The causal effect of an income shock on children's human capital

Cristina Borra (Universidad de Sevilla) Ana Costa-Ramón (University of Zurich) Libertad González (Universitat Pompeu Fabra) Almudena Sevilla (London School of Economics)

NBER SI, July 2022

European Union

European Regional Development Fund

Why do we care?

- Traits determined during childhood explain lifetime earnings
 - Cunha and Heckman (2007); Currie (2009)
- Inequalities during childhood are likely to lead to diverging destinies in adulthood and contribute to the intergenerational transmission of inequality
 - Black and Devereux (2011); Corak (2013); Black et al (2020)

Why do we care?

- Traits determined during childhood explain lifetime earnings
 - Cunha and Heckman (2007); Currie (2009)
- Inequalities during childhood are likely to lead to diverging destinies in adulthood and contribute to the intergenerational transmission of inequality
 - Black and Devereux (2011); Corak (2013); Black et al (2020)
- => Cash transfers to families with children: effective tool to prevent child poverty and mitigate growing socio-economic inequalities
 - OECD countries spend about 1.4% of GDP (OECD, Family Database, 2022)

What are the options?

- Highly targeted conditional schemes while cheaper, complicated to administer
 - About 20% of eligible taxpayers fail to claim the EITC (TIGTA 2018)
- Unconditional universal cash-transfer schemes while easier to administer, have lower payout to restrain program costs and may risk creating disincentives for work
 - This emphasis on negative behavioral effects of safety net programs is one explanation for low public expenditure in family benefits in the US, according to Aizer et al. (2022)

What are the options?

- Highly targeted conditional schemes while cheaper, complicated to administer
 - About 20% of eligible taxpayers fail to claim the EITC (TIGTA 2018)
- Unconditional universal cash-transfer schemes while easier to administer, have lower payout to restrain program costs and may risk creating disincentives for work
 - This emphasis on negative behavioral effects of safety net programs is one explanation for low public expenditure in family benefits in the US, according to Aizer et al. (2022)

=>Insufficient evidence on the long-term consequences of an unconditional cash transfer

Why do we care?

Biden's administration initiative to extend the Child Tax Credit has stalled

United States | Child allowance

Why America's most successful anti-poverty programme is going cold

The triumph of a giant experiment in child welfare is being squandered

What is the causal impact of receiving a generous unconditional cash transfer (just after birth) on children outcomes during middle childhood?

How do we answer this question?

- We use the natural experiment generated by a generous child benefit introduced unexpectedly in Spain on July 1, 2007
 - Universal and unconditional
 - Eligibility based on date of birth
 - Lump-sum 2,500-Euro payment to the mother right after birth.
 - About 11 percent of the median and 17 percent of the bottom quartile of annual household income
 - Almost full take up: over 91% (Gonzalez and Trommlerova 2021)
 - Introduced ex-post: no anticipation effects (e.g., timing of birth)
 - No simultaneous change in other child-related policies

What do we find?

- We fail to find any economically significant impacts from the benefit on children's later health and educational outcomes
 - High quality data allow us to reject impact sizes of the magnitude found on most previous studies
- We fail to find significant impacts on parental time and money investments in children
 - Maternal labor supply, childcare arrangements, partnership status
- We do find statistically significant increases in household expenditures on big-ticket items
 - In the context of a country with a wide safety net, these increases do not seem to further child development

- To the extensive literature on the causal effect of income shocks on later child development (Almond et al. 2018; Cooper & Stewart 2021)
 - Universal and unconditional income shock: separate pure income effects from difficult-to-model substitution effects (Heckman & Mosso 2014)

- To the extensive literature on the causal effect of income shocks on later child development (Almond et al. 2018; Cooper & Stewart 2021)
 - Universal and unconditional income shock: separate pure income effects from difficult-to-model substitution effects (Heckman & Mosso 2014)
 - Other studies using unconditional income shocks
 - Some previous work has used variation stemming from lotteries (Cesarini et al 2016)
 - We contribute by studying a policy relevant income change (external validity: lottery players and lottery income)

