReg – 0.050 0.051 0.048 0.050 0.048 0.049 0.049

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. We perform 10000 Monte Carlo replications. See text
for details.
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Figure C1: Empirical Size Distortion of Nominal 5% t-Test of H0: β=1,
Moving Average Disturbances, AIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = xt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by AIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure C2: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Moving Average Disturbances, T = 200, AIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by AIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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Figure C3: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1,
Moving Average Disturbances, ρ = 0.5, AIC DynReg Lag-Order Selection

Notes: The data-generating process is yt = βxt + ut, xt = ρxt−1 + εx,t, ut = εu,t + ρεu,t−1, t = 1, ..., T . All
shocks are N(0, 1), orthogonal at all leads and lags. DynReg lag order selected by AIC. We perform 10000
Monte Carlo replications, using common random numbers whenever appropriate, with x0 and u0 drawn from
the stationary distribution. See text for details.
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