Short-Term Tax Cuts, Long-Term Stimulus

James Cloyne, Joseba Martinez, Haroon Mumtaz and Paolo Surico

UC Davis, London Business School, Queen Mary University London, NBER & CEPR

SI 2022 Impulse and Propagation Mechanisms

Motivation

▶ Do tax cuts have long-run effects on economic performance?

Motivation

- ▶ Do tax cuts have long-run effects on economic performance?
- ► Studies find large short-run effects; limited evidence on long-run.

Motivation

- Do tax cuts have long-run effects on economic performance?
- Studies find large short-run effects; limited evidence on long-run.
- Tax shocks identified in literature are transitory
- Does the type of tax (corporate or personal) matter for the long run?

The dynamic effects of temporary tax changes on GDP

	Corporate Income Tax Changes	Personal Income Tax Changes
Shorter-term effects (within 2 years)	smaller	large

The dynamic effects of temporary tax changes on GDP

	Corporate Income Tax Changes	Personal Income Tax Changes
Shorter-term effects (within 2 years)	smaller	large
Longer-term effects (up to 10 years)	large (this paper)	insignificant (this paper)

The dynamic effects of temporary tax changes on GDP

	Corporate Income Tax Changes	Personal Income Tax Changes
Shorter-term effects (within 2 years)	smaller	large
Longer-term effects (up to 10 years)	large (this paper)	insignificant (this paper)

► Impact on GDP (largely) through **productivity** not hours

Interpreting the evidence: Strategy & Outcomes

Strategy:

- NK model with endogenous growth and variable factor utilization
- Estimate model by jointly matching empirical IRFs to both tax shocks
- Counterfactual simulations switching off one channel at the time

Findings:

- 1. Pro-cyclical response of productivity is key to match all empirical results
- 2. Endogenous growth channel accounts for response to corporate income taxes
- 3. Variable labour utilization accounts for response to personal taxes

Related literature

1. Short-run effects of tax policies:

Romer and Romer (2010), Barro and Redlick (2011), Mertens and Ravn (2013), Cloyne (2013), Caldara and Kamps (2012), and many other recent examples

2. Long-run effects of other policies: Akcigit et al. (2022), Baley et al. (2022), Jordà et al. (2020), Antolin and Surico (2022)

3. Long-run effects of transitory shocks: Comin and Gertler (2006), Benigno and Fornaro (2017), Anzoategui et al. (2019), Beaudry et al. (2020).

Outline

- 1. Empirical framework
- 2. Model and structural estimation
- 3. Inspecting the mechanism
- 4. The mechanism under the microscope

Identification and Estimation of IRFs

► Narrative identification (Romer and Romer (2010))

Personal and corporate income taxes (Mertens and Ravn (2013))

Local projections to estimate long-run effects (Jordà (2005))

Do Temporary Tax Rate Cuts lead to a Persistent GDP increase?

Plots of posterior median, 68% and 90% credible intervals and estimated model IRF

Productivity and Hours

Plots of posterior median, 68% and 90% credible intervals and estimated model IRF

R&D and Investment

Plots of posterior median, 68% and 90% credible intervals and estimated model IRF

A New-Keynesian model with endogenous growth

Standard features:

- Habit formation in consumption
- Calvo price rigidity
- Taylor rule for monetary policy
- Flow investment adjustment costs
- Variable capital and labor utilization

Non-standard feature:

► Endogenous productivity via R&D and adoption (Comin and Gertler (2006))

Production Sector and Endogenous TFP

Final good output

$$Y_t = \left(\int_0^{A_t} \left(Y_{i,t}\right)^{\frac{1}{\theta}} \mathrm{d}i\right)^{\theta}$$

- ▶ A_t = stock of adopted technologies (Romer (1990)), θ > 1
- Aggregation (symmetric equilibrium)

$$Y_t = \underbrace{A_t^{\theta-1}}_{ ext{Endog.}} \underbrace{(U_{K,t}}_{ ext{Capital}} K_t)^{lpha} \underbrace{(U_{N,t}}_{ ext{Labor}} N_t)^{1-lpha}$$
TFP Util. Util.