- To the extensive literature on the causal effect of income shocks on later child development (Almond et al. 2018; Cooper & Stewart 2021)
 - Universal and unconditional income shock: separate pure income effects from difficult-to-model substitution effects (Heckman & Mosso 2014)
 - Other studies using unconditional income shocks
 - Some previous work has used variation stemming from lotteries (Cesarini et al 2016)
 - We contribute by studying a policy relevant income change (external validity: lottery players and lottery income)
 - Some recent papers study the impact of unconditional cash-transfers at birth (Barr et al. 2022, De Gendre 2021)
 - We contribute by studying a policy implemented retrospectively (no strategic manipulation of births) and in a different context (generous safety net)

- To the literature on the causal impact of income on child outcomes during middle childhood
 - Very important overlooked period due to lack of administrative data: birth registers and adult social security registers (Almond et al 2018)
 - Few exceptions using high quality administrative data (Barr et al. 2022)
 - We contribute by using high quality administrative health and education data

- To the recent debate on the potential negative labor market incentives of unconditional programs such as the universal basic income (Hoynes and Rothstein, 2019)
 - Theoretically: negative income effect on employment
 - Unanswered question in the empirical literature because many natural experiments are conditional on work (EITC, welfare-to-work experiments)
 - Empirical estimates from few experiments
 - Finnish Basic Income Experiment (Kangas et al 2020): short-term null results
 - Alaska Permanent Fund (Jones and Marinescu 2022): longer-term null results of permanent change in income
 - We provide evidence from a one-off policy shock in the long-run targeting recent mothers: no negative impact on female employment

Agenda

- Introduction
- Data
- Research design
- Main results: health and education outcomes
- Heterogeneity by age, sex, and socio-economic status
- Mechanisms
- Comparison to previous causal estimates
- Conclusion

Data Setting: Spain

- Spain's fact sheet (vis-a-vis the European Union)
 - 2nd by surface area, 4th by population, 4th country by GDP
- Spain's social safety net for families with children:
 - Universal, publicly-funded health care system
 - Free infant and primary education starting at age 3.
 - Generous parental leave: 16 weeks for mothers and 15 days for fathers in 2007

Data Overview: Main Registers

Panel A. Health Data

Primary	care	prescr	iptions	data	(BIFAP	2006-
2011)						

Visits, health problems (ICPC-2), referrals, prescriptions (ATC), anthropometric measures

Primary care clinical data (BDCAP 2011-2015)

Hospital Morbidity Survey (2006-2015)

Vital Statistics (2006-2007)

Health problems (ICPC-2), referrals

Hospitalization rates by age and diagnosis (ICD-9)

Number of births

Descriptives for Healthcare Data

Income gradient for health problems and referrals to specialists

- Similar income gradient also for hospitalizations
- We would expect that an increase in income would reduce healthcare utilization

Data Overview: Main Registers

Panel A. Health Data

Primary care prescriptions data (BIFAP 2006-2011)	Visits, health problems (ICPC-2), referrals, prescriptions (ATC), anthropometric measures
Primary care clinical data (BDCAP 2011-2015)	Health problems (ICPC-2), referrals
Hospital Morbidity Survey (2006-2015)	Hospitalization rates by age and diagnosis (ICD-9)
Vital Statistics (2006-2007)	Number of births
Panel B. Education Data	
Andalusian Diagnostic Tests-ADT (2013/14-2014/15)	Repeater, Math and Language Test Scores in 2 nd year.
Catalonian Grades-CG (2013/14-2015/16)	Math, Spanish, English, and Catalan Grades in 2 nd year, and Average Grades in 3 rd year.

Agenda

- ✓ Introduction
- Data
- Research design
- Main results: health and education outcomes
- Heterogeneity by age, sex, and socio-economic status
- Mechanisms
- Comparison to previous causal estimates
- Conclusion

Identification

 Difference-in-discontinuity design (Carneiro, Løken, and Salvanes, 2015 and Bertrand, Mogstad, and Mountjoy, 2020):

 $Y_{i} = \alpha + \gamma_{1} Reform_{i} + \gamma_{2} Post_{i} + \beta Reform_{i} * Post_{i} + f(Date_{i}) * [\gamma_{3} + \gamma_{4} Reform_{i} + \gamma_{5} Post_{i} + \gamma_{6} Reform_{i} * Post_{i}] + \varepsilon_{i}$

- Y_i denotes the studied outcome of child *i*.
- Date_i is the running variable, defined with respect to July 1st each year
- *Reform_i* is an indicator variable equal to 1 if child i was born in the window surrounding the cutoff date July 1, 2007
- Post_i is an indicator variable that is equal to 1 if the child was born after the July 1st cutoff in either year (2006 and 2007)

