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Synthetic control
Abadie and Gardeazabal, 2003; Abadie, Diamond, and Hainmueller, 2010; Abadie, Diamond, and Hainmueller, 2015
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Outcome models and their discontents

• Most statistical guarantees on synthetic control are derived under outcome models
→ Assume that the untreated potential outcomes Y = (Yit(0)) follow a linear factor model;

theoretical results under T →∞ asymptotic approximation (Abadie, Diamond, and Hainmueller,

2010; Ferman and Pinto, 2021; Ben-Michael, Feller, and Rothstein, 2019; Ben-Michael, Feller, and Rothstein, 2021;

Ferman, 2021; Amjad, Shah, and Shen, 2018; Hirshberg, 2021)

• In comparative case study settings, often not obvious how to model the outcomes
realistically
→ What’s a realistic sampling thought experiment for US state-year crime rates? (Manski and

Pepper, 2018)

• Yet, perhaps the popularity of synthetic control suggests that its appeal goes beyond
outcome models

• Can we say anything about synthetic control without relying on outcome modeling?
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This paper

• I offer novel guarantees for synthetic control, which do not rely on outcome models
• Over any bounded potential outcomes, on average over time, with large T ,
→ Result 1: Synthetic control predictions are never much worse than the predictions made by

the best possible weighted matching estimator
→ Result 2: Synthetic control on differenced data never performs much worse than the best

possible weighted difference-in-differences estimator

• “On average over time” is averaging with respect to hypothetical treatment timings
→ Admits a design-based interpretation under random treatment timing (Bottmer, Imbens,

Spiess, and Warnick, 2021)

• Key: Thinking of the the panel prediction problem as an online learning problem
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Notation

• Y is the (N + 1)× T matrix of untreated potential outcomes, assumed bounded
• Unit 0 is the treated unit
• τ ∈ [T ] ≡ {1, . . . , T} is a treatment time
• The data analyst wants to predict y0τ (one-step ahead)
• The control units have outcomes yt
• Synthetic control algorithm:
→ Picks weights

θτ = arg min
θ∈Θ

∑
t≤τ−1

(y0t − θ′yt)2 Θ =

{
(θ1, . . . , θN ) |

N∑
i=1

θi = 1,∀i : θi ≥ 0

}

→ Predicts ŷ0τ = θ′τyτ ,

→ Suffers loss (y0τ − ŷ0τ )2 = (y0τ − θ′τyτ )2
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Average loss

• Consider the average loss over hypothetical treatment timings, holding fixed the
untreated potential outcomes Y:

LT (Y) =
1

T

T∑
τ=1

(y0,τ − θ′τyτ )2

• Design-based interpretation from random treatment timing

LT (Y) = Eτ∼Unif[T ][(y0,τ − θ′τyτ )2]
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Interpretation as online learning

LT (Y) =
1

T

T∑
t=1

(y0,t − θ′tyt)2

• Imagine a sequential prediction game
• At each time t, the analyst is prompted for a decision θt
• The analyst may pick θt based on past data Ys, s < t

• After time t, Yt is revealed to the analyst, and the analyst suffers (y0,t − θ′tyt)2

• At the end of the game, LT (Y) is the analyst’s average loss
• Synthetic control only looks at pre-treatment data =⇒

Averaging over treatment timings ≈ Online decision making
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Online learning

• This latter interpretation as online learning is the key to my results

• In an online learning setup, Follow-The-Leader (FTL) is a general class of algorithms
that picks decisions (θt) by greedily minimizing past loss:

θt = arg min
θ∈Θ

∑
s<t

`s(θ)

• In our case, `s(θ) = (y0,s − θ′ys)2

• This is exactly what synthetic control does

• Hence, results about FTL =⇒ results about synthetic control!
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Regret control

• No assumptions on Y =⇒ No guarantees on LT (Y)

• Consider the difference of LT against the best fixed alternative

RegretT (Y; Θ) = LT (Y)− min
θ∈Θ

1

T

T∑
τ=1

(y0τ − θ′yτ )2

︸ ︷︷ ︸
Can only use one θ, but knows Y

• How well does synthetic control stack up against an oracle weighted matching
estimator?
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Main result

• Theorem. If ‖Y‖∞ ≤ 1 and T > N > 2, then synthetic control has logarithmic regret:

RegretT (Y; Θ) ≤ CN log T

T
where C is a universal constant
→ Immediate from Hazan, Agarwal, and Kale, 2007

• On average over hypothetical treatment timing, synthetic control is never much worse
than the best matching estimator, regardless of the potential outcomes

• Caveat: despite a finite-sample result, its usefulness lies in the log T
T rate in T

→ Worst-case over all outcomes is (deliberately) conservative
→ Still useful that a good convergence rate is achievable
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Three interpretations of regret control

1. Uniformly over realizations of (bounded) untreated potential outcomes Y,

LT (Y) ≤ min
θ∈Θ

1

T

T∑
τ=1

(y0τ − θ′yτ )2

︸ ︷︷ ︸
best fixed weighted match

+O

(
log T

T

)

2. If we accept the design-based interpretation under τ ∼ Unif[T ], then

Eτ (y0τ − θ′τyτ )2 ≤ min
θ∈Θ

Eτ (y0τ − θ′yτ )2 +O

(
log T

T

)
3. Over any distribution of the (bounded) untreated potential outcomes Y ∼ P ,

Risk = EPEτ (y0τ − θ′τyτ )2 ≤ EP
[
min
θ∈Θ

Eτ (y0τ − θ′yτ )2

]
+O

(
log T

T

)
→ Synthetic control achieves small risk if there exists a weighted match that tracks y0t well
→ Points 2 and 3 require random treatment timing, somewhat relaxed in the paper 11



Difference-in-differences

• Our main result shows that synthetic control on yit achieves low regret against the best
weighted matching estimator

• A similar argument shows that synthetic control on differenced data,

ỹit = yit −
1

t− 1

∑
s<t

yis,

has low regret against the best weighted difference-in-differences estimator

• A weighted difference-in-differences estimator results from a weighted TWFE
regression, and turns out to be weighted matching on the differences ỹit
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Recap

• I offer novel, uniform-in-outcome guarantees for synthetic control methods by making a
connection to online learning

• Synthetic control is an instance of Follow-the-Leader, a class of online learning
algorithms with good regret guarantees

• Regardless of outcomes, synthetic control is as good as the best weighted matching
estimator, in terms of average performance over hypothetical treatment timings

• Ditto for synthetic control on differenced data and weighted difference-in-differences
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