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Abstract

We study police discretion over sanctions for speeding offenses. Relying on variation
across officers in the propensity to issue harsh fines, we estimate the causal effect of
sanctions and find that a 100 dollar increase in fines reduces the likelihood of a new
speeding offense in the following year by about seven percent. We then use a marginal
treatment effects approach to learn about officer objectives. The sorting of motorists
into sanctions by officers exhibits selection on levels and inverse selection on gains,
suggesting (i) that officers face a tradeoff between allocating sanctions to maximize
deterrence and sanctioning the most-frequent offenders and (ii) that officers prioritize
the latter, consistent with a retribution objective. We characterize how officers trade
off deterrence and retribution goals by estimating a model of officer decisions, finding
that officers weigh retribution as least as much as deterrence when allocating sanctions.
We estimate that the reoffending rate is at least two percentage points, or six percent,
lower in a counterfactual scenario where officers prioritize deterrence alone.
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1 Introduction

Two key principles, deterrence and retribution, underlie the design of criminal justice systems

around the world. Under the first principle, deterrence, the central goal of a legal system is to

maximize public safety. Accordingly, criminal sanctions should be set to equate the marginal

social value of crime deterred and the marginal social costs of harsher punishments (Becker,

1968). To this end, a large empirical literature has evaluated the degree to which various

criminal sanctions and law enforcement interventions reduce crime and whether deterrence

benefits justify the fiscal and social costs of an expanded or harsher criminal justice system.1

The second principle, retribution, advocates that punishing offenders is socially desir-

able in its own right, independent of deterrence effects, for reasons such as fairness, state

legitimacy, and morality (e.g., Kaplow & Shavell 2006; O’Flaherty & Sethi 2019; Moore

2019). Under retribution, optimal sanctions should “fit the crime” and are a theoretical

question about society’s preferences, rather than an empirical question about the effects of

punishments. Still, an important question for scholars and policymakers is whether inherent

tradeoffs exist between accomplishing deterrence and retribution goals.

In this paper, we study how these two objectives shape the behavior of street-level bu-

reaucrats tasked with law enforcement. Given the reliance of criminal justice systems on

agents wielding considerable discretion over punishments, how those agents use their dis-

cretion, and the public safety consequences of those discretionary choices, are questions of

significant policy interest. Examining a setting where patrolling police officers exercise dis-

cretion over sanctions, speeding enforcement, our analysis proceeds in three parts. First,

we document important deterrence effects of sanctions. Next, we show that officers face an

explicit tradeoff between deterrence and retribution objectives in this setting. Finally, we

characterize how officers weigh deterrence and retribution goals when allocating sanctions.

Speeding enforcement is a high stakes setting in terms of public safety. Traffic accidents

are the second leading cause of death among individuals aged 15-34 in the United States. In

2020, there were nearly twice as many traffic fatalities (∼ 39,000) as homicides (∼ 22,000).

Economic costs associated with motor vehicle accidents have been estimated at nearly $250

billion per year, higher than annual costs of crime victimization (Blincoe et al. 2015; Chalfin

2016). The National Highway Safety Administration estimates that at least one third of fatal

crashes are caused by speeding, and existing studies have found strong associations between

average driving speeds and traffic fatalities (NHTSA 2014; Ashenfelter & Greenstone 2004).

While speeding sanctions are statutorily based only on a driver’s speed relative to the

posted limit, officers manipulate fines by writing down a slower speed than was observed on

the actual citation, resulting in a discounted fine (Anbarci & Lee 2014; Goncalves & Mello

1As examples, see Mueller-Smith (2015), Bhuller et al. (2020), and Rose & Shem-Tov (2021) on
incarceration, Huttunen et al. (2020) and Finlay et al. (2021) on financial sanctions, and Chalfin
& McCrary (2018) and Mello (2019) on police employment.
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2021). In Florida, the setting of our study, nearly one third of all speeding citations are

issued for exactly nine miles per hour (MPH) over the limit, just before a $75 increase in the

statutory fine amount. Less than one percent are issued for either eight or ten MPH. Officers

patrolling the same beat-shifts vary considerably in the degree of bunching in their charged

distributions, highlighting that officer discretion, rather than driver behavior, explains the

bunching in cited speeds (Goncalves & Mello, 2021).

Estimating causal effects of harsher speeding punishments on driver behavior is chal-

lenging due to the non-random assignment of sanctions. Speeding sanctions are tied to

driving speeds relative to the posted speed limit, meaning that more severe transgressions

are statutorily punished more harshly. The manipulation of sanctions by officers compounds

endogeneity concerns. To circumvent these identification challenges, we rely on system-

atic variation across officers in bunching propensity. Specifically, we use the citing officer’s

propensity not to bunch other drivers, which we call officer stringency, as an instrument for

the fine faced by a driver.

Our design mirrors a growing literature leveraging randomly assigned judges for identi-

fication (e.g., Kling 2006; Maestas et al. 2013; Dahl et al. 2014; Dobbie & Song 2015), with

the caveat that, in our setting, citing officers are not randomly assigned to drivers. The key

concern, then, for our identification strategy is whether an officer’s bunching propensity is

correlated with the characteristics of her sample of cited drivers. We show that, conditional

on beat-shift fixed effects, our measure of officer stringency is uncorrelated with driver char-

acteristics that predict recidivism and with an officer’s ticketing frequency. Moreover, we

show that the citing officer’s stringency cannot predict past offending. In contrast, officer

stringency predicts a stark decline in traffic offending just after the citation.

Our main IV estimate suggests that a $100 increase in fines reduces the likelihood of a

new speeding offense in the following year by 1.4 percentage points. Converting this point

estimate into a fine elasticity gives ε = −0.13 (se = 0.01); in other words, a doubling of the

fine reduces the reoffending probability by 13 percent. We also find statistically significant,

but smaller, effects of harsh fines on non-speeding traffic offenses (ε = −0.06) and on crash

involvement (ε = −0.04) in the following year. Our estimated fine elasticities contribute to

a large literature on criminal deterrence (Chalfin & McCrary 2017; Doleac 2021), the effects

of sanctions on offender behavior (Mueller-Smith 2015; Bhuller et al. 2020; Huttunen et al.

2020; Rose & Shem-Tov 2021; Finlay et al. 2021), and the effects of traffic policing on road

safety (Ashenfelter & Greenstone 2004; Makowsky & Stratmann 2011; DeAngelo & Hansen

2014; Luca 2014; Traxler et al. 2018).

In our setting, motorists ticketed harshly and leniently face the same sanctions for future

offenses. Hence, the ex post responses we observe represent a specific deterrence effect, or

the impact of the experience of punishment on offending (Nagin, 2013). Isolating specific

deterrence effects is often empirically challenging due not only to identification issues but

also the simultaneous presence of incapacitation or general deterrence effects (e.g., Hansen
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2015). Our estimates contribute to a small literature isolating specific deterrence effects

(e.g., Gehrsitz 2017; Libor & Traxler 2021). Exploring mechanisms further, we find stronger

impacts of harsh fines for the subset of motorists encountering a stringent officer for the first

time, consistent with drivers learning about punishments as an important mechanism.

Having shown that sanction decisions have important deterrence effects, we turn to the

question of how deterrence and retribution goals shape officer decisions. Specifically, we con-

sider how officers sort a set of offenders into harsh versus lenient sanctions. Deterrence goals

dictate that officers should prioritize punishing motorists most responsive to harsh sanc-

tions. We take the view that, to achieve retribution goals, officers prioritize allocating harsh

sanctions to motorists most likely to reoffend, independent of their treatment responses.2

To explore these hypotheses empirically, we use a marginal treatment effects framework,

which allows for identification of heterogeneity in potential outcomes for drivers with vary-

ing propensities to be treated. If officers prioritize punishing deterrable drivers, the motorists

most likely to be punished harshly, or those who are induced into harsh sanctions at low

values of our stringency instrument, should exhibit the largest treatment effects. If officers

prioritize retribution, we expect to see the highest reoffending rates among the motorists

most likely to be punished. As these patterns are not necessarily mutually exclusive, it is an

empirical question whether officers must choose between prioritizing levels and gains when

sorting drivers into sanctions.

Estimating marginal treatment responses (MTR’s) using the approach from Heckman

& Vytlacil (2007a), we find that both treatment-specific potential outcomes and marginal

treatment effects are decreasing in stringency.3 In other words, the MTR’s exhibit selection

on levels, consistent with a retribution objective, and inverse selection on gains, inconsistent

with deterrence maximization. Further, these selection patterns imply an explicit tradeoff

between deterrence and retribution goals; because the most deterrable offenders are those

with the lowest reoffending rates and vice versa, harsh punishments allocated to achieve a

retribution goal have efficiency costs in the form of foregone deterrence.

Given the presence of this tradeoff, we write down and estimate a model of sanction

choices. In the model, officers observe noisy signals of a motorist’s potential outcomes and

choose whom to sanction harshly based on a weighted average of expected reoffending rates

2A broader definition (e.g., Kaplow & Shavell 2006) would allow for retribution to capture any
non-deterrence preferences. While our decision to focus on reoffending levels may seem restrictive,
our finding that officer behavior cannot be explained by deterrence goals alone is evidence that
officers incorporate some notion of retribution into their punishment decisions, using this broad
definition from Kaplow & Shavell (2006).

3As described in more detail in section 5.1, standard methods for MTE estimation rely on a
potentially problematic strict monotonicity assumption. We leverage a unique feature of our setting,
the full support of our stringency instrument, to additionally estimate a version of our marginal
treatment effects that rely on a weaker assumption by using only variation in propensity scores
near zero and one.
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(levels) and expected reoffending responses (gains). The weight that an officer places on

reoffending levels, or the weight placed on the retribution objective, is set-identified based

on the moments of the estimated marginal treatment response functions.

The model estimates indicate that officers place at least as much weight on expected

reoffending rates as expected offending responses when allocating harsh fines. Moreover, we

cannot rule out that officers consider only reoffending rates when allocating sanctions. Our

characterization of officer objectives advances a growing literature interested in the causes

and consequences of discretion in the criminal justice system (e.g., Knowles et al. 2001;

Weisburst 2017; Chalfin & Goncalves 2021; Goncalves & Mello 2021; Abrams et al. 2021).

To quantify the efficiency costs associated with retributive preferences, we estimate coun-

terfactual reoffending rates under a different objective function. When officers are made to

consider only deterrence and place no weight on accomplishing retribution goals, the over-

all reoffending rate declines by at least two percentage points (about six percent). In this

counterfactual, the allocation of punishments becomes significantly less retributive: harshly

sanctioned drivers have lower reoffending rates than those given lenient sanctions, further

highlighting the inherent tradeoff between deterrence and retribution goals. We also find

similar results with a simpler counterfactual that forces officers to sort drivers in reverse

order of their current practice, leading to improved deterrence and reduced retribution.

Finally, we consider the equity implications of officers’ retributive preferences. Given

large racial disparities in a host of criminal justice outcomes, including speeding sanctions

(Goncalves & Mello, 2021), we ask how racial differences in sanctions change with a re-

duction in retributive preferences. In a simple counterfactual with reversed driver sorting,

the observed racial gaps in punishment are not only reduced but reversed, leading to lower

punishment rates for Black and Hispanic drivers. This finding adds to the recent literature

examining equity-efficiency tradeoffs in criminal justice policy (Feigenberg & Miller, 2021;

Rose, 2021) and highlights the potential for changes to policing practices that reduce racial

gaps in treatment while actually improving efficiency.

Our central contribution is to a literature considering the role of fairness concerns in the

design of legal institutions (e.g., Kaplow & Shavell 2006; O’Flaherty & Sethi 2019; Moore

2019).4 While this literature has theoretically examined the proper role of fairness consid-

erations, we contribute novel empirical evidence to this debate. Our paper is the first to

document the empirical relevance of the tradeoff between accomplishing fairness (retribu-

tion) and efficiency (deterrence) goals. Further, we empirically demonstrate a preference for

fairness in the sanction decisions of criminal justice agents and quantify the efficiency costs

associated with those retributive preferences.

Another contribution of our paper is to a broad literature on the allocation choices of

economic agents. A common approach in this literature is to examine selection patterns

4See Kaplow & Shavell (2006) for specific applications to various legal areas, including contracts,
torts, and criminal justice.
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in settings where efficient allocations should exhibit selection on gains (e.g., Carneiro et al.

2011; Abaluck et al. 2016; Van Dijk 2019; Chandra & Staiger 2020). Several studies have

nonetheless found decision-making based on levels, such as parents choosing school districts

for their children (Abdulkadiroglu et al., 2020) and hospitals opting into a Medicare reform

(Einav et al., 2022). We document this type of decision-making in a new setting, criminal

justice, and estimate the foregone deterrence associated with targeting sanctions based on

offending levels rather than gains.

The rest of our paper proceeds as follows. Section 2 describes our data and section 3

provides the relevant institutional background. We devote section 4 to the estimation of

causal effects of sanctions. Section 5 studies officer objectives and section 6 concludes.

2 Data

The Florida Clerks and Comptrollers provided administrative records of the universe of

traffic citations issued in Florida for the years 2005–2018 from Florida’s Uniform Traffic

Citation (UTC) database. These records include the date and county of the citation as

well as information on the cited violation. When the violation is speeding, this information

includes the charged speed and posted speed limit (e.g., 74 MPH in a 65 MPH zone). The

UTC data also include all information provided on a stopped motorist’s driver license (DL):

name, date of birth, address, race, gender, as well as the driver license state and number.

Using the driver license number, we are able to link drivers across citations and construct

our primary outcome measures of past and future traffic offending.

We augment the driver information in the UTC data with four auxiliary data sources.

First, we match drivers on zip code of residence to estimated per-capita income at the

zip code level from the IRS Statistics of Income files. Second, the make and year of the

stopped automobile is provided for about 75 percent of citations. We use this information

to construct an estimated vehicle value based on a database of online vehicle resale prices.