Validity of the Research Design: Continuity at the July 1st threshold

Absence of differential strategic sorting around the cutoff

Impact of benefit eligibility on the number of births

Validity of the Research Design: Continuity at the July 1st threshold

Absence of a differential impact for pre-determined variables

Impact of benefit eligibility

Agenda

- ✓ Introduction
- Data
- ✓ Research design
- Main results: health and education outcomes
- Heterogeneity by age, sex, and socio-economic status
- Mechanisms
- Comparison to previous causal estimates
- Conclusion

Main Results: Primary healthcare outcomes

	Health Problems	Referrals
Panel A. Primary Healthcare	Outcomes Ages 0-4. BIFA	AP
Effect	-0.139	0.074
	(0.557)	(0.099)
Mean/SD	23.402/15.269	1.508/2.699
CI in sd units	(-0.08, 0.06)	(-0.04, 0.10)
Panel B. Primary Healthcare	Outcomes Ages 5-8. BDC	CAP
Effect	0.499	-0.019
	(0.398)	(0.052)
Mean/SD	5.362/6.349	0.218/0.754
CI in sd units	(-0.04, 0.20)	(-0.16, 0.11)

Main Results: Primary healthcare outcomes

	Health Problems	Referrals
Panel A. Primary Healthcare	e Outcomes Ages 0-4. BIFA	ĄР
Effect	-0.139	0.074
	(0.557)	(0.099)
Mean/SD	23.402/15.269	1.508/2.699
CI in sd units	(-0.08, 0.06)	(-0.04, 0.10)
Panel B. Primary Healthcare	e Outcomes Ages 5-8. BDC	CAP
Effect	0.499	-0.019
	(0.398)	(0.052)
Mean/SD	5.362/6.349	0.218/0.754
CI in sd units	(-0.04, 0.20)	(-0.16, 0.11)

We can reject reductions in the number of health problems larger than 0.08 s.d. units

Main Results: Hospitalization outcomes

	All Stays	Respiratory	Infections
Effect	0.031	0.016	0.009
	(0.037)	(0.012)	(0.008)
Mean/SD	0.694/0.056	0.128/0.016	0.101/0.014
CI in % units	(-5.9, 14.9)	(-5.8, 30.8)	(-6.6, 24.4)
Observations	122	122	122
Linear Trend	Yes	Yes	Yes

Main Results: Hospitalization outcomes

	All Stays	Respiratory	Infections
Effect	0.031	0.016	0.009
	(0.037)	(0.012)	(0.008)
Mean/SD	0.694/0.056	0.128/0.016	0.101/0.014
CI in % units	(-5.9, 14.9)	(-5.8, 30.8)	(-6.6, 24.4)
Observations	122	122	122
Linear Trend	Yes	Yes	Yes

We can rule out reductions in hospitalization rates larger than 6.6%

Main Results: School outcomes

	Spanish	Math
	(standardized)	(standardized)
Panel A. Andalusian Diagnostic Tests		
Effect	-0.064	-0.048
	(0.050)	(0.046)
CI	(-0.16, 0.03)	(-0.14, 0.04)
Panel B. Catalan Grades		
Effect	-0.125*	-0.042
	(0.075)	(0.070)
CI	(-0.27, 0.02)	(-0.18, 0.09)

Main Results: School outcomes

	Spanish	Math
	(standardized)	(standardized)
Panel A. Andalusian Diagnostic Tests		
Effect	-0.064	-0.048
	(0.050)	(0.046)
CI	(-0.16, 0.03)	(-0.14, 0.04)
Panel B. Catalan Grades		
Effect	-0.125*	-0.042
	(0.075)	(0.070)
CI	(-0.27, 0.02)	(-0.18, 0.09)

We can discard improvements in cognitive outcomes larger than 0.03 and 0.02 s.d. units in Spanish and 0.04 and 0.09 s.d. units in Math

Agenda

- ✓ Introduction
- Data
- ✓ Research design
- Main results: health and education outcomes
- Heterogeneity by age, sex, and socio-economic status
- Mechanisms
- Comparison to previous causal estimates
- Conclusion

