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Abstract

This paper notes a simple connection between synthetic control and online learning.

Specifically, we recognize synthetic control as an instance of Follow-The-Leader (FTL).

Standard results in online convex optimization then imply that, even when outcomes

are chosen by an adversary, synthetic control predictions of counterfactual outcomes

for the treated unit perform almost as well as an oracle weighted average of control

units’ outcomes. Synthetic control on differenced data performs almost as well as oracle

weighted difference-in-differences. We argue that this observation further supports the

use of synthetic control estimators in comparative case studies.
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1 Introduction

Synthetic control (Abadie and Gardeazabal, 2003; Abadie et al., 2015) is an increasingly

popular method for causal inference among policymakers, private institutions, and social

scientists alike. In parallel, there is a rapidly growing methodological literature providing

statistical guarantees for synthetic control methods.1 Existing guarantees for synthetic control

are typically derived under a linear factor model or a vector autoregressive model of the

outcomes (see, among others, Abadie et al., 2010; Ben-Michael et al., 2019, 2021; Ferman

and Pinto, 2021; Viviano and Bradic, 2019).2 While the guarantees formally hold under

these outcome models, there is a wide sense of optimism that the synthetic control method is

robust to these modeling assumptions.3

On the other hand, in empirical settings where synthetic control is commonly applied—

where the treated unit is an aggregate entity like a U.S. state or a country—plausible outcome

modeling may be quite challenging. Manski and Pepper (2018), in studying the effect of

right-to-carry laws in the United States using state-level crime rates, provocatively ask,

“what random process should be assumed to have generated the existing United States, with

its realized state-year crime rates?” The linear factor model is indeed a general class of

data-generating process, but in this pessimistic view, perhaps even such a model is implausible

for the settings considered by many synthetic control studies.

As a result, existing methodological results seem to leave practitioners in a bit of a bind.

On the one hand, synthetic control is intuitively appealing, and it is widely believed to have

good properties under a variety of outcome models. On the other hand, perhaps existing

outcome models that have proved sufficiently tractable for deriving statistical guarantees

are not sufficiently plausible in common empirical settings. This paper contributes a few

theoretical results that address this tension, as well as providing a novel interpretation of

synthetic control methods. In particular, we seek guarantees for synthetic control that do

not rely on any outcome model.

It is unlikely that nontrivial guarantees on the performance of synthetic control exist

1See the review by Abadie (2021) as well as the special section on synthetic control methods in the Journal
of the American Statistical Association (Abadie and Cattaneo, 2021).

2Notably, similar to this paper, Bottmer et al. (2021) consider a design-based framework which conditions
on the outcomes and consider randomness arising solely from assignment of the treated unit and the treatment
time period.

3For instance, Ben-Michael et al. (2019) write, “Outcome modeling can also be sensitive to model mis-
specification, such as selecting an incorrect number of factors in a factor model. Finally, [... synthetic control]
can be appropriate under multiple data generating processes (e.g., both the autoregressive model and the
linear factor model) so that it is not necessary for the applied researcher to take a strong stand on which is
correct.” Abadie and Vives-i-Bastida (2021) write, “Synthetic controls are intuitive, transparent, and produce
reliable estimates for a variety of data generating processes.”
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without any structure on the outcomes. However, we can derive guarantees of synthetic

control’s performance relative to a class of alternatives, such as weighted matching or weighted

difference-in-differences (DID) estimators, which practitioners may otherwise choose. Our

first main result shows that, on average over time, synthetic control predictions are never

much worse than the predictions made by any weighted matching estimator. Our second

main result shows that the same is true for synthetic control on differenced data versus

any weighted DID estimator. These results imply that if there is a weighted matching or

DID estimator that performs well, synthetic control likewise performs well. These regret

guarantees bounds relative performance on average over time, which can be interpreted as

expected loss under a design assumption of random treatment timing.

Our results arise by casting prediction with panel data as an instance of online convex

optimization,4 and by recognizing that synthetic control as an online regression algorithm

known as Follow-The-Leader (FTL). Regret guarantees on FTL in the online convex op-

timization literature translate directly to guarantees of synthetic control against a class

of alternative estimators. Since most results in online convex optimization are under an

adversarial model—where an imagined adversary generates the data—these results translate

to guarantees on synthetic control without any structure on the outcome process.

This paper is perhaps closest to Viviano and Bradic (2019). They propose an ensemble

scheme to aggregate predictions from multiple predictive models, which can include synthetic

control, interactive fixed effect models, and random forests. Using results from the online

learning literature, Viviano and Bradic (2019)’s ensemble scheme has the no-regret property,

making the ensemble predictions competitive against the prediction of any fixed predictive

model in the ensemble. Under sampling processes that yield good performance for some

predictive model in the ensemble, Viviano and Bradic (2019) then derive performance

guarantees for the ensemble learner. In contrast, we study synthetic control directly in

the worst-case setting, and connect guarantees in the worst-case setting to guarantees on

statistical risk in a design-based framework. We make the point that synthetic control

algorithms themselves are no-regret online algorithms, and are in fact competitive against a

wide class of matching or difference-in-differences estimators.

This paper proceeds as follows. Section 2 sets up the notation and the decision protocol,

and presents our main results for synthetic control. Section 3 presents a number of extensions

that show alternative guarantees on (modifications of) synthetic control; in particular, we

show that synthetic control on differenced data is competitive against a class of difference-in-

differences estimators. Section 4 concludes the paper.

4See Hazan (2019), Orabona (2019), Cesa-Bianchi and Lugosi (2006), and Shalev-Shwartz (2011) for
introductions to online learning.
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2 Setup and main results

Consider a simple setup for synthetic control, following Doudchenko and Imbens (2016).

There are T time periods and N + 1 units, where we assume T > N . Unit 0 is first treated

at some time τ ∈ {1, . . . , T} ≡ [T ]. Estimating causal effects for the treated unit amounts

to predicting the unobserved potential outcome of this unit, and so we focus on untreated

potential outcomes. Let the full panel of untreated potential outcomes be Y, where (i)

Yi = (yi1, . . . , yiT )′ is the time series of unit i, (ii) Yt = (y0t, . . . , yNt)
′ is the vector of

outcomes at time t, and (iii) yt = (y1t, . . . , yNt)
′ is the vector of control unit outcomes at

time t. We let y(1) = [y1(1), . . . , yT (1)]′ denote the treated outcomes of unit 0, which is

only observable for times t ≥ τ . The analyst is tasked with predicting y0,τ from observed

data, which typically consist of pre-treatment outcomes of unit 0 and outcomes of untreated

units. Similar to the main analysis in Doudchenko and Imbens (2016), we do not consider

covariates.

Synthetic control (Abadie and Gardeazabal, 2003; Abadie et al., 2010), in its basic form,

chooses convex weights θ̂τ to minimize past prediction errors

θ̂τ ∈ arg min
θ∈Θ

τ−1∑
t=1

(y0,t − θ′yt)2 (1)

where Θ ≡ {(θ1, . . . , θN) : θi ≥ 0, 1′θ = 1} is the simplex. For a one-step-ahead forecast for

y0,τ , synthetic control outputs the weighted average ŷτ = θ̂′τyτ , and forms the treatment effect

estimate T̂Eτ = yτ (1)− ŷτ .
Theoretical guarantees for treatment effect estimates generated by (1) often rely on

statistical models of the outcomes Y. While synthetic control has good performance under a

range of outcome models, one may still doubt whether these models are plausible, in the spirit

of comments by Manski and Pepper (2018). In contrast with the usual outcome modeling

approach, we instead consider a worst-case setting where the outcomes are generated by an

adversary.5 Doing so has the appeal of giving decision-theoretic justification for methods

while being entirely agnostic towards the data-generating process. Since a dizzying range of

reasonable data-generating models and identifying assumptions are possible in panel data

settings—yet perhaps none are unquestionably realistic—this worst-case view is valuable,

and worst-case guarantees can be comforting.