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

- ▶ Corporate income tax ↓
 - 1. ↑ after-tax return on capital

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

- ▶ Corporate income tax ↓
 - 1. ↑ after-tax return on capital
 - \uparrow capital utilization ($U_{K,t}$)
 - \uparrow capital accumulation $\left(\frac{K_t}{N_t}\right)$

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

- ▶ Corporate income tax ↓
 - 1. ↑ after-tax return on capital
 - \uparrow capital utilization ($U_{K,t}$)
 - \uparrow capital accumulation $\left(\frac{K_t}{N_t}\right)$
 - 2. ↑ after-tax monopolistic profits

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

- ▶ Corporate income tax ↓
 - 1. ↑ after-tax return on capital
 - \uparrow capital utilization ($U_{K,t}$)
 - \uparrow capital accumulation $\left(\frac{K_t}{N_t}\right)$
 - 2. ↑ after-tax monopolistic profits
 - ↑ tech. adoption and R&D (A_t)

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

- ▶ Corporate income tax ↓
 - 1. ↑ after-tax return on capital
 - \uparrow capital utilization ($U_{K,t}$)
 - \uparrow capital accumulation $\left(\frac{K_t}{N_t}\right)$
 - 2. ↑ after-tax monopolistic profits
 - \uparrow tech. adoption and R&D (A_t)

- ▶ Personal income tax ↓
 - ↑ after-tax wage

$$\frac{Y_t}{N_t} = A_t^{\theta-1} \left(U_{K,t} \right)^{\alpha} \left(\frac{K_t}{N_t} \right)^{\alpha} \left(U_{N,t} \right)^{1-\alpha}$$

- ▶ Corporate income tax ↓
 - 1. ↑ after-tax return on capital
 - \uparrow capital utilization ($U_{K,t}$)
 - \uparrow capital accumulation $\left(\frac{K_t}{N_t}\right)$
 - 2. ↑ after-tax monopolistic profits
 - \uparrow tech. adoption and R&D (A_t)

- ▶ Personal income tax ↓
 - 1. ↑ after-tax wage
 - \uparrow labor utilization ($U_{N,t}$)

Structural Estimation

 Estimate subset of parameters using Bayesian limited-information approach (Christiano et al. (2010))

Standard priors for structural parameters: imply acyclical productivity response and no long-run effect

Inspecting the mechanism

1. Model-based decomposition of corporate and personal tax effects

- 2. Counterfactual simulations
 - a) No endogenous productivity
 - b) No endogenous productivity or variable utilization

1. Model-based Decomposition: Productivity

2a. Counterfactual: no endogenous productivity

2b. Counterfactual: no endogenous productivity or variable utilization

The mechanism under the microscope

Note: IRF of aggregate sector gross output (source: BEA industry accounts)

Conclusions

- 1. Transitory changes in corporate income tax, long-run effect on GDP
- 2. Persistent response of labor productivity explains GDP response
- 3. Through lens of the model, labor productivity driven by:
 - R&D and adoption for corporate tax changes
 - Labor utilization for personal tax changes

2c. Counterfactual: No endogenous productivity or capital utilization

Investment Adjustment Cost

Joint Posterior Distributions

Joint Posterior Distribution of Shorter-term versus Longer-term Effects on GDP

Mertens and Ravn (2013) Shocks

From Mertens and Ravn (2013)

Narrative Identification

Romer and Romer (2010)

■ "The [narrative] analysis allows us to separate legislated changes into those taken for reasons related to prospective economic conditions and those taken for more exogenous reasons. [...] [T]ax changes motivated by factors unrelated to the current or prospective state of the economy form our new series of fiscal shocks."

From Mertens and Ravn (2013):

federal tax liability changes are classified into personal and corporate income tax changes

Local Projections (LP)

$$Z_{t+h} = c^{(h)} + B_1^{(h)} Z_{t-1} + \sum_{j=1}^{P} b_j^{(h)} Z_{t-1-j} + u_{t+h}, \qquad u_{t+h} \sim N(0, \Omega_h)$$

- ➤ Z: variable of interest and controls (average PIT and CIT rates and bases, government spending, GDP, federal debt, interest rate, macro/finance principal component)
- Reduced-form errors u_t linked to structural shocks by

$$u_t = A_0 \varepsilon_t$$

▶ Impulse response at forecast horizon *h* can be computed as

$$B_1^{(h)}A_0$$

▶ Jordà et al. (2020); Li et al. (2021) show that LP estimates of $B_1^{(n)}$ are unbiased $\forall h$

Real Wages

Plots of posterior median, 68% and 90% credible intervals and estimated model IRF

Fernald dTFPu

Plots of posterior median, 68% and 90% credible intervals and estimated model IRF

Consumption

Plots of posterior median, 68% and 90% credible intervals and estimated model IRF