Heterogeneity

- No impacts by:
 - Age of the child
 - Sex of the child
 - Socioeconomic status

Agenda

- ✓ Introduction
- Data
- ✓ Research design
- Main results: health and education outcomes
- ✓ Heterogeneity by age, sex, and socio-economic status
- Mechanisms
- Comparison to previous causal estimates
- Conclusion

- No impacts on:
 - Parental time investments, including
 - Maternal labor supply and childcare arrangements
 - Family structure (except for less divorces during first year)
 - Subsequent fertility

Parental time investments and family structure

Labor force participation

Subsequent fertility

Parental time investments and family structure

Divorced mother

Partnered mother

- Significant impacts on:
 - Expenditure on big-ticket items

	Total	Child-related	Food		Expendi	ture on Big-	Ticket Items	
	Expenditure	Expenditure	Expenditure	Any	Appliances	Furniture	Home Repairs	Vehicles
Effect	0.0164	0.131	0.167	0.970**	1.088**	0.798	0.781*	0.703
	(0.095)	(0.176)	(0.107)	(0.468)	(0.512)	(0.577)	(0.461)	(0.585)
CI	(-0.2, 0.2)	(-0.2 ,0.5)	(-0.0, 0.4)	(0.5, 1.9)	(0.1, 2.1)	(-0.3, 1.9)	(-0.1, 1.7)	(-0.4, 1.8)
Obs.	488	488	488	488	488	488	488	488

- Significant impacts on:
 - Expenditure on big-ticket items

	Total	Child-related	Food		Expendi	ture on Big-	Ticket Items	
	Expenditure	Expenditure	Expenditure	Any	Appliances	Furniture	Home Repairs	Vehicles
Effect	0.0164	0.131	0.167	0.970**	1.088**	0.798	0.781*	0.703
	(0.095)	(0.176)	(0.107)	(0.468)	(0.512)	(0.577)	(0.461)	(0.585)
CI	(-0.2, 0.2)	(-0.2 ,0.5)	(-0.0, 0.4)	(0.5, 1.9)	(0.1, 2.1)	(-0.3, 1.9)	(-0.1, 1.7)	(-0.4, 1.8)
Obs.	488	488	488	488	488	488	488	488

Consistent with evidence on how EITC recipients spend their refunds (Goodman-Bacon & MacGranahan 2008)

Agenda

- Introduction
- Data
- ✓ Research design
- Main results: health and education outcomes
- ✓ Heterogeneity by age, sex, and socio-economic status
- ✓ Mechanisms
- Comparison to previous causal estimates
- Conclusion

- We selected papers
 - Included in the latest literature review studies (Almond et al 2018, Cooper and Stewart 2020).
 - Set in Europe and North America estimating causal effects
 - Based on a natural experiment or randomized control trial experiment
 - Akee et al (2010), Milligan and Stabile (2011), Duncan et al (2011), Dahl and Lochner (2012, 2017), Black et al (2014), Aizer et al (2016), Cesarini et al. (2016)
 - Plus two very recent papers involving income shocks at birth
 - De Gendre et al. (2021) and Barr et al. (2022)

- Most papers report positive income effects on cognitive outcomes, with impacts ranging between 0.05 and 0.37 standard deviation units per \$1,000 increase in annual income
 - Exception Cesarini et al (2016): Swedish lottery winners
- Evidence more mixed for health outcomes
 - Positive impacts (Aizer et al 2016)
 - No impacts (Milligan and Stabile 2011)
 - Both negative and positive impacts (Cesarini et al 2016)

- Size of the income shock
 - Our study about \$180 annuitized permanent income
 - Other papers with similar annuitized cash sizes do find positive impacts
 - Aizer et al (2016): \$430, Duncan et al (2011): \$350; Black et al (2014): \$250; Barr et al. (2022): \$60; De Gendre et al. (2021): \$90

43

- Heterogeneity in the outcomes measured and/or age at measurement
 - Considerable overlap: survey data (Milligan & Stabile 2011, Duncan et al 2011) and administrative data (Barr et al 2022)

- Heterogeneity in the outcomes measured and/or age at measurement
 - Considerable overlap: survey data (Milligan & Stabile 2011, Duncan et al 2011) and administrative data (Barr et al 2022)
- Different targeted populations
 - No impact for low-income samples, unlike Akee et al (2010), Duncan et al (2011), Aizer et al (2016), Dahl & Lochner (2017)