Third, we record a motorist’s race as Hispanic if, based on census records, their surname is

associated with Hispanic status for more than 80% of individuals.5 Finally, we link drivers on

full name and date of birth to prison spell records from the Florida Department of Corrections

to construct a measure of prior incarceration.

In the citations data, the ticketing officer is identified by name. We construct a consistent

officer identifier by linking the officer name with data on FHP employment spells provided

by the Florida Department of Law Enforcement. We focus on tickets issued by the FHP both

because we can more consistently identify the citing officer and because speeding enforcement

5As discussed in Goncalves & Mello (2021), there are clear inconsistencies in the recording of
Hispanic status in the UCT. Officers frequently write down race = H (for Hispanic). But in Miami-
Dade county, where the population is over 60 percent Hispanic, less than one percent of citations
are coded as being issued to a Hispanic motorist.
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is a central duty of FHP officers. However, we measure past and future offending using all

citations, not just FHP-issued citations.

2.1 Other data sources

We obtained administrative crash reports covering the universe of automobile accidents

known to police over the period 2006–2018 from the Florida Department of Transporta-

tion (FDOT). These data are collected during a police response or investigation and include

the date and county of the incident as well as information on injuries and property damage

for a subset of crashes. The data also include the driver license numbers of involved drivers,

which we use to link drivers with the citations data.

The Florida Clerks and Comptrollers also provided records from the Traffic Citation

Accounting Transition System (TCATS) database, which includes information on the traffic

court disposition associated with about 80 percent of the citations in our sample. We use

these records to construct a measure of whether a citation was contested in traffic court

and, based on the traffic court disposition, to construct measures of accrued, rather than

statutory, sanctions.

Beginning in 2013, a subset of FHP-issued citations in the UTC database include GPS

coordinates. We match these citations to road segments and, in the appendix, replicate our

main analyses controlling for precise location fixed effects.

2.2 Sample construction

To construct our sample of focal citations, we first restrict attention to tickets written by the

Florida Highway Patrol over 2007–2016 where the citing officer is identified.6 We further re-

strict the sample to include tickets where speeding is the only violation, no crash is indicated,

and the charged speed is between nine and twenty-nine miles per hour over the posted speed

limit. We choose twenty-nine as our baseline upper limit because (i) the available evidence

suggests that motorists are still bunched with positive probability when their true speed is

as high as twenty-nine MPH over the limit (see figure 1) and (ii) thirty MPH over the limit

is the threshold for a misdemeanor speeding offense.

We also restrict to drivers with a valid Florida driver license number, so that we can

reliably measure past and future offending, and require that officers have at least fifty cita-

tions meeting the above criteria to compute our instrument. Ultimately, our focal sample

is comprised of 1,693,436 speeding citations issued by 1,960 FHP officers. There are 1.4M

unique drivers in the sample. Table 1 presents summary statistics for our analysis sample.

6We focus on 2007–2016 so that we can measure other offending (including crash activity) for
least one full year prior and one full year after the focal citation. Over this period, the ticketing
officer is identifiable for 85 percent of FHP-issued speeding tickets.
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In our analysis, we focus on whether a driver receives a new speeding citation in the year

following their focal FHP citation as our primary outcome of interest, but also show results

for other types of traffic offenses as well as for crash involvement using the FDOT crash

records. Again, reoffending and past offending are measured using all citations issued in the

state rather than just the set of citations that comprise our focal FHP sample.

Worth noting here is the fact that our main outcome measure will capture whether a

motorist is caught and ticketed for a new speeding offense, which itself could be subject

to officer discretion. If anything, we expect that officer discretion at the recidivism stage

will bias our estimates towards zero. Our IV estimates will compare reoffending rates for

individuals receiving harsh and lenient fines and we find that those receiving harsh fines

differentially reduce their offending rates. If officers are more likely to cite drivers with more

severe offending histories or more likely to let drivers with less severe offending histories off

with formal or informal warnings, that would bias our estimates towards zero by inflating

reoffending rates of those who are sanctioned harshly or deflating reoffending rates of those

who are given lenient sanctions.

3 Institutional background

3.1 Florida highway patrol

State-level patrols are the primary enforcers of traffic laws on interstates and many highways,

especially those in unincorporated areas. On patrol, officers are given an assigned zone over

which they can combine roving patrol and parked observation patrol. Florida Highway Patrol

(FHP) officers are divided into one of nine assigned troops, almost all of which patrol six to

eight counties each. Officer assignments operate on eight-hour shifts and cover an assignment

region that roughly corresponds to a county, though the size of a “beat” can vary based on

an area’s population density. In practice, we use counties to proxy for assignment regions.

The FHP is comprised of approximately 1,500 full-time officers. Speeding enforcement is

a primary duty of FHP officers and the FHP collectively issues between 150,000 and 200,000

speeding citations each year. Other responsibilities include enforcing a wide array of other

traffic laws, investigating crashes, and responding to and assisting with highway emergencies.

The FHP officer handbook reads “Members should take the enforcement action they deem

necessary to ensure the safety of the motoring public, reduce the number and severity of

traffic crashes, and reduce the number of criminal acts committed on highways of this state,”

highlighting that officers are explicitly given discretion over enforcement decisions.

In Florida, speeding sanctions are based on an offender’s speed relative to the posted

speed limit. Speeding 1-5 MPH over the limit carries a statutory warning but no sanctions,

while speeding 30 or more MPH over the limit is a misdemeanor offense requiring the offender

to appear in court. Between 6 and 29 MPH over the limit, the statutory fine is a step function,
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plotted as a red dotted line in figure 1.

Speeding offenses are also associated with “points” on an offender’s driver license (DL).

Point assessments are also based on speed; speeding 6-15 MPH over the limit is associated

with 3 points while speeding 16+ MPH over the limit is associated with 4 points. Points

are used by car insurers to adjust premiums and offenders that collect a sufficient number of

points (12 points in 12 months; 18 points in 18 months; 24 points in 36 months) have their

license suspended for 30 days (6 months; 1 year).

After a citation has been issued, a driver can either submit payment to the county clerk

or request a court date to contest the ticket. If the ticket goes to court, a judge or hearing

officer typically decides either to uphold the original charge, reduce the charge, or dismiss

the citation. At the time of payment, a subset of drivers can elect to attend an optional

traffic school, completion of which combined with on-time payment will remove the citation

from a driver’s record and prevent the accrual of the associated DL points.

3.2 Discretion over sanctions

Panel (a) of figure 1 shows the speeding fine schedule in Florida and the histogram of charged

speeds on FHP-issued speeding citations. Over one third of all citations are issued for exactly

9 MPH over the posted limit, just below a $75 increase in the associated fine. Less than

one percent of all citations are issued for eight or ten MPH over the limit. The dramatic

bunching in the speed distribution suggests systematic manipulation by officers. Specifically,

the distribution implies the practice of speed discounting, where officers observe drivers

traveling at higher speeds but write down nine MPH on the citation as a form of lenience

(Anbarci & Lee 2014; Goncalves & Mello 2021). An officer’s decision of whether to bunch a

driver, resulting in either a discounted or full fine, is the focus of our study.

We rely on several pieces of evidence to demonstrate that bunching in the speed distri-

bution is generated by the behavior of officers rather than drivers (e.g., Traxler et al. 2018).

First, following Goncalves & Mello (2021), panel (b) of figure 1 shows that all bunching is

attributable to a subset of lenient officers.7 About 25 percent of officers, whom we term the

non-lenient officers, almost never write tickets for nine MPH.

Moving beyond a binary split of officers, figure A-1 illustrate significant variation across

officers in the propensity to bunch drivers. Panel (a) demonstrates full support across officers

in bunching propensity, while panel (b) shows that this variation persists after netting out

location and time fixed effects. Such variation is inconsistent with bunching due to driver

7See appendix B-2 for details on the classification of officers as lenient versus non-lenient, which
is based on the manipulation test from Frandsen (2017). To ensure that the pattern in figure 1
is not mechanical and to avoid the reflection problem in IV estimates, we randomly partition an
officer’s stops into two groups, classify each officer × partition as lenient versus not, and then use
the officer’s classification in the other partition.
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behavior; if drivers systematically bunch below fine increases, then officers patrolling the

same beat-shift should have similar degrees of bunching in their speed distributions.

However, this across-officer variation could alternatively be due to noise or estimation

error. To confirm that the across-officer variation in bunching propensity is “true” variation

(in a statistical sense), we estimate the following regression:

1[bunchijs] = γXi + ψs + αj + uijs

where i indexes citations, j indexes officers, and s indexes beat-shifts; Xi is a vector of driver

covariates, ψs is a beat-shift fixed effect, and αj is an officer fixed effect.8 This regression

has an R2 = 0.55, with 0.31 (56 percent) attributable to the officer effects, 0.22 (41 percent)

attributable to the beat-shift effects, and 0.018 (3 percent) attributable to the driver X’s.

In other words, the identity of the citing officer is significantly more predictive of a bunched

citation than the beat-shift of the stop or a full set of driver characteristics. Moreover,

there is significant variation in the estimated α̂j’s (V ar ≈ 0.07). Applying Empirical Bayes

shrinkage (Morris, 1983) to adjust for estimation error has minimal impact on the dispersion

of the estimated officer effects (V ar ≈ 0.06). See panel (c) of figure A-1 for further details.

Finally, we show in figure A-2 that an officer’s bunching propensity is highly correlated

across space and time. First, we randomly partition an officer’s citations into two location

(county) groups and regress an officer’s bunching propensity, adjusted for beat-shift fixed

effects, in one set of locations on the same officer’s adjusted bunching propensity in the

other set of locations. This regression yields β̂ = 0.57 (se = 0.03). Next, we split an officer’s

citations in half temporally and perform the same exercise, which gives β̂ = 0.82 (se = 0.03).

3.3 Why do officers bunch drivers?

Fine revenue is routed to the county government where the citation was issued. Hence,

neither the officers themselves, nor the FHP or state government more broadly, have any

financial stake in fine amounts. Officers do, however, potentially have a promotion incentive

to write a certain number of tickets, as the number of tickets they write appears on their

performance evaluations. We believe these set of institutional factors contribute to an envi-

ronment in which officers are encouraged to write tickets but also have the freedom to write

reduced charges, which is ideal for our research design (Goncalves & Mello, 2021).

Based on the available evidence, our view is that distaste for traffic court best explains

officer lenience in this context. After receiving a traffic ticket, the cited driver has the option

to contest the citation in traffic court. The citing officer is expected to attend the associated

court hearing. Using the same identification strategy that we exploit to assess the causal

effect of sanctions on offending, we find that a 125 dollar increase in fine (causally) increases

8The ψ’s are the same fixed effects we use in our main analysis, described in section 4.1. They
are at the level of county × 1[highway] × year × month × 1[weekend] × shift.
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the likelihood that a driver contests a ticket in court by about 11 percentage points, or 35

percent relative to the mean (see figure A-4). Hence, distaste for appearing in traffic court

generates an incentive to bunch drivers and heterogeneity in distaste for traffic court could

explain the observed variation in lenience across officers.

Another possibility is that officers perceive a psychic or emotional cost to writing harsh

charges, or equivalently experience utility from giving motorists a break. Variation across

officers in the emotional costs of harshness or psychic benefits of lenience could then gener-

ate heterogeneity in bunching propensity. Importantly, our empirical design does not require

explicit knowledge of why officers bunch drivers or why they vary in bunching propensity.

However, as we discuss below, our design will require a monotonicity assumption that re-

stricts the patterns across officers in which drivers are bunched.

4 Estimating causal effects of sanctions

4.1 Empirical strategy

Our first goal is to estimate the causal effect of sanctions on the future behavior of speeding

offenders. The central identification challenge is that punishments are not randomly assigned.

Statutory sanctions increase with the severity of the transgression, as shown in figure 1.

Moreover, as discussed in section 3.2, officers frequently manipulate sanctions. Naive OLS

estimates, shown in table A-2, illustrate both dimensions of the identification challenge well.

A regression of one-year reoffending on the charged fine (in $100’s) and beat-shift fixed

effects gives β̂ = 0.019 (se = 0.001), suggesting that harsher fines increase reoffending.

Adding officer fixed effects increases the estimate to β̂ = 0.031 (se = 0.001), highlighting

the nonrandom sorting of drivers into sanctions by officers.

Our empirical approach is to leverage systematic variation in lenience across officers for

identification, mirroring a growing body of research using so-called examiner designs (e.g.,

Kling 2006, Dobbie & Song 2015, Maestas et al. 2013, Bhuller et al. 2020). Specifically, we

compute the following stringency instrument:

Zij = 1−
!

1

Nj − 1

"

k ∕=i

1[bunchkj]

#
≡ stringency

where i indexes citations and j indexes officers. In words, Zij is the fraction of officer j’s

citations to all other drivers that are for speeds greater than 10 MPH over the posted limit;

in other words, the fraction of unbunched citations. We then use Zij as an instrument to

estimate regressions of the form:

Yijs = βharshijs + ψs + εijs

where harshijs = 1[speedijs ≥ 10]. We also show results using a continuous sanctions
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measure as the explanatory variable of interest but focus on the binary specification because

our modeling exercise will focus on the binary specification.

In the above regression, the ψs’s are fixed effects at the level of county × 1[highway]

× year × month × 1[weekend] × shift, which we term beat-shift fixed effects. A county

is approximately a patrol area for each officer. Officers work the same shift (day of week

and time of day) for one month and then rotate. These fixed effects adjust for differential

exposure of officers to pools of offenders across beat-shifts. In our regressions, we two-way

cluster our standard errors at the officer and driver level.

