Introduction 0000	Motivating Facts	The Dynamic NREE Model 0000000	Model Implications	Conclusion O

Information Acquisition and the Pre-Announcement Drift

Hengjie Ai¹ Ravi Bansal ² Leyla Han³

¹University of Wisconsin-Madison

²Duke University and NBER

³Boston University

NBER Summer Institute 2022, Capital Markets

Intro du ci	tions the Os	action		
Introduction ●000	Motivating Facts 000	The Dynamic NREE Model	Model Implications	Conclusion O

Introduction: the Question

- Since 1994, about 80% of the equity market risk premium is realized 24 hours *ahead* of FOMC announcements (Lucca and Moench, 2015)
- Realized volatility is lower during the pre-announcement period than on non-announcement days
- Challenge to asset pricing research:
 - Risk premium realizes ahead of announcements?
- Challenge to policy makers:
 - Information leakage prior to FOMC announcements?

Introduction 0●00	Motivating Facts 000	The Dynamic NREE Model	Model Implications	Conclusion 0
			_	

Introduction: Difficulty of a Leakage Story

- A theory of pre-FOMC drift that does not rely on information leakage
- Definition: the arrival of new information about the upcoming announcement that is *not publicly available*
- Intuition:
 - arrival of new information triggers a high realized volatility
 - empirically, realized vol during the drift period is low

Introduction 00●0	Motivating Facts	The Dynamic NREE Model	Model Implications	Conclusion O

Introduction: A Noisy Rational Expectations Model

- This paper: a NREE model with information acquisition
 - Satisfies generalized risk sensitivity in preferences (GRS) \Rightarrow announcement premium (Ai and Bansal, 2018)
 - Information acquisition ⇒ pre-announcement drift
 - Asymmetric information \Rightarrow low volatility during drift period

Introduction 000●	Motivating Facts	The Dynamic NREE Model	Model Implications	Conclusion O
1.1				

Literature

- Macroeconomic announcement premium
 - Savor and Wilson (2013, 2014); Ai and Bansal (2018); Ernst, Gilbert, and Hrdlicka (2019); Wachter and Zhu (2020).
- FOMC announcement premium
 - Lucca and Moench (2015); Mueller, Tahbaz-Salehi and Vedolin (2017); Boguth, Gregoire, and Martineau (2018); Bollerslev, Li, and Xue (2018); Cieslak, Morse, and Vissing-Jorgensen (2019); Morse and Vissing-Jorgensen (2020); Cocoma (2020); Fisher, Martineau, and Sheng (2020); Hu, Pan, Wang, and Zhu (2020), Liu, Tang, Zhou (2020).
- Noisy rational expectations
 - Grossman and Stiglitz (1980); Grossman (1981), and Hellwig (1980); Wang (1993, 1994); Breon-Drish (2015); Bond and Goldstein (2015); Banerjee and Green (2015); Avdis (2016), Goldstein and Yang (2017); Andrei and Cujean (2017); Andrei, Cujean, and Wilson (2018), Sockin (2019); Buffa, Vayanos, and Woolley (2019); Detemple, Rindisbacher and Robertson (2020); Han (2021).

Motivating Facts: Pre-Announcement Drift

• Fact 1: Average market return during the 24 hours ahead of FOMC announcement: 32 bps (Lucca and Moench, 2015)

• Fact 2: Realized vol during the pre-announcement period is lower than non-announcement days

Motivating Facts: Investors' Attention

• Fact 3: Investors' attention increases ahead of announcements (Fisher, Martineau, and Sheng, 2022)

Introduction 0000	Motivating Facts	The Dynamic NREE Model ●000000	Model Implications	Conclusion O
Model S	etup			

• The stock is claim to the following dividend process:

$$dD_t = (x_t - D_t) dt + \sigma_D dB_{D,t}, \qquad (1)$$

• Hidden state (Unobservable) that determines dividend flow:

$$dx_t = b\left(\bar{x} - x_t\right)dt + \sigma_x dB_{x,t}, \qquad (2)$$

Total noisy supply of the risky asset:

$$d\theta_t = a \left(\bar{\theta} - \theta_t\right) dt + \sigma_\theta dB_{\theta,t}.$$
(3)

• A constant risk-free rate r

Introduction	Motivating Facts	The Dynamic NREE Model	Model Implications	Conclusion
0000	000	o●ooooo		O
Model So Informed and	e tup Uninformed Invest	tors		

• Noisy signals s_t: publicly available but costly to acquire

$$ds_t = x_t dt + \sigma_s dB_{s,t}$$

- Two groups of investors
 - low cost: always acquire info $\Rightarrow (1 \omega)$ informed investors
 - high cost: acquire optimally $\Rightarrow \omega$ uninformed investors

Introduction 0000	Motivating Facts	The Dynamic NREE Model 00●0000	Model Implications	Conclusion O
Model Se Investor Belie	e tup Ifs and Asset Price	s		

- Informed investors' posterior belief: \hat{x}_t and \hat{q}_t
- Uninformed investors' posterior belief: \tilde{x}_t and \tilde{q}_t
- Equilibrium price:

$$P_{t} = \phi(t) + \phi_{D}D_{t} - \underbrace{\phi_{\theta}(t)}_{\theta_{t}} \qquad \theta_{t} + \phi_{x}(t)\,\hat{x}_{t} + \phi_{\Delta}(t)\,\tilde{x}_{t},$$

price impact of noisy supply

• True value of x_t is periodically revealed by announcements at time 0, T, 2T, 3T...

Introduction 0000	Motivating Facts	The Dynamic NREE Model 000●000	Model Implications	Conclusion O
Model S	etup			

- Uninformed do not observe s_t unless pay a cost
 - Paying a fixed cost K to start information acquisition at au
 - Keep observing the signals requires a flow cost k from au to au
- After information acquisition: observe $\{s_v\}_{v=-\infty}^t$:

$$ds_{u,t} = \hat{x}_t dt + \sigma_u(t) dB_{u,t}$$
, for $t \in [\tau, T]$ (4)

- They solve an optimal information acquisition problem:
 - Information is costly \Rightarrow start to acquire info only when benefits are large enough

Introduction 0000	Motivating Facts 000	The Dynamic NREE Model	Model Implications	Conclusion O
Preferen	ce			

• Informed investors have expected CARA utility:

$$\hat{V}_t = -e^{-\gamma \hat{C}_t} dt + e^{-
ho dt} \hat{\mathbb{E}} \left[\hat{V}_{t+dt}
ight].$$

- Uninformed investors
 - Satisfies generalized risk sensitivity (GRS) (Ai and Bansal, 2018)

$$\tilde{V}_t = -e^{-\gamma \tilde{C}_t} dt + e^{-\rho dt} h^{-1} \left(\tilde{\mathbb{E}} \left[h \left(\tilde{V}_{t+dt} \right) \right] \right).$$
(5)

GRS: h is concave ⇒ announcement premium

$$h\left(\tilde{V}_{t}\right) = -\frac{1}{1+\kappa} \left(-\tilde{V}_{t}\right)^{1+\kappa}$$
(6)

where κ reflects degree of GRS.

Introduction	Motivating Facts	The Dynamic NREE Model	Model Implications	Conclusion
0000	000	000000€0		O
Uninform	od Informat	ion Acquisition		

Uninformed Information Acquisition

• Choose an optimal stopping time au to start to acquire info:

$$ds_{u,t} = \hat{x}_t dt + \sigma_u(t) dB_{u,t}$$

•
$$\sigma_{u}(t) = \sigma_{u}$$
 for $t \in [\tau, T]$ and $\sigma_{u}(t) = \infty$ otherwise

- Provide sufficient condition for optimal stopping in the paper
- Specify $K(\tilde{\theta})$ so that τ is deterministic
- In our calibration, τ equals to 3 days ahead of the announcement.

Introduction 0000	Motivating Facts	The Dynamic NREE Model 0000000●	Model Implications	Conclusion O

Definition of Equilibrium

- The equilibrium is a list of prices and quantities that include
 - **1** a pricing function, P_t , and
 - **2** consumption $\{\hat{C}_t, \tilde{C}_t\}$, and portfolio holdings, $\alpha'_t = \alpha'_{0,t} + \alpha'_{\theta,t}\theta_t + \alpha'_{\Delta,t}(\hat{x}_t - \tilde{x}_t)$ and $\alpha^U_t = \alpha^U_{0,t} + \alpha^U_{\theta,t}\tilde{\theta}_t$,

such that the following conditions are satisfied:

- **1** Uninformed make their optimal information acquisition decisions
- 2 Given prices and beliefs, $\{\hat{C}_t, \alpha_t^I\}$ and $\{\tilde{C}_t, \alpha_t^U\}$ are optimal
- 3 Market clears, i.e.

$$(1-\omega)\alpha_t' + \omega \alpha_t^U = \theta_t.$$
(7)

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト < 画 ト 14/20

Introduction 0000	Motivating Facts	The Dynamic NREE Model	Model Implications	Conclusion O			
Model Implications Timing of Information Acquisition							

- Result 1: info acquisition starts days ahead of announcements
- Reason 1: Due to asymmetric information, the information disadvantage rises over time

unconditional expectation of trading loss $\mathbb{E}\left[\left[\alpha^{U}(\theta_{t}) - \alpha^{U}(\tilde{\theta}_{t})\right] dR_{t}\right]$

- Result 1: info acquisition starts days ahead of announcements
- Reason 2: Uncertainty of uninformed investors builds up over time:

• Uninformed investors' posterior variance \tilde{q}_t (uncertainty) starts to drop

Investors acquire information 3 days before announcements

• Result 2: price and return drift up as info acquisition starts

 Pre-announcement drift due to generalized risk sensitivity (Information triggers co-movement between returns and continuation utility)

• Result 3: return volatility is low during the drift period

Low return vol during the drift period is consistent with the data

- Intuition 1: acquired info is already contained in prices
- Equilibrium price: $P_t = \phi(t) + \phi_D D_t \phi_\theta(t) \theta_t + \phi_x(t) \hat{x}_t + \phi_\Delta(t) \tilde{x}_t$

• Intuition 2: info acquisition reduces the asymmetric info, thus price impact of noisy supply $\phi_{\theta}(t)$ (Han, 2021)

Introduction 0000	Motivating Facts	The Dynamic NREE Model	Model Implications	Conclusion •
Conclusi	on			

- A NREE model of pre-FOMC announcement drift
 - Generalized risk sensitivity generates the announcement premium
 - Information acquisition gives rise to pre-announcement drift
 - Asymmetric info reconciles volatility dynamics
- Key message: compensation for generalized risk sensitivity; does not rely on leakage of information