Prior Predictive Analysis

Model: GDP Decomposition

The Structural Estimation Approach

- ► Estimate subset of parameters ↑ using Bayesian limited-information approach (Christiano et al. (2010))
- ▶ IRFs matched: average tax rates, GDP, consumption, investment, R&D expenditure, hours worked, labor productivity
- ightharpoonup $\hat{\Phi}$: median of empirical LP IRF posteriors to 2 tax shocks; $\Phi(\Upsilon)$: model IRFs
- Quasi-likelihood:

$$F(\hat{\Phi}|\Upsilon) = \left(rac{1}{2\pi}
ight)^{rac{N}{2}}|V|^{-rac{1}{2}}\exp\left(-rac{1}{2}\left(\hat{\Phi}-\Phi\left(\Upsilon
ight)
ight)'V^{-1}\left(\hat{\Phi}-\Phi\left(\Upsilon
ight)
ight)
ight)$$

▶ With priors $p(\Upsilon)$, quasi-posterior is

$$F\left(\Upsilon|\hat{\Phi}\right)\propto F(\hat{\Phi}|\Upsilon)\rho\left(\Upsilon\right)$$

Calibrated Parameters (all)

Parameter	Description	Value	Source					
Preference & Households								
$g_{\scriptscriptstyle Y}$	100*SS GDP growth rate	0.45						
β	Discount factor	0.99						
ψ_{N}	Employment adjustment	0.25	Wen (2004)					
Technolog	y							
GY	Government spending/GDP	0.16						
α	Capital share	0.35						
δ	Capital depreciation.	0.02						
ς	Markup	1.09	Profits/GDP=8%					
$\frac{\varsigma}{\lambda}$	SS technology adoption rate	0.05	Anzoategui et al. (2019)					
Taxes								
$ au^{CI}$	SS Corp. Tax	0.19	Sample average					
$ar{ au}^{PI}$	SS Lab. Tax	0.3	Sample average					
Monetary Policy								
$ ho_r$	Smoothing	0.83	Anzoategui et al. (2019)					
ϕ_{y}	Output	0.39	Anzoategui et al. (2019)					
ϕ_{π}	Inflation	1.64	Anzoategui et al. (2019)					

Estimated Parameters

Parameter	Description	Prior			Posterior		
		Distr	Mean	Std. Dev.	Median	90% int.	
Preference & HHs							
h	Consumption habit	beta	0.5	0.2	0.43	[0.15, 0.75]	
γ	Inverse effort elasticity	gamma	1	0.5	0.28	[0.11, 0.67]	
Frictions & Production							
f''	Adoption adjustment	normal	4	1.5	4.36	[1.86, 6.81]	
$f_z^{\prime\prime}$	R&D adjustment	normal	4	1.5	6.67	[4.75, 8.71]	
$f_{I}^{\prime\prime}$	Investment adjustment	normal	4	1.5	0.29	[0.05, 1.31]	
ν''	Capital utilization adjustment	beta	0.6	0.15	0.49	[0.33, 0.69]	
$\xi_{\mathcal{P}}$	Calvo prices	beta	0.5	0.2	0.21	[0.07, 0.37]	
Endogenous Technology							
θ -1	Dixit-Stiglitz parameter	gamma	0.15	0.1	0.42	[0.32, 0.53]	
$ ho_{\lambda}$	Adoption elasticity	beta	0.5	0.2	0.59	[0.54, 0.64]	
$ ho_Z$	R&D elasticity	beta	0.5	0.2	0.15	[0.09, 0.23]	
$1-\phi$	Knowledge depreciation	beta	0.05	0.05	0.11	[0.06, 0.19]	
Shocks	•					_	
$ ho_{ au, {\it CI}}$	Corporate taxes AR	beta	0.7	0.2	0.91	[0.89, 0.92]	
$ ho_{ au,PI}$	Labour taxes AR	beta	0.7	0.2	0.73	[0.68, 0.78]	

Labor productivity and taxes

From production function, labor productivity is

$$\frac{Y_t}{N_t} = \underbrace{A_t^{\theta-1}}_{\text{Endog.}} \underbrace{\left(U_{K,t}\right)^{\alpha}}_{\text{Capital}} \left(\frac{K_t}{N_t}\right)^{\alpha} \underbrace{\left(U_{N,t}\right)^{1-\alpha}}_{\text{Labor}}$$
TFP Util. Util.