In particular, we assume an adversary picks the outcomes Y. Specifically, we consider the

following protocol between an analyst and an adversary:

5The adversarial framework, popular in online learning, dates back to the works of Hannan (1958) and
Blackwell (1956).
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1. The analyst commits to a class of linear prediction rules ŷt ≡ f(yt; θt(Y1:t−1)) = θ′tyt,

parametrized by some θ ∈ Θ that may depend on the past.6 We refer to the maps σ ≡
(θt(·) : t ∈ [T ]) as the agent’s strategy.

2. The adversary chooses the matrix of outcomes Y. We assume that the adversary

cannot choose arbitrarily large outcomes, and without further loss of generality, assume

‖Y‖∞ ≤ 1. Since we are interested in the worst case, the adversary may choose Y with

knowledge of σ.

3. The treatment time τ is sampled uniformly from {1, . . . , T}, regardless of the adversary’s

choices Y.

4. The analyst suffers loss `(ŷ0,τ , y0,τ ) ≡ (ŷτ − y0,τ )
2.

Under such a protocol, the analyst’s expected squared loss, over random treatment timing, is

the average loss

Eτ
[
(ŷτ − y0,τ )

2
]

=
1

T

T∑
t=1

(y0,t − ŷt)2 =
1

T

T∑
t=1

(y0,t − θ′tyt)2. (2)

We view the random sampling of treatment timing as a design-based perspective (Doudchenko

and Imbens, 2016; Bottmer et al., 2021) on the panel causal inference problem, which enables

us to interpret average prediction loss over time as expected prediction loss of the treatment

time τ . Of course, uniformly random assignment is restrictive, but we shall relax this

requirement in Section 2.1 and Appendix B.7

We now make clear the connection with online convex optimization. Online convex

optimization works with the following general protocol. At time t, an online player chooses

some θt ∈ Θ, where Θ ⊂ Rd is a bounded convex set. After θ is revealed, an adversary

chooses a (convex) cost function `t : Θ→ R, and the player suffers `t(θt) and observes `t(·).
At the end of the game, the total loss suffered by the online player is

∑T
t=1 `t(θt).

Our setup of the panel prediction protocol is then an instance of online convex optimization.

To wit, first, in both protocols, the player makes decisions θt in a sequential manner; restriction

to the simplex makes Θ convex. Second, the adversary in the panel prediction game may

be thought of as picking loss functions `t(·) of the form θ 7→ 1
2
(y0,t − y′tθ)

2, indexed by

(y0,t,yt). Third, the expected loss in the panel prediction game, (2), is equal to the average

loss 1
T

∑T
t=1 `t(θt), which is simply the total loss scaled by 1/T .

6For simplicity, we do not consider randomized predictions, but randomized algorithms admit a similar
analysis.

7Our decision framework easily generalizes when we replace f(yt, θt) with any known scalar function and
`(·, ·) with any loss function, so long as θ 7→ `(f(yt, θ), y0,t) is convex and bounded.
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The main observation of this paper recognizes that synthetic control is an online learning

algorithm known as Follow-the-Leader (FTL). FTL is the algorithm that simply chooses θt

to minimize past losses:8

θt ∈ arg min
θ∈Θ

∑
s<t

`s(θ).

Observation 1. FTL is equivalent to synthetic control (1) under the panel prediction

protocol.

Standard online convex optimization results on regret then apply to synthetic control as

well. Before introducing these results, let us define regret as the gap between the total loss of

a strategy σ and the best fixed weights θ in hindsight:

RegretT (σ; Y) ≡
T∑
t=1

`t(θt)−min
θ∈Θ

T∑
t=1

`t(θ) (3)

=
T∑
t=1

(y0,t − y′tθt)
2 −min

θ∈Θ

T∑
t=1

(y0,t − y′tθ)
2 (4)

= T

(
Eτ [(y0,τ − y′τθτ )

2]−min
θ∈Θ

Eτ [(y0,τ − y′τθ)
2]

)
(5)

≥ T
(
Eτ [(y0,τ − y′τθτ )

2]− Eτ [(y0,τ − y′τθ)
2]
)

for any θ ∈ Θ. (6)

(4) observes that, in our setting, regret is the difference between total squared prediction

error of a strategy σ and that of the best fixed weights θ chosen in hindsight. (5) interprets

the sum of losses as T times the expected loss under random treatment timing. Finally, (6)

observes that regret is an upper bound of the expected error gap between the strategy σ and

any fixed weights θ. We refer to arg minθ∈Θ

∑T
t=1(y0,t − y′tθ)

2 as the oracle weighted match.

Focusing on regret rather than loss shifts the goalpost from performance to competition,

which is a more fruitful perspective in the adversarial framework. After all, we cannot hope to

obtain meaningful loss control as the all-powerful adversary can make the analyst miserable.

However, the crucial insight of regret analysis is that, for certain strategies σ, the adversary

cannot simultaneously make the analyst suffer high loss while letting some fixed strategy θ

perform well—in other words, if any fixed θ performs well, then σ performs almost as well

over time. Indeed, if regret is sublinear, i.e. RegretT = o(T ),9 then the strategy σ never

performs much worse as any fixed weights θ on average. In this case, we can interpret σ

as a strategy that is competitive against the class of weighted matches. It can seem quite

surprising that these no-regret strategies σ exist in the first place; we emphasize that σ can

8Also known as fictitious play in game theory (Brown, 1951).
9We sometimes refer to σ as no-regret if it has sublinear regret.
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output different weights θt, chosen adaptively over time, while it is compared to fixed weights

θ.

The main result of this paper shows that the regret of synthetic control under quadratic

loss is logarithmic in T , following from a direct application of Hazan et al. (2007)’s regret

bound for FTL (Theorem 5, reproduced as Theorem A.1 in the appendix).

Theorem 2.1 (Theorem 5, Hazan et al. 2007). Under the setting of Observation 1 with

bounded outcomes ‖Y‖∞ ≤ 1, synthetic control (1) satisfies the regret bound10

RegretT (σ,Y) ≤ 16N(log(2
√
NT ) + 1) = O(N log T ).

Theorem 2.1 shows that the unregularized synthetic control estimator (1) achieves loga-

rithmic regret—and as a result, the average difference between the synthetic control losses

and losses of the oracle weighted match vanishes quickly as a function of T .11 In particular,

if there exists a weighted average of the untreated unit’s outcomes that track Y0 well, then

the average (one-step-ahead) loss of synthetic control estimates is only worse by O
(
N log T
T

)
.

On its own, Theorem 2.1 is purely an optimization result; we now offer a few comments

on its statistical implications. As a preview, Theorem 2.1 implies that the risk of estimating

the causal effect at time τ for synthetic control is not too much higher than that for any

weighted matching estimator; in particular, if any weighted matching estimator performs

well, then synthetic control achieves low risk of estimating the causal effect. Our ensuing

discussion interprets the guarantees as guarantees on the expected loss at treatment time

(expressing regret as (5)), which relies on a design assumption that τ is randomly assigned.