- Spanish income supplements and Swedish lotteries not conditional on household time use investments or expenditures
 - Unlike policies studied in other papers using conditional cash transfers (Duncan et al 2011, Black et al 2014) or in-kind programs (Deming 2009; Chetty et al. 2016) as documented by Hendren & Sprung-Keiser (2022)

Conclusion

- We show that the child benefit did not have any significant impact on children's human capital and well-being
 - from birth to middle childhood.
- We also show that it did not have any significant impact on any of the main mechanisms
 - Maternal labor force participation, partnerships, and subsequent fertility
- We find suggestive evidence of increased expenditure on big-ticket items as a result of the bonus
 - These investments did not translate into better parental employment outcomes, unlike Barr et al (2022) for the US

Conclusion

- We contribute to the debate on what types of policies are more likely to be effective in improving children's development
 - In-kind transfers (tied to a specific expenditure) might be more effective (Hendren and Sprung-Keyser 2020)
 - Cash-transfers received more regularly might allow better investments (Parolin et al 2021)
 - Benefits received during pregnancy might be more successful (Amarante et al 2016, Hoynes et al 2016)
- Spanish baby-bonus effective in increasing overall fertility and health at birth of subsequent offspring
 - As shown by Gonzalez (2013) and Gonzalez and Trommlerova (2021, 2022)

Conclusion

- Results interpreted in the context of a country with a very generous safety net for families with children
 - Caution if results extrapolated to different contexts
- We cannot know whether the effects on children's health and cognition remain latent for some time before re-emerging
 - As found by the previous early intervention programs literature (Garces et al 2002; Deming 2009; Chetty et al. 2016)

Validity of the Research Design: Constant Pre-trends

• The impact of being born after the cutoff is constant over time

	Health Problems	Referrals	
Effect	-0.158	0.001	
	(0.321)	(0.046)	
Mean/SD	3.998/4.809	0.159/0.624	
Observations	14,510	14,510	
Std. Coefficient	-0.033	0.002	
Controls	No	No	
Linear Trend	Yes	Yes	

• Primary care data: placebo comparing 2006 with 2005

Validity of the Research Design: Constant Pre-trends

• The impact of being born after the cutoff is constant over time

	Math	Spanish
Effect	-0.039	0.014
	(0.044)	(0.043)
Observations	28,508	28,507
Controls	No	No
Linear Trend	Yes	Yes

• Education data: placebo comparing 2008 with 2007

Heterogeneity by socioeconomic status

	Health Problems 5/8 Referrals 5/8		Hospitalizations		
Panel A. Low Income					
Effect	1.078**	0.022	0.074		
	(0.510)	(0.062)	(0.052)		
Mean/SD	5.946/6.712	0.261/0.831	0.811/0.082		
Observations	9,811	9,811	122		
CI in sd units	(0.01, 0.30)	(-0.12, 0.17)	(-3.4, 21.7,)		
Panel B. High Income					
Effect	-0.221	-0.108	-0.013		
	(0.770)	(0.093)	(0.042)		
Mean/SD	5.259/6.080	0.204/0.705	0.568/0.057		
Observations	4,527	4,527	122		
CI in sd units	(-0.28, 0.21)	(-0.41, 0.10)	(-16.7, 12.2)		

Heterogeneity by socioeconomic status

	Math in	Math in	Spanish in Andalusia	Spanish in Catalonia
	Andalusia	Catalonia		
Panel A. Low Income				
Effect	-0.047	-0.046	-0.093	-0.119
	(0.064)	(0.103)	(0.056)	(0.114)
Mean/SD	-0.143/1.064	-0.187/0.999	-0.169/1.049	-0.163/1.001
Observations	14,465	6,199	14,485	6,204
CI in sd units	(-0.17, 0.08)	(-0.24, 0.15)	(-0.20, 0.02)	(-0.34, 0.10)
Panel B. High Income				
Effect	-0.026	0.042	-0.007	-0.043
	(0.055)	(0.097)	(0.063)	(0.111)
Mean/SD	0.216/0.816	0.348/0.854	0.250/0.817	0.314/0.871
Observations	13,373	4,606	13,394	4,608
CI in sd units	(-0.13, 0.08)	(-0.15, 0.23)	(-0.13, 0.11)	(-0.26, 0.17)