Labor productivity and taxes

From production function, labor productivity is

$$\frac{Y_t}{N_t} = \underbrace{A_t^{\theta-1}}_{\text{Endog.}} \underbrace{\left(U_{K,t}\right)^{\alpha}}_{\text{Capital}} \left(\frac{K_t}{N_t}\right)^{\alpha} \underbrace{\left(U_{N,t}\right)^{1-\alpha}}_{\text{Labor}} \right)^{1-\alpha}$$
TFP Util. Util.

Capital utilization and labor effort

$$u'\left(U_{K,t}\right) = \left(1 - \tau_t^{CI}\right) r_t^k$$
 $U_{N,t}^{\gamma} = u_{c,t} \left(\left(1 - \tau_t^{PI}\right) w_t / \gamma_0\right)$

Euler equation for capital

$$P_{l,t} = \mathbb{E}_t \left\{ \beta \Lambda_{t,t+1} \left[r_{t+1}^k U_{K,t+1} - \frac{c_l}{t+1} \left(r_{t+1}^k U_{K,t+1} - \delta \right) + (1-\delta) P_{l,t+1} - a \left(U_{K,t+1} \right) \right] \right\}$$

Labor productivity and taxes

Labor productivity

$$\frac{Y_t}{N_t} = \underbrace{A_t^{\theta-1}}_{\text{Endog.}} \underbrace{\left(U_{K,t}\right)^{\alpha}}_{\text{Capital}} \left(\frac{K_t}{N_t}\right)^{\alpha} \underbrace{\left(U_{N,t}\right)^{1-\alpha}}_{\text{Labor}}$$
TFP Util. Util.

Adoption decision

$$V_{t} = \left(1 - \tau_{t}^{\textit{CI}}\right) \Pi_{i,t} + \phi E_{t} \left\{\beta \Lambda_{t,t+1} V_{t+1}\right\}$$

$$\underbrace{\frac{\partial \lambda_{t}}{\partial X_{k,a,t}} \cdot \phi E_{t} \left\{\Lambda_{t,t+1} \left[V_{t+1} - J_{t+1}\right]\right\}}_{\text{Marginal benefit of adoption}} = \underbrace{P_{a,t}}_{\text{Marginal cost}}$$

Technological progress

The Adoption Process

- \blacktriangleright Adoption is the process that transforms ideas, $Z_t A_t$, into technologies, A_{t+1}
- ▶ The probability that adopter *k* successfully adopts a new technology is:

$$\lambda_t = \lambda \left(\frac{Z_t X_{k,a,t}}{\Psi_t} \right)$$

- with $\lambda' > 0$, $\lambda'' < 0$; Ψ_t : scaling factor
- ► The value of the technology adopted by the intermediate good producer is:

$$V_{t} = \left(1 - \tau_{t}^{CI}\right) \Pi_{i,t} + \phi E_{t} \left\{\beta \Lambda_{t,t+1} V_{t+1}\right\}$$

 \blacktriangleright where $\Pi_{i,t}$ are the profits from adopted intermediate good

The Adoption Process cont'ed

▶ The value of unadopted technology, J_t , depends on the probability of successfully adopting, λ_t , and the quantity of adoption goods, $X_{k,a,t}$, chosen by the intermediate good producer:

$$J_t = \max_{X_{k,a,t}} \mathsf{E}_t \left\{ - P_{a,t} X_{k,a,t} + \phi \beta \mathsf{\Lambda}_{t,t+1} \left[\lambda_t V_{t+1} + (\mathsf{1} - \lambda_t) J_{t+1} \right] \right\}$$

► FOC

$$\underbrace{\frac{\partial \lambda_{t}}{\partial X_{k,a,t}} \cdot \phi E_{t} \left\{ \Lambda_{t,t+1} \left[V_{t+1} - J_{t+1} \right] \right\}}_{\text{Expected Marginal Benefit}} = \underbrace{P_{a,t}}_{\text{Marginal Cost}}$$

▶ LOM for adopted technology in the aggregate

$$A_{t+1} = \lambda_t \phi \left[Z_t - A_t \right] + \phi A_t$$

Adoption

Value of an adopted technology

$$V_t = \underbrace{\left(1 - au_t^{CI}\right)\Pi_{i,t}}_{ ext{After-tax monopolistic profit}} + \phi E_t \left\{ eta \Lambda_{t,t+1} V_{t+1} \right\}$$

Adoption decision (value of unadopted technology)

$$J_{t} = \max_{X_{a,t}} E_{t} \left\{ -P_{a,t} X_{a,t} + \phi \beta \Lambda_{t,t+1} \left[\lambda(X_{a,t}) V_{t+1} + (1 - \lambda(X_{a,t})) J_{t+1} \right] \right\}$$

Adoption probability $\lambda(X_{a,t})$, $\lambda' > 0$, $\lambda'' < 0$

$$A_{t+1} = \lambda_t \phi \left[Z_t - A_t \right] + \phi A_t$$

R&D and Adoption

- \triangleright Z_t : Total stock of knowledge (i.e. adopted technology, A_t , + ideas, $Z_t A_t$)
- $ightharpoonup J_t$: Value of unadopted technology (sold by the innovator to the adopter)
- ► X_{z,t}: R&D-specific goods
- \triangleright $P_{z,t}$: Price of R&D goods
- $ightharpoonup \varphi_t$: New (unadopted) technologies created per unit of R&D goods $X_{s,t}$:

$$\varphi_t = Z_t^{\zeta+1} X_{z,t}^{\rho_z - 1}$$

Innovator j's decision problem:

$$\max_{X_{i,z,t}} E_t \left\{ \beta \Lambda_{t,t+1} J_{t+1} \varphi_t X_{j,z,t} \right\} - P_{z,t} X_{j,z,t}$$

R&D optimization and the LOM of the stock of knowledge

R&D decision FOC:

$$E_t \left\{ \beta \Lambda_{t,t+1} J_{t+1} \varphi_t \right\} - P_{z,t} = 0$$

In aggregate:

$$E_t\left\{\beta\Lambda_{t,t+1}J_{t+1}Z_t^{1+\zeta}X_{z,t}^{\rho_z-1}\right\}=P_{z,t}$$

▶ The Law of Motion (LOM) of the stock of knowledge Z_t :

$$Z_{t+1} = \varphi_t X_{z,t} + \phi Z_t$$

= $Z_t^{1+\zeta} X_{z,t}^{\rho_z} + \phi Z_t$

Households

- Household problem standard except for labor supply
- ► The household's maximization problem and budget constraint are

$$\max_{C_{t}, N_{t+1}, U_{N,t}, U_{K,t}, I_{t}} E_{t} \sum_{\tau=0}^{\infty} \beta^{\tau} \left\{ \log \left(C_{t+\tau} - bC_{t+\tau-1} \right) - \gamma_{0} \frac{1 + U_{N,t}^{1+\gamma}}{1 + \gamma} N_{t} \right\}$$

s.t.

$$C_t = \left(1 - \tau_t^{PI}\right) w_t L_t + D_t - \frac{\psi_n}{2} \left(\frac{N_{t+1}}{N_t} - 1\right)^2 \Psi_t + T_t,$$

► Effective labor supply (hours × effort):

$$L_t = U_{N_t} N_t$$

Dividend:

$$D_{t} = \left(1 - \tau_{t}^{CI}\right)\left(Y_{t} - w_{t}L_{t} - P_{z,t}X_{z,t} - P_{a,t}X_{a,t} - \delta K_{t}\right) - P_{I,t}I_{t} - \left(\nu\left(U_{K,t}\right) - \delta\right)K_{t}$$

Households

1. Employment

$$\beta \mathbb{E}_{t} \{ \gamma_{0} \frac{1 + (U_{N,t+1})^{1+\gamma}}{1+\gamma} + u_{c,t+1} [(1 - \tau_{t+1}^{PI}) w_{t+1} U_{N,t+1} + \phi_{n} \Psi_{t+1} (\frac{N_{t+2}}{N_{t+1}^{2}}) (\frac{N_{t+2}}{N_{t+1}} - 1)] \} - \psi_{n} u_{c,t} \Psi_{t} \frac{1}{N_{t}} (\frac{N_{t+1}}{N_{t}} - 1) = 0$$

Effort

$$-\gamma_{0}\left(U_{N,t}
ight)^{\gamma}+u_{c,t}\left(\left(1- au_{t}^{PI}
ight)w_{t}
ight)=0$$

3. Euler Equation

$$P_{l,t} = \mathbb{E}_{t} \left\{ \beta \Lambda_{t,t+1} \left[\left(1 - \tau_{t+1}^{Cl} \right) r_{t+1}^{k} U_{K,t+1} + \left(1 - \delta \right) P_{l,t+1} - \nu \left(U_{K,t+1} \right) \right] \right\},$$

4. Capital Utilization

$$\left(1- au_{t}^{\mathit{CI}}
ight)r_{t}^{\mathit{k}}=
u'\left(\mathit{U}_{\mathit{K},t}
ight)$$