Nevertheless, we stress that we could view purely as guarantees of average loss over time

(expressing regret only as (4)), which does not require a treatment timing assumption.

We can interpret regret as a gap in the risk of estimating treatment effects. In particular,

we can interpret the expected loss of predicting the untreated outcome as the risk of estimating

10We say f(N,T ) = O(g(N,T )) if, for any sequence NT < T and T →∞,

lim sup
T→∞

∣∣∣∣f(NT , T )

g(NT , T )

∣∣∣∣ <∞.
11The restriction of Θ as the simplex—a debated choice in the synthetic control literature—is somewhat

important for the dependence on N , in so far as the simplex is bounded in ‖·‖1. This is a consequence of the
assumption that the outcomes Y are bounded in the dual norm ‖·‖∞, which implies a bound on y′tθ that is
free of N,T . In contrast, if we let Θ = {θ : ‖θ‖2 ≤ D/2} be an `2-ball, then the regret bound worsens to
O(D2N2 log(T )).
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the treatment effect:

Risk(σ,Y,y(1)) ≡ Eτ
[
(TEτ − T̂Eτ (σ))2

]
≡ Eτ

[
((yτ (1)− y0,τ )− (yτ (1)− ŷτ ))2

]
= Eτ [(y0,τ − ŷτ )2]. (7)

Hence, (5) and (7), combined with Theorem 2.1, imply that the risk of using synthetic control

is no more than N log T/T worse than the risk of the oracle weighted match,12 regardless of

realized outcomes Y:

Risk(σ,Y,y(1))−min
θ∈Θ

Risk(θ,Y,y(1)) =
1

T
RegretT (σ,Y) = O

(
N log T

T

)
. (8)

This observation connects regret on prediction of the untreated potential outcome with

differences in the decision risk of estimating treatment effects. Roughly speaking, (8) shows

that synthetic control estimates of (one-step-ahead) causal effects are competitive against

that of any fixed weighted match—for any realization of Y,y(1), on average over time.

Of course, since the guarantee (8) holds for every Y, it continues to hold when we average

over Y,y(1), over a joint distribution P that respects the boundedness condition ‖Y‖∞ ≤ 1.

In this sense, analyzing regret in the adversarial framework not only does not preclude

statistical interpretations, but rather facilitates analysis in a wide range of outcome models.13

Formally, let P be a family of distributions for Y,y(1) such that P (‖Y‖∞ ≤ 1) = 1 for all

P ∈ P . Under an outcome model P , we may understand Risk(σ,Y,y(1)) as conditional risk

and EPRisk(σ,Y,y(1)) as unconditional risk. Then, (8) implies that14

sup
P∈P

EP
[
Risk(σ,Y,y(1))]−min

θ∈Θ
Risk(θ,Y,y(1))

]
= O

(
N log T

T

)
. (9)

Therefore, the unconditional risk of synthetic control is never much worse than the risk of

12We slightly abuse notation and use θ to denote the strategy that outputs θ every period.
13The technique of “online-to-batch conversion” in the online learning literature exploits this intuition to

prove results in batch (i.i.d.) settings via results in online adversarial settings.
14Abernethy et al. (2009) show that a minimax theorem applies, and

sup
P

inf
σ

EP
[
Risk(σ,Y,y(1))]−min

θ∈Θ
Risk(θ,Y,y(1))

]
=

1

T
inf
σ

sup
Y

RegretT (σ,Y).

Note that the ≤ direction is immediate via the min-max inequality. This result shows that the worst-case
optimal risk differences in a stochastic setting (i.e. the analyst knows P and responds to it optimally) is equal
to minimax regret. In this sense, regret analysis is not by itself conservative for a stochastic setting—minimax
regret is a tight upper bound for performance in stochastic settings.
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the best oracle weighted match

R∗Θ ≡ EP
[
min
θ∈Θ

Risk(θ,Y,y(1))

]
.

Hence, if the data-generating process P guarantees that if R∗Θ is small, then synthetic control

achieves low expected risk as well. Concretely speaking, this latter requirement is that, for

most realizations of the data, had we observed all the potential outcomes, we can find a

weighted match that tracks the potential outcomes y0,1, . . . , y0,T well, so that15

EP

[
min
θ∈Θ

1

T

T∑
t=1

(y0,t − θ′yt)2

]
≈ 0.

In many empirical settings, it seems plausible that the oracle weighted match performs

well.16 Abadie (2021) states the following intuition in many comparative case studies: “[T]he

effect of an intervention can be inferred by comparing the evolution of the outcome variables

of interest between the unit exposed to treatment and a group of units that are similar to the

exposed unit but were not affected by the treatment.” More formally speaking, a well-fitting

oracle weighted match also resembles—and implies—Abadie et al. (2010)’s assumption that

there exists a perfect pre-treatment fit of the outcomes. When the oracle weighted match

performs well, the regret guarantees imply a guarantee on the loss of the feasible synthetic

control estimator, making it an attractive option for causal inference in comparative case

studies.

Even if no weighted average of the untreated units tracks y0,t closely, synthetic control

continues to enjoy the assurance that it performs almost as well as the best weighted

match. Moreover, this no-regret property cannot be attained without choosing θt in some

data-dependent manner.17 This observation rules out alternatives such as simple difference-

in-differences, which does not aggregate in a data-dependent manner. In Section 3, we

additionally show that synthetic control on differenced data performs almost as well as the

best weighted difference-in-differences estimator, a very popular class of estimators in practice.

15Also, observe that EP [minθ∈Θ
1
T

∑T
t=1(y0,t − θ′yt)2] ≤ minθ∈Θ EP [ 1

T

∑T
t=1(y0,t − θ′yt)2], and thus the

guarantee (9) is stronger in the sense that it allows the oracle θ to depend on the realization of the data.
16We recognize that under many data-generating models, there is unforecastable, idiosyncratic randomness

in y0,t. As a result, there may not exist a synthetic match that perfectly tracks the realized series y0,t (even
though such a match may exist that tracks various conditional expectations of y0,t quite well). In many such
cases, since squared error can be orthogonally decomposed, risk differences for estimating y0,t are also risk
differences for estimating conditional means µt of y0,t. We discuss these results in Appendix D.

17Roughly speaking, a strategy that picks some fixed θ ∈ Θ suffers from an adversary who picks the data
such that `t(θ) − `t(θ̃) ≥ c > 0, for some θ̃ ∈ Θ. Under such a configuration, the constant strategy would
suffer O(T ) total regret.
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2.1 Non-uniform treatment timing

The previous interpretations rely on interpreting average loss over time as expected loss over τ

((5) and (7)), which requires uniform treatment timing τ ∼ Unif[T ]. Despite being plausible

in certain settings and appearing elsewhere in the literature (Doudchenko and Imbens, 2016;

Bottmer et al., 2021), this assumption is perhaps not entirely palatable.18 Since we are being

completely agnostic on the outcome generation process, it is unavoidable to make treatment

timing assumptions in order to obtain nontrivial results on estimation of causal quantities.

Nevertheless, note that such an assumption is only necessary to interpret average losses as

expected losses. The a priori position that it is reasonable to expect a causal estimator to

predict well relative to a set of oracles, at least on average over time, strikes us as defensible.

