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Abstract

This paper investigates how innovation responded to and shaped the economic impact of
the American Dust Bowl, an environmental catastrophe that led to widespread soil ero-
sion on the US Plains during the 1930s. Combining data on county-level erosion, the his-
torical geography of crop production, and crop-specific innovation, I document that in the
wake of the environmental crisis, agricultural technology development was strongly re-
directed toward more Dust Bowl-exposed crops and, within crops, toward bio-chemical
and planting technologies that could directly mitigate economic losses from environmen-
tal distress. County-level exposure to Dust Bowl-induced innovation significantly damp-
ened the effect of land erosion on agricultural land values and revenue. These results
highlight the role of crises in shaping the direction of innovation and the importance of
endogenous technological progress as an adaptive force in the face of disasters.
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1 Introduction

How does innovation react to catastrophe? Developing new technologies to meet the
demands of environmental, public health, or geopolitical crises is likely an important
component of an economy’s adaptive response. The history of economic growth is rife
with examples of technological progress rising to meet the demands of emergent threats,
ranging from massive scientific investment during the Second World War to the global re-
direction of biotechnology research in response to the coronavirus pandemic (e.g. Rosen,
1994; Ruttan, 2006; Woolliscroft, 2020). The view that “necessity is the mother of inven-
tion” implies that moments of catastrophe could be key for understanding the direction
of technological progress. Moreover, when crises devastate particular regions, sectors, or
groups of people, the extent to which new technology dampens or exacerbates the impact
of the original shock could play an important role shaping its economic consequences.

This paper investigates how innovation reacts to crises and shapes their economic im-
pact by homing in on the most extreme environmental crisis in US history: the American
Dust Bowl, a catastrophe that led to widespread erosion and topsoil damage on the US
Plains during the 1930s.1 Anecdotally, the development and adoption of new technolo-
gies helped the agricultural economy adapt. Breeding and chemical companies actively
invested in innovation that would meet the high demand for technologies to restore pro-
ductivity on dry and eroded land (e.g. Crabb, 1947; May, 1949). Indeed, it has been a
long-standing hypothesis that the early take-off of US agricultural biotechnology grew
from the need to stave off production losses from extreme climatic events, the Dust Bowl
chief among them (Crow, 1998). However, there is little empirical evidence documenting
how innovation reacts to or shapes the economic consequences of environmental change.

The first goal of this paper is to estimate the response of technology development to
the American Dust Bowl and investigate its underlying mechanisms. During and after
the Dust Bowl, was innovation systematically re-directed toward more damage-exposed
crops and toward technologies that would restore crop productivity? The second goal

1Over 400,000 square kilometers of land in the US Plains fell victim to significant drought and erosion
(Hakim, 2012). The analogy with COVID-19 is not merely circumstantial – Thomas (2020) argues that
“COVID-19’s best analog is the 1930s Dust Bowl,” in terms of the severity of the crisis and response to it.
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is to investigate whether innovation mitigated the Dust Bowl’s economic damage. Were
places that benefitted from the re-direction of innovation more economically resilient in
response to environmental distress?

Economic theory provides relatively limited guidance about how technological progress
should be expected to react to environmental disaster. Adapting a standard model of di-
rected technological change to the present context, I first show that agricultural innova-
tion could either increase or decrease in response to the Dust Bowl depending on a set of
competing forces.2 In a first case, if new technology substitutes for favorable land and soil
conditions on average, technology development increases in response to the Dust Bowl.
This formalizes the idea, prevalent in historical accounts, that new biotechnology was di-
rected sharply toward bolstering production on damaged land, where demand for new
adaptive technology was high. The extreme climate of the 1930s, according to this nar-
rative, led to an “explosion of demand” for modern seeds, generating large profits for
breeding companies that, in turn, invested heavily in innovation (Sutch, 2011, p. 219).

In a second case, however, if technology complements favorable climatic conditions on
average, innovators flee damaged crops and producers, preferring to direct innovation
toward crops that were unscathed by the Dust Bowl and toward increasing productivity
on healthy land. This narrative is consistent with the common economic intuition that
innovation concentrates in the largest, most productive markets (e.g. Acemoglu, 2002). In
this second case of the model, innovators leave faltering producers behind, exacerbating
the distributional consequences of environmental distress.

It is essential, therefore, to turn to data in order to investigate how technology devel-
opment reacted to the Dust Bowl and shaped its economic consequences. The first part
of the empirical analysis compares technology development before and after the Dust
Bowl across crops that were differentially exposed to its environmental harm. I directly
measure the extent to which each crop’s land area was eroded during the Dust Bowl by
combining land erosion maps digitized by Hornbeck (2012a) with information on the ge-
ography of production for each crop immediately prior to the Dust Bowl from the 1930
US Census of Agriculture. I use the share of the national land area devoted to each crop
that experienced high levels of erosion, according to the land survey map, as my main

2The model builds on the theory of equilibrium technological change developed in Acemoglu (2010),
and especially its more recent application in Moscona and Sastry (2021).
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measure of crop-specific Dust Bowl exposure.3

Next, I use several complementary strategies to measure crop-specific innovation. As
the main measure of technology development, I compile a data set of new biotechnology
(i.e. crop variety) releases from the United States Department of Agriculture’s (USDA)
Variety Name List, which was obtained via Freedom of Information Act (FOIA) Request.
This List, which has been compiled by the USDA since the late 19th century, is main-
tained in order to prevent fraud in the seed market and its goal is to be a comprehensive
database of US seed and variety development and release.This data set makes it possible
to track the development of new crop varieties, which historical accounts suggest were
the primary technology used to adapt production to the changing environment, during a
period without systematic patent or intellectual property protection for biotechnology.4

I supplement the Variety Name List with three additional measures of technology de-
velopment and innovation. To investigate the re-direction of innovation across different
types of technology, which might be an important part of the overall shift in research fo-
cus, I compile data on all patent grants related to crop agriculture, and use text analysis to
link all patents to individual crops in the production data.5 The additional detail provided
by patent records makes it possible to compare the response of innovation across differ-
ent types of technology and different types of inventors; moreover, the stricter inclusion
criteria in the patent data as well as the ability to proxy the importance of each technol-
ogy using citation information make the patent data useful for probing the robustness of
the baseline finding. I also compile data on all experiments conducted at US agricultural
research stations (see Kantor and Whalley, 2019), in order to directly investigate the role
of government sponsored innovation. Finally, I collect all research publications related to
the agricultural sciences from the Web of Science publication database, in order to study
the response of science (and not only technology development) to environmental change.

The first main result is that new biotechnology development for crops that were more
exposed to the Dust Bowl—which shows no differential trend from that of less damaged

3This measure treats the initial crop allocation as fixed; however, in Section 3 and Appendix D, I investi-
gate the potential importance of crop switching. The main conclusion is that planting patterns across crops
were remarkably persistent throughout the sample period, so treating the initial land allocation as fixed
does not appear to be a strong assumption.

4See, for example, Crow (1998), Olmstead and Rhode (2008), Sutch (2011) on the paramount importance
of biological technology for adaptation; this history is discussed in more detail in Section 2.1.

5In particular, I assign all patents in Cooperative Patent Classification classes related to crop agriculture
to a crop if the crop name appears in the patent tile, abstract, or keyword list.
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crops prior to the onset of disaster—sharply increased after the crisis began. The baseline
estimates suggest that a one standard deviation increase in Dust Bowl exposure led to a
0.18-0.32 standard deviation increase in new crop variety releases. The positive effect of
Dust Bowl exposure on innovation persisted long after the worst years of the Dust Bowl
were over, suggesting that the crisis led to a long-run shift in the direction of innovation
and focus of technology development.

The results are robust to a range of stress tests and alternative specifications. I doc-
ument that the estimates are similar after controlling flexibly for trends in pre-period
research activity, New Deal policy, and a range of other time varying controls; the results
are also similar after restricting the sample by excluding crops either at the top or bottom
of the market size distribution, suggesting they are not driven by only “large” or “small”
crops. I also conduct a series of placebo exercises and show that technology development
did not respond to crop-level exposure to low levels of Plains erosion or to exposure to ex
ante eroded land outside the Plains region. Finally, I show that the estimates are similar
using exogenous extreme weather patterns from the 1930s to construct instruments for
the extent of crop-specific Dust Bowl erosion, indicating that the findings are not driven
by any impact of local human behavior on the extent of Dust Bowl damage.

The next section probes the mechanisms that drive the baseline finding. First, I inves-
tigate the types of technologies and innovators that drive the main result. I show that
the relationship between Dust Bowl exposure and innovation was strongest for crops for
which hybrid varieties could be developed, consistent with historical accounts that hy-
brids were particularly effective on distressed land. I then document, using the patent
data, that the re-direction of technology toward Dust Bowl-exposed crops was driven by
biological, chemical and planting technologies; if anything, mechanical and post-harvest
processing technologies that do not directly interact with the environment were directed
away from damaged crops.6 This pattern was driven predominately by private sector
firms and individual breeders; I find weaker effects for public-sector patenting and cor-
roborate this limited response of government research using independently collected data
on all crop experiments at US experiment stations. Interpreted via the model, these re-

6While biotechnology development is the focus of most historical accounts, drought and topsoil dam-
age, as well as pest outbreaks that resulted, also increased demand for fertilizer and chemical technology
that would make continued production possible (Schlebecker, 1953; Baveye et al., 2011, see Section 2.1)
Mechanical technology, as opposed to biotechnology, has long been considered less relevant for relieving
environmental and land supply constraints (Hayami et al., 1971; Ruttan and Hayami, 1984).
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sults suggest that the main finding is driven by increased demand for technologies that
could directly combat environmental distress, and not overall terms of trade effects or an
independent public sector push.

Second, I investigate sources of persistence in the re-direction of technology. I compare
the effect of crop-specific damage on technology development across crops with different
levels of pre-period technology development, and find that while the short-run effect of
Dust Bowl exposure on innovation is similar for both sets of crops, the long-run effect
is driven by crops with more limited pre-existing breeding infrastructure. This finding,
along with qualitative historical evidence, is consistent with heightened technology de-
mand from the Dust Bowl leading to fixed cost breeding investment that sustained inno-
vation even after the worst years of the Dust Bowl were over (Crow, 1998; Sutch, 2011).
Finally, using data on scientific research articles during the sample period from the Web
of Science citation database, I show that scientific publishing was also re-directed toward
crops that were more damaged by the Dust Bowl, indicating that the focus of science
(and not just technology development) reacted to environmental distress. These changes
in “upstream” scientific research could also contribute to the persistent effect of the Dust
Bowl on the direction of innovation.

The second part of the paper investigates the extent to which this re-direction of in-
novation shaped the Dust Bowl’s economic impact by turning to county-level data on
the agricultural sector. Prior work has proposed identifying adaptation to environmental
stress by comparing the short and long run impact of environmental shocks (e.g. Horn-
beck, 2012a; Dell et al., 2012). However, this strategy does not make it possible to identify
the role of technology apart from other production adjustments. Moreover, my first set
of findings suggests that technology development reacted within a decade of the start of
the Dust Bowl and that the adaptive role of technology should be highly heterogeneous
across producers of differentially exposed crops.

Therefore, I propose an alternative empirical strategy to identify the adaptive role of
technology development. Since innovation responded to aggregate crop-level distress,
counties that grew crops that were more damaged across all other Plains counties were
best positioned to adopt new Dust Bowl-induced technologies. Motivated by this logic,
I proxy each county’s innovation exposure as the level of Dust Bowl exposure of the crops
that the county cultivates, averaged across all other Plains counties. Then, I test whether
counties that were more exposed to induced innovation were more resilient to the Dust
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Bowl shock by estimating the heterogeneous effect of Dust Bowl erosion on agricultural
land value across counties with different levels of innovation exposure.

Innovation exposure substantially reduced the negative effects of the Dust Bowl on
agricultural land values. The difference in the marginal impact of land erosion on agri-
cultural land value between counties in the 90th and the 10th percentile of the innova-
tion exposure distribution is 120% of the median effect, and counties with the highest
in-sample innovation exposure experienced virtually no long run decline in land value
as a result of the Dust Bowl. The results are very similar using in-sample revenue and
productivity, rather than land values, as the dependent variable, and are also virtually
unchanged after controlling directly for crop prices, which could have also responded to
aggregate crop-level distress. The effect of innovation exposure is more pronounced in
counties with larger farms, which may have been better positioned to access and adopt
new inputs. Together, the findings indicate that the re-direction of innovation substan-
tially reduced the economic harm of the Dust Bowl.

To this point, the results have highlighted the role of technology that would to adapt
production in counties affected by the Dust Bowl. New technology, however, might have
also increased the productivity of more-exposed crops elsewhere in the country, or al-
lowed for production of more-exposed crops to take place outside the Plains region on
ex ante less productive land. However, I find no evidence of national adaptation through
these channels. Innovation exposure is not positively correlated with changes in agricul-
tural land values outside the Plains region, suggesting that Dust Bowl induced technol-
ogy did not increase crop productivity across the the board. Counties outside the Dust
Bowl also did not disproportionately expand cultivation of Dust Bowl-exposed crops,
suggesting a limited role for crop switching as a form of production adjustment. Dove-
tailing with findings from the first part of the paper, these results are consistent with a
focus on technology development that increased resilience on distressed land. This narra-
tive accords with the first case of the model, in which technology substitutes for favorable
environmental conditions and environmental crisis incentivizes the development of new
technology to promote climate resistance.

This paper builds on several bodies of work. It extends research investigating the di-
rection of technological change by documenting how technology development reacted to
environmental catastrophe (Hicks, 1963; Habakkuk, 1962; Acemoglu, 2002, 2010, provide
the theoretical foundation). There has been a longstanding focus on the extent to which
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technological progress is driven by moments of crisis—often focused on warfare—and
how invention reacts at moments of major necessity (Rosen, 1994; Keller et al., 2003; Rut-
tan, 2006; Hanlon, 2015; Gross and Sampat, 2020). Little is known, however, about how
technology reacts to and shapes the economic impacts of environmental change.7

This study also extends research on the economic impact of the climate by investigat-
ing the role of innovation as a source of adaptation.8 There is a growing body of work
investigating the extent to which humans are able to adapt to climate change and envi-
ronmental crises (e.g. Hornbeck, 2012a,b; Olmstead and Rhode, 2011; Moore and Lobell,
2014; Hsiang and Jina, 2014; Burke and Emerick, 2016; Costinot et al., 2016). This paper
builds most directly on Hornbeck (2012a), who investigates the short and long run im-
pact of the Dust Bowl on Plains counties, and extends a broader set of studies on the
economic impacts of the American Dust Bowl, a uniquely devastating crisis in US history
(see McLeman et al., 2014, for a review). A central challenge in studies of environmen-
tal adaptation is identifying and quantifying the role of technological progress (Rodima-
Taylor et al., 2012; Zilberman et al., 2018), even though it has often been hypothesized that
new technology is a key potential source of climate resilience.

Finally, this study draws on a range of work investigating how innovation has shaped
US agricultural production. The early 20th century represented a major turning point in
US agricultural innovation and productivity growth (e.g. Griliches, 1957; Olmstead and
Rhode, 2008). It has been argued that the rise of US agricultural biotechnology during the
20th century originated in part as an effort to adapt to environmental extremes during
the 1930s (e.g. Crabb, 1947; May, 1949; Crow, 1998; Fitzgerald, 1990; Sutch, 2008, 2011).9

The findings in this paper support the hypothesis that innovators reacted dramatically to
environmental stress, and that early 20th century climate extremes had persistent effects
on US agricultural innovation.

7Prior work on endogenous technological change and the environment is predominantly theoretical
and focuses on the development of emission-mitigating technology rather than adaptation technology (e.g.
Newell et al., 1999; Popp, 2002, 2004; Acemoglu et al., 2012; Aghion et al., 2016). This paper, in contrast,
investigates the development of adaptation technology and its impact on economic resilience. Relatedly,
Moscona and Sastry (2021) study the relationship between modern temperature change and the direction
of agricultural technology development and Miao and Popp (2014) investigate the relationship between
natural disasters and patenting across countries.

8Several studies investigate the direct effect of the climate on US agriculture, including Mendelsohn et
al. (1994); Schlenker et al. (2006); Deschênes and Greenstone (2007); and Burke and Emerick (2016).

9Consistent with this hypothesis, and motivated by Sutch (2011)’s analysis, Roberts and Schlenker (2011)
find that crop yields became less sensitive to extreme heat during the 1930s.
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The next section discusses the history of technology development in response to the
Dust Bowl (Section 2.1) and introduces a theoretical framework for analyzing how tech-
nological progress reacts to environmental crises (Section 2.2). Section 3 introduces the
data used in the empirical analysis. Section 4 presents results on the impact of the Dust
Bowl on innovation and Section 5 turns to the role of innovation in shaping the economic
consequences of the Dust Bowl. Section 6 concludes.

2 Innovation and the Dust Bowl

2.1 Historical Evidence

The Dust Bowl was a period of severe drought followed by dust storms that devastated
large swaths of the US Plains during the 1930s. While the most severe droughts were
in 1934 and 1936, leading to widespread crop failure, at least part of the Plains region
experienced severe weather in each year from 1930-1939. Over 400,000 square kilometers
of land were exposed to drought and water or wind erosion (Hakim, 2012).

Qualitative accounts suggest that new technology was a key source of adaptation to
the Dust Bowl. While the main focus of case study evidence is innovation in biotech-
nology, fertilizers and chemicals were also important anecdotally. Private breeding and
chemical companies were active in this wave of technological progress, marking a shift
from a research sector that had been dominated by universities and the government.

Individual breeders and breeding companies reacted dramatically to the Dust Bowl’s
environmental distress, developing and marketing technologies that would remain pro-
ductive even on damaged land. According to Crow (1998), the Dust Bowl was “possibly
the most important” reason for the rapid increase in development and spread of hybrid
seeds during the 1930s. Frontier breeding technology had particularly high returns rela-
tive to old technology in times of environmental distress; new hybrid varieties, for exam-
ple, were “strikingly more resistant to drought than the open pollinated varieties then in
use.” Farmers noted this difference, and demanded new and more resilient seed varieties.

Sutch (2011) argues that drought and the vulnerability of existing crop varieties to
climatic fluctuations drastically increased demand for new varieties, particularly hybrid
strains, and breeders rose to meet these demands (see also May, 1949; Culver and Hyde,
2001; Pruitt, 2016). Breeding companies quickly noted the profitability of developing crop
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varieties that would be productive in areas affected by environmental distress: “The ex-
plosion of demand for hybrid corn generated large profits for the major hybrid seed com-
panies: Pioneer, Funk, and DeKalb. [C]ompanies invested heavily in research with new
hybrid strains,” with a focus on “perfecting drought resistance” (Sutch, 2011, p. 219).

According to Crabb (1947, p. 165-166), who recounts the growth of Pioneer’s breed-
ing program, early breeding research reacted directly to the dust storms of 1934 and
1936; in 1937, “farmers in Iowa and elsewhere” bought all the new Pioneer seed, to the
point where “the Wallace organization [Pioneer] was serving [farmers] the full length and
breadth of the corn belt.” The historical narrative does not focus only on corn; Baumhardt
(2003) describes the development of wheat varieties during the 1930s, as well as new crop
rotation and planting practices, that would make production less sensitive to dry land in
Dust Bowl-affected regions.

Pest outbreaks, including widespread grasshopper attacks, also increased as a result
of drought and soil erosion.In 1936, grasshopper damage to crop production in the most
affected states amounted to over $106 million in farm income losses (Parker, 1939). New
pesticides, insecticides, and agricultural chemicals—like new seed varieties—were devel-
oped in response to the unprecedented pest outbreaks and to help “in the war against the
grasshopper” (Schlebecker, 1953, p. 91). Soil science research, including the development
of fertilizers to bolster damaged topsoil, also grew during the Dust Bowl period; in 1936
the Soil Science Society of America formed in direct response to drought and erosion in
the Plains (Baveye et al., 2011).

While much of the historical narrative focuses on private sector breeding and technol-
ogy development, the public sector represented a large share of agricultural innovation
during the sample period and may have also reacted to farmer distress. Government in-
novation policy did not shift in response to the Dust Bowl, and the mandate of US agricul-
tural experiment stations remained to focus on basic scientific advances, rather than ap-
plied technology, during the sample period (Nevins, 1962). Nevertheless, there are some
examples of varieties developed on US experiment stations helping distressed farmers.
The Oklahoma Agricultural Experiment Station released the cotton variety Oklahoma
Triumph 44, which proved more resistant to drought and pest outbreaks (Green, 1990),
and the Woodward Field Experiment Station identified sorghum varieties that would be
less sensitive to wind damage and soil blowing (Stephens, 1937).

According to these accounts, agricultural research and development reacted quickly
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to environmental distress and the adoption of new technologies was an important source
of adaptation to environmental change. A key empirical question is whether these anec-
dotes represent unique cases or whether innovative activity systematically shifted in re-
sponse to the Dust Bowl and helped mitigate its economic fallout. The empirical analysis
below estimates the average relationship between environmental distress and technology
development, across all crops and technologies, and investigates whether its underlying
mechanisms are consistent with this historical narrative.

2.2 Theoretical Framework

Before turning to the empirical analysis, I formalize the relationship between Dust Bowl
exposure and innovation in a model of directed technological change. The model builds
on the theory of equilibrium technological change developed in Acemoglu (2010), and es-
pecially its more recent application in Moscona and Sastry (2021). The goal of the model is
to convey that the predicted response of innovation to the Dust Bowl is ambiguous ex ante
and to articulate the conditions under which technology development could increase, or
decrease, in response to Dust Bowl damage. This theoretical ambiguity makes empirical
analysis all the more crucial.

2.2.1 Set-Up

Consider an economy in which a continuum of farmers i ∈ [0, 1] produce a single crop.
The productivity of the local environment at each location is Ai ∈ [A′, A′′] with cumu-
lative distribution F(.) across locations. There is a crop-specific technological input and
each farmer uses Ti of this input. The productivity of this input in location i depends on
the national technological frontier—parameterized by θ—and productivity Ai. In partic-
ular, the production function of farm i is:

Yi = α−α(1− α)−1G(Ai, θ)αT1−α
i (2.1)

where Yi is total output, α−α(1− α)−1 is a normalization added only to simplify the anal-
ysis, and α ∈ [0, 1] captures the relative importance of technology in the production func-
tion. Assume that G(.) is concave and twice continuously differentiable, and that G1 ≥ 0
and G2 ≥ 0 so that, naturally, output is increasing in the technological level of the econ-
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omy and local productivity. Each farmer maximizes profits taking output price p and
input cost q as given.

This simple production technology makes it possible to home in on the economic
mechanisms of interest that drive the relationship between environmental distress and
innovation. Taking the first order condition of the farmer’s maximization problem, it
is possible to show that Ti = α−1p

1
α q
−1
α G(Ai, θ) Thus, use of the technological input is

directly increasing in G(Ai, θ).
The Dust Bowl reduces land productivity differentially across locations. I consider

the crop damaged by the Dust Bowl if the Dust Bowl shifted the productivity distribution
from F(.) to FDB(.), where the former first order stochastic dominates the latter. That is,
the Dust Bowl reduced land productivity across crop planting locations to the point of
lowering aggregate production.10

There is a representative innovator that determines both the price of Ti and the the
aggregate level of technological progress (θ) in order to maximize profits, and faces a
marginal cost of technology development 1− α and a convex cost C(θ) of expanding the
technological frontier.11 Substituting for technology input use from the farmer’s maxi-
mization problem, the innovator’s problem becomes:

max
q,θ

(q− (1− α))α−1p
1
α q
−1
α

∫
G(Ai, θ)dF(A)− C(θ) (2.2)

The first order condition for q is satisfied for any θ if q−
1
α − (q − (1 − α)) 1

α q−
1
α−1 = 0;

thus, the profit maximizing technology price is q = 1. Plugging this into the original
maximand, the innovator’s problem simplifies to one-dimensional optimization over the
technology level θ:

max
θ

p
1
α

∫
G(Ai, θ)dF(A)− C(θ) (2.3)

Finally, assume that the price of the crop is determined by an inverse demand function

10Since we assume G1 > 0, this definition is indeed sufficient for Dust Bowl damage to reduce total
production holding fixed crop planting locations and technology.

11Focusing on a profit-maximizing innovator builds on existing models of directed technological change;
however, it may fail to capture the motivation behind all sources of innovation, most notably government-
sponsored research. In Section 4.3.3, I investigate the role of public vs. private sector research and find that
the results do not seem to be driven by government-sponsored innovation, suggesting that this simplifica-
tion is consistent with the present context. Moreover, government innovation policy and the mandate of
the experiment stations did not change in response to the Dust Bowl (see Nevins, 1962, and Section 4.3.3).
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p = D(Y), where D is continuous and non-increasing and Y is total output in the econ-
omy: Y =

∫
Yi(Ai)dF(A). An equilibrium is defined as price p, output Y, and technology

level θ such that both farmers and innovators maximize profits and the crop price is on
the demand curve.

The theoretical results in the next section examine the relationship between environ-
mental damage from the Dust Bowl and technological progress (θ), and identify the eco-
nomic conditions that determine technology’s response to environmental distress.

2.3 Theoretical Results

Before presenting the main results, I define two key cases for the role of technology in the
farmer’s production function; the impact of Dust Bowl damage on technological progress
hinges crucially on the relationship between technology and land productivity damage:

Definition 1 Technological progress is a topsoil substitute if G12 ≤ 0 and a topsoil complement
if G12 ≥ 0.

New technology is a topsoil substitute if it reduces the marginal impact of the Dust
Bowl’s damage to agricultural land on output. This would be the case if technologi-
cal progress makes production less sensitive to soil erosion and drought, which seems
consistent with the ways in which new seed varieties—and hybrids in particular—were
anecdotally more resilient in the face of environmental hardship (Section 2.1).

New technology is a topsoil complement if it increases the marginal impact of the Dust
Bowl’s damage to agricultural land on output. Recent evidence on crop resilience to cli-
mate change, for example, suggests that breeding can increase crop yields at the expense
of resilience to drought, in part because seed varieties can be finely tuned to specific en-
vironmental characteristics and, as a result, are more sensitive to fluctuations (Lobell et
al., 2014). Moreover, mechanical technologies like harvesters may be designed for partic-
ular ecological conditions and their marginal impact on output could decline when the
environment changes.

The impact of the Dust Bowl on the direction of innovation depends on this feature of
technological progress:
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Proposition 1 Assume that output prices are fixed. If the Dust Bowl damages cropland, θ weakly
increases if technology is a topsoil substitute and θ weakly decreases if technology is a topsoil
complement.

Proof. See Appendix B.1.

In words, technology development increases in response to Dust Bowl damage if new
innovation is most productive in the face of ecological constraints, and declines if it be-
comes less productive in the face of environmental distress. The former case is consistent
with the narrative that variety development increased in response to the Dust Bowl, and
the fact that there was a focus on the development of crop varieties that would be pro-
ductive damaged land (e.g. Crow, 1998; Sutch, 2011). The latter case, however, rings truer
with the conventional wisdom that innovation is “pulled forward” when downstream
industries thrive and “pushed back” when they falter (Acemoglu, 2002).

Allowing for price adjustment increases the return to technology development in dam-
aged crops for all types of technology. Exposure to the Dust Bowl reduces crop output,
thereby increasing crop scarcity and output prices; this force is analogous to the price
effect in the parlance of Acemoglu (2002). It reinforces the re-direction of technology to-
ward more damaged crops in the topsoil substitute case, and fights against the re-direction
of technology away from more damaged crops in the topsoil complements case, making the
overall effect of the Dust Bowl on technology ambiguous. Since, as discussed below, I do
not find strong evidence of price effects driving the technological response to the Dust
Bowl, I only mention them briefly here.12

While the model focuses on a single crop in order to home in on the key theoretical
tension, in the empirical analysis I exploit the fact that crops were differentially exposed
to the Dust Bowl and investigate whether technological progress was directed toward or
away from more exposed crops, the relevant notion of sectors in the studied context. First,
I document the sign of the relationship between Dust Bowl exposure and crop variety
development. Next, I explore several strategies to examine heterogeneity across crops and
technologies that are more (or less) plausibly topsoil-substituting; this makes it possible

12See Moscona and Sastry (2021) for an in-depth discussion and proof of the role of price effects in a
related context. With price adjustment, if the Dust Bowl damages cropland, θ weakly increases if technology
is a topsoil substitute and θ either increases or decreases if technology is a topsoil complement.
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to investigate the key mechanism and distinguish between the “marginal product” effects
outlined in Proposition 1 and general equilibrium price effects.

3 Measurement

3.1 Data Sources

County Erosion I measure county-level exposure to the Dust Bowl using maps digitized
by Hornbeck (2012a) on cumulative county-level erosion measured during the mid-1930s,
and focus on the sample of counties identified in that study as those that comprise the
contiguous and ecologically similar Plains region (see United States Department of Agri-
culture, 1924.). The original maps were compiled from reconnaissance surveys and divide
US land into one of three categories: low erosion (less than 25% topsoil lost), medium ero-
sion (25-75% topsoil lost), and high erosion (greater than 75% topsoil lost). The sample of
counties and erosion distribution are displayed in Figure A1. The main shortcoming of
these data, discussed in Hornbeck (2012a), is that they do not measure erosion due to the
Dust Bowl but rather cumulative erosion prior to 1935. Throughout the paper, I return to
tests of potential bias due to this data feature.

Technology Development I use several complementary sources of data to measure crop-
specific innovation. First, in order to measure biotechnology development, I compile data
on the release of novel crop varieties from the United States Department of Agriculture
(USDA) Variety Name List; this is the main measure of crop-level technology development
in the empirical analysis. The List, which was obtained through a Freedom of Informa-
tion Act (FOIA) request and discussed at greater length in Moscona (2021), is a list of all
released crop varieties known to the USDA and the year in which each was released. It
is designed to be comprehensive and uses a broad range of sources in order to identify
crop varieties, including “variety release notices, official journals, seed catalogs, and seed
trade publications, as well as names cleared for use by seed companies.” Breeders have
an incentive to report new varieties to the USDA for inclusion in the list because farm-
ers checked the List to make sure that varieties they purchase were cleared, particularly
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during the period under investigation when seeds were not patentable subject matter.13

The key advantage of this data source is that it is possible to track innovation in biotech-
nology, which is anecdotally the most relevant technology for adapting to environmental
change but cannot be measured with intellectual property data during the sample period.
Moreover, it is straightforward to link technologies in the List set to individual crops, the
units of observation in the empirical analysis (e.g. a corn seed is a corn technology).

I supplement the Variety Name List with several additional measures of innovation.
First, I compile data on crop-specific patenting in order to measure crop-level technol-

ogy development across multiple technology classes. Using the database PatSnap, I compute
the number of patents in Cooperative Patent Classification (CPC) classes A01B, A01C,
A01D, A01F, A01G, A01H, and A01N (i.e. CPC classes that relate to non-livestock agri-
culture) that were associated with each crop. To match patents to crops, I search for the
name of each crop in the Variety Name List in all patent titles, abstracts, and keywords
lists. The key advantage of this data set is that, by measuring innovation in multiple
technology classes, it is possible to investigate the re-direction of invention across tech-
nologies (see Section 4.3.2). The patent data are also useful for corroborating a version of
the baseline results with an independent data set with more restrictive inclusion criteria.

Second, I use data on crop-specific experiments from US federal experiment stations
(1910-1945), compiled and discussed in detail in Kantor and Whalley (2019). Experiment-
level information, including the crop of focus, were collected from individual reports
published by each station during the sample period. This data set makes it possible to
investigate the extent to which US government research contributes to the main finding.

Third, I compile data on all research articles in the agricultural sciences from the Insti-
tute for Scientific Information’s (ISI) Web of Science database. The Web of Science combines
article and citation information from 12,000 high-impact journals and 160,000 conference
proceedings; I link all articles within the agricultural sciences section to crops by search-
ing for the name of each crop in article titles.

Agricultural Production Data on county-level outcomes are from the 1910-1959 rounds
of the US Census of Agriculture. Variables constructed from the Census of Agriculture

13The 1930 Plant Patent Law introduced limited IP protection for vegetatively generated varieties, but
most crops, including all seed crops, had no form of protection until 1970 (Kloppenburg, 2005).
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include the value of land, agricultural revenue, farm size, and measures of land use.14 I
also use the 1930 and 1959 Censuses of Agriculture to measure the land area devoted to
each crop in each county immediately prior to and after the Dust Bowl period.

3.2 Measuring Dust Bowl Exposure

I estimate the Dust Bowl exposure of all crops listed in the 1930 Census of Agriculture
with at least one variety release during the period under investigation; in total, this sam-
ple consists of 43 crops. The exposure measure, capturing aggregate crop-level damage
from the Dust Bowl, is the share of land on which a crop was grown prior to 1930 that was
eroded during the Dust Bowl. Since the erosion data measure cumulative erosion and not
erosion due to the Dust Bowl, the crop-level measure captures the share of land on which
each crop was grown that was both (i) in the Plains region, as defined in Section 3.1 and
(ii) eroded by the time of the erosion survey. Crop-level Dust Bowl exposure is:

Exposurec = ∑
i

Lic

∑i′ Li′c
· I{Plainsi} ·High Erosioni (3.1)

where i indexes counties and c indexes crops; Lic is the land devoted to crop c in county i,
as measured in the 1930 Census of Agriculture; and I{Plainsi} as an indicator that equals
one if a county is in the Plains region. High Erosioni is the share of land in county i that
had experienced high erosion (over 75% topsoil eroded).

Exposurec is the main independent variable in the first part of the empirical analysis
and captures the extent to which each crop’s land area was damaged by Dust Bowl ero-
sion. Appendix C discusses the underlying data used for this measure in more detail,
alongside summary statistics, and documents that more- and less-erosion exposed crops
are balanced across a range of crop-level characteristics that affect crop breeding.

This measurement strategy uses crop planting patterns measured just prior to 1930 to
estimate crop-specific Dust Bowl exposure. The advantage to this strategy is that these
planting patterns were pre-determined with respect to the environmental shock. The po-
tential disadvantage is that, if crop planting patterns shifted in a major way in response
to the Dust Bowl, or for any other reason during the subsequent decades, crop-specific
Dust Bowl exposure could be mis-measured during the later part of the sample period.

14The data were cleaned and harmonized following Hornbeck (2012a).
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However, crop allocations were remarkably persistent throughout the sample period (see
Appendix D); the correlation between crop-by-county planted area in 1930 and 1960 is
very close to one and the relationship is not mediated by county-level erosion or crop-
level aggregate Dust Bowl exposure. This is consistent with narrative accounts of strong
inter-generational persistence in crop specialization on the Plains, as well as the substan-
tial importance of crop-specific human capital (e.g. Schaper, 2012; Huffman, 2001).

4 The Direction of Innovation

4.1 Estimation Framework

This section estimates the impact of the Dust Bowl on the direction of innovation. The
main estimating equation is:

yct = αc + γt + β · Exposurec · I
Post 1930
t + ΓX′ct + εit (4.1)

where c indexes crops and t indexes years. The independent variable of interest is an
interaction term between crop-level exposure to the Dust Bowl (Exposurec), and an indi-
cator that equals one in all years after the start of the Dust Bowl in 1930 (IPost 1930

t ). All
specifications also include crop and year fixed effects, αc and γt, and I test the sensitiv-
ity of the results to the inclusion of a vector of time-varying controls, X′ct. The outcome
variable is the number of new crop variety releases for crop c in year t.

The coefficient of interest is β. β > 0 implies that variety innovation was directed
toward crops that were more damaged by the Dust Bowl, whereas β < 0 implies that
variety innovation was directed away from crops that were more damaged by the Dust
Bowl. Section 2.2 articulates why either sign is theoretically possible.

In order to investigate the dynamic relationship between Dust Bowl Exposure and in-
novation, as well as explore pre-existing trends in technology development, I also present
results from the following estimating equation:

yct = αc + δt + ∑
τ∈T pre

βτ · Exposurec · δτ + ∑
τ∈T post

βτ · Exposurec · δτ + εct (4.2)

If differentially exposed crops are on similar trends prior to the Dust Bowl, then when
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Table 1: Dust Bowl Exposure and New Crop Varieties

(1) (2) (3) (4)

Dependent	Variable:

Specification: OLS OLS Poisson Neg.	Bin.

Exposurec	x	Dt
Post	1930

0.0694*** 0.114*** 0.0750*** 0.0529**

(0.0244) (0.0278) (0.0283) (0.0230)

Crop	Fixed	Effects Yes Yes Yes Yes
Year	Fixed	Effects Yes Yes Yes Yes
Weighting None Initial	Area None None
Crops	 43 43 43 43
Observations 1,720 1,720 1,720 1,720
R-squared 0.663 0.828

	

New	Varieties	(asinh) New	Varieties	(count)

Notes: 	The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	
effects.	In	columns	1-2	the	outcome	variable	is	the	inverse	hyperbolic	sine	of	the	number	of	
new	varieties	in	each	crop-year	and	in	columns	3-4	it	is	the	number	of	new	varieties.	
Columns	1-2	report	OLS	estimates	and	columns	3-4	report	Poisson	and	negative	binomial	
estimates	respectively.	Standard	errors,	double	clustered	by	crop	and	year	in	columns	1-3	
and	clustered	by	crop	in	column	4,	are	reported	in	parentheses.	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

τ ∈ T pre, βτ should not be statistically distinguishable from zero. When τ ∈ T post, the βτ

identify the effect of Dust Bowl exposure on innovation in year τ.

4.2 Main Results

Estimates of Equation 4.1 are presented in Table 1. Columns 1-2 report OLS estimates and
the outcome variable is the (inverse hyperbolic since of the) number of new agricultural
varieties released for each crop in each year.15 In column 1, the regression is unweighted,
and in column 2, the regression is weighted by the total area on which each crop was
planted in 1929 in order to make sure that the finding in column 1 is not driven by crops
that are a small share of national agricultural production.16 Since the dependent variable

15I use the inverse hyperbolic sine transformation of the outcome instead of the log transformation be-
cause there are several zeroes. The results are very similar if instead I parameterize the outcome as log(1+x).

16The results are also not driven only by “large” crops (that is, crops with a large market size). In Table
A4, I repeat the baseline specification after excluding in the top 25% or crops in the top 50% of the pre-
period area distribution, and find very similar estimates. These findings indicate that the baseline result is
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Figure 1: Figure 1a reports coefficient estimates from 4.2, and 95% confidence intervals
are displayed. The dotted gray lines mark the decade during which the Dust Bowl took
place. Standard errors are double-clustered by crop and year. Figure 1b displays new
varieties (asinh) released, relative to 1930, for crops with above median (solid line) and
below median (dotted line) Dust Bowl exposure.

is a count variable, columns 3-4 report estimates using Poisson and negative binomial
regression models respectively.17 Across columns, the coefficient of interest is positive
and statistically signifiant, suggesting that the development of new plant varieties was
directed toward crops most affected by the Dust Bowl. Estimates from columns 1 and 2
imply that a one standard deviation increase in Dust Bowl exposure led to a 0.18 and 0.32
standard deviation increase in new varieties respectively.

Figure 1a displays coefficient estimates from Equation 4.2. Prior to 1930, more- and
less-exposed crops were on very similar trends—the coefficient estimates are all similar
and close to zero. During the mid-1930s, the coefficient estimates become positive and
significant. Figure 1b reports the same pattern in the raw data; it displays the number
of new crop varieties released in each year (relative to 1930), plotted separately for crops
with above and below median Dust Bowl exposure. During the worst years of the Dust
Bowl, innovation in more vs. less exposed crops sharply diverged, and the shift in the
direction of technology development persisted even after the worst years of the Dust

not driven by just a handful of large crops.
17Whenever Poisson estimates are reported, I use pseudo-maximum likelihood estimators in order to

ensure appropriate standard error coverage; see Wooldridge (1999).

19



Bowl were over. The following subsections investigate the robustness of this baseline
finding, before turning to a detailed analysis of underlying mechanisms.

Falsification Tests This section presents two falsification exercises designed to validate
the measure of Dust Bowl exposure and causal interpretation of the results. First, I com-
pute a crop-level measure of erosion exposure outside of the Plains region:

Exposure Outside Plainsc = ∑
i

Lic

∑i′ Li′c
· I{Not Plainsi} ·High Erosioni (4.3)

If the baseline findings are driven the onset of the Dust Bowl, cumulative erosion outside
the Plains region, which was not as closely associated with extreme weather from the
1930s, should have no effect on technology development. In column 1 of Table A3, I con-
trol directly for this placebo measure in the baseline specification; the placebo coefficient
is close to zero, while the coefficient of interest remains positive and significant. The base-
line estimates do not capture the effect of cumulative erosion or poor land management.

Next, I compute a second placebo measure that weights crop land area in each Plains
county by the share of each Plains county that had low levels of erosion:

Low Exposurec = ∑
i

Lic

∑i′ Li′c
· I{Plainsi} · Low Erosioni (4.4)

In column 2 of Table A3, I control directly for this second placebo measure, and again the
coefficient on the placebo measure is close to zero. This finding indicates that the main
results do not capture a re-direction of technology toward Plains crops in general, but
rather towards the specific crops that were more damaged by the environmental distress.

Last, I compare the estimated effect of crop-level exposure to high levels of erosion to
the effect of crop-level exposure to medium levels of erosion; this is the crop-level analog
of the triple-difference identification strategy in Hornbeck (2012a). Crop-level exposure
to medium levels of erosion is estimated as in (4.4), except low erosion is replaced with
medium erosion. Table A9 documents that, while the impact of medium erosion exposure
is positive, the estimated impact of high erosion exposure is larger in magnitude and the
difference is statistically significant. These findings further support the argument that
environmental damage was the cause of technology development.
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Controlling for Observables I next investigate the robustness of the baseline finding to
controlling for a series of potential confounders; these results are presented in columns 4-8
of Table A3. First, I control for “crop-specific trends” in pre-period biotechnology releases,
meaning that I include pre-period biotechnology releases at the crop-level interacted with
a full set of year fixed effects on the right-hand-side of the regression. This set of controls
is designed to flexibly account for potential underlying dynamic effects of the level of
innovation (column 4). Next, I investigate the role of New Deal policy. The only program
that had a crop-specific component was the 1933 Agricultural Adjustment Act (AAA),
which paid farmers to not plant certain crops; the program was initiated prior to the
worst years of the Dust Bowl and before the extent and distribution of its damage was
known. Nevertheless, in column 5 I control for crop-specific trends in an AAA inclusion
indicator. The sample period also intersects with the Great Depression and World War II;
while it is hard to imagine why this effect would differ across crops, in column 6 I control
for Dust Bowl exposure interacted with an indicator that equals one during the years
of the Depression (1929-1939) and an indicator that equals one during the years of US
involvement in World War II (1941-1945).

A remaining potential confound is the growth in development of hybrid crop varieties
during the early 20th century. This is only an empirical concern if the ex ante ease of hybrid
development were correlated with Dust Bowl exposure. While hybrid seed development
is endogenous, following Moscona (2021) I identify crops for which hybrid development
would have been feasible based on features of plant flower structure that facilitate hybrid
development.18 I then control directly for this hybrid indicator interacted with a full set
of year fixed effects (column 7). In column 8, I include all controls mentioned thus far on
the right hand side. Despite the stringency of the specification with the inclusion of 176
controls, the result remains similar.

Finally, if certain crops are disproportionately grown in certain states, and those states
are on separate trends, it may also bias the results. To address this, in Table A2, I control
directly for the share of each crop’s planted area located in each of a series of states. The

18In particular, if a crop has “perfect flowers”—both the male and female parts of the plant are in the
center of the same flower—it is painstakingly difficult or impossible to generate new hybrids by combining
genetic material from multiple plants. This is not the case if a crop has “imperfect flowers”—when male
and female reproductive material are on different parts of the plant (e.g. Wright, 1980; Butler and Marion,
1985). In Moscona (2021), I collect data on the flower structure of each crop and use this information to
construct the hybrid control variable here.
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coefficient of interest is very similar across specifications.

Instrumental Variables Estimates Next, I show that the results are also very similar
using exogenous weather shocks from the 1930s to construct instruments for Dust Bowl
exposure. This strategy isolates the variation in cumulative erosion measured in the re-
connaissance surveys that took place during the 1930s, thereby circumventing the issue
that any finding is driven by pre-existing patterns of topsoil damage or topsoil damage
due to human behavior. I construct crop-level measures of weather severity from the
1930s by aggregating county-level weather data from Vose et al. (2014) using Equation
3.1. As measures of local weather severity, I use the standard deviation of local tem-
perature, the Palmer drought index, and indicators for extreme quantiles of the Palmer
drought index. I then use these measures of crop-level severity as instruments for topsoil
erosion, and generate 2SLS estimates of the impact of erosion on innovation.

2SLS estimates of Equation 4.1 are very similar in magnitude to the baseline difference-
in-differences estimates (albeit somewhat less precise); they are reported in columns 1-3
of Table A8. In column 1, the instruments are the number of months of extreme and
severe drought per acre interacted with post-period indicators. In column 2, they are the
average Palmer drought index and temperature standard deviation interacted with post-
period indicators. In column 3, all four extreme weather estimates are included in the
instrument set. As in the baseline results, estimates from specifications weighted by pre-
period area are also reported; these are larger in magnitude and more precisely estimated.

4.3 Mechanisms

4.3.1 The Role of Hybrids

Qualitative evidence suggests that the innovative response to the Dust Bowl was driven
especially by the development of hybrid crop varieties, and particularly those for corn,
which were more resilient in the face of extreme drought and erosion (e.g. Sutch, 2008;
Meyers and Rhode, 2020, also see Section 2.1). Hybrid development began with corn dur-
ing the 1920s, but was extended to several other crops in subsequent years; however, the
heterogeneity in hybrid penetration was substantial, with certain major crops, like wheat,
experiencing virtually no hybrid development. While I am unaware of data on the devel-
opment of hybrid varieties compared to non-hybrid varieties during the sample period,
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it is possible to test whether the results are more pronounced for crops from which it
was easier to generate hybrids. I again identify all crops that have “imperfect flowers,”
which makes the development of hybrids substantially easier, as a fixed crop-level proxy
for the feasibility of hybrid development (e.g. Wright, 1980; Butler and Marion, 1985). In-
terpreted through the lens of the model, these are the crops for which new technology is
most strongly a substitute for distressed land (i.e. G12 < 0), since hybrids were, anecdo-
tally, “strikingly more resistant” in the face of drought and environmental degradation
(Crow, 1998). I then estimate an augmented version of (4.1) in which I interact the treat-
ment variable with an imperfect flower indicator.

Table A5 reports estimates from this specification. While a positive and significant ef-
fect remains for “hybrid-incompatible” crops, suggesting that the baseline results are not
solely driven by hybrid development, the response was significantly larger for hybrid
compatible crops (column 1). The result is similar after adding the full set of baseline con-
trols (column 2). These findings suggest that hybrid variety development played a partic-
ularly important role in the innovative response, and are consistent with the re-direction
of technology being driven by growing demand for topsoil-substituting technologies (see
Proposition 1), rather than general equilibrium effects, which do not likely differ ex ante
across crops that are and are not amenable to hybrid development.

4.3.2 Effects by Technology Class

In addition to shifting focus across crops, technology development may have also re-
directed toward technologies that are most useful for adapting to environmental change.
The theory predicts that while “topsoil substituting” technology should increase follow-
ing the Dust Bowl—and the first set of findings document this pattern in the case of
biotechnology—the effect could differ drastically across technology classes, and even re-
verse sign for technology classes that are, on average, “topsoil complementing.”

While variety development is the focus of most analyses of adaptation to the Dust
Bowl (e.g. Crabb, 1947; Crow, 1998), damage to soil nutrition and the pest outbreaks that
resulted from drought made chemical, planting, and soil conservation technology poten-
tially more valuable as well (e.g. Schlebecker, 1953; Baveye et al., 2011). Most harvest
and post-harvest machines, however, do not interact as clearly with the climate or land
directly, and likely played a more limited role in bolstering production resilience. Innova-
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tors may have directed attention away from developing technologies that did not directly
compensate for lost topsoil and worsening land conditions.19

To investigate the effect of the Dust Bowl on innovation across different types of tech-
nology, I turn to the patent data. I use the cooperative patent classification (CPC) of each
patent to determine which relate to biochemical and planting technologies—those that
are most plausibly “topsoil substituting”—and which relate to mechanical harvesting and
post-harvest technology—those that are least likely to interact with the environment.20

I then compare the impact of the Dust Bowl on technology development across differ-
ent technology classes using the following specification:

yxct = αcx + δtx + γct + ψ · Exposurec · I
Post 1930
t · IS

x + εkct (4.5)

where x indexes technology classes, c indexes crops, and t indexes years. The indepen-
dent variable of interest is a triple interaction between (a) crop-specific Dust Bowl expo-
sure, (b) an indicator that equals one in all years after 1930, and (c) and indicator that
equals one if a technology class is in the more topsoil-substituting category. The coeffi-
cient of interest is ψ. If ψ > 0, crops that were more damaged by the Dust Bowl experi-
enced a disproportionate increase in the more plausibly topsoil-substituting technology
class. All specifications include the full set of possible two-way fixed effects, including
crop-by-year fixed effects which capture any crop-level dynamics (e.g. price changes).

Table 2 reports estimates of Equation 4.5 for a series of potential cross-technology com-
parisons. Column 1 compares variety development to all patented technologies, which
does not include any biotechnology during the sample period, and column 2 compares
variety development directly to harvesting and post-harvest mechanical patents. In both

19This is true in the version of the model with fixed prices; if prices are allowed to adjust, then the effect
of topsoil damage on topsoil complementing technology is ambiguous.

20I identify patents in CPC classes A01H and A01N as biochemical technologies. A01H and A01N include
technologies corresponding to: new plants or processes for obtaining them, and plant reproduction by
tissue culture techniques; and biocides e.g. as disinfectants, as pesticides, as pest repellant or attractants,
plant growth regulators. I identify patents in CPC classes A01D, A01F, and A01G as mechanical harvest
and post-harvest technologies. A01D, A01F, and A01G include technologies corresponding to: harvesting
and mowing; processing of harvested produce, hay or straw presses, devices for storing agricultural or
horticultural produce; horticulture, cultivation of vegetables, flowers, rice, fruit, hops, or seaweed, forestry,
watering. Finally, I identify planting patents as those belonging to A01B and A01C. A01B and A01C include
technologies corresponding to: soil working in agriculture or forestry and parts, details, or accessories of
agricultural machines or implements; fertilizing, planting, and sowing.
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Table 2: Dust Bowl Exposure and Innovation Across Crops and Technology Classes

(1) (2) (3) (4) (5) (6)

More	topsoil-substituting 	class(es) Varieties Varieties
Bio-Chemical	
+	Planting	
Patents	

Bio-Chemical	
Patents		

Bio-Chemical	
+	Planting	
Patents	+	
Varieties

Bio-Chemical	
Patents	+	
Varieties	

More	topsoil-complementing 	class(es) All	Patent	
Classes

	Mechanical	
Harvest	+	

Post-Harvest	
Patents

	Mechanical	
Harvest	+	

Post-Harvest	
Patents

	Mechanical	
Harvest	+	

Post-Harvest	
Patents

	Mechanical	
Harvest	+	

Post-Harvest	
Patents

	Mechanical	
Harvest	+	

Post-Harvest	
Patents

Exposurec			x		Et
Post	1930

		x		Ek
S

0.0733*** 0.0823*** 0.0187*** 0.0389** 0.0314*** 0.0534**

(0.0264) (0.0283) (0.00673) (0.0183) (0.0105) (0.0210)

Initial	area	weighted	estimates:	

Exposurec			x		Et
Post	1930

		x		Ek
S

0.138*** 0.148*** 0.0283*** 0.0830*** 0.0523*** 0.105***
(0.0342) (0.0359) (0.00848) (0.0259) (0.0133) (0.0284)

Crop	x	Year	Fixed	Effects Yes Yes Yes Yes Yes Yes
Crop	x	Technology	Class	Fixed	Effects Yes Yes Yes Yes Yes Yes
Year	x	Technology	Class	Fixed	Effects Yes Yes Yes Yes Yes Yes
Crops 43 43 43 43 43 43
Observations 15,867 7,052 12,341 8,815 14,104 10,578
R-squared 0.725 0.785 0.682 0.719 0.726 0.752

Dependent	Variable	is	the	Number	of	Innovations	in	the	Crop-Year-Class	Bin	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year-technology	class.	All	specifications	include	crop-by-year	fixed	effects,	crop-by-
technology	class	fixed	effects,	and	year-by-technology	class	fixed	effects.	The	outcome	variable	is	the	inverse	hyperbolic	sine	of	the	
number	of	new	innovations,	either	patents	or	new	varieties,	in	a	crop-year-class	bin.	Estimates	of	the	coefficient	of	interest	from	
analogous	specifications	in	which	the	regression	is	weighted	by	each	crop's	initial	area	are	also	reported.	Standard	errors,	double	
clustered	by	crop	and	year,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.								

cases, technology development in more Dust Bowl-exposed crops is directed dispropor-
tionately toward crop varieties (ψ > 0). Columns 3 and 4 focus on the patent data
alone, and compare biochemical and planting patents to harvesting and post-harvest me-
chanical patents (column 3) or biochemical patents alone to harvesting and post-harvest
mechanical patents (column 4). Again, technology development is directed dispropor-
tionately toward the technologies that more plausibly interact with the environment and
could increase resilience. Columns 5-6 are identical to columns 3-4, except new varieties
are included among the topsoil-substituting technologies; the estimates are similar.

These triple-difference results are driven by both an absolute increase in biochemical
and planting patenting in crops more-exposed to the Dust Bowl, and an absolute decline
in mechanical harvest and post-harvest patenting in crops more-exposed to the Dust Bowl
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Figure 2: Dust Bowl Exposure and Innovation Across Technologies. The outcome variable
is the inverse hyperbolic sine of the number of patents or unique crop varieties in a crop-by-
technology class bin. Standard errors are double-clustered by crop and year. The dashed lines are
95% confidence intervals.

(Table A7). Analogous to the baseline findings, Table A8 shows that the cross-technology
results are similar if crop-level Dust Bowl exposure is instrumented using contempora-
neous weather shocks. Finally, all estimates using the patent data are also similar using
citation-weighted patenting as the dependent variable, indicating that the findings are
not driven by insubstantial discoveries (Table A10).

Figure 2 presents the results graphically over time, using a dynamic triple-differences
specification; the two figures correspond to the specifications from columns 4 and 6 of
Table 2 respectively. Prior to 1930 there is differences in innovation trends across crop-by-
technology bins. A stark difference emerges only at the height of the Dust Bowl, when
technological progress in more damaged crops shifted toward biochemical and planting
technologies. Mirroring the baseline results, the effect persists over time, further indicat-
ing that the Dust Bowl precipitated a long-run shift in the focus of innovation.

There are two key conclusions from this set of results. First, methodologically, the sig-
nificant findings after the inclusion of crop-by-time fixed effects in all estimates of Equa-
tion 4.5 further suggests that the baseline results were not driven by any crop-level unob-
servable characteristics. Second, more conceptually and dovetailing with the findings in
Section 4.3.1, these estimates are consistent with a narrative in which the re-direction of

26



innovation was driven by demand for technology that would directly increase production
resilience. The positive response of innovation is concentrated in technologies that could
have directly bolstered production on damaged land, and innovation shifted away from
technologies that do not interact directly with the environment. A major role for general
equilibrium effects is inconsistent with the distinct effects across technology classes, and
especially the absolute decline in mechanical innovation related to crops exposed to the
Dust Bowl, which also would have been subject to positive price incentives.

4.3.3 Sources of Re-Direction of Innovation

This section investigates the source of the re-direction of innovation in response to the
Dust Bowl. While the public sector played—and continues to play—an important role in
US agricultural research, the 1930s have been identified as a turning point when private
sector firms also began to play an active role. These emergent firms and private breeders
feature prominently in historical accounts of Dust Bowl induced innovation (see Section
2.1). The Variety Name List does not contain information on the entity that released each
variety, so I turn to the additional data sets to identify the source of new innovation.

The patent data from the sample period contained assignee information that makes
it possible to identify where each technology comes from. I first classify each patent as
belonging to a private sector firm if the assignee name contained any one of a series of
words or word fragments associated with private sector firms.21 Columns 1-2 of Table
A11 report estimates of Equation 4.5 that include only patents assigned to private sector
firms. The coefficient estimate is positive and significant (column 1), somewhat larger in
magnitude when weighted by initial land area (column 2), and similar in magnitude to
the analogous estimate using the full sample of patents (column 3 of Table 2).

In columns 3-4, I report analogous specifications except the the dependent variable
is patents assigned to colleges, universities, and government institutions.22 While the
coefficient estimates are both positive, they are smaller in magnitude than the previous
estimates and indistinguishable from zero. This indicates that the main findings do not

21The words are: company, corporation, LTD, INC, CO., industries, limited, CORP., PLC, and LLC. This
procedure identifies 33% of the patents in the sample; while this likely does not capture all firms, it seems
unlikely that this procedure would falsely identify a patent as belonging to a private firm and thus findings
estimated on this sample of patents should still be an indication of private sector innovative activity.

22Again, I identify these patents using a keyword search of the patent assignees. The words are: univer-
sity, college, institute, government, state, federal, research station, experiment station, usda.
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seem to be driven by public sector patenting. Finally, many patents were not linked to ei-
ther private sector firms of the public sector using the text analysis strategy; these patents
are predominately assigned to individual breeders or have missing assignee information
in the patent record. When the dependent variable is constructed from these patents, I
estimate ψ = 0.29 (p < 0.1), suggesting that individual breeders also played a role.

In order to analyze government research in greater detail, I turn to independently
collected data on experiments conducted on US federal experiment stations during the
sample period, originally compiled by Kantor and Whalley (2019), and identify the crop
that was the focus of each experiment. Panel A of Table A12 reports estimates of Equa-
tion 4.1 in which the dependent variable captures the number of experiments related to
each crop. In column 1-2 of Panel A, the outcome is the (inverse hyperbolic sine of the)
number of unique experiments, and in columns 3-4 it is an indicator that equals one if
there was at least one experiment. Panel B is identical to Panel A, except that the outcome
variables measure experiments only in stations located in Dust Bowl states (Figure A1),
which might be more likely to shift focus in response to the Dust Bowl. The coefficients of
interest are all small and statistically indistinguishable from zero, further indicating that
the baseline result is not driven by government research.

One explanation for the limited response of federal research, even though experiment
stations were aware of production challenges posed by the Dust Bowl, is that federal
researchers focused their attention on documenting the value of production adjustment
(Stephens, 1937). Experiment station researchers published on the benefits of shifting land
from cropland to pasture, and on the resilience of hay production (compared to wheat)
on dry and eroded land (Nelson et al., 1940; Wenger, 1941). However, as documented in
Hornbeck (2012a) and Appendix D of the present study, despite their potential benefits,
these types of production adjustments were limited in practice, even in the most dis-
tressed counties. Experiment stations were also instructed to focus on basic, rather than
applied, research and to “not simply focu[s] research on solving local problems” (Nevins,
1962; Kantor and Whalley, 2019). While basic research may underly the development of
environmentally resistant technology, and private researchers no doubt built on discov-
eries first made in experiment stations (Kantor and Whalley, 2019), basic research may be
less responsive to shifting technological demand and operate over longer time horizons.
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4.3.4 Persistence

While biotechnology development was directed toward Dust Bowl exposed crops start-
ing at the height of the Dust Bowl, the effect persisted after the Dust Bowl ended (Figure
1a). There are several potential explanations for this. First, while the period of extreme
weather and dust storms largely concluded in 1939, the effect on land quality persisted,
and much of the land never recovered its topsoil (e.g. Worster, 2004, p. 24). Once dam-
aged, topsoil often takes over 100 years to re-generate (United States Department of Agri-
culture, n.d.). Farming on land exposed to the Dust Bowl thus remained challenging and
demand for technologies that increased resilience could have remained high.

Another explanation for the persistent effect, however, is that the growth in demand
for crop-specific innovation during the Dust Bowl allowed breeders to invest in the fixed
cost of setting up breeding and research programs. Programs that were first financed and
set up during the Dust Bowl continued to operate after the 1930s; crops that were not
exposed to the Dust Bowl, however, did not experience the same boost. In the words of
Sutch (2011), “climate change was a tipping point” and higher sales during the 1930s “fi-
nanced research at private seed companies that led to new varieties with significantly im-
proved yields in normal years.” Moreover, there is growing evidence from other contexts
that short-term changes in research investment can have lasting effects on innovation (e.g.
Gross and Sampat, 2020, on public investment during WWII).

To investigate this channel, I estimate the short and long run effects of Dust Bowl ex-
posure separately and examine heterogeneity by the amount of pre-period innovation in
each crop. If the long run effect of the Dust Bowl on innovation is driven by the payment
of breeding fixed costs for crops with limited pre-existing innovative infrastructure, then
it should be larger for crops with more limited breeding before 1930. This is exactly what
the results presented in Table A6 suggest. During the 1930s the innovative response is, if
anything, more pronounced for crops with more pre-period innovation; this is intuitive,
since these crops have more developed research programs that could respond to the onset
of environmental distress. However, during the 1940s and 1950s, the effect of Dust Bowl
exposure is weaker for crops with more pre-period innovation. Thus, the long run effect
of the Dust Bowl on variety development is driven by crops with limited pre-existing in-
novative activity, consistent with the idea that the Dust Bowl led to fixed cost breeding
investment that had long run consequences for crop-specific variety development.
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4.3.5 Direction of Science

To this point, the results have focused on technology development, in the form of new
seed varieties and patents. Next, I investigate whether scientific research also shifted in
response to the Dust Bowl. A change in the focus of science itself could contribute to the
adaptation process, as well as underly the long run shift in the direction of subsequent
technology development. To measure crop-specific scientific production, I turn to the In-
stitute for Scientific Information’s Web of Science research article and citation database. I
use all articles published from 1925-1960 in the “Agricultural Sciences” research category
and match articles to individual crops by searching for each crop name in all article ti-
tles.23 To investigate the impact of the Dust Bowl on scientific output, I estimate Equation
4.1 with measures of scientific publication as the dependent variables.

In the first column of Table A13, the dependent variable is the (inverse hyperbolic sine
transformation of the) number of research articles, and the coefficient of interest is positive
and significant. In the second column, the dependent variable is an indicator that equals
one if any articles were published related to crop c in year t, and again the coefficient of
interest is positive and statistically significant, indicating that the findings are not driven
by observations with an extreme number of articles. Finally, in column 3 the dependent
variable is the citation-weighted number of articles, and the coefficient estimate is similar
to column 1, indicating that the main effect is not driven by low-quality research.

Together, these findings suggest that the Dust Bowl catastrophe shifted not only the
development of new technology, but also the focus of knowledge production “upstream”
from technology development, indicating that scientists can also be responsive to envi-
ronmental change and a potentially important part of the adaptation process.

5 Innovation and Adaptation

Did the major shift in the direction of technology in response to the Dust Bowl shape its
economic consequences? This section investigates the role of innovation in mitigating the
Dust Bowl’s economic harm.

23Article abstracts are not available for the vast majority of articles during the sample period, and are not
available for any articles during the pre-period in the difference-in-differences design.
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5.1 Empirical Strategy

Measurement I first construct a measure of the extent to which each county was ex-
posed to Dust Bowl-induced technology development. Counties that cultivated crops
more exposed to the Dust Bowl on average were the beneficiaries of more induced inno-
vation (Section 4). Therefore, if innovation mitigated the Dust Bowl’s economic harm,
the direct county-level effect of Dust Bowl exposure should be dampened for counties
that grew crops that were more damaged across all other Plains counties, and hence the
recipient of more induced innovation.

For example, consider two counties in Colorado that both experienced the same land
erosion during the Dust Bowl One of these counties, however, grew predominantly sorghum,
which experienced the highest aggregate damage from the Dust Bowl; the other grew
soybeans, which was much less exposed to the Dust Bowl. Since innovation responded
to national crop-level damage, more sorghum-related innovations than soybean-related
innovations were developed in the Dust Bowl’s aftermath. If new technology increased
resilience to the Dust Bowl, the sorghum growing county should experience a more lim-
ited decline in profits following the Dust Bowl than the soybean growing county, even
though the direct effect of the Dust Bowl was identical. The reason, put simply, is that a
farmer with eroded land who grew sorghum had a lot of new technology to work with; a
farmer with eroded land who grew soybeans did not.

Following this logic, I proxy the innovation exposure of county i as:

InnovationExposurei = ∑
c

(Lic

Li
·

∑j 6=i ErodedLandjc

∑j 6=i Areajc

)
(5.1)

where Lic is the amount of land devoted to crop c in county i in 1929 and ErodedLandjc is
defined in Section 3.2. Rather than use the crop-level exposure measure from the previous
part of the paper, I compute a ”leave-out” measure that excludes the county in question.
Thus, the variable InnovationExposurei captures the extent to which the crops that county
i grows were damaged across all other Plains counties and hence the county’s exposure
to Dust Bowl-induced technology.
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Estimation To investigate the role of induced innovation in mitigating the economic
harm of the Dust Bowl, I estimate versions of the following equation:

yit =αi + δst + β ·
(

Erosioni · IPost 1930
t

)
+ γ ·

(
InnovationExposurei · I

Post 1930
t

)
+

φ ·
(

Erosioni · IPost 1930
t · InnovationExposurei

)
+ X′itΓ + εit

(5.2)

where i indexes counties, t indexes census rounds, and s indexes states. The primary
dependent variable is the agricultural land price per acre, measured from the Census of
Agriculture for each county i in year t, which captures the net present value of profits
from agricultural production; unlike measures of physical productivity, it incorporates
the benefits of new technology alongside its potentially higher cost. All specifications
include county and state-by-census round fixed effects (αi and δst respectively), and I
document the robustness of the estimates to the inclusion of a range of controls, X′it.

The coefficients of interest are β and φ. β captures the direct effect of Dust Bowl erosion
on county-level land values and other features of production, as documented extensively
by Hornbeck (2012a). The clear hypothesis is that β < 0. φ captures the extent to which
the economic impact of Dust Bowl erosion is shaped by exposure to Dust Bowl-induced
innovation. If innovation mitigated damage from the Dust Bowl, we expect φ > 0. This
would imply that the marginal impact of Dust Bowl erosion is dampened in counties that
were more exposed to induced innovation.

5.2 Main Results

Table 3 presents long difference estimates of Equation 5.2.24 In column 1, the outcome
variable is (log of) the value of land and buildings per acre. While β is negative and
significant, I find that φ > 0, consistent with technology development mitigating the
negative effect of the Dust Bowl on the value of land and buildings.25 The results are

24The pre-period and post-period year for the long difference estimates switch slightly due to data avail-
ability. In columns 1, 3, and 4, they are 1920 and 1959 respectively and in column 2 they are 1920 and 1940.
While the baseline results report long difference estimates since technology development is a long-term
process, full panel estimates are qualitatively similar and intuitively smaller in magnitude (Table A16).

25I document that the precision of the baseline estimates is very similar after adjusting the standard errors
for spatial correlation. Table A14 reports the t-statistic for φ using Hsiang (2010)’s implementation of Conley
(1999) standard errors for a series of spatial kernel cut-off values, ranging from 200km to 1000km. It also
shows that the precision is similar double clustering by state-year and county or clustering by state.
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Table 3: Innovation and Adaptation to the Dust Bowl: County-Level Estimates

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.412*** -0.956*** -1.694*** -0.346** -0.370*** -1.286***

(0.450) (0.324) (0.536) (0.139) (0.126) (0.480)

CropMixDamagei			x		Kt
Post	1930

7.080*** 4.072*** 8.171*** 0.344 4.259*** 8.904***

(1.487) (1.165) (2.182) (0.631) (0.518) (1.997)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 12.21** 8.011** 15.97** 3.408** 3.338** 11.97**

(5.321) (3.864) (6.361) (1.637) (1.446) (5.672)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.949 0.974 0.881 0.800 0.941 0.922

Erosioni			x		Kt
Post	1930

-0.729*** -0.669*** -1.084*** -0.125 -0.275*** -0.771**

(0.217) (0.220) (0.400) (0.0796) (0.0797) (0.321)

CropMixDamagei			x		Kt
Post	1930

4.419*** 1.787** 7.965*** 0.444 2.154*** 8.093***

(0.786) (0.909) (1.623) (0.338) (0.285) (1.244)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 5.294** 4.755* 9.102* 0.909 2.696*** 5.888

(2.568) (2.592) (4.720) (0.925) (0.928) (3.764)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,958 6,364 7,164

R-squared 0.960 0.960 0.892 0.727 0.960 0.923

Matchi			x	Erpsioni		Kt
Post	1930

Erosioni			x		Kt
Post	1930s		

x	Matchi

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.416*** -0.964*** -1.660*** -1.265***

(0.441) (0.317) (0.530) (0.474)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 11.99** 7.931** 15.25** 11.42**

(5.160) (3.745) (6.231) (5.555)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,592

R-squared 0.949 0.974 0.881 0.922

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-0.736*** -0.678*** -1.068*** -0.121 -0.274*** -0.764**

(0.214) (0.217) (0.393) (0.0782) (0.0783) (0.316)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 5.224** 4.759* 8.663* 0.853 2.614*** 5.596

(2.498) (2.525) (4.593) (0.899) (0.903) (3.664)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,958 6,364 7,164

R-squared 0.960 0.960 0.892 0.727 0.960 0.923

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-0.736*** -0.678*** -1.068*** -0.764**

(0.214) (0.217) (0.393) (0.316)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 5.224** 4.759* 8.663* 5.596

(2.498) (2.525) (4.593) (3.664)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,164

R-squared 0.960 0.960 0.892 0.923

Notes:	 The	unit	of	observation	is	a	county-year.	All	estimates	are	from	panel	estimates	including	all	census	rounds	

for	which	each	dependent	varaible	was	recorded.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).	All	

specifications	include	county	fixed	effects	and	census	round-by-state	fixed	effects.	The	dependent	variable	is	listed	

at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	are	reported	in	parentheses.	*,	**,	and	***	indicate	

significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	Long	Difference	Estimates

Panel	B:	Panel	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	Panel	A	presents	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	

depending	on	data	availability.	In	Panel	B,	the	sample	includes	all	censuses	from	1910-1959.	The	sample	of	counties	was	selected	as	in	

Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-state	fixed	effects.	The	dependent	variable	is	listed	at	the	

top	of	each	column.	Standard	errors,	clustered	by	county	are	repoted	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	

levels.

Notes:	 The	unit	of	observation	is	a	county-year.	All	estimates	are	from	panel	estimates	including	all	census	rounds	for	which	each	dependent	

varaible	was	recorded.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).	All	specifications	include	county	fixed	effects	and	census	

round-by-state	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	are	reported	in	

parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	 The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	

year	is	either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	

counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-

state	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	

are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

similar in column 2, when the outcome variable is the (log of the) value of land per acre,
or when the outcome variable is (log of) in-sample agricultural revenue (column 3) or
agricultural revenue per acre (column 4).

Figure 3 displays the dynamic relationship between Dust Bowl exposure and the value
of agricultural land, separately for counties with high and low innovation exposure. In
Figure 3a, high innovation exposure is defined as counties above the in-sample median
and in Figure 3b it is defined as counties in the top quartile. Prior to 1930, in both the
high and low innovation-exposed groups, counties that were more exposed to the Dust
Bowl are on similar trends to ones less exposed to the Dust Bowl. Land values decline
for more Dust Bowl exposed counties in both groups after 1930; however, the decline is
significantly dampened in counties with higher levels of innovation exposure. Innovation
exposure mitigates Dust Bowl damage starting in 1940—consistent with a strong response
of new technology during the 1930s (Figure 1a)—after which land values in more and less
innovation exposed counties appear to evolve on parallel trends.

The main threat to the interpretation of estimates of (5.2) is that innovation exposure
may be correlated with changes in crop prices. Since all estimates control for the direct
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(a) Above vs. Below Median Innovation Exposure
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(b) Top vs. Bottom Quartiles Innovation Exposure

Figure 3: Innovation Exposure and Land Values: Dynamic Effects. Estimates of the relationship
between county-level Dust Bowl exposure and log of the value of agricultural land in each decade,
separately by innovation exposure. In Figure 3a, the effects are estimated separately for counties
above and below median in-sample innovation exposure. In Figure 3b, the effects are estimated
separately for counties in the top quartile and counties in the bottom three quartiles of the in-
sample innovation exposure distribution. 95% confidence intervals are reported.

effect of innovation exposure (captured by γ), estimates of φ are only biased if price effects
have a non-log-linear effect on agricultural profits. Stated differently, the empirical model
captures the direct effect of innovation exposure on prices and hence the value of land;
estimates of φ are biased only if price effects have a larger effect on profits in counties
that were more exposed to the Dust Bowl. Nevertheless, to ameliorate these concerns, I
compile data on crop-specific producer prices from the USDA and estimate the output
price bundle in county i in year t:

Output Priceit = ∑
c

Lic

Li
· log(Producer Pricect)

where Producer Pricect is the national producer price for crop c in year t.26 I then con-
trol directly for county-level changes in output prices, as well as the interaction between

26Producer price information is not available for the full set of crops in the baseline analysis. The crops
for which national producer price data exist during the period of analysis are: wheat, rye, rice, tobacco,
sorghum, soybeans, corn, alfalfa, cotton, sugar beets, oats, oranges, grapefruit, potatoes, lemon, cranberries,
peanuts, flax, hay, beans, and hops.
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Figure 4: Quantitative Impact of Directed Technology. The points display the marginal impact
of Dust Bowl exposure (y-axis) by innovation exposure quantile (x-axis).

changes in output prices and Dust Bowl exposure. Estimates with these controls are re-
ported in Table A15 and, if anything, the coefficient estimates are slightly larger than
the baseline estimates, making it unlikely that that producer prices drive the relationship
between innovation exposure and agricultural production.

In Appendix E, I discuss additional results that further probe the sensitivity and causal
interpretation of the county-level estimates. These include replicating the findings us-
ing the full panel of census rounds, rather than long difference estimates (Table A16);
re-producing all estimates without state-by-time fixed effects (Table A17); controlling di-
rectly for county-level government spending, including spending from a series of New
Deal programs (Table A18); and purging the effect of local spillovers by estimating a
version of innovation exposure that excludes any variation in crop distress that occurs
in other counties in the same state (Table A19). I also document that the results hold
comparing the marginal effect of exposure to medium and high levels of erosion and the
corresponding measures for innovation exposure (Table A20). Dovetailing with the anal-
ogous crop-level estimates, this is consistent with a causal effect of innovation exposure
on adaptation. Finally, I show that the results are driven by counties with larger farms on
average which, as discussed in Appendix E, further rules out out the possibility that the
baseline estimates are driven by producer price changes (Table A21).

Figure 4 illustrates the magnitude of the innovation effect, using the specification from
column 1 of Table 3. On the vertical axis is the marginal impact of county-level Dust Bowl
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erosion on agricultural land values, and on the horizontal axis is the county’s position in
the innovation exposure distribution.27 The marginal impact of land erosion for a county
with median innovation exposure is under half that of a county at the bottom of the in-
novation exposure distribution. Counties at the highest part of the innovation exposure
distribution experienced no discernible long run decline in land value as a result of the
Dust Bowl (top right). The difference in marginal effect between the 90th and 10th per-
centile of the innovation exposure distribution is 120% of the median effect.

Taken together, these findings demonstrate that innovation had a major impact on the
distributional and long run economic impact of the American Dust Bowl. Even decