Information Spillovers and Sovereign Debt: Theory Meets the Eurozone Crisis

Harold Cole, Daniel Neuhann, and Guillermo Ordoñez

2022 NBER Summer Institute
Motivation

• Sovereign bonds are typically sold in sequences of auctions.

• The most commonly used protocol is the discriminatory-price protocol.

• Milton Friedman in 1959: a bad idea because of the winner’s curse.
 • Discourages participation and lowers prices.

• Previous work: costs of asymmetric information in Mexican bond auctions.

• Missing aspects in that paper:
 • Bonds are sold in a multi-country world.
 • Investors can choose whether to acquire information.

• Today: information choice and spillovers (externalities on other countries).
This Paper

- Two-country model: auctions, secondary markets, information choice.
 1. Winner’s curse deters participation and raises required risk premium.
 2. Information acquisition occurs in bad times, strategic complementarity.
 3. Uninformed flee to “safe havens” \Rightarrow segmentation and information spillovers.
 4. Effects of information are *amplified* by liquid secondary markets.

- Use the model to explore key observations from the Eurozone crisis.
 1. Yields of fundamentally different countries co-moved then decoupled.
 2. Higher information content of auction prices (relative to secondary markets).
 3. Integration and then persistent segmentation of European bond markets.
 4. Primary market discount relative to secondary market.
 (Important: *asymmetric* behavior of the “core” and “periphery.”)
• **Sovereign debt**: focus on investors (not default decisions), primary markets.

• **Contagion**: force against diversification with a common pool of investors.
 - Endogenous winner’s curse can break this link.

• **Auctions**: multi-unit + common value + CRRA + asymmetric information + interaction with an aftermarket. Trick to make it work: many bidders.

• **Information acquisition**: auctions, not competitive centralized markets.
 - “Grossman Stiglitz but with strategic complementarities.”
Model
Model

- Two dates. Investment at beginning; default and payoffs at the end.
- Unit mass of investors with CRRA utility $u(c)$ and endowment W.
- Investors buy bonds or invest in risk-free storage. No borrowing.
- Two governments indexed by $j \in \{1, 2\}$. Must raise revenue D_j.
- Simultaneously auction bonds with exogenous default risk and zero recovery.
- Given state $\theta_j \in \{b, g\}$, default probability is $\kappa_j(\theta_j)$ with $\kappa_j(g) < \kappa_j(b)$.
- Unconditional default probability is $\bar{\kappa}_j = f_j(b)\kappa_j(b) + f_j(g)\kappa_j(g)$.
- All investors have common prior about the states.
- Can learn the realization of θ_1 and/or θ_2 by paying a utility cost.
- Assume investors split into two traders; one for each j. No communication.
• Primary market is run as a multi-unit discriminatory (pay your bid) auction.

• Each investor can submit any number of bids \(\{\tilde{P}, \tilde{B}\} \) with \(\tilde{B} \geq 0 \).
 (a commitment to buy \(\tilde{B} \) bonds at \(\tilde{P} \), should government accept).

• Government accepts bids in decreasing price order until it raises \(D_j \).

• Given many bidders, a unique **marginal price** for each state.
 - If only uninformed investors, a single price in each country, \(P_j \).
 - If there are informed investors, prices are state-contingent, \(P_j(\theta_j) \).

• WLOG: only bid at **possible** marginal prices (but still pay bid price).

Investors can anticipate marginal prices, but cannot adjust bids ex-post.
Secondary Market

- Competitive market with a single market-clearing price.
- **Symmetric information** because auction results are observable.
- No short sales, zero net supply.

Only trading motive: rebalancing portfolios after auctions.
Theory: Auction only
Given an information choice, what are the optimal bids?

- Large auction: bidding strategies are solutions to a *portfolio problem*.
 - Simple for the informed: bid only at the correct marginal price.
 - Hard for the uninformed: bids at high prices accepted even when state is bad.

- Marginal incentive to bid captured by MRS across default/repay:

\[
M^i_j(\theta_j) = \frac{\sum \text{feasible } \theta_j \text{ with weakly lower prices} \text{ Prob}(\theta_j)u'(c^i(\theta_j) \text{ after default})}{\sum \text{feasible } \theta_j \text{ with weakly lower prices} \text{ Prob}(\theta_j)u'(c^i(\theta_j) \text{ after repayment})}
\]

- Equilibrium bidding and participation:
 - Uninformed investors bid less at the high price, may drop out entirely.
 - All investors bid at the low price (no winner’s curse). *Informed spend less.*

- Marginal investor’s MRS is equal to the equilibrium yield:

\[
\frac{1 - P_j(\theta_j)}{P_j(\theta_j)} = M^*_j(\theta_j).
\]
Figure 1: Prices in Country 1 as a function of n_1 given a fixed portfolio in Country 2.
The value of information is the utility difference $\Delta V = V^{\text{Informed}} - V^{\text{Uninformed}}$.

It is driven by the winner’s curse ($\approx P(g) - P(b)$) and the level of prices.

- **Fundamental factors**: fixing information choices, ΔV is increasing in
 (i) High debt levels relative to wealth.
 (ii) Higher average default risk.
 (iii) Higher variance of default probabilities.

\Rightarrow Fundamental shocks can trigger information acquisition.

- **Endogenous factors**: Winner’s curse increasing in informed investor share.
 \Rightarrow Strategic complementarity that can lead to large changes in information.
Figure 2: The value of information in Country 1 as a function of n_1.
Cross-Country Effects

1. Symmetric information: auction is irrelevant, obtain “standard” spillovers.
 - Yields co-move if $u'''' > 0$, investors hold symmetric portfolios.
 - Cannot speak to segmentation or asymmetric effects during the Eurozone.

2. Asymmetric information: segmentation and information spillovers:
 - Informed exploit their information, uninformed “flee” to safe havens.
 - Poor diversification and less participation: higher price of risk.
 - Portfolio concentration raises value of information in uninformed countries.

3. But it depends on fundamentals: reverse spillovers to safe countries.
 - Allows us to speak to divergent paths of core and periphery.
Theory: Effects of Secondary Markets
• Investors could wait to trade in a rather liquid secondary market.

• This turns out to **raise** rather than reduce the value of information.

 • Informed: can exploit information advantage without holding default risk.
 • Uninformed: avoid winner’s curse at auction.
 • Information rents from **buying low at auction and selling high in SM**.

• Informed equilibrium more likely to exist with liquid secondary markets.

• Nice empirical upshot: predictable profits from buying at auction.

• Use the primary-secondary spread as a measure of asymmetric information.
Application: Eurozone Debt Crisis
Key Facts from the Eurozone Crisis

- Focus on three large countries that use DP auctions: POR, ITA, GER.

 DP auctions also used in BEL, FRA, IRE, SWE, TUR... Hybrids used in ESP, AUS, FIN)

- Data from primary and secondary markets. Focus on 1-year bonds.

- Turbulent Times: Portugal hit in 2010, Italy later.

A taxonomy of key facts from the crisis:

<table>
<thead>
<tr>
<th></th>
<th>ITA/POR</th>
<th>GER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>Yields</td>
<td>Low, stable</td>
<td>High, volatile</td>
</tr>
<tr>
<td>Auct. Informativeness</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PM-SM spread</td>
<td>Zero</td>
<td>Positive</td>
</tr>
<tr>
<td>Non-res share</td>
<td>High</td>
<td>Decreasing</td>
</tr>
</tbody>
</table>
Accounting for the Facts

- Consider repeated version of the basic model.
- Three groups of investors: core, periphery, global.
 - Differ only in information cost. Low at home, high abroad.
- Assume countries transition across different public “regimes.”

<table>
<thead>
<tr>
<th></th>
<th>Tranquil regime</th>
<th>Alarming regime</th>
<th>Crisis regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa(g)$</td>
<td>0.1%</td>
<td>0.5%</td>
<td>3%</td>
</tr>
<tr>
<td>$\kappa(m)$</td>
<td>0.5%</td>
<td>3%</td>
<td>7%</td>
</tr>
<tr>
<td>$\kappa(b)$</td>
<td>1.25%</td>
<td>7%</td>
<td>25%</td>
</tr>
</tbody>
</table>

$f(g) = 0.6$ and $f(m) = 0.3$ in all regimes.

- Conduct two “event studies” in the model:
 1. **Within-periphery**: spillovers from Portugal to Italy
 2. **Core-periphery**: reverse spillovers from periphery to Germany.
Feed in the following regime shifts:

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal</td>
<td>Tranquil</td>
<td>Alarming</td>
<td>Crisis</td>
</tr>
<tr>
<td>Italy</td>
<td>Tranquil</td>
<td>Tranquil</td>
<td>Alarming</td>
</tr>
</tbody>
</table>

Information choice: **ITA becomes informed only because POR does.**

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portuguese</td>
<td>Uninformed.</td>
<td>Uninformed</td>
<td>Informed in Portugal</td>
</tr>
<tr>
<td>Italian</td>
<td>Uninformed</td>
<td>Uninformed</td>
<td>Informed in Italy</td>
</tr>
<tr>
<td>Foreign</td>
<td>Uninformed</td>
<td>Uninformed</td>
<td>Uninformed</td>
</tr>
</tbody>
</table>
Now assume there is an always stable country (i.e. GER).

<table>
<thead>
<tr>
<th>Investor type</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periphery</td>
<td>Tranquil</td>
<td>Alarming</td>
<td>Crisis</td>
</tr>
<tr>
<td>Germany</td>
<td>Tranquil</td>
<td>Tranquil</td>
<td>Tranquil</td>
</tr>
</tbody>
</table>

Information choice: **Germany too safe to induce information acquisition.**

<table>
<thead>
<tr>
<th>Investor type</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periphery</td>
<td>Uninformed</td>
<td>Uninformed</td>
<td>Informed in Periphery</td>
</tr>
<tr>
<td>German</td>
<td>Uninformed</td>
<td>Uninformed</td>
<td>Uninformed</td>
</tr>
<tr>
<td>Foreign</td>
<td>Uninformed</td>
<td>Uninformed</td>
<td>Uninformed</td>
</tr>
</tbody>
</table>
Conclusion

New multi-country model of primary/secondary markets for sovereign debt.

- Multi-unit auctions with discriminatory protocol and secondary markets.
- Common pool of risk averse investors.
- Endogenous information acquisition and information complementarities.
- Walrasian price-taking allows equilibrium determination.

Eurozone crisis provides nice validation of the basic mechanism.

Theory and data highlight cross-country externalities of auction design.