Accepting this dictum relieves us of any need of treatment timing modeling.

Even if we wish to maintain the interpretation of total loss as expected loss, we can relax

the uniform treatment timing assumption. In this subsection, we show that if the treatment

timing distribution is known, then a weighted version of synthetic control achieves logarithmic

weighted regret. Moreover, even if the treatment distribution is non-uniform, unknown, and

possibly chosen by the adversary, we continue to show that synthetic control performs well as

long as some weighted average of untreated units predicts y0,τ accurately.

Suppose the conditional distribution (τ | Y) is denoted by π = (π1, . . . , πT )′, which may

depend on Y. Note that, for a known π, we may apply the same argument in Theorem 2.1

to obtain:

θ̂πt ∈ arg min
θ∈Θ

∑
s<t

πs(y0,s − y′sθ)
2. (10)

We have the following corollary, where (10) achieves log T weighted regret. Note that (10)

implements FTL with loss functions `t(θ) ≡ πt(y0,t−y′tθ)
2, and hence the argument of Hazan

et al. (2007) applies.

Corollary 2.2. Suppose τ ∼ π, 1
CT
≤ πt ≤ C

T
for some C, and ‖Y‖∞ ≤ 1. Then weighted

synthetic control (10), denoted σπ, achieves weighted regret bound

RegretT (σπ; π,Y) ≡ T ·
(
Eτ∼π[(y0,τ − θ̂′tyτ )2]−min

θ∈Θ
Eτ∼π[(y0,τ − θ′yτ )2]

)
(11)

≤ 16C3N

[
log

2
√
NT

C2
+ 1

]
= O(C3N log T ).

Corollary 2.2 shows that the weighted regret—a difference in π-expected loss—is logarith-

18We note that the randomness per se of τ conditional on Y can be realistic, but that its distribution is
uniform and known is restrictive.
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mic in T , thereby controlling the worst-case gap between weighted synthetic control and the

best oracle weighted match for the expected loss.

Assuming a known π could be reasonable. With a known dynamic treatment regime, π

can depend on Y, but is known whenever the analyst is prompted for a prediction.19 We can

also interpret Corollary 2.2 as providing guarantees on gaps in Bayes risk under the analyst’s

prior τ ∼ π, independent of Y.

Even when π is unknown, we can bound the loss of unweighted synthetic control.

Corollary 2.3. Suppose τ ∼ π, πt ≤ C/T for some C, and ‖Y‖∞ ≤ 1. Then synthetic

control (1) achieves the loss bound

Eτ∼π
[
(y0,τ − θ̂′τyτ )2

]
≤ C

(
min
θ∈Θ

1

T

T∑
t=1

(y0,t − θ′yt)2 +
1

T
RegretT (σ; Y)

)
. (12)

Hence, for any joint distribution Q of (Y, τ) where Q(τ = t | Y) ≤ C/T for all t, and

Q(‖Y‖∞ ≤ 1) = 1, we have the average loss bound

EQ[(y0,τ − θ̂′τyτ )2] ≤ C

(
EQ

[
min
θ∈Θ

1

T

T∑
t=1

(y0,t − θ′yt)2

]
+O

(
N log T

T

))
. (13)

The result (12) shows that, uniformly over all bounded Y and bounded treatment

distribution π, the expected squared error is bounded by the average loss of the oracle

weighted match plus the regret, all scaled with a constant C that indexes how far π deviates

from the uniform distribution. Under the same assumption that the oracle weighted match

performs well on average, (12) continues to show that the treatment estimation risk of

synthetic control is small. Since such a result is valid for all Y and π, we may understand

(12) as a bound that holds even in a setting where the adversary picks both Y and π, with

the restriction that πt ≤ C/T , but otherwise unrestricted in the dependence of Y and π.

As before, since (12) is a guarantee uniformly over Y, it is also a guarantee when we average

over Y under an outcome model, yielding (13). Again, (13) shows that for any joint distribu-

tion of the bounded outcomes and the treatment timing, the unconditional risk of synthetic

control is small when the expected oracle conditional risk, EQ
[
minθ∈Θ

1
T

∑T
t=1(y0,t − θ′yt)2

]
,

19Since the bound is for a fixed Y, we can allow π to depend on Y, so long as πt(Y) is known at time t+ 1
so that the analyst can compute (10). This allows for Corollary 2.2 to be applied in the following example,
which is a more realistic design-based setting. There is a known dynamic treatment regime (Chakraborty and
Murphy, 2014) parametrizing the treatment hazard: That is,

P(τ = t | τ ≥ t,Y) = rt(Y1:t−1)

for some known rt(·). Then πt(Y) = P(τ = t | Y) = (1 − r1) · · · (1 − rt−1)rt is a function of Y1:t−1. We
thank Davide Viviano for this observation.
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is small—so long as τ has sufficient randomness conditional on Y.

So far, we have considered weighted averages of untreated units as the class of competing

estimators. These competing estimators are matching estimators. However, arguably, a more

common class of competing estimators are difference-in-differences (DID) estimators. It turns

out that synthetic control on preprocessed data obtains regret guarantees against a class of

DID estimators, which we turn to in the next section, along with other extensions.

3 Extensions

3.1 Competing against DID

The previous section shows that the original synthetic control estimator is competitive against

a class of matching estimators that use weighted averages of untreated units as matches

for the treated unit. However, in many applications in economics, matching estimators are

much less popular than DID estimators, since the latter accounts for unobserved confounders

that are additive and constant over time. In this section, we show that synthetic control on

differenced data is competitive against a large class of DID estimators.

In practice, a common DID specification is the following two-way fixed effects regression:

min
µi,αt,λ

N∑
i=0

τ∑
t=1

(
yobs
it − µi − αt − λ1 [(i, t) = (0, τ)]

)2
.

This specification regresses the observed outcomes on unit and time fixed effects, and uses

the estimated coefficient λ as an estimate of the treatment effect yτ (1)− y0,τ . Implicitly, this

regression uses the estimated fixed effects µ0 + ατ as a forecast for the unobserved y0,τ .

We consider a weighted generalization of this regression:20

min
µi,αt,λ

N∑
i=0

τ∑
t=1

wi(y
obs
it − µi − αt − λ1 [(i, t) = (0, τ)])2 w0 = 1,

N∑
i=1

wi = 1, wi ≥ 0. (14)

For convex weights w = (w1, . . . , wN), denote by σTWFE(w) the strategy that estimates (14)

on the data (Y1:t−1,yt) at time t,21 and outputs the estimated coefficients µ0 + αt as a

prediction for y0,t. By varying over w ∈ Θ, we obtain a class of competing DID strategies,

where canonical DID corresponds to picking uniform weights w = (1/N, . . . , 1/N)′. We

20The weight w0 does not affect µ0 + ατ achieving the optimum in the least-squares problem, per the
calculation in Appendix A.5. As a result, we normalize w0 = 1.

21The value of y0,t does not enter ατ + µ0 since it is absorbed by the coefficient λ.
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calculate in Appendix A.5 that the prediction that σTWFE(w) makes is

ŷt(σTWFE(w)) =
1

t− 1

t−1∑
s=1

y0,s + w′

(
yt −

1

t− 1

t−1∑
s=1

ys

)
,

which simply uses the outcome difference against historical averages of untreated units to

forecast that of unit 0. Note that this strategy amounts to using a weighted match with

weight w on the differenced data

ỹit ≡ yit −
1

t− 1

t−1∑
s=1

yis |ỹit| ≤ 2

to forecast the same difference of unit 0, ỹ0,t. Therefore, we may apply Theorem 2.1 and

show the following regret bound.

Theorem 3.1. Consider synthetic control on the differenced data, where the analyst computes

θ̂t ∈ arg min
θ∈Θ

∑
s<t

(ỹ0,s − θ′ỹs)2

and predicts ŷt = 1
t−1

∑
s<t y0,s + θ̂′tỹt, where ỹit = yit − 1

t−1

∑
s<t yis is the difference against

historical means, and ỹt = [ỹ1,t, . . . , ỹN,t]
′. Then we have the following regret guarantee

against the oracle σTWFE, whose weights are chosen ex post:

T∑
t=1

(y0,t − ŷt)2 −min
θ∈Θ

T∑
t=1

(y0,t − ŷt(σTWFE(θ)))2 ≤ CN log T

for some constant C.

Theorem 3.1 shows that synthetic control on differenced data controls regret against a

class of DID estimators (14) that may output predictions in a sequential manner as well, in

contrast to a similar result in Proposition A.2. In particular, the class of DID benchmarks

corresponds to weighted two-way fixed effects regressions, and synthetic control is competitive

against any fixed weighting. In this sense, Theorem 3.1 builds on the intuition that synthetic

control is a generalization of DID (Doudchenko and Imbens, 2016) to show that a version of

synthetic control performs as well as any weighted DID estimator. Again, if any weighted DID

estimator performs well, then Theorem 3.1 becomes a performance guarantee on synthetic

control. Moreover, since (14) is a popular alternative in many empirical settings—setting

aside whether there is a weighted DID that performs well—Theorem 3.1 shows that it is

13



without (too much) loss to use synthetic control in such settings instead.22

To the best of our knowledge, the difference scheme ỹit has yet to be considered in the

literature. We note that ỹit is slightly different from Ferman and Pinto (2021)’s demeaned

synthetic control, which takes the difference y̌it ≡ yit − 1
t

∑t
s=1 yis. In Appendix A.2, we

show that Ferman and Pinto (2021)’s demeaned synthetic control achieves logarithmic regret

against a different class of DID estimators that we call static DID estimators. Another

popular alternative is first-differencing (Abadie, 2021), which by similar arguments may be

shown to control regret against a class of two-period weighted DID strategies that output

ŷt(σDID(θ)) ≡ y0,t−1 + θ′ (yt − yt−1) as successive predictions.

3.2 Regularization and other extensions

Theorem 2.1 shows that synthetic control / FTL gives logarithmic regret when we consider

quadratic loss. However, to some extent this bound is an artifact of using squared losses,

whose curvature ensures that the FTL predictions do not move around excessively over time.

If we replace the loss function with the absolute loss |ŷ − y|, then the regret may be linear in

T—no better than that of the trivial prediction ŷt ≡ 0 (see Example 2.10 in Orabona, 2019).

Motivated by the lack of general sublinear regret guarantees in FTL, the online learning

literature proposes a large class of algorithms called Follow-The-Regularized-Leader (FTRL),

where regularization helps stabilize the FTL predictions. With linear prediction functions f ,

such strategies take the form

θt ∈ arg min
θ∈Θ

∑
s<t

`(θ′ys, y0s) +
1

η
Φ(θ) (15)

for some convex penalty Φ. Here, we let `(·, ·) denote a generic convex and bounded loss

function, generalizing our previous framework. Many regularized variants of synthetic control

have been proposed (among others, Chernozhukov et al., 2021; Doudchenko and Imbens,

2016; Hirshberg, 2021). These regularized estimators have the form (15), though most such

estimators are based on quadratic loss.

Observation 2. Regularized synthetic control with penalty Φ(·) is FTRL, where `(·, ·) is

typically quadratic loss.

22Under certain conditions, Ferman and Pinto (2021) (Proposition 3) show that the demeaned synthetic
control in Proposition A.2 dominates DID with uniform weighting θi = 1/N . The results Proposition A.2
and Theorem 3.1 are in a similar flavor, and show that synthetic control is competitive against DID with
any fixed weighting, on average over random assignment of treatment time. Of course, Proposition A.2
and Theorem 3.1 are not generalizations of Ferman and Pinto (2021)’s result—for one, we consider average
loss under random treatment timing, and Ferman and Pinto (2021) consider a fixed treatment time under an
outcome model, with the number of pre-treatment periods tending to infinity.
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Motivated by the importance of loss function curvature, we slightly generalize and consider

regularized synthetic control estimators using generic loss functions. A standard result in

online convex optimization (e.g. Corollary 7.9 in Orabona (2019), Theorem 5.2 in Hazan

(2019)) shows that choices of η exist to obtain
√
T regret.23 The conditions for this result

are highly general, explaining the popularity of FTRL in online convex optimization. We

specialize to a few choices of the penalty function Φ in the synthetic control setting; see

Theorem A.3 for a general statement.

Theorem 3.2. Consider regularized synthetic control / FTRL with penalty function Φ(θ).

Let `(y′tθ, y0,t) be a convex loss function (in θ), not necessarily quadratic.

1. For the ridge penalty Φ(θ) = 1
2
‖θ‖2, for both squared loss 1

2
(y − ŷ)2 and linear loss

|y − ŷ|, we have RegretT ≤ 3
√
NT with the choice η = 1/

√
NT .

2. For the entropy penalty Φ(θ) =
∑

i θi log θi+log(N), for both squared and linear losses,

we have RegretT ≤ 3
√
T logN with the choice η =

√
(logN)/T .

Naturally, these choices correspond to regularized variants of synthetic control. Quadratic

penalties correspond to ridge penalization in Hirshberg (2021), and is a special case of elastic

net penalty proposed by Doudchenko and Imbens (2016).24 Entropy penalty, which is very

natural when the parameters lie on the simplex, is a special case of the proposal in Robbins

et al. (2017).25 Additionally, Theorem 3.2 gives guidance on choosing the regularization

strength η for different estimators, which depends only on N, T , and the bound on Y.26

We conclude this section by pointing out a few other extensions. First, another weakening

of the uniform treatment timing requirement can be achieved by considering the maximal

regret over subperiods of [T ], or adaptive regret. We show in Appendix B that a modification

to the synthetic control algorithm—which still outputs a weighted average of untreated

units—achieves worst subperiod regret of order log T . Such a result implies that if we

additionally let the adversary pick a subperiod of length T ′, and treatment is uniformly

randomly assigned on this subperiod, then modified synthetic control is at most log T
T ′

-worse

on expected loss than the oracle weighted match. Of course, this regret guarantee is

meaningful only when the subperiod is sufficiently long, i.e. T ′ � log T . Second, under

a design-based framework on treatment timing, we can test sharp hypotheses of the form

23This rate matches the lower bound for linear losses. See Chapter 5 of Orabona (2019).
24Theorem A.3 applies to elastic net penalties with nonzero `2 component as well.
25Interestingly, `1-penalty (proposed by, e.g., Chernozhukov et al., 2021) alone is not strongly convex (See

section 9.1.2 of Boyd and Vandenberghe, 2004), and Theorem A.3 does not apply. However, Theorem A.3
only contains sufficient conditions, and so this alone is not a criticism of `1-penalty.

26The dependence on T may be relaxed via the “doubling trick” (see Shalev-Shwartz (2011) section 2.3.1),
if we allow for regularization that depends on τ .
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H0 : [y1(1)−y0,1, . . . , yT (1)−y0,T ] = [z1, . . . , zT ] by leveraging symmetries induced by random

treatment timing. We discuss inference in Appendix C.

4 Conclusion

This paper notes a very simple connection between synthetic control methods and online

learning. Synthetic control is an instance of Follow-The-Leader strategies, which are well-

studied in the online learning literature. We present standard regret bounds for FTL that

apply to synthetic control, which have interpretations as bounds for expected regret under

random treatment timing. These regret bounds translate to bounds on expected risk gap

under outcome models, and imply that synthetic control is competitive against a wide

class of matching estimators. Under conditions where some weighted match of untreated

units predict the unobserved potential outcomes, these results show that synthetic control

achieves low expected loss. Moreover, the regret bounds can be adapted to be regret bounds

against difference-in-differences strategies. Lastly, we draw an analogous connection between

regularized synthetic control and Follow-the-Regularized-Leader, a popular class of strategies

in online learning.

We now point out a few limitations of this paper and directions for future work. So far, we

have considered a thought experiment where, before each step t, the analyst only has access

to data Y1:t−1 to output a prediction function. Alternative protocols have been considered in

the online learning literature. One example is the Vovk–Azoury–Warmuth forecaster (See

Section 7.10 in Orabona, 2019), where we assume the analyst also has access to yt before

they are prompted for a prediction at time t. In this case, regularized strategies can also

achieve log T regret. Additionally, Bartlett et al. (2015) consider the fixed design setting

in which y1:T is fully accessbile to the analyst before they are prompted for a prediction.

Bartlett et al. (2015) give a simple and explicit minimax regret strategy for online linear

regression, which we may adapt into a synthetic control estimator.

Likewise, we have only considered regret on one-step-ahead prediction for y0,τ , but

synthetic control estimates are often extrapolated multiple time periods ahead in practice.

Multi-step-ahead prediction seems closely related to the problem of delayed feedback in online

learning (Weinberger and Ordentlich, 2002; Korotin et al., 2018; Flaspohler et al., 2021),

where the learner is prompted for the prediction of y0,t+D at time t, and y0,t+D is revealed

only at time t+D.

16



A Proofs and additional results

A.1 Proofs of Theorem 2.1 and Corollaries 2.2 and 2.3

We reproduce Theorem 5 of Hazan et al. (2007) in our notation.

Theorem A.1 (Theorem 5, Hazan et al. 2007). Assume that for all t, the function `t : Θ→ R
can be written as

`t(θ) = gt(v
′
tθ)

for a univariate convex function gt : R→ R and some vector vt ∈ Rn. Assume that for some

R, a, b > 0, we have ‖vt‖2 ≤ R and for all θ ∈ Θ, we have |g′t(v′tθ)| ≤ b and g′′t (v′tθ) ≥ a. Then

FTL on `t satisfies the following regret bound:

RegretT ≤
2nb2

a
[log (DRaT/b) + 1]

where D = diameter(Θ) = maxx,y∈Θ‖x− y‖2.

Theorem 2.1 follows immediately from Theorem 5 in Hazan et al. (2007), reproduced

in our notation as Theorem A.1. Since Θ is the simplex, we know D ≤ 2. We choose

gt(x) = 1
2
(y0,t − x)2 with g′t(x) = x− y0,t and g′′t (x) = 1. (The scaling by 1/2 means that we

obtain a bound on 1/2 times the regret.) The vectors vt are yt, whose dimensions are n = N

and whose 2-norms are bounded by R =
√
N . Note that |v′tθ| ≤ ‖vt‖∞‖θ‖1 ≤ 1. Hence

|g′t(v′tθ)| ≤ 2 ≡ b and g′′t (x) ≥ 1 ≡ a. Plugging in to obtain

1

2
RegretT ≤ 8N(log(2

√
NT ) + 1),

which rearranges into the claim.

The proof for Corollary 2.2 follows similarly. Note that, since 1
CT
≤ πt ≤ C

T
, we can take

a = 1/C and b = 2C. Doing so yields the expression in Corollary 2.2.

For Corollary 2.3, and in particular (12), by (1,∞)-Hölder’s inequality,

T∑
t=1

πt(y0t − θ̂′tyt)2 ≤
(

max
t
πt

) T∑
t=1

(y0t − θ̂′tyt)2 ≤ C

T

T∑
t=1

(y0t − θ̂′tyt)2.

We then apply Theorem 2.1 to bound
∑T

t=1(y0t− θ̂′tyt)2 = minθ∈Θ

∑T
t=1(y0t−θ′yt)2 +RegretT .
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(13) follows immediately from (12) by taking the expectation EQ, noting that

EQ[(y0,τ − θ̂′τyτ )2] = EQ

[
T∑
t=1

1(τ = t)(y0,t − θ̂′tyt)2

]

= E

[
E

[
T∑
t=1

1(τ = t)(y0,t − θ̂′tyt)2 | Y

]]

= E

[
T∑
t=1

Q(τ = t | Y)(y0,t − θ̂′tyt)2

]

We then apply (12) to complete the proof.

A.2 Static DID regret control

We could consider affine predictors with bounded intercepts

f(yt; θ0, θ1) = θ0 + θ′1yt Θ = [−2, 2]×∆N−1.

This choice corresponds to variations of synthetic control estimators proposed by Doudchenko

and Imbens (2016) and Ferman and Pinto (2021) in efforts to mimick behavior of DID

estimators.27 Our regret bound from Theorem 2.1 generalizes immediately to the affine

predictions, where the benchmark oracle that the regret measures against is

min
(θ0,θ1)∈Θ

T∑
t=1

(y0,t − θ0 − y′tθ1)2. (16)

(16) simultaneously chooses the best intercept and the best set of convex weights in hindsight.

Because (16) is limited to using the same intercept for prediction in each period, it is, in

some sense, a static DID estimator.

Theorem 2.1 can be adapted to show that synthetic control with an intercept is competitive

against static DID.

Proposition A.2. Consider demeaned synthetic control, where the analyst outputs the

prediction ŷt = θ̂0t + y′tθ̂t via solving the least-squares problem

θ̂0t, θ̂t = arg min
θ0,θ∈[−2,2]×∆N−1

∑
s<t

(y0,s − θ0 − y′sθ)
2.

27Synthetic control with an intercept is equivalent to synthetic control with demeaned data{
ys − 1

t

∑
k≤t yk : s = 1, . . . , t

}
(Ferman and Pinto, 2021), since the constraint that θ0 ∈ [−2, 2] does not

bind.
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Then, under bounded data ‖Y‖∞ ≤ 1, we have the following regret bound:

T∑
t=1

(y0,t − ŷt)2 − min
θ0,θ∈[−2,2]×∆N−1

T∑
t=1

(y0,s − θ0 − y′sθ)
2 ≤ CN log T

for some constant C.

Proof. We define the loss as 1
2
(x − y)2, which only affects the regret up to a factor of 2.

Proposition A.2 can be proved with Theorem A.1. Note that the diameter of the parameter

space [−2, 2]×∆N−1 can be bounded by D = 2 ·
√

22 + 1 = 2
√

5. The 2-norm of the vector

vt = [1,y′t]
′ is now bounded by R =

√
N + 1. The 1-norm of the parameter vector ϑ = [θ0, θ

′]′

is now bounded by 2 + 1 = 3. Hence |v′tϑ| ≤ 3. Hence we may take b = 3 + 1 = 4 and a = 1.

Plugging in to obtain

RegretT ≤ 32N

[
log

(√
5

2

√
N + 1T

)
+ 1

]
< CN log T

for some C.

The set of competitors for synthetic control in Proposition A.2 is constrained to use the

same θ0 in making predictions for each time period, and this may be a limitation.

A.3 Proof of Theorem 3.1

Similarly to the proof of Proposition A.2, suppose the adversary picks the differences |ỹit| ≤ 2,

without the constraint that the differences obey the restriction ‖Y‖∞ ≤ 1. An application of

Theorem A.1 shows that

T∑
t=1

(ỹ0,t − θ̂′tỹt)2 −min
θ∈Θ

T∑
t=1

(ỹ0,t − θ′ỹt)2 ≤ CN log T

for some C, for any |ỹit| ≤ 2, where θ̂t is the FTL strategy on the data ỹit, which is exactly

the synthetic control on the differenced data when Y is chosen by the adversary.

Now, given any ‖Y‖∞ ≤ 1, we have that the corresponding differences ỹit obey the above

regret bound. Moreover, for both synthetic control (θt = θ̂t) and the oracle σTWFE (θt = θ),

the prediction error of the data y0,t is equal to the prediction error on the differences:

y0,t − ŷt =
1

t− 1

∑
s<t

y0,s + ỹ0,t −

(
1

t− 1

∑
s<t

y0,s + θ′tỹt

)
= ỹ0,t − θ′tỹt.
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Hence, we may rewrite the above regret bound as the bound

T∑
t=1

(y0,t − ŷt)2 −min
θ∈Θ

T∑
t=1

(y0,t − ŷt(σTWFE(θ)))2 ≤ CN log T.

A.4 Proof of Theorem 3.2

Theorem A.3. Assume that

1. `t(θ) ≡ `(θ′yt, y0t) is convex in θ for any Y.

2. The regularizer Φ(θ) is 1-strongly convex in some norm ‖·‖. Normalize Φ such that its

minimum over Θ is zero and maximum is K <∞.

3. The gradients ∇θ`t(θ) are bounded in the dual norm ‖·‖∗, uniformly over Θ,Y:

‖∇θ`t(θ)‖2
∗ ≤ G.

Then FTRL attains the regret bound

RegretT ≤
K

η
+
ηTG

2
.

We first reproduce Corollary 7.9 from Orabona (2019) in our notation. Consider FTRL

algorithm that regularizes according to

θt ∈ arg min
θ

∑
s≤t

`s(θ) +
1

η
Φ(θ).

This corresponds to choosing ηt = η, ψ(x) = Φ(x), and minθ Φ(θ) = 0 in Orabona (2019).

Theorem A.4 (Corollary 7.9, Orabona 2019). Let `t be a sequence of convex loss functions.

Let Φ : Θ→ R be µ-strongly convex w.r.t. the norm ‖·‖. Then, FTRL guarantees

T∑
t=1

`t(θt)−
T∑
t=1

`t(θ) ≤
Φ(θ)

η
+

η

2µ

T∑
t=1

‖gt‖2
∗

for all subgradients gt ∈ ∂`t(θt) and all θ ∈ Θ, where ‖·‖∗ is the dual norm of ‖·‖.

Theorem A.3 then follows immediately where ‖gt‖2
∗ ≤ G, Φ(θ) ≤ K, and µ = 1.
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A.4.1 Proof of Theorem 3.2

For both squared and absolute losses, we can bound the gradient of the loss function in terms

of

‖∇θ`t(θ)‖ ≤ |y0,t − y′tθ|‖yt‖ ≤ 2‖yt‖

under any norm. Hence we should pick G to bound 4‖yt‖2
∗

For the ridge penalty Φ(θ) = 1
2
‖θ‖2

2, it is 1-strongly convex with respect to ‖·‖2. Thus we

take G = 4N . The ridge penalty is bounded by K = 1 on the simplex. This yields the bound

via Theorem A.3.

The entropy penalty is 1-strongly convex with respect to ‖·‖1. Thus we may take

G = 4‖yt‖2
∞ = 4. The maximum of entropy (shifted so that its minimum is zero) can take

K = logN . This yields the bound via Theorem A.3.

A.5 Two-way fixed effect calculation

Consider the TWFE regression with known, nonnegative weights
∑N

i=1 wi = 1, w0 = 1

arg min
µi,αt

∑
i,t:(i,t) 6=(0,τ)
i∈{0,...,N}

t∈[τ ]

wi(yit − µi − αt)2.

We may eliminate (i, t) = (0, τ) from the sum since λ1(i = 0, τ = t) absorbs that term, leaving

µi, αt unaffected. Consider forecasting y0,τ with µ0 + ατ that solves the above program.

The first-order condition for µi takes the form

τ−1∑
t=1

yit − µi − αt + 1(i 6= 0)(yiτ − µi − αt) = 0

Hence

µi =

yit − α i 6= 0

y0t − τ
τ−1

α + 1
τ−1

ατ i = 0

where α = 1
τ

∑τ
t=1 αt and yit is the sample mean of observations for unit i, with the

understanding that y0τ is not observed.

Hence the forecast is

µ0 + ατ = y0t +
τ

τ − 1
(ατ − α) .
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Let us inspect the first-order condition for ατ :

N∑
i=1

wi(yiτ − µi − ατ ) =
N∑
i=1

wi(yiτ − yiτ + α− ατ ) = 0.

Hence

ατ − α =
N∑
i=1

wi

(
τ − 1

τ
yiτ −

1

τ

τ−1∑
t=1

yit

)
.

Therefore,

τ

τ − 1
(ατ − α) =

N∑
i=1

wi

(
yiτ −

1

τ − 1

τ−1∑
t=1

yit

)
.

Thus the forecast is

µ0 + ατ =
1

τ − 1

τ−1∑
t=1

y0,t +
N∑
i=1

wi

(
yiτ −

1

τ − 1

τ−1∑
t=1

yit

)
.

Note that arriving at this result does not use the fact that w0 = 1. Hence, w0 does not matter

for µ0 + ατ .

B Adaptive regret

The online learning literature also has results for controlling the adaptive regret :

AdaptiveRegretT = sup
1≤r<s≤T

s∑
t=r

{
`t(θt)−min

θr,s

s∑
t=r

`t(θr,s)

}
, (17)

which is the worst regret over any subinterval of [T ]. An upper bound of adaptive regret

serves as an upper bound of the regret over any subperiod indexed by r < s. In particular,

suppose we obtain a O(log T ) upper bound on adaptive regret, then we obtain meaningful

average regret upper bounds for all subperiods significantly longer than O(log T ).

A simple meta-algorithm called Follow The Leading History (FLH) (Algorithm 31 in

Hazan, 2019) serves as a wrapper for an online learning algorithm σ, such that

AdaptiveRegretT (FLH(σ)) ≤ RegretT (σ) +O(log T ). (18)

When applied to synthetic control, FLH takes the following form. We initialize p1
1 = 1 and

set α = 1
4
. At each time t, when prompted to make a prediction about y0,t:

1. Consider the synthetic control estimated weights θ1
t , . . . , θ

t
t, where θjt is the synthetic
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control weights estimated based on data from time horizons j, . . . , t− 1.

2. Output the weighted average θt =
∑t

j=1 p
j
tθ
j
t .

3. After receiving yt, y0,t (and hence receiving `t(θ) = 1
2
(y0,t − θ′yt)2), instantiate

pit+1 ←
pite
−α`t(θit)∑t

j=1 p
j
te
−α`t(θjt )

1 ≤ i ≤ t.

4. Set pt+1
t+1 = 1

t+1
and further update

pit+1 ←
(

1− 1

t+ 1

)
pit+1 1 ≤ i ≤ t.

At each step, FLH applied to synthetic control continues to output a convex weighted average

of control unit outcomes, making it a type of synthetic control algorithm. Theorem 10.5 in

Hazan (2019) then implies the bound (18) for the above algorithm.28 In a nutshell, FLH

treats synthetic control predictions from different horizons as expert predictions, and applies

a no-regret online learning algorithm to aggregate these expert predictions. We direct readers

to Hazan (2019) for further intuitions about the algorithm.

Combined with Theorem 2.1 for synthetic control, we find that the adaptive regret of

FLH-synthetic control is of the same order O(N log T + N logN). This means that the

average regret over any subperiod of length T ′ is O
(
N log T+N logN

T ′

)
, a meaningful bound for

long subperiods T ′ � N log T . In other words, in a protocol where the adversary additionally

picks a subperiod of length T ′, and nature subsequently samples a treatment timing uniformly

randomly over the subperiod, FLH-synthetic control achieves expected regret bound of

O
(
N log T+N logN

T ′

)
. The adaptive regret bound thus partially relaxes the requirement for

uniform treatment timing, and allows for expected regret control over random treatment

timing on any subperiod.

C A note on inference

Under the treatment assignment model τ ∼ Unif[T ], we may test the sharp null H0 : y(1) =

Y0. Let yt = y0,t for t < τ and let yt = yt(1) for t ≥ τ be the observed time series of the

treated unit. For any prediction ŷt that does not depend on τ—not limited to synthetic

control predictions—we may form the residuals rt = |yt − ŷt|. One (finite-sample) test of the

sharp null rejects when rτ is at least the dT (1−α)eth order statistic of the sample {r1, . . . , rT}.
28The proof follows immediately since 1

2 (y0,t − θ′yt)2 is 1
4 -exp-concave, as −2 ≤ y0,t − θ′yt ≤ 2.
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Since, under the null, rτ is equally likely to equal any of {r1, . . . , rT}, the probability of it

being the largest α is bounded by α. Similarly, if τ ∼ π where πt ≤ C/T , a least-favorable

test may be constructed by rejecting when rt ≥ r(T−bTα/Cc). Informally speaking, this test is

more powerful when the predictions ŷt are better, and our regret guarantees are in this sense

informative for inference.

Moreover, from Markov’s inequality, we can control the probability for the prediction

error to deviate far relative to its expectation

Pτ∼Unif[T ]

[
(y0,τ − ŷτ )2 > c

]
≤ Eτ [`τ (θτ )]

c
≤ 1

c

(
min
θ∈Θ

1

T

T∑
i=1

`t(θ) +
1

T
RegretT

)
.

Under assumptions where the pre-treatment loss minθ
1

τ−1

∑
t<τ `t(θ) is a consistent estimator

for the oracle performance minθ
1
T

∑T
i=1 `t(θ), the above observation allows for predictive

confidence intervals for the untreated outcome and confidence intervals of the treatment

effect, which are valid over random treatment timing.

D Risk interpretation under idiosyncratic errors

We consider another interpretation of (9). In particular, in many data-generating processes,

EP
[
min
θ

Risk(θ,Y,y(1))
]

may not be small. Nevertheless, for a fixed θ, under uniform treatment timing we have that

EP [Risk(θ,Y,y(1))] = EP [Eτ (y0,τ − µτ )2] + EP [Eτ (θ′yτ − µτ )2]

for some mean component µt, possibly random, of the outcome process y0,t. For instance, we

may take µt = EP [y0,t | Y1:t−1,yt]. For this µt, we can also write

EP [Risk(σ,Y,y(1))] = EP [Eτ (y0,τ − µτ )2] + EP [Eτ (θ̂′tyτ − µτ )2],

since θ̂′tyt depends solely on Y1:t−1,yt. We thus have the following implication of (9)

EP [Eτ (θ̂′tyτ − µτ )2]−min
θ∈Θ

EP [Eτ (θ′yτ − µτ )2] ≤ 1

T
sup

‖Y‖∞≤1

RegretT (σ; Y),
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which says that the risk difference of estimating the conditional mean µt is upper bounded

by the regret. If P = PT is a sequence of data-generating processes where, as T →∞,

min
θ∈Θ

EP [Eτ (θ′yτ − µτ )2]→ 0,

then we obtain a consistency result for synthetic control, in that

EP [Eτ (θ̂′tyτ − µτ )2]→ 0

as well.

From a risk perspective, this means that the treatment effect estimation risk for synthetic

control admits the following upper bound

EP [Risk(σ,Y,y(1))] ≤ min
θ∈Θ

EP [Eτ (θ′yτ−µτ )2]+
1

T
sup

‖Y‖∞≤1

RegretT (σ; Y)+EP [Eτ (y0,τ−µτ )2],

where the first two terms are likely small, and the last term represents the risk incurred by

unforecastable randomness in y0,t.

In general, suppose we have a joint distribution Q of (Y,y(1), τ) such that πt(Y) = Q(τ =

t | Y) ≤ C/T . Suppose further that y0,t = µt + εt, where EQ[εt | µt, πt,Y1:t−1,yt] = 0 for

some mean component µt.
29 Then we have a similar decomposition of the risk of estimating

the treatment effect at τ :

EQ[(y0,τ − θ̂′τyt)2] =
T∑
t=1

EQ[πt(Y)(y0,t − θ̂′τyt)2]

=
T∑
t=1

EQ
[
πt(Y)(y0,t − µt)2

]
+ EQ[πt(Y)(µt − θ̂′tyt)2] + 2EQ[πtεt(µt − θ̂′tyt)]

= EQ[ε2τ ] + EQ[(µτ − θ̂′τyτ )2]

≤ EQ[ε2τ ] +
C

T

T∑
t=1

EQ[(µt − θ̂′tyt)2]

≤ EQ[ε2τ ] + C

(
min
θ∈Θ

1

T

T∑
t=1

EQ[(µt − θ′yt)2] +
1

T
sup

‖Y‖∞≤1

RegretT (σ; Y)

)
.

The last right-hand side is equal to the variance of the unforecastable component ετ plus C

times the oracle risk on estimating the mean component, as well as O(NT−1 log T ) regret. If

the oracle risk for estimating the mean component is small, then synthetic control is close to

29We can take µt = E[y0,t | yt,Y1:t−1] whenever τ y Y under Q.

25



optimal, and its risk on estimating the mean component EQ[(µτ − θ̂′τyτ )2] is also small.

Note that the bound

EQ[(y0,τ − θ̂′τyt)2] ≤ C

(
EQ[ε2τ ] + min

θ∈Θ

1

T

T∑
t=1

EQ[(µt − θ′yt)2] +
1

T
sup

‖Y‖∞≤1

RegretT (σ; Y)

)

is immediate and allows for µt = E[y0,t | Y1:t−1,yt] = 0, yet the scaled idiosyncratic risk

CEQ[ε2τ ] may be large.
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