Policy Uncertainty in the Market for Coal Electricity: The Case of Air Toxics Standards

Gautam Gowrisankaran
Columbia University, NBER, and CEPR
Ashley Langer
University of Arizona and NBER
Wendan Zhang
Renmin University

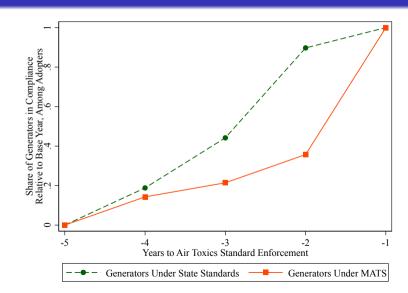
Economic Consequences of Policy Uncertainty

- Uncertainty over government policy affects important and irreversible decisions such as technology adoption, entry, and exit.
- The process of forming and implementing policies often creates uncertainty.
 - In the U.S., new policies occur through legislation and/or regulations.
- Legislation is infrequent and often empowers agencies to make specific regulations.
 - However, developing regulations takes time, and regulations are subject to court challenges and executive branch changes.
- This system may lead to more responsive policies.
 - But uncertainty can both increase costs and delay policy objectives.

Goals of the Paper

This paper focuses on the cost of uncertainty in environmental policy:

- Estimate beliefs about the likelihood of Mercury and Air Toxics Standard (MATS) enforcement.
 - MATS regulated emissions from electricity generation.
 - Model generators' exit and abatement technology adoption decisions.
- Simulate how policy uncertainty affects counterfactual outcomes in the industry.
 - Evaluate how policy uncertainty affects pollution, exit, and compliance costs.


We estimate a dynamic equilibrium model, that models technology adoption and exit:

- Allows us to estimate policy uncertainty from observed behavior.
- Equilibrium counterfactuals then allow us to quantify the impacts of uncertainty.

Mercury and Air Toxics Standard (MATS)

- The EPA released the final MATS rule in 2012 with enforcement in 2016.
 - MATS was challenged up to the Supreme Court, but ultimately enforced.
- While the federal government was formulating air toxics policy, some U.S. states mandated air toxics reductions for generators within their borders.
 - These policies were largely certain once announced.
- Can use these generators to identify extent of policy uncertainty in MATS.

Visual Identification of Perceived Enforcement Probabilities

Overview of Modeling

- Every year, generators subject to MATS:
 - Form beliefs about the 2016 enforcement probability.
 - Simultaneously decide whether to adopt abatement technology, exit, or continue.
 - Earn operating profits by supplying electricity to hourly markets within the year.
- We estimate a dynamic oligopoly model of coal generator actions from 2006-17.
 - Focus on coal independent power producers (IPPs), who face market incentives.
- We develop new, simple estimators of ramping costs to calculate operating profits.
 - Discrete choice of generation, with appropriate controls for dynamic incentives.

Adoption Cost, Exit Value, and Belief Estimation Results

	Base Specification	
Predicted Enforcement Probabilities:		
Probability 2012	1.000*** (0.061)	
Probability 2013	0.699*** (0.120)	
Probability 2014	0.433*** (0.109)	
Probability 2015	0.999*** (0.107)	
Generator Costs:		
Adoption Cost (million \$)	150.9** (75.1)	
Extra MATS Adoption Cost (million \$)	398.7*** (72.1)	
Exit Scrap Value (million \$)	-196.4*** (37.4)	
$1/\sigma$ (million \$)	63.6*** (5.7)	

Note: Structural parameter estimates from nested-fixed point estimation. Parametric bootstrap standard errors in parentheses.

Counterfactual Results

	Prob = 0.7827 All Years	Enforced with $Prob = 0.7827$
Adoption Costs (Bill. \$)	7.30	6.53
Exit Costs (Bill. \$)	19.24	18.74
Total Profits (Bill. \$)	46.74	48.66
Pollution (Mill. lbs. SO ₂)	867.52	946.50
Number of Generators:		
2012	191.0	191.0
2013	176.5	175.9
2014	163.1	161.9
2015	150.7	148.8
2016	131.0	130.1
Count Adopting	13.7	12.85

- Eliminating uncertainty saves \$930 mil., but increases pollution \$809 \$2,206 mil.
- It allows generators to operate when gas prices, profits, and pollution are highest!

Conclusion

- We estimate the extent and impact of policy uncertainty for MATS.
 - The difference between certain state policies and MATS identifies the perceived probability of enforcement.
 - We develop a new approach to estimating ramping costs, that is easy to implement.
- Main findings:
 - Substantial uncertainty surrounding MATS enforcement in 2013 and 2014.
 - Eliminating uncertainty increases generator expected profits by \$930 million.
 - It increases pollution by allowing generators to better time market uncertainty.