4.2 Instrument validity

Our IV strategy will yield valid local average treatment effect (LATE) estimates under the

following four assumptions:

1. Relevance. H(Z) is a nontrivial function of Z.

2. Exogeneity. {Yi(1), Yi(0), Hi(Z)} ⊥ Z | ψ

3. Exclusion. Yi(H,Z) = Yi(H)

4. Monotonicity. ∀w, j ∈ J , either Hi(w) ≥ Hi(h) ∀i or Hi(w) ≤ Hi(h) ∀i

where J indexes the set of officers, H = 1[harsh], and {Yi(1), Yi(0)} are the potential

outcomes of driver i when sanctioned harshly (H = 1) and leniently (H = 0). The relevance

assumption requires the existence of a first stage relationship between stringency and harsh

fines, which is empirically testable. We discuss the exogeneity, exclusion, and monotonicity

assumptions in turn below.

4.2.1 Exogeneity

Existing studies using similar empirical designs have appealed to the institutional quasi-

random assignment of examiners (e.g., bail judges) to satisfy the exogeneity assumption. A

central concern in our setting is that citing officers are, of course, not randomly assigned

to drivers. Instead, officers can select their own samples by choosing (i) whom to pull over

versus whom to let pass and (ii) whom to cite versus whom to let go with a formal of informal

warning. We cannot observe formal or informal warnings in our data and cannot observe

the full population of drivers passing by an officer during a given beat-shift.

One potential threat to our empirical strategy would be a correlation between stringency

on the citing margin (whom to cite versus not) and the charging margin (whom to bunch

versus not). To help illustrate this point, suppose there were two officers, j ∈ {1, 2}, with
j = 1 an officer who bunches most drivers and j = 2 an officer who bunches very few drivers.

Suppose that j = 1 is also very lenient on the citing margin; that is, she lets most motorists

pass with no citation, while j = 2 is very stringent on the ticketing margin, citing most
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drivers. If j = 1 restricts her sample by only citing drivers with a higher expected Yi(0),

then E[Yi(0) | j = 1] > E[Yi(0) | j = 2], violating exogeneity.

There are two testable implications of the hypothesis that lenience on the intensive (bunch

versus not) and extensive (ticket versus not) margins are correlated. First, our instrument

Z should be correlated with an officer’s citation frequency. Holding constant the supply of

offenders, officers with higher ticketing thresholds should have “missing” tickets relative to

officers with lower ticketing thresholds. Second, Z should be correlated with driver charac-

teristics that predict reoffending. We test both these predictions in figure 2. The first two

panels plot the relationship between officer stringency, adjusted for beat-shift fixed effects,

and ticketing frequency, using both a daily average number of tickets and a monthly average

number of tickets, adjusted for beat-shift effects, as measures of ticketing activity. Panel (a)

plots the relationship for all citations and panel (b) plots the relationship for only speed-

ing citations. In all cases, regression coefficients are quantitatively small and statistically

indistinguishable from zero. Panel (c) illustrates that there is no relationship between the

stringency instrument and predicted recidivism based on driver covariates.

Table 2 presents the relationship between the full set of driver characteristics and re-

cidivism, charged fines, and our stringency instrument Z. As shown in columns 1-2, driver

covariates have substantial joint predictive power over reoffending (F = 1734) and are also

quite predictive of reduced charges (F = 29). Motorist characteristics have considerably

less ability to predict officer stringency (F = 2.7). While our test rejects the null of no

relationship between observables and officer stringency, a joint significance test of F = 2.7

is quite small in a setting with no institutional random assignment and with N ≈ 1.7M.

Taken together, the evidence suggests that exogeneity violations generated by sample

selection are unlikely. Officer stringency is uncorrelated with ticketing frequency and pre-

dicted offending and nearly uncorrelated with the full set of driver characteristics. However,

we take sample selection concerns seriously and present an array of associated robustness

checks. First, we show that estimates are nearly identical when using a binary instrument

(stringent versus lenient) that easily passes a conventional randomization test, as shown in

column 4 of table 2. Second, we show that results hold when dropping officers with relatively

selected samples. Third, we implement a formal selection correction estimator ala Heckman

(1979). Finally, we show similar results controlling for finer geographic detail and results

relying only on within-driver variation, discussed in more detail in section 4.4.

4.2.2 Monotonicity and exclusion

In table A-3, we perform a standard check of the monotonicity assumption by estimating

the first stage regression for subgroups of drivers. In the full sample, the first stage estimate

is β = 0.944 (se = 0.006). Looking across subgroups, the first stage estimates range from

β = 0.913 to β = 0.972, with standard errors ranging from 0.006 to 0.016.

Still, monotonicity violations are a natural concern in our setting given evidence of racial
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bias in officer leniency decisions (Anbarci & Lee 2014; Goncalves & Mello 2021). We have

two approaches to address monotonicity concerns. First, we show results using a binary

instrument which compares drivers ticketed by lenient (bunching) versus stringent (non-

bunching) officers. This binary instrument satisfies monotonicity by construction because

stringent officers never bunch drivers, which rules out the existence of defiers. Second, we

recompute the continuous stringency instrument within demographic cells, which allows for

monotonicity violations across, but not within, demographic groups. Our results, discussed

further in section 4.4, are qualitatively similar using both approaches.

Importantly, Frandsen et al. (2019) show that examiner design IV estimates still re-

cover the appropriate local average treatment effect under a weaker average monotonicity

condition, which requires only that counterfactual reassignment to a more stringent officer

increases the probability of harsh sanctions in expectation. However, our baseline estimates

of marginal treatment effects will still rely on a strict monotonicity assumption. We defer a

more thorough discussion of our approaches to estimating marginal treatment effects, and

associated monotonicity issues, to section 5.1.

The exclusion restriction requires that officer stringency affects future offending only

through sanctions. Note that our strategy allows other (non-sanction) officer behaviors

to affect drivers as long as those behaviors are uncorrelated with our stringency measure

(Frandsen et al., 2019). On the other hand, features of the officer-driver interaction other

than the sanction that cause a driver to change behavior would violate exclusion if those

features are correlated with stringency.

Another plausible source of exclusion violations is downstream involvement in the traffic

court system. As previously mentioned, stringency increases the likelihood that a driver

contests a ticket in court and might influence traffic school elections. If anything about the

court experience changes driver behavior, that could be considered an exclusion violation.

On the other hand, we feel that this is subject to interpretation. When viewed from the

officer’s perspective, downstream events that are (i) caused by harsher sanctions and (ii)

reduce reoffending still could be interpreted as a causal effect of sanctions themselves.9

Finally, the choice to bunch a driver indirectly affects the statutory “points” a driver

receives on their license. In Florida, speeding offenses between 6 and 15 MPH over the limit

carry three DL points, while speeding 16-29 MPH over the limit carries four DL points.

Points can increase car insurance premiums and drivers that accrue sufficient points can face

DL suspensions. As shown in figure A-3, officer stringency affects statutory points (βFS =

0.7). However, drivers can mitigate their point exposure through the court system, and we

find that, taking into account those downstream behaviors, there is almost no relationship

9Moreover, the evidence is largely inconsistent with the court system playing an important role
in generating the treatment effects. As shown in figure A-7, treatment effects are very similar for
local and non-local drivers. Because drivers need to travel to the citation county to attend court,
local drivers are more likely to contest citations.
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between stringency and points, again shown in figure A-3. Hence, the burden of accrued

license points cannot explain the effects we observe.

To the extent that the monotonicity and exclusion assumptions are violated, we can

still interpret our reduced form estimates as causal effects of officer stringency under the

exogeneity assumption. Given that our estimated first stage is very close to one (βFS =

0.944), our reduced form and IV estimates are quantitatively similar.

4.2.3 Understanding the LATE

Given the first stage, exogeneity, exclusion, and monotonicity assumptions, our IV estimates

will recover a local average treatment effect (LATE) for the subgroup of marginal drivers.

Intuitively, compliers are drivers about whom officers disagree, or drivers who would be

punished harshly by some officers but given a break by others. Alternatively, in the contin-

uous instrument setting, it is useful to think of compliers as those motorists who are neither

always-takers, or those who would be fined harshly by any officer, nor never-takers, or those

who would be bunched by any officer.

An interesting feature of our setting is the full support of our stringency instrument. In

other words, our sample includes a subset of officers that always bunch drivers and a subset

of officers that never bunch drivers. Given the LATE assumptions, the presence of officers

that always issue harsh tickets implies that no driver is a never-taker. Similarly, the presence

of officers that never issue harsh fines implies the nonexistence of always-takers.

Because all drivers are compliers for some value of the instrument, differences between

naive OLS estimates and IV estimates should be interpreted as largely attributable to se-

lection bias, rather than as driven by characteristic differences in the complier population.

Moreover, our estimated LATE will be quite close to the average treatment effect.

Worth mentioning briefly here is the fact that, while all motorists are compliers for some

value of the instrument, the characteristics of individuals may differ by which value of the

instrument induces them into treatment. In section 5, we estimate these “marginal complier”

characteristics using our marginal treatment effects framework.

4.3 Results

Figure 3 plots the first stage relationship between officer stringency and 1[harsh], laid over

a histogram of the stringency instrument. The figure documents a linear and statistically

precise relationship with an estimated first stage coefficient β = 0.944 (se = 0.006) and

associated F ≈ 22, 000. Figure A-3 illustrates the estimated first stage for direct sanctions

measures. In terms of fine amounts, shown in panel (a), the estimated first stage is β = $122.

In figure 4, we show the dynamic relationship between officer stringency and speeding

offenses. Specifically, we plot estimated coefficients (and 95 percent confidence intervals)
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from regressions of the form:

Yijsτ = βτZij + ψs + uijs

where Yijsτ is an indicator for whether driver i is cited for speeding in quarter τ , which are

quarters relative the focal FHP citation. In the figure, τ = 0 corresponds to the exact date

of the focal FHP citation and τ = k corresponds to k quarters before or after the focal

citation. The figure illustrates that the stringency of the citing officer at τ = 0 has no ability

to predict offending over the previous eight quarters but predicts a stark decline offending

immediately after the focal citation. Stringency is associated with a 0.7 percentage point

decline in the likelihood a new speeding offense in the next quarter, which represents a 12

percent decline relative to the lenient officer mean. Effects persist over the first four quarters

and fade out considerably thereafter.

Encouragingly, the dynamic pattern in figure 4 speaks to the validity of our research

design. In order for the observed patterns to be generated by differential sample selection,

it would have to be the case that more stringent officers differentially stop drivers with

comparable offending histories but who are just about to reduce to their offending rates.

Table 3 presents IV estimates for the full set of one-year offending outcomes.10 Column 1

reports the lenient officer mean of the outcome variable. Columns 2 and 3 report IV estimates

excluding and including controls for driver characteristics. To help interpret magnitudes,

column 4 reports the implied fine elasticity, which is computed by regressing the outcome

on the (continuous) fine amount and controls and beat-shift fixed effects, instrumenting the

fine amount with stringency, and then scaling the IV estimate by the ratio of the average

fine and average reoffending rates for lenient officers.

We find that harsh fines reduce the likelihood of a new traffic offense in the following

year by about 1.6 percentage points (∼5 percent, ε = −0.07). The majority of this effect

is attributable to reductions in speeding offenses. A harsh fine reduces the likelihood of a

new speeding offense in the next year by almost 1.5 percentage points. The IV estimate is

precisely estimated, with a 95 confidence interval of (−0.017,−0.012). The point estimate

represents an 8.5 percent decline relative to the lenient officer mean and implies a fine

elasticity of −0.13. In other words, our estimate implies that a doubling of the fine amount

would reduce speeding recidivism by 13 percent.

Estimated impacts of harsh fines on non-speeding offenses are also statistically significant

but less pronounced. We estimate fine elasticities of −0.06 for non-speeding offenses, −0.07

for moving violations, and −0.097 for non-moving violations. The finding that speeding

sanctions reduce other traffic offenses is consistent with Gehrsitz (2017), who finds that

short-term license suspensions imposed on speeders in Germany reduce all forms of traffic

offending through a specific deterrence mechanism.

10In the appendix, we present graphical versions of the reduced form estimates (figure A-4),
dynamic versions of the reduced form for other outcomes (figure A-5), and the full set of first stage
and reduced form estimates with and without controls (table A-4).
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Consistent with reductions in traffic offending implying a true behavioral response on

the part of drivers, we also find that a harsh fine reduces the likelihood of crash involvement

over the following year by between 0.2 and 0.3 percentage points (ε = −0.04). While less

precisely estimated than the effects on traffic offenses, the IV estimates for crash involvment

are statistically significant at the 10 percent level.

Finally, following our discussion in section 3.3, the last row of table 3 reports IV estimates

of the impact of harsh fines on the likelihood that a driver contests a ticket in court. Relative

to a lenient officer mean of 0.26, we find that a harsh fine increases the likelihood of a

contested citation by about 11 percentage points, or about 42 percent, consistent with our

hypothesis that court aversion motivates officer lenience.

4.4 Robustness

In the appendix, we present a battery of robustness checks. For simplicity, we focus our

robustness checks on IV estimates of the impact of a harsh fine on the likelihood of a new

speeding offense in the next year. Tables A-5 and A-6 show that our results are not sensitive

to our choice of instrument or fixed effects. Estimated impacts on one-year speeding recidi-

vism are, if anything, larger when using a residualized leave-out mean (e.g., Dobbie et al.

2018), the leave-county-out mean, the full set of officer dummies, and a binary measure as

the stringency instrument. Table A-6 shows that estimates are comparable when using dif-

ferent specifications for the beat-shift fixed effects, including limiting comparisons to drivers

stopped on the exact same day or exact same stretch of road.

As discussed in section 4.2, of particular interest are robustness checks for whether our

estimates can be explained by selection of drivers that is correlated with our stringency

measure. While the dynamic patterns in figure 4 assuage concerns in this front, we present

four additional pieces of evidence in figure A-6.

Following Feigenberg & Miller (2021), we show that the estimated effect on one-year

speeding recidivism is similar when dropping officers with selected samples based on driver

observables. Specifically, we first regress a measure of predicted reoffending based on driver

characteristics (same as plotted in figure 2) on beat-shift fixed effects and take the residuals.

We then compute the average residual for each officer, which captures selection in an officer’s

sample relative to other officers patrolling the same beat-shifts. We then re-estimate our main

IV estimate, dropping officers in the top and bottom q percent of the distribution of average

residuals. As shown in panel (a), our estimate persists after dropping even the top and

bottom 25 percent of “selected” officers.

In panel (b), we show selection-corrected results based on officer ticketing frequency.

Suppose that all officers working in the same county-year face the same number of drivers

on a given day, N . Officer j choose whether to ticket passing driver i, Sij ∈ {0, 1} and

officer j’s daily rate of tickets in that county-year is Nj = N × Pr(Sij = 1). We estimate
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N by taking the 95th percentile of the Nj’s and estimate Pr(Sij = 1) with Nj/N . Given an

estimated Pr(Sij = 1), we can correct our estimates for selection by directly controlling for

the inverse Mills ratio,
φ(Φ−1(P (Sij=1)))

P (Sij=1)
, in our regressions (Heckman, 1979). This procedure

yields a nearly identical IV estimate to our main specification.

Panel (c) of figure A-6 plots the reduced form and reports IV estimates for regressions that

further interact our beat-shift fixed effects with stretch-of-road fixed effects, constructed by

mapping the subset of geocoded tickets onto a map of all roads in Florida. Conditioning on a

finer measure of geography allows us to more accurately adjust for the flow of offenders faced

by each officer. This regression is based on a considerably smaller sample (N = 219, 470)

but yields a strikingly similar effect to our main IV estimate (−0.0140 versus −0.0146).

Finally, in panel (d), we show results using only within-driver variation. In principle,

adding driver fixed effects to our main regression could be problematic given the causal effect

of stringency on the likelihood that a driver reappears in the data. Drivers with multiple

stops are either (i) disproportionately likely to have drawn a lenient officer during their first

stop or (ii) highly selected as reoffenders despite receiving harsh sanctions. To circumvent

these selection issues, we leverage the treatment effect fadeout observed in figure 4. First, we

identify drivers with multiple citations in our main sample and then restrict to the within-

driver pair of stops that are the farthest apart in time. We drop drivers whose remaining pair

of stops are within one year of each other, leaving 142, 910 drivers (285,820 citations).11 The

idea of this approach is that, as we lengthen the time between stops, differential selection

due to treatment effects tends to zero. We choose the one-year minimum as a compromise

between preserving sample size and the treatment effect mostly, but not entirely, having

faded out after one year. We then estimate our main IV regression using this sample of

driver-stop pairs and including driver fixed effects. Panel (d) of figure A-6 illustrates the

underlying reduced form and reports the IV estimate, βIV = −0.012 (0.003), which is only

slightly smaller than our baseline estimate (−0.0146).

To address concerns about monotonicity violations, table A-5 reports results using both

a binary instrument and instruments recomputed within demographic cells. Recall that the

binary instrument, which compares drivers stopped by bunching and non-bunching officers,

satisfies monotonicity by construction because non-bunching officers never bunch drivers.

Another advantage of the binary instrument is that it satisfies a conventional randomiza-

tion test, as shown in table 2. Using the binary instrument gives βIV = −0.0213 (0.003),

which is about 50 percent larger than our baseline estimate. The bottom panel of table

A-5 shows results when recomputing our instrument as the leave-out harsh fine rate within

officer × demographic cells. IV estimates are comparable when computing the instrument

within racial groups (−0.0124), and slightly smaller when computing by gender (−0.011),

11This restriction applies only to stops that enter our main sample of focal FHP citations; it does
not restrict reoffending patterns generally. Drivers can still have reoffended after their first citation
outside of our main sample at any time.
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and smaller but still statistically significant when computing the instrument within race ×
gender interacted with age and income groups, (−0.008), with the caveat that our sample

size shrinks significantly in this regression.

4.5 Mechanisms

One potential mechanism underlying our estimated effects of sanctions on future driving

behavior is that harsher fines have deleterious effects on financial situations, causing changes

in life circumstances or causing individuals to stop driving because they can no longer afford

the associated costs (e.g., car payments, insurance, gas). However, as shown in figure A-7,

offender responses to harsher fines are nearly identical for higher and lower income individ-

uals, proxied with per capita income in the zip code of residence. Hence, a pure financial

mechanism is inconsistent with Mello (2021), who finds that negative effects of fines on

financial situations are concentrated among low-income drivers.

A mechanism that seems particularly consistent with the dynamic patterns in figure 4

is driver learning or updating (Libor & Traxler, 2021). After facing a harsh fine, drivers

update their beliefs about the expected costs of speeding and slow down accordingly, with

the update fading out over time. Another prediction of such a model is that drivers with

past exposure to harsh fines should respond less to subsequent harsh fines.

In practice, testing this prediction carries a few challenges. Differences between drivers

with different citation or offending histories is unlikely to be informative as these drivers

may differ on many dimensions. Instead, we want to compare drivers with varying (quasi-

random) exposure to officer stringency in the past. However, the treatment effects we observe

induce selection in these comparisons, because drivers cited by lenient officers are more likely

to reappear in the data. To mitigate selection issues, we focus on exposure to stringency

at least one year in the past, because treatment effects have largely faded as of one year

following a harsh citation (see figure 4). Specifically, we take the subset of drivers with an

FHP-issued citation at least one year prior (N = 216, 458). We then compare treatment

effects for drivers with and without past exposure to a stringent officer.

Results are shown in figure 5, which plots the reduced form and reports the IV estimate

for each group. The estimated effect of a harsh fine on one-year speeding recidivism is about

50 percent larger for drivers without a prior FHP ticket but no past exposure to non-bunchers

(βIV = −0.015) than for those previously exposed to stringent officers (βIV = −0.01). The

effect for the unexposed group is more precisely estimated (se = 0.004 v. se = 0.007), and

the effect for the exposed group is not statistically distinguishable from zero. While the

difference in the IV estimates across groups is not statistically significant, we take this as

evidence in favor of an updating hypothesis, similar to Libor & Traxler (2021).12

12Similarly, figure A-8 shows that harsh fines are associated with an 18 percent decline in recidi-
vism in the same county and a 4 percent decline in recidivism in other counties, suggesting that
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5 Deterrence and retribution

Having established that sanction decisions have important deterrence effects, we now turn

to an analysis of how officers allocate sanctions. We study how officers sort a set of offenders

into harsh versus lenient sanctions, with a particular interest in how the law enforcement

principles of deterrence and retribution shape these decisions.

We begin by presenting and estimating a model of marginal treatment responses (MTR)

and marginal treatment effects (MTE) to explore the potential reoffending outcomes of mo-

torists with varying propensities to be fined harshly. Motorists with the highest propensities

to be fined harshly, or those induced into treatment at the lowest values of our officer in-

strument, are those motorists most prioritized by officers for harsh sanctions. Hence, by

examining marginal treatment responses, we can learn about which drivers are prioritized

for harsh sanctions and, thereby, infer something about officer objectives. The logic of op-

timization tests based on marginal treatment responses originates with Roy (1951) and has

been applied in a variety of settings to examine heterogeneous treatment effects (see Cor-

nelissen et al. 2016 and Mogstad & Torgovitsky 2018 for a discussion of recent applications).

If officers sort drivers to maximize deterrence, they should prioritize issuing harsh sanc-

tions to the most responsive offenders. This sorting behavior would generate selection on

gains: we would expect to see the largest (most negative) treatment effects for the motorists

most likely to be sanctioned harshly. In the same potential outcomes framework, we as-

sert that officers maximizing retribution will prioritize punishing harshly the most frequent

offenders, or those most likely to reoffend, regardless of their responsiveness to sanctions.

Sorting to accomplish a retribution objective, then, generates selection on levels: motorists

most likely to be sanctioned harshly will be those with the highest reoffending rates.13

5.1 Estimating marginal treatment responses

Our aim is to identify counterfactual reoffending outcomes for individuals at the margin

of being treated (receiving a harsh fine) at each value of the stringency instrument. Each

individual has a pair of potential reoffending outcomes YD that are a function of treatment

status, D ∈ {0, 1}, denoting whether they received the harsh punishment. The realized

outcome can be written as the switching regression Yi = Y1Di + Y0(1−Di). We specify the

potential outcomes to have the form Yj = Xβj + Uj, where j indexes treatment status, βj

motorists update their area-specific beliefs about expected speeding costs.
13Note that the relevant law and economics literature does not map the notion of retribution to

a potential outcomes framework. In some treatments (e.g., Kaplow & Shavell 2006), retribution
captures any deviations from preferences for maximizing safety. We choose to model retributive
goals as a preference for punishing frequent offenders, which captures the notion of culpability
emphasized in the literature (e.g., Moore 2019). As note earlier, our finding that officer behavior
cannot be explained by deterrence goals alone is evidence in itself that officers incorporate some
notion of retribution into their punishment decisions.
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is a counterfactual-specific vector of coefficients on characteristics X, and Uj is a random

variable with E(Uj|X) = 0.

Treatment status follows a threshold crossing model, which is a function of characteristics

Z (which include X and our excluded instrument) and unobservable UD such that D =

I(µD(Z) > UD). Without loss of generality, we impose that UD has a uniform marginal

distribution, so that µD(Z) can be interpreted as a propensity score, which we denote by

P (Z). Each individual has a fixed value of UD, which we call their “resistance to treatment.”

The higher this value, the greater the realized value P (Z) must be for that individual to

take up treatment.

Our goal is to identify the expected value of the counterfactual outcomes of individuals

at each resistance to treatment:

E(Yj|X,UD) = Xβj + E(Uj|UD, X)

Following Mogstad et al. (2018), we label these the marginal treatment response (MTR)

functions. The difference in MTR functions is the marginal treatment effect (MTE):

MTE(X,UD) ≡ E(Y1 − Y0|X,UD) = X(β1 − β0) + E(U1 − U0|UD, X)

In our estimation, we make the simplifying assumptions that the unobserved components of

the MTRs are linear in UD and independent of X. This second assumption imposes that

all differences in counterfactual outcomes across observables are captured by the observable

components Xβj. We include in X our baseline set of beat-shift fixed effects.

We are interested in understanding how officers sort drivers into punishment, taking into

account all information available at the time of the traffic stop. Hence, we also do not

condition on driver covariates when estimating the marginal treatment effects. In figure

A-12, we show that our findings are similar when including driver covariates in X, which

results in MTRs and an MTE that reflect sorting within demographic groups rather than

across all individuals.

We describe in detail how we estimate the MTR and MTE functions in appendix C-1,

and we describe the approach here briefly. We estimate the MTRs function for Y0 and Y1

by taking the “separate” approach of Heckman & Vytlacil (2007b) and Brinch et al. (2017).

We first estimate the propensity score pi for each individual by regressing Di on beat-shift

fixed effects and the officer instrument in a linear probability model and then constructing a

predicted treatment D̂i ≡ pi. We then regress Yi on beat-shift fixed effects and the estimated

propensity score, and we restrict the sample to either untreated or treated drivers, Di = 0, 1,

corresponding to the Y0 and Y1 MTRs, respectively. The coefficients on the fixed effects give

us the level of the MTR, and the coefficient on the propensity score gives us its linear slope

term. We calculate the MTE as the difference between the two MTRs. We present the MTR

and MTE functions for the average values of the fixed effects over all drivers in the sample.

20



5.1.1 MTR results

Panel (a) of figure 6 presents the estimated marginal treatment response functions, E(Y |UD).

Motorists with lowest UD, or those most likely to be fined harshly, have the highest reoffend-

ing rates in either treatment state. In other words, the sorting of drivers into sanctions by

officers exhibits selection on levels, with officers most likely to issue harsh tickets to drivers

with the highest overall offending rates. Panel (b) of figure 6 plots the marginal treatment

effect, which is the difference between the untreated and treated counterfactual outcomes in

panel (a). The MTE becomes more negative as resistance to treatment increases, indicating

that motorists least likely to receive harsh fines actually are the most deterred by harsh

fines. Deterrence impacts for the motorists most likely to be sanctioned harshly (UD = 0)

are marginally positive and statistically indistinguishable from zero.

The pattern of inverse selection on gains implied by the downward sloping marginal treat-

ment effect curve rejects that officers sort drivers to maximize deterrence. The simultaneous

presence of selection on levels, moreover, reveals that officers face an explicit tradeoff between

maximizing deterrence and retribution objectives, because the most deterrable motorists are

those with lower overall reoffending levels.14

5.1.2 MTR robustness

There are two important caveats associated with our marginal treatment response estimates.

The first is that our baseline estimate imposes a possibly restrictive linear parametric struc-

ture on potential outcomes. In figure A-10, we present nonparametric estimates of marginal

treatment effects, which exhibit a similar downward slope to our baseline parametric estimate

in panel (b) of figure 6.

The second caveat is that the empirical model underlying our MTR estimates implies the

strict monotonicity of Imbens & Angrist (1994), since all individuals who take up treatment

at a given value of P (Z) would also take up treatment at greater values (Vytlacil, 2002). In

our setting, this is a very strong assumption that warrants caution. To probe the sensitivity

of our estimates to the monotonicty assumption, we exploit a unique feature of our setting,

the full support of our stringency instrument, to estimate a version of the MTE that satisfies

monotonicity by construction, which we describe in detail in appendix C-2.

The idea of our approach is to estimate the impact on offending of being counterfactually

reassigned from an officer with Z = 0 to an officer with Z = ε, where ε is small and positive.

This yields an estimate of the marginal treatment effect at Z ≈ 0 which satisfies monotonicity

because P (D|Z = 0) = 0. We can estimate the marginal treatment effect at Z ≈ 1 following

the same logic and estimate the slope of the MTE curve using these two points. Figure

14Figure A-11 also rules out a competing hypothesis that officers sort motorists with goal of
minimizing time in traffic court. Drivers with the lowest resistance to treatment have the largest
(positive) treatment effects of harsh fines on court contesting.
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A-10 plots the estimated MTE’s from this “tails” approach. The slope of our baseline linear

MTE is −0.066 and the implied MTE slope from the “tails” approach is −0.109. Hence, our

conclusion that the MTE is downward-sloping, inconsistent with deterrence maximization

by officers, is unaltered by this monotonicity correction.

5.1.3 Characteristics of marginal compliers

To further explore how officers sort drivers into sanctions, we estimate the characteristics

of marginal compliers, or motorists on the margin of receiving a harsh fine at each level

of resistance to treatment. Our approach to estimating marginal complier characteristics,

which follows directly from our strategy for estimating marginal treatment responses, is

described in appendix C-3. By observing how complier characteristics change with resistance

to treatment, we can ascertain the characteristics of motorists prioritized for harsh sanctions.

Panel (a) of figure 7 illustrates a stark, negative relationship between offending history

and marginal compliance. Compliers at the lowest levels of resistance, or drivers most

prioritized for harsh sanctions, are significantly more likely to have been cited in the past

year than compliers at the highest levels of resistance of treatment. Panel (b) illustrates a

similar relationship for offense severity, or the driving speed relatively to the posted limit.

Recall that offense severity is unobserved for the subset of bunched drivers, but the average

speed of marginal compliers can be estimated based on the speeds of the unbunched drivers.

The priority that officers place on offending history and severity when issuing harsh fines

further illustrates the notion of retributive preferences particularly well.15

Importantly, officer sorting of drivers based on offending history cannot solely explain

the selection on levels that we observe in the estimated MTR’s. In figure A-14, we show

that the marginal treatment response functions exhibit strikingly similar patterns when

examining only the subsample of drivers without a citation in the past year. In other words,

even among motorists with no recent offending history, officers are able to prioritize likely

recidivists for harsh punishments. Moreover, the similarity of the MTR’s for this sample

rules out a competing explanation for the shape of the MTR, which is the hypothesis that

the most-punished individuals have smaller learning responses to harsh fines because of their

prior experience with speeding sanctions.

5.2 Officer decision model

While the downward-sloping marginal treatment effect rules out that officers sort drivers

on deterrability alone, officers may still consider a combination of deterrence and fairness

benefits when sorting drivers into sanctions. In this section, we present a simple model of

how officers decide whom to sanction harshly. We allow officers to value both deterring crime

15We also compute demographic characteristics of marginal compliers, presented in figure A-13,
but defer a discussion of these results to section 5.4.
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and punishing individuals with high offending rates, which they balance against a private

cost of issuing harsh punishments. We then compare the implications of this model with our

MTR’s and ask which officer preferences are consistent with our empirical estimates.

Officer j is randomly matched to driver i. The driver is defined by a pair of binary

potential outcomes, (Yi0, Yi1) ∈ {0, 1}2, which indicate whether the driver will reoffend after

the stop if receiving the lenient or harsh punishment, respectively. The officer does not

necessarily see the driver’s true values for Yi0, Yi1 but instead sees signals of each outcome,

Ŷi0, Ŷi1, which are drawn from a cumulative distribution function F (Ŷi0, Ŷi1) and reflect the

expected value of each outcome: E(Yik|Ŷik) = Ŷik, k = 0, 1.16

Officers receive some utility from issuing the harsher punishment, which is increasing in

the individual’s expected offending rate Ŷi0 and in the (negative of the) treatment effect of

punishment:

u = λŶi0 − (1− λ)(Ŷi1 − Ŷi0)− cj

The parameter λ reflects the relative weight an officer places on punishing individuals likely

to reoffend versus punishing deterrable individuals. If officers have λ = 1, they care only

about retribution, and λ = 0 indicates that they care only about deterrence. This weight is

our main object of interest.

The utility of issuing the non-harsh punishment is normalized to zero, which leads to the

punishment rule D = I(λŶi0−(1−λ)(Ŷi1− Ŷi0) ≥ cj) for a given driver. Similarly, an officer’s

probability of harsh punishment is given by θj = Pr(λŶi0 − (1 − λ)(Ŷi1 − Ŷi0) ≥ cj). We

suppose that all variation across officers in their behavior is due to differences in cj, so that

all officers have the same skill in identifying a driver’s potential outcomes (i.e., face the same

posterior distribution F (Ŷi0, Ŷi1)) and face the same trade-off between targeting levels and

differences in reoffending. This assumption means that the values of θ and c are one-to-one,

and we can write one as an invertible function of the other, θ = g(c), c = g−1(θ).

Our goal is to map this model onto our estimated marginal treatment response functions

to identify the values of λ that are consistent with the data. The model outputs that

corresponds to these estimates are the values of treated and untreated offending rates for

16This formulation of the information structure is general, and it can represent more specific
models where the officer observes a signal S of Yi(0), Yi(1) and constructs posteriors E[Yi(0)|S],
E[Yi(1)|S]. For example, an alternative model is that officers observe noisy signals, Ỹ0 = Y0+εi0 and
Ỹ1 = Y1+εi1, where the error terms are mean zero and jointly normal, with variances σ2

0 and σ2
1 and

correlation coefficient ρ. The officer would then take these noisy signals and, with the baseline rates
of each pair of potential outcomes, infer values for the true potential outcomes, E(Y0|Ỹ0, Ỹ1) ≡ Ŷ0
and E(Y1|Ỹ0, Ỹ1) ≡ Ŷ1. This model generates a joint CDF of the signals F (Ŷ0, Ŷ1) for a given set of
model parameters. However, only a subset of functions F (Ŷ0, Ŷ1) can be represented by this signal
structure. We therefore allow for any distribution of posteriors and do not explicitly model the
signals and officer inference.
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individuals who are at the margin of punishment for officers at a given propensity to treat:

hk(θ) ≡ E
$
Yk | λŶ1 − (1− λ)(Ŷ1 − Ŷ0) = g−1(θ)

%
, k ∈ {0, 1}

Because the MTR functions are estimated with linear specifications, they are each charac-

terized by two moments. Our model is therefore constrained to match four moments. The

model contains the weight parameter λ and the distribution of signals F (Ŷi0, Ŷi1). Unless we

place substantial restrictions on the distribution of signals by parameterizing it with three or

fewer parameters, the model parameters are not point identified from the marginal treatment

responses. However, they may provide informative bounds on their true values. We focus,

in particular, on estimating the identified region for λ. We do so by solving optimization

problems to find the smallest and largest values of λ such that, for some corresponding distri-

bution of signals F (Ŷi0, Ŷi1), hk(θ) falls within the confidence intervals of the four empirical

MTR moments. The details of the model estimation are presented in appendix C-4.

We estimate that λ lies in the interval [0.61, 1]. For the lowest value, officers place a

higher weight on retribution than deterrence but value both objectives. Because the MTR

functions show that drivers most likely to be punished have the highest values of Y0, the data

are also consistent with λ = 1, meaning that officers place no weight on the deterrability

of motorists. Importantly, our estimates do rule out the possibility that officers care only

about deterrence, as λ = 0 is inconsistent with the fact that deterrability is highest among

motorists less likely to be sanctioned harshly.

5.3 Efficiency costs of retribution

We now consider the impact of changing how officers sort drivers into sanctions and ask

how the reoffending levels and responses of treated and untreated motorists change. We

conduct two related counterfactuals. First, we consider a case where officers sort drivers in

reverse order, so that a driver’s new (counterfactual) resistance to treatment is ũ = 1 − u.

or example, a driver with u = 0.1 is induced into treatment by a propensity score of p > 0.1,

and we now suppose they have ũ = 0.9 and are only induced into treatment by a propensity

score of p > 0.9. This reversal leads to a mirroring of the marginal treatment responses, so

that drivers least resistant to treatment now are more deterred and less likely to reoffend

with either treatment status. Second, we conduct a counterfactual using our estimated officer

decision model, setting λ = 0. We do so for every set of parameter values in our partially

identified set, meaning that our estimates will yield a range of counterfactual outcomes. In

both calculations, we assume the overall probability of treatment (receiving a harsh fine) is

the same as the observed probability.

These exercises speaks directly to the efficiency costs associated with the retributive

preferences of officers by quantifying the additional number of traffic offenses that occur

relative to counterfactual scenarios where drivers are sorted into sanctions in a way that
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generates selection on gains. Note that these counterfactuals differ from the typical calcu-

lations made with marginal treatment effects, which consider the impact of changes to the

distribution of treatment probabilities but hold fixed the resistance to treatment of each

individual (Cornelissen et al., 2016; Mogstad & Torgovitsky, 2018).

The counterfactual estimates are presented in table 4. The first row presents the baseline

reoffending rates and responses of individuals treated and untreated with the harsher pun-

ishment, where we use the estimates from the MTR functions. Again, treated drivers have

higher ex-post offending rates than the untreated (0.376 v. 0.327) and are less deterrable

(−0.001 v. −0.038). The second row shows the range of corresponding values when drivers

are now sorted using their reversed resistance to treatment. Treated drivers are now more

deterrable than the untreated (0 − 0.027 v. 0.01). Unsurprisingly, this improved targeting

leads to a lower overall reoffending rate of 0.341, relative to 0.358 observed in the data, a

1.7 percentage point (4.7 percent) reduction. However, the treated individuals are now safer

drivers than the untreated, with an offending rate of 0.342 versus 0.392.

The third row shows the range of corresponding values from the officer decision model

when λ is set to 0. The same tradeoff as in the previous counterfactual is apparent. The

offending rate of treated individuals falls to between 0.335 and 0.338, and the untreated

individuals are now worse offenders, with reoffending rates in the range of 0.362 to 0.363.

As expected, the deterrability of treated drivers increases substantially in magnitude, from

−0.001 to a range of −0.032 to −0.026. In contrast, the deterrability of the untreated

motorists decreases from −0.038 to a range of −0.010 to −0.005.

The improved targeting of harsh sanctions towards more deterrable drivers translates

into fewer traffic offenses, with the overall offending rate declining from 0.358 to a range

between 0.332 and 0.337. Hence, the weight that officers place on retribution goals carries

meaningful efficiency costs. Current officer practices forgo a 2.1 to 2.6 percentage point (5.8

to 7.3 percent) decline in the reoffending rate as a result of not prioritizing deterrence alone.

5.4 Racial implications of retributive preferences

Given sizable differences in criminal justice outcomes across racial groups more broadly, as

well as in the context of speeding enforcement specifically (e.g., Goncalves & Mello 2021),

an interesting question is the role that retribution versus deterrence goals play in explaining

racial disparities. In our sample, Black and Hispanic drivers are about 7.5 percentage points

(12 percent) more likely than white motorists to be issued a harsh fine.

Figure A-13, which presents the demographic characteristics of marginal compliers, illus-

trates that younger, male, Black, and Hispanic drivers are prioritized for harsh sanctions.

These gradients are significant; at the lowest levels of resistance, Black (Hispanic) drivers

make up 18 (21) percent of compliers, whereas at the highest levels of resistance, Black

(Hispanic) drivers make up 13 (17.5) percent of compliers. Further, as shown in figure A-15,
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Black and Hispanic drivers exhibit higher rates of reoffending but nearly identical respon-

siveness to harsh fines, suggesting that some of the racial gap in treatment may be explained

by officer preferences for retribution.

A full examination of how officer objectives shape racial disparities in policing is beyond

the scope of our paper. As a first step, however, we consider how the racial disparities

in sanctions are affected in the simple counterfactual where officers sort drivers in reverse

order. Results are presented in table 5. In the data, Black drivers are more likely to receive

a harsh ticket than non-Black drivers in the same beat-shift (0.70 v. 0.65).17 This gap flips

when drivers are sorted in reverse (0.617 v. 0.665). Similarly, Hispanic drivers are more

harshly punished in our data than non-Hispanics (0.676 v. 0.653), which also reverses in

our counterfactual (0.636 v. 0.663). Notably, these racial gaps are reversed while overall

offending declines, as shown in table 4.

This analysis relates to two recent papers that consider the equity and efficiency impli-

cations of criminal justice policy. Rose (2021) documents the racially disparate impact of

probation rules that trigger a prison sentence. Further, he shows that a narrowing of the

set of offenses that trigger a sentence reduces the racial gap in incarceration at the cost of

a small increase in overall offending. Feigenberg & Miller (2021), in the context of police

vehicle searches for contraband, show that racial gaps in search rates can be narrowed while

actually increasing the efficacy of searches, since the marginal search of minority drivers is

less productive than the marginal search of white drivers. Similarly, our simple calculation

shows the possibility for changes in police practices that reduce racial gaps in treatment

while simultaneously improving efficiency.

6 Conclusion

In this paper, we study how the law enforcement principles of deterrence and retribution

shape the behavior of police officers wielding discretion over sanctions for speeding offenses.

First, relying on variation across officers in the propensity to issue harsh fines, we show that

sanction decisions have important deterrence effects. Comparing motorists cited at the same

time in the same area by officers of varying stringency, we find that higher fines reduce the

likelihood of a new traffic offense (ε = −0.07), a new speeding offense (ε = −0.13), and crash

involvement (ε = −0.04) in the following year.

We then use a marginal treatment effects approach to examine how reoffending levels and

responses vary with the propensity to be sanctioned harshly. Based on an underlying Roy

(1951) framework, this exercise yields insights about how officers sort offenders into harsh

17These numbers are calculated by taking the values for E(Black|X,UD), where UD is re-
sistance to treatment, described in section C-3. We then calculate E(Black|X,Treat) and

E(Treat|X,Black) = E(Black|X,Treat) × Pr(Treat)
Pr(Black) . We include in X the beat-shift fixed effects

and report estimates for the average value of the fixed effects.
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versus lenient sanctions. Motorists most likely to be sanctioned harshly are those with the

highest probability of reoffending, suggesting that officers prioritize frequent offenders when

issuing harsh punishments. In other words, officers appear interested in targeting harsh fines

to the “worst” offenders, which we interpret as consistent with retributive preferences.

On the other hand, we observe inverse selection on gains, with offenders least likely to be

sanctioned harshly exhibiting the largest treatment effects. This pattern is inconsistent with

deterrence maximization by officers; officers allocating sanctions to maximizing safety should

prioritize punishing the most deterrable offenders. Moreover, the simultaneous presence of

selection on levels and inverse selection on gains implies that officers face an explicit trade-

off between deterrence and retributive goals, because the subpopulations with the highest

reoffending rates and the highest reoffending responses are different.

Given that officers face such a tradeoff, we write down and estimate a model of sanction

choices. In the model, an officer observes noisy signals of a motorist’s potential outcomes and

chooses whom to sanction harshly based on a weighted average of expected reoffending rates

and responses. We interpret the weight that officers place on reoffending rates as the weight

they place on achieving retribution, as opposed to deterrence, goals. Matching the model

parameters with the moments of our estimated marginal treatment response functions, we

find that officers place at least as much weight on retribution as deterrence goals when issuing

harsh sanctions. Further, we cannot rule out that officers care solely about retribution.

We use our model estimates to quantify the efficiency costs associated with officers’ re-

tributive preferences by asking how the reoffending rate changes in a counterfactual scenario

where officers consider only deterrence goals when allocating harsh fines. We find that cur-

rent officer practices forgo about a six percent decline in the reoffending rate that could

be achieved by targeting harsh fines towards more deterrable drivers. Finally, we provide

suggestive evidence that changes in officer preferences could increase efficiency while also

reducing racial disparities in treatment.
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Table 1: Summary Statistics

By Fines
(1) (2) (3)
All Discounted Harsh

Panel A: Demographics

Female 0.384 0.415 0.368

Age 36.47 36.98 36.20

Age Missing 0.0002 0.0002 0.0002

Race = White 0.474 0.525 0.448

Race = Black 0.154 0.157 0.152

Race = Hispanic 0.187 0.144 0.209

Race = Other 0.041 0.034 0.044

Race = Unknown 0.144 0.140 0.147

Panel B: Socioeconomic Status

Zip Income 57962 56459 58745

Zip Income Missing 0.101 0.107 0.097

Vehicle Value 17807 17297 18073

Vehicle Info Missing 0.143 0.139 0.145

Panel C: Offending History

Prior Prison Spell 0.0001 0.0001 0.0001

Speeding Past Year 0.179 0.158 0.189

Other Past Year 0.253 0.226 0.268

Crash Past Year 0.071 0.067 0.074

Panel D: Offense Characteristics

MPH Over Posted 15.62 9.00 19.06

Fine Amount 207.70 123.00 251.79

Contest in Court 0.289 0.222 0.323

Observations 1,693,436 579,755 1,113,681

N otes: This table reports sample means fo the main sample. See table A-1 for officer characteristics.
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Figure 1: Distribution of Charged Speeds

(a) Full Sample
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(b) By Officer Type
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N otes: This figure plots the distribution of charged speeds on FHP-issued speeding citations in
Florida. Dashed red line shows the fine schedule (right axis). Panel (a) shows the aggregate
distribution, while panel (b) disaggregates the distribution by whether an officer is classified as
lenient or non-lenient, using the method described in section 3.2.
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Figure 2: Instrument Validity

(a) Ticketing Frequency: All Offenses
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(b) Ticketing Frequency: Speeding
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(c) Predicted Reoffending

β = 0.00001 (0.0011)

.1
7

.1
75

.1
8

Pr
ed

ict
ed

 R
eo

ffe
nd

in
g

-.5 -.25 0 .25 .5
Officer Stringency

N otes: Average daily citations is an officer’s mean number of citations issued per day. Adjusted
monthly citations is an officer’s mean number of citations per month, adjusted for beat-shift fixed
effects. Predicted reoffending is the predicted probability of a new speeding offense in the next year
obtained from a regression of reoffending on the full set of driver characteristics, using a holdout
sample of only lenient (bunching) officers.
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Table 2: Randomization Test

(1) (2) (3) (4)
Reoffend Harsh Fine Stringency 1[Stringent]

Female -0.0328 -0.0235 -0.00115 0.00160
(0.000692) (0.00173) (0.000930) (0.00130)

Age -0.00338 -0.00227 0.000273 -0.000539
(0.000120) (0.000272) (0.000171) (0.000256)

Age Squared 0.0000113 0.0000148 -0.00000296 0.00000586
(0.00000132) (0.00000267) (0.00000165) (0.00000258)

Race = Black 0.0244 0.0203 -0.000373 0.00408
(0.00105) (0.00270) (0.00176) (0.00242)

Race = Hispanic 0.0104 0.0344 0.00635 0.000649
(0.00103) (0.00290) (0.00212) (0.00295)

Race = Other 0.00696 0.0347 0.00583 0.00101
(0.00156) (0.00275) (0.00176) (0.00250)

Race = Unknown 0.00867 0.00506 0.00377 0.00130
(0.00228) (0.00550) (0.00266) (0.00374)

Prior Prison Spell 0.0700 -0.0135 0.0155 0.00844
(0.0354) (0.0267) (0.0148) (0.0230)

County Resident 0.0107 -0.0186 -0.00587 -0.00310
(0.00107) (0.00309) (0.00265) (0.00441)

Log Zip Income 0.00757 0.0102 0.00488 -0.00180
(0.000782) (0.00211) (0.00164) (0.00194)

Log Vehicle Price 0.0174 0.0198 0.00489 -0.00160
(0.000716) (0.00160) (0.00123) (0.00192)

Speeding Past Year 0.105 0.0247 0.000940 0.000603
(0.00108) (0.00158) (0.000654) (0.00110)

Other Past Year 0.0676 0.0150 -0.000780 0.00201
(0.000857) (0.00115) (0.000728) (0.00118)

Crash Past Year 0.0210 0.00737 0.000977 0.000723
(0.00130) (0.00132) (0.000769) (0.00113)

Mean .172 .658 .658 .763
F-Stat 1736.41 29.27 2.67 .88
F-test <.0001 <.0001 .0002 .5978
Beat-Shift FE Yes Yes Yes Yes
Officers 1960 1960 1960 1960
Observations 1693436 1693436 1693436 1693436

N otes: Standard errors two-way clustered at the officer and driver level in parentheses. Regressions
also include indicators for missing age (<1%), missing zip code income (≈ 10%), and missing vehicle
information (≈ 14%); joint significance tests include these variables.
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Figure 3: Distribution of Instrument and First Stage
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N otes: Figure illustrates a histogram of the officer stringency instrument, residualized of beat-shift
fixed effects (left axis) and the first stage relationship between stringency and the probability of a
harsh fine, both residualized of beat-shift fixed effects (right axis). Local means are denoted by blue
circles and the green line shows a non-parametric fit, with 95 percent confidence intervals indicated
by a dashed line. Graph reports the linear first stage estimate and associated F -statistic.
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Figure 4: Reduced Form Over Time
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N otes: This figure reports coefficients on officer stringency from regressions of indicators for whether
the driver received a speeding citation in each quarter relative to the date of their focal FHP citation.
τ = 0 denotes the exact date of the focal FHP citation (one day only, where all motorists receive a
citation so the effect of stringency is zero by construction). Regressions also include beat-shift fixed
effects. Shaded region denotes 95 percent confidence intervals, constructed from standard errors
two-way clustered at the officer and driver level. First quarter effect is βRF = −0.0066 (0.0015);
lenient µ = .054. Identical figures for other outcomes are shown in figure A-5.
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Table 3: Effect of Harsh Fines, IV Estimates

IV Estimates
(1) (2) (3) (4)

Lenient Mean βIV βIV ε

Any Violation 0.347 -0.0177 -0.0160 -0.069
(0.0017) (0.0016) (0.007)

Speeding Violation 0.170 -0.0146 -0.0145 -0.128
(0.0013) (0.0013) (0.012)

Other Violation 0.256 -0.0119 -0.0098 -0.057
(0.0016) (0.0015) (0.009)

Moving Violation 0.280 -0.0143 -0.0136 -0.073
(0.0016) (0.0016) (0.008)

Non-Moving Violation 0.160 -0.0124 -0.0104 -0.097
(0.0013) (0.0013) (0.012)

Crash Involvement 0.080 -0.0029 -0.0022 -0.041
(0.0010) (0.0010) (0.018)

Contest in Court 0.262 0.1125 0.1093 0.626
(0.0014) (0.0014) (0.008)

Controls No Yes Yes
Beat-Shift FE Yes Yes Yes
Observations 1693436 1693436 1693436

N otes: This table reports IV estimates of the impact of receiving a harsh fine on one-year reoffend-
ing. Standard errors two-way clustered at the officer and driver level in parentheses. First stage
estimates are β = 0.944 (0.006) without controls and β = 0.943 (0.006) with controls. See table
A-4 for the full set of first stage and reduced form estimates with and without controls. Implied
elasticities are computed as β̂IV × ¯fine/ȳ, where β̂IV is estimated using the statutory fine as the
treatment variable and the means are the lenient officer means.
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Figure 5: Impacts by Past Stringency Exposure
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Past Exposure: βIV = -0.010 (0.007)
No Past Exposure: βIV = -0.015 (0.004)

N otes: This figure is based on a subset of main sample citations where the driver has at least one
FHP speeding citation with an identifiable officer more than one year ago (N = 204, 295). Green
diamonds and associated green line plot the relationship between stringency and one-year speeding
recidivism (focal citation) for the subgroup with past exposure to a stringent (non-bunching) officer;
blue circles and associated blue line plot the relationship between between stringency and one-year
speeding recidivism (focal citation) for the subgroup with no past exposure to a stringent (non-
bunching) officer.
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Figure 6: Marginal Treatment Response Functions

(a) Marginal Treatment Responses
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(b) Marginal Treatment Effects
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N otes: Outcome is any new traffic offense in the following year. Figures reports estimated marginal
treatment responses (panel a) and marginal treatment effects (panel b) obtained via the method de-
scribed in section 5.1. Shaded regions denote 95% confidence intervals computed via bootstrapping.
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Figure 7: Marginal Complier Characteristics

(a) Citation in Past Year
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N otes: Figure reports characteristics of marginal compliers; specifically the average characteristics
of compliers at a given resistance to treatment, estimating using the method described in appendix
C-3. Shaded region denotes 95% confidence intervals obtained via bootstrapping. Identical figures
for motorist demographic characteristics are presented in figure A-13.
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Table 4: Model Counterfactual

Treated Untreated
(Harsh Punishment) (Lenient Punishment) Overall

Y0 Y1 − Y0 Y0 Y1 − Y0 Y

Baseline 0.376 −0.001 0.327 −0.038 0.358
[0.370, 0.381] [−0.006, 0.005] [0.324, 0.329] [−0.043, −0.032]

Reverse Resistance 0.342 −0.027 0.392 0.010 0.341
To Treatment [0.339, 0.343] [−0.030, −0.023] [0.383, 0.398] [0.004, 0.019]

λ → 0 [0.335, 0.338] [−0.032,−0.026] [0.362, 0.363] [−0.010,−0.005] [0.332, 0.337]
(pure deterrence
objective)

Notes: Table presents the expected level of offending and deterrability of drivers, separately by treated and
untreated. The second row shows these numbers for the counterfactual where officers care solely about
deterrability and not about level of offending.
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Table 5: MTE Counterfactual and Driver Race

Share Harsh Punishment

Reverse Resistance
Baseline to Treatment

Black 0.700 0.617
Non-Black 0.650 0.665

Hispanic 0.676 0.636
Non-Hispanic 0.653 0.663

Notes: Table presents the rates of harsh punish-
ment for drivers, separately by driver race. The
first column presents the rates of punishment in
the data, and the second column presents the
rates using the counterfactual where resistance
to treatment is reversed. Further details are pro-
vided in Section 5.4.
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A Appendix Figures and Tables

Table A-1: Relationship between Lenience and Officer Characteristics

Binary Continuous

(1) (2) (3) (4) (5)
Mean Lenient Raw Adjusted Weighted

Female 0.0893 -0.0704 -0.0508 -0.0356 -0.00342
(0.0366) (0.0266) (0.0161) (0.00388)

Race = Black 0.143 -0.0916 -0.0289 -0.00800 0.00550
(0.0297) (0.0231) (0.0142) (0.00291)

Race = Hispanic 0.169 -0.0933 -0.0771 0.0117 0.00921
(0.0693) (0.0564) (0.0359) (0.00707)

Race = Other 0.191 -0.0120 -0.0193 -0.0186 -0.00134
(0.0655) (0.0544) (0.0350) (0.00724)

Age 34.06 -0.0203 -0.0236 0.00982 0.00739
(0.0561) (0.0478) (0.0288) (0.00630)

Experience 7.09 -0.117 -0.0778 -0.0345 -0.000948
(0.0388) (0.0324) (0.0214) (0.00616)

Any College 0.319 -0.00798 -0.0114 -0.00228 0.00493
(0.0213) (0.0171) (0.0108) (0.00279)

Mean — 0.753 0.353 0.005 0.006
Officers 1960 1960 1960 1960 1958

N otes: Robust standard errors in parentheses. Age and experience are in years/10 and are com-
puted as of January 2007. Raw lenience is the fraction of an officer’s tickets that are bunched and
adjusted lenience is the fraction of an officer’s tickets that are bunched, residualized of location-time
fixed effects. In column 4, the regression is weighted by one over the variance of adjusted lenience.
Regressions also included quadratic terms in age and experience, which are are statistically insignif-
icant in all cases.
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Table A-2: Naive OLS Estimates

(1) (2) (3) (4)
Reoffend Reoffend Reoffend Reoffend

Fine ($100s) 0.0201 0.0306 0.00905 0.0165
(0.00153) (0.00121) (0.00108) (0.000966)

Mean 0.161 0.161 0.161 0.161
Controls No No Yes Yes
Officer FE No Yes No Yes
Beat-Shift FE Yes Yes Yes Yes
Observations 1693435 1693435 1693435 1693435

N otes: Standard errors two-way clustered at the officer and driver level in parentheses. Dependent
variable is an indicator for a new speeding offense in the next year. The reported mean is the mean
for drivers cited at 9 MPH over the limit.
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Table A-3: First Stage Estimates Across Subsamples

Subgroup
(1) (2)
= 1 = 0

Female 0.970 0.928
(0.007) (0.007)

Age > 30 0.957 0.927
(0.007) (0.007)

Race = White 0.954 0.934
(0.008) (0.007)

Race = Black 0.922 0.948
(0.010) (0.006)

Race = Hispanic 0.923 0.948
(0.008) (0.007)

Race = Other 0.916 0.945
(0.015) (0.006)

Race = Unknown 0.964 0.941
(0.016) (0.007)

County Resident 0.972 0.925
(0.007) (0.007)

Zip Income > 50K 0.946 0.942
(0.007) (0.007)

Vehicle > 20K 0.916 0.953
(0.009) (0.006)

Citation Past Year 0.913 0.961
(0.007) (0.007)

N otes: Standard errors two-way clustered at the officer and driver level in parentheses. First
stage estimate for the full sample is βFS = 0.944 (0.006). Each coefficient is from a separate
regression of 1[harsh] on the stringency instrument and beat-shift fixed effects using only the
denoted subsample.
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Table A-4: First Stage and Reduced Form Estimates

(1) (2) (3)
Lenient Mean β β

Panel A: First Stage

Harsh Fine 0.5573 0.9441 0.9432
(0.0064) (0.0064)

Fine Amount 194.309 122.341 122.209
(1.206) (1.190)

Fine Amount (Paid) 167.187 95.819 96.062
(1.414) (1.407)

DL Points 3.416 0.7152 0.7142
(0.0140) (0.0138)

DL Points (Accrued) 1.683 -0.0362 -0.0275
(0.0164) (0.0154)

Panel B: Reduced Form
Any Violation 0.3471 -0.0177 -0.0160

(0.0017) (0.0016)

Speeding Violation 0.1702 -0.0146 -0.0145
(0.0013) (0.0013)

Other Violation 0.2563 -0.0119 -0.0098
(0.0016) (0.0015)

Moving Violation 0.2801 -0.0143 -0.0136
(0.0016) (0.0016)

Non-Moving Violation 0.1602 -0.0124 -0.0104
(0.0013) (0.0013)

Crash Involvement 0.0799 -0.0029 -0.0022
(0.0010) (0.0010)

Contest in Court 0.2620 0.1125 0.1093
(0.0014) (0.0014)

Controls No Yes
Beat-Shift FE Yes Yes
Officers 1960 1960
Observations 1693436 1693436

N otes: Standard errors two-way clustered at the officer and driver level in parentheses. This
table reports first stage and reduced form regression estimates. Each coefficient is from a separate
regression of the stringency instrument on the denoted outcome.
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Table A-5: Robustness, Alternative Instruments

F Stat
(1) (2) (3) (4)

Instrument N Balance FS βIV
Leave-Out Mean 1693436 2.67 21965 -0.0146

(0.00134)

Leave-Out Mean (Residualized) 1693436 2.51 25277 -0.0171
(0.00134)

Binary 1693436 0.88 289 -0.0213
(0.00321)

Officer Dummies 1693436 2.67 701289 -0.0168
(0.00131)

Leave-County-Out Mean 1500469 1.54 626 -0.0164
(0.00194)

Within Demographics

Race 1364592 3.43 19162 -0.0124
(0.00149)

Gender 1691486 3.76 22054 -0.0108
(0.00134)

Race × Gender 1333296 3.44 18196 -0.00901
(0.00151)

Race × Gender × Age × Income 320505 2.18 1670 -0.00774
(0.00368)

N otes: This table shows how results vary under different computations of the stringency instrument.
Columns 2 and 3 report F-statistics associated with a joint balance test and the first stage; column
4 reports the IV estimate for one-year speeding recidivism. Row 1 reports results corresponding
to the main instrument. In row 2, the instrument is the leave-out-mean after residualizing out
beat-shift effects (e.g., Dobbie et al. 2018). Row 3 uses a binary instrument and row 4 uses the
full set of officer dummies as instruments. Row 5 computes the instrument as the leave-county-
out mean. Rows 6-9 show results when the instrument is computed as the leave-out mean within
demographic cells. When computing the instrument within racial groups, we keep only white,
Black, and Hispanic drivers. Age and income are binary categories split at the sample medians.
Randomization statistics for within-covariate instruments exclude demographics.

48



Table A-6: Robustness, Alternative Fixed Effects

F Stat
(1) (2) (3) (4)

Fixed Effects N Balance FS βIV

Troop ×
Highway × Year-Month × Weekend × Shift 1693436 5.893 41887 -0.0065

(0.0011)

Posted × Year-Month × DOW × Shift 1668353 6.485 32464 -0.0113
(0.0013)

County ×
Year 1693436 2.869 22461 -0.0118

(0.0012)

Highway × Year-Month × Weekend × Shift 1693436 2.666 21965 -0.0146
(0.0013)

Highway × Year-Month × DOW × Shift 1661392 2.859 21532 -0.0152
(0.0014)

Posted × Year-Month × DOW × Shift 1589646 3.164 17125 -0.0181
(0.0016)

Posted × Exact Date × Shift 1429351 3.303 11702 -0.0193
(0.0021)

Road Segment × County

Highway × Year-Month × Weekend × Shift 219470 1.562 1217 -0.0140
(0.0053)

Posted × Exact Date × Shift 164470 0.810 612 -0.0069
(0.0098)

N otes: Same as table A-5 except that this table holds the stringency instrument constant and varies
the level of the beat-shift fixed effects. Posted refers to the posted speed limit and Highway =
1[posted ≥ 55]. Road segments coded only for the subset of the sample with GPS coordinates.
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Figure A-1: Across-Officer Distribution of Bunching Propensity

(a) Raw Bunching Propensity
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(b) Adjusted Bunching Propensity
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(c) Estimated Officer Effects
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N otes: Panel (a) plots the officer-level distribution of the share of tickets bunched. Panel (b) plots
the officer-level distribution of bunching propensity, adjusted for location-time effects. Panel (c)
reports estimated officer effects from a regression of 1[bunchijs] on officer fixed effects, location-
time fixed effects, and the full set of driver covariates, as described in section 3.2. The solid blue
illustrates the distribution of raw officer effects and the dashed green line illustrates the distribution
of effects after applying Empirical Bayes shrinkage (Morris, 1983).
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Figure A-2: Within-Officer Correlation in Bunching Propensity

(a) Locations
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(b) Time Periods

Unweighted: β = 0.788 (0.019)
Weighted: β = 0.815 (0.026)
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N otes: Dashed red line is the 45-degree line. This figure splits each officer’s sample of citations into
two groups and illustrates the correlation in (residualized) bunching propensity across groups. In
panel (a), the groups are constructed as location partitions, with each partition comprised of half
of an officer’s patrol locations. In panel (b), the groups are constructed as time partitions, with the
x and y-axes corresponding to the officer’s first and second half of tickets over time, respectively.
Each figure reports the raw linear regression coefficient as well as the linear regression coefficient
when weighting by the total number of citations. Another way to note the stability over time in an
officer’s bunching propensity is to regress 1[bunchijs] on beat-shift fixed effects, officer fixed effects,
and a quadratic in officer experience (in months). The p-value on each experience term is > 0.45
and the joint test p-value = 0.7855. In other words, after conditioning on officer identity, there is
no experience profile in the likelihood of a bunched ticket.
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Figure A-3: First Stage Estimates, Sanction Measures

(a) Statutory Fine Amount
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(b) Paid Fine Amount

β = 0.958 (0.014)
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(c) Statutory DL Points

β = 0.715 (0.014)
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(d) Accrued DL Points

β = -0.036 (0.016)
F =      5
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N otes: Each panel shows an identical to plot figure 3 but replaces the outcome variable with a
different sanctions measure. In panel (a), the outcome is the statutory fine based on the charged
speed. In panel (b), the outcome is the effective fine amount, taking into account the ex-post court
outcomes of offenders. In panel (c), the outcome is statutory driver license points based on the
points schedule. In panel (d), the outcome is accrued DL points, taking into account the ex-post
court outcomes of offenders. See appendix section B-1 for details on the computation of effective
sanction measures (paid fines and accrued points).
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Figure A-4: Reduced Form Estimates

(a) Speeding Offense
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(b) Non-Speeding Offense
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(c) Crash Involvement
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(d) Contested Citation
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μ = 0.262

-.0
75

-.0
5

-.0
25

0
.0

25
.0

5
.0

75

-.5 -.25 0 .25 .5

Local Mean Linear Fit
Nonparametric Fit 95% CI

N otes: Same as table A-3 except for reduced form outcomes.
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Figure A-5: Reduced Form Estimates Over Time

-.0
1

-.0
05

0
.0

05
.0

1
St

rin
ge

nc
y 

Ef
fe

ct

-8 -4 0 4 8
Quarter Around FHP Citation

Moving Violation
Other Violation
Crash

N otes: Same as figure 4 using any moving violation in a given quarter (blue circles), any non-moving
violation in a given quarter (green diamonds), and any crash involvement in a given quarter (purple
x’s) as the outcome variable. Shaded regions denote 95 confidence intervals.
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Figure A-6: Robustness, Sample Selection

(a) Trimming Officers
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(b) Selection Correction

βIV = -0.0144 (0.0014)
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(c) GPS FE
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(d) Driver FE
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N otes: For comparison, our main IV estimate is βIV = −0.0146 (0.0013). Panel (a) shows the
sensitivity of our IV estimate to trimming officers with the most selected samples. Panel (b) plots
the reduced form and reports the IV estimate using a Heckman (1979) selection correction based
on officer ticketing frequency. Panel (c) plots the reduced form and reports the IV estimate using
GPS road segment fixed effects. Panel (d) plots the reduced form and reports the IV estimate using
a within-driver design.
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Figure A-7: IV Estimate Heterogeneity by Driver Characteristics
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N otes: This figures shows heterogeneity in IV estimates for one-year speeding recidivism by driver
characteristics. Each characteristic is denoted as a binary category; the x’s plot lenient means for
the category = 1 subgroup and the o’s plot lenient means for the category = 0 subgroup. Arrows
pointing away from the means indicate the IV estimate, and shaded region around the arrow denotes
the 95 percent confidence interval. Vertical dashed line denotes the lenient officer mean for the full
sample.
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Figure A-8: Localized Responses
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N otes: Figure plots the reduced form relationship between officer stringency and one-year speeding
recidivism separately for whether a new speeding offense occurred in the same or different county
relative to the focal FHP citation. Stringency and reoffending are adjusted for beat-shift fixed
effects. IV estimates, control means, and the difference in the IV estimates are reported in the
upper right corner.
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Figure A-9: Common Support for MTE Estimates
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N otes: Figure plots the distribution of propensity scores for the treated (66%) and untreated (35%)
subsets of sample, where treatment is defined as 1[harsh]. Following the text, the propensity score
is estimated from a linear regression of 1[harsh] on officer stringency and beat-shift fixed effects.
For reference, Pr(D = 1|p = 0) = 0.0209 and Pr(D = 1|p = 1) = 0.9947.
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Figure A-10: Alternative MTE Estimates
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N otes: This figure shows marginal treatment effect estimates for any reoffending using three ap-
proaches. Blue line reports MTE estimates from the linear, separate approach (same as figure 6).
Red diamonds report MTE estimates from a nonparametric approach. Green dots report MTE
estimates using our monotonicity-robust approach relying only on extreme officers. See section 5.1
and appendix C for further details.
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Figure A-11: Marginal Treatment Response Functions, Court Contesting

(a) Marginal Treatment Responses
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(b) Marginal Treatment Effects
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N otes: Outcome is whether citation is contested in traffic court, using the measure described
in appendix B-1. Figures report estimated marginal treatment responses (panel a) and marginal
treatment effects (panel b) obtained via the method described in section 5.1. Shaded regions denote
95% confidence intervals computed via bootstrapping.
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Figure A-12: Marginal Treatment Response Functions with Driver Covariates

(a) Marginal Treatment Responses
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(b) Marginal Treatment Effects
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N otes: Outcome is any new traffic offense in the following year. Figures report estimated marginal
treatment responses (panel a) and marginal treatment effects (panel b) obtained via the method de-
scribed in section 5.1. Shaded regions denote 95% confidence intervals computed via bootstrapping.
These specifications allow the level of Y0 and Y1 to vary with driver covariates.
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Figure A-13: Demographic Characteristics of Marginal Compliers

(a) Driver Female
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(c) Driver Race = Hispanic
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N otes: Figures report characteristics of marginal compliers; specifically the average characteristics
of compliers at a given resistance to treatment, estimating using the method described in appendix
C-3. Shaded region denotes 95% confidence intervals obtained via bootstrapping.
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Figure A-14: Marginal Treatment Response Functions, Offenders with No Tickets in Previous
Year

(a) Marginal Treatment Responses
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(b) Marginal Treatment Effects
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N otes: Same as figure 6 except using only the sample of offenders with no tickets in previous year.
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Figure A-15: Marginal Treatment Response Functions by Driver Race

(a) MTR, White Drivers
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(b) MTR, Minority Drivers
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(c) Marginal Treatment Effects
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N otes: Panels (a) and (b) plot marginal treatment response functions (same as figure 6) separately
for white motorists and minority (Black and Hispanic) motorists. Panel (c) plots estimated marginal
treatment effects separately for white and minority motorists.

64



B Data Appendix

B-1 Traffic courts data

Traffic court dispositions associated with the citations from the TCATS database were also
shared by the Florida Clerk of Courts. Citations were matched to disposition information
using county codes and alphanumeric citation identifiers (which are unique within counties).
Some citations have no associated disposition in the TCATS database, while others have
multiple associated entries. Disposition verdicts can take on the following values:

1 = guilty ; 2 = not guilty ; 3 = dismissed ; 4 = paid fine or civil penalty ; 6 = estreated
or forfeited bond ; 7 = adjudication withheld (criminal); 8 = nolle prosequi ; 9 = adjudged
delinquent (juvenile); A = adjudication withheld by judge; B = other ; C=adjudication with-
held by clerk (school election); D = adjudication withheld by clerk (plea nolo and proof of
compliance); E = set aside or vacated by court.

In practice, the verdicts 1, 3, 4, A, and C account for the vast majority of citations. More-
over, as confirmed in a phone conversation with Beth Allman at the Florida Clerk of Courts
on July 24, 2018, several of the violation codes are difficult to interpret. In particular, it is
very difficult in practice to infer the precise outcome of tickets with disposition codes 1, 3,
A, or those with multiple dispositions in the TCATS database.

To construct an approximate measure of court contesting, we use any disposition not
equal to 4 or C, which both imply that the individual paid their fine without contest, as an
indicator that the driver contested a citation. To construct measures of effective sanctions,
termed paid fines and accrued points in figure A-3, we adjust the statutory sanctions as
follows:

• Replace fine = fine/2 if verdict = A

• Replace fine = 0 if verdict = 3

• Replace points = 0 if verdict ∈ {3,A,C}

Note that our measure of paid fines is likely conservative as it ignores court fees. Drivers
contesting their tickets in court face a $75 court fee in addition to their fine (the court fee can
also be waived during the court process). See Goncalves & Mello (2021) and Mello (2021)
for further discussion of the issues associated with working with the TCATS data.

B-2 Binary stringency measure

To identify officers who do not bunch, we use the Frandsen (2017) test for manipulation in
bunching. In our setting, this test implies that, under the null hypothesis of no manipulation,
the conditional probability of being found at the bunching speed is in a range around one
third, Pr(X = 9|x ∈ [8, 10]) ∈ [(1 − k)/(3 − k), (1 + k)/(3 + k)] where k is a restriction
on the second finite difference, ∆(2)Pr(S = 9) ≡ Pr(S = 8) − 2Pr(S = 9) + Pr(S = 10),
such that |∆(2)Pr(S = 9)| ≤ k(Pr(S = 9) − Pr(S = 10)). Intuitively, if the distribution
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of ticketed speeds is unmanipulated, the share of tickets at 9 MPH among those between 8
and 10 MPH should be approximately one-third, where the deviation k is due to curvature
in the distribution of speeds. We calculate k by assuming the distribution Pr(S) is Poisson
and estimating the mean parameter λ using the empirical mean of ticketed speeds. We say
that an officer is stringent (non-bunching) if we fail to reject that Pr(S = 9|S ∈ [8, 10]) ≤
(1 + k)/(3 + k) at the 99 percent confidence level.

To avoid the reflection problem, we randomly partition an officer’s stops into two halves
and compute the binary measure separately for each half of the sample. We then use the
officer’s binary measure in the other half as our binary stringency measure.
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C Technical Appendix

C-1 MTR and MTE Estimation Details

We are interested in identifying the distribution of counterfactual outcomes by resistance to
treatment, E(Yj|UD = u,X). We will follow the approach of Heckman & Vytlacil (2007a),
which considers the conditional expectation of Y separately by treatment status:

E[Y |P (Z) = p,X,D = 0] = E[Y0|UD > p,X]

= µ0(X) + E[U0|UD > p,X]

= µ0(X)− p

1− p
E[U0|UD < p,X]

= µ0(X)− 1

1− p

& p

0

E[U0|UD = u,X]du

Imposing the functional form assumption that the MTR is linear, we have that E[U0|UD =
u,X] = α0(p− 1/2), where −1/2 is needed so that E(U0|X) = 0:

E[Y |P (Z) = p,X,D = 0] = µ0(X)− 1

1− p

& p

0

α0(p− 1/2)du

= µ0(X)− α

1− p

$p(p− 1)

2

%

= µ0(X) + α0
p

2

= Xiβ + α0
p

2

So we now have a functional form for what the conditional expectation of Y reflects when
restricting attention to D = 0. With the assumption of a linear MTE, the regression is linear
in p/2, and its coefficient reflects the shape of the potential outcome function for Y0. Note
that, as shown by Brinch et al. (2017), the fact that the expectation is linear in p means that
only a binary instrument is needed to identify the shape of the potential outcome function.

The steps we will take to estimate the potential outcome function are the following:

1. Estimate P (Z) using the full sample, get p̂ for each observation.

2. Regress Y on X and p̂i
2
, among those with Di = 0.

3. Calculate ŷi = Xiβ̂ + α0
p̂i
2
for all individuals (including with Di = 1).

4. Calculate !µ0(X̄) = 1
N

'
i

$
ŷi − α̂0

p̂i
2

%
, then construct the potential outcome function

for Y = 0:
!E[Y0|UD = u, X̄] = !µ0(X̄) + α̂0 · (u− 1/2), u ∈ [0, 1]

To identify the treated potential outcome function, we use a similar approach, and also
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assume a linear MTR, E[U1|UD = u,X] = α1(p− 1/2):

E[Y |P (Z) = p,X,D = 1] = E[Y1|UD ≤ p,X]

= µ1(X) + E[U1|UD ≤ p,X]

= µ1(X) +
1

p

& p

0

E[U1|UD = u,X]du

= µ1(X) +
1

p

& p

0

α1(p− 1/2)du

= µ1(X) +
1

p
[α1(p

2/2− p/2)]

= µ1(X) + α1(p/2− 1/2)

C-2 Tails IV

The estimation of the marginal treatment response functions using the entire distribution
of officer instrument values and the assumption of linear unobservable components allows
for the precise estimation of counterfactual outcomes for individuals with both high and low
resistances to treatment. However, the assumption of linearity may be violated, along with
the strong assumption of monotonicity in the instrument’s effect on treatment.

To avoid these concerns, we additionally estimate the potential outcomes for high and low
resistance individuals using an alternative approach. For low resistance individuals, we will
focus on officers with instrument value Z ≤ 0.1. We will then construct a binary version of
the instrument, Z̃ = Z > 0.05. An IV regression of recidivism on receiving the full fine with
the binarized instrument will reflect the treatment effect for complier individuals, who are
those with uD ∈ [0.05, 0.1]. In addition, Abadie (2002) shows how interacting the outcome
with treatment status can identify the counterfactual outcome for the compliers:

E[DY |X, Z̃ = 1]− E[DY |X, Z̃ = 0]

E[D|X, Z̃ = 1]− E[D|X, Z̃ = 0]
= E[Y1|X,UD ∈ [0.05, 0.1]]

E[(1−D)Y |X, Z̃ = 1]− E[(1−D)Y |X, Z̃ = 0]

E[(1−D)|X, Z̃ = 1]− E[(1−D)|X, Z̃ = 0]
= E[Y0|X,UD ∈ [0.05, 0.1]]

We will therefore run regressions of DY and −(1 − D)Y on our treatment, where we
restrict attention to officers with Z < 0.1 and instrument for treatment with Z̃. To iden-
tify the counterfactual outcomes of high resistance individuals, we will analogously restrict
attention to individuals stopped by officers with Z ≥ 0.9 and use the binarized instrument
Z̃ = Z > 0.95.

C-3 Characteristics of marginal compliers

We are interested in identifying the demographics of drivers who are at each level of resistance
to treatment. We will denote by Xk some driver demographic variable k, and we denote by
X̃ the set of all location-time fixed effects. We are interested in identifying E[Xk|X̃, UD = u],
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which we will impose to have an additively separable form with a linear term in u:

E[Xk|X̃, UD = u] = X̃αk + θk(u− 1/2)

We will identify αk and θk using a procedure similar to the calculation of the MTR functions.
We estimate the conditional expectation of Xk given the propensity score for the set of
punished individuals:

E[Xk|X̃, P (Z) = p,D = 1] = E[Xk|X̃, UD < p]

= X̃αk + θk(E[UD|UD < p]− 1/2)

= X̃αk + θk(p/2− 1/2)

We will also use this approach to estimate the average stopped speed of drivers at each
UD. Denoting stopped speed by S∗

i and ticketed speed by Si, we know by design that
Si(D = 1) = S∗

i and Si(D = 0) = 9. The procedure outlined above will identify marginal
treatment response for S∗

i (D = 1), which corresponds to stopped speed.

C-4 Model Estimation Details

The model outputs that correspond to observed information in our data are the values of
treated and untreated offending rates for individuals who are at the margin of punishment
for officers at a given propensity to treat:

hj(θ) ≡ E
$
Yj | λŶ1 − (1− λ)(Ŷ1 − Ŷ0) = g−1(θ)

%
, j ∈ {0, 1}

where θ is a probability of punishment, and g−1(θ) maps a probability of punishment to the
cost of punishing that leads to that probability. In other words, this function identifies the
average Yj for drivers at the θth percentile of the objective function.

These functions correspond to the marginal treatment responses we estimate in the data,
mj(θ) = E[Yj|X,Ud = θ]. We estimate these functions using linear specifications, m̂j(θ) =
α̂0j + α̂1j(θ − 1/2), and we aim to match the level and slope of these functions between the
model and data:

α̂LB
0j ≤

& 1

0

hj(u)du ≤ α̂UB
0j (C-1)

α̂LB
1j ≤

& 1

0

∂hj(u)

∂u
du ≤ α̂UB

1j , j ∈ {0, 1} (C-2)

To account for estimation error in our empirical estimates, we require only that our model
moments fall within the 95% confidence intervals for our empirical moments [α̂LB

kj , α̂UB
kj ],

(k, j) ∈ {0, 1}2. We therefore have four moments to inform the model parameters. The
model contains the weight parameter λ and the distribution of signals F (Ŷi0, Ŷi1). Unless we
place substantial restrictions on the distribution of signals by parametrizing it with three or
fewer parameters, the model parameters are not point identified from the marginal treatment
responses. However, they may provide informative bounds on their true values. We will focus
in particular on estimating the identified region for λ.
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We will treat the estimation of λ as an optimization problem, where the above moment
conditions must hold:

λu ≡ max
λ,F (Ŷi0,Ŷi1)

λ s.t. (C-1) and (C-2) hold

λl ≡ min
λ,F (Ŷi0,Ŷi1)

λ s.t. (C-1) and (C-2) hold

Our estimate of λ will be the region [λl,λu].
We solve this pair of optimization problems using the genetic algorithm in matlab. The

algorithm picks a set of starting points to evaluate the objective function. Depending on
the value of the objective function at that point, the point has a probability of “survival.”
If it survives, a new candidate point is generated nearby (the initial point’s “offspring”).
In addition to these points, each generation has a random set of new guesses that do not
originate with any points from the previous generation.

One of the key inputs for the problem is the choice of starting guesses for values of λ and
F (Ŷi0, Ŷi1). In practice, we generate a grid of potential values {Y k

0 , Y
k
1 }, and we specify a set

of probabilities of each point on the grid.
The first guess we provide is a set of points that lie on the marginal treatment response

functions, so that Pr(Y k
0 , Y

k
1 ) ∕= 0 if Y k

0 ∈ (Y0|Y0 = α̂00 + α̂10u, for someu ∈ [0, 1]) and
Y k
1 ∈ (Y1|Y1 = α̂01 + α̂11u, for someu ∈ [0, 1]), Pr(Y k

0 , Y
k
1 ) = 0 otherwise, and all non-zero

probability points have the same likelihood. For the sake of the following paragraph, label
this guess (Pr(Ŷi0, Ŷi1). We provide 101 guesses with this grid of probabilities, with values
for λ = 0, 0.01, ..., 1.

The second set of guesses are off of the MTR functions. For values of Y0θ and Y1θ that

lie on the MTR functions, we give non-zero probability to guesses Ŷ0, Ŷ1,
ˆ̂
Y0, and

ˆ̂
Y1 that

satisfy the following, for a given set of ω and λ:

ωŶ0 + (1− ω)
ˆ̂
Y0 = Y0θ

ω(Ŷ1 − Ŷ0) + (1− ω)(
ˆ̂
Y1 − ˆ̂

Y0) = Y1θ − Y0θ

λŶ0 − (1− λ)(Ŷ1 − Ŷ0) = λY0θ − (1− λ)(Y1θ − Y0θ)

λ
ˆ̂
Y0 − (1− λ)(

ˆ̂
Y1 − ˆ̂

Y0) = λY0θ − (1− λ)(Y1θ − Y0θ)

These guesses create a set of posteriors that average to a value on the marginal treatment
response curves and that have the same objective function value as the guesses on the
marginal treatment response curve.

Counterfactual Calculation – The counterfactual calculation requires identifying the
set of parameter values λ, F (Ŷ0k, Ŷ1k) that satisfy the empirical moment inequalities and
setting λ = 0 for each case.

We are interested in reporting the offending rate of treated individuals, E[Y0|D = 1]. To
calculate the range of possible values, we similarly perform a pair of optimization problems:
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Y u
0,treated ≡ max

λ,F (Ŷi0,Ŷi1)
E[Y0|D = 1] when λ → 0

s.t. (C-1) and (C-2) hold for λ, F (Ŷi0, Ŷi1)

Y l
0,treated ≡ min

λ,F (Ŷi0,Ŷi1)
E[Y0|D = 1] when λ → 0

s.t. (C-1) and (C-2) hold for λ, F (Ŷi0, Ŷi1)

To calculate Y0 for the untreated individuals in this counterfactual, we use the fact that
E[Y0] = Pr(D = 0)E[Y0|D = 0] + Pr(D = 1)E[Y0|D = 1], where we observe Pr(D = 0)
empirically and we calculate E[Y0] from the value of F (Ŷi0, Ŷi1) that solves the min/max
optimizations above. We take a similar set of steps to solve for range of values for E[Y1 −
Y0|D = 0] and E[Y1 − Y0|D = 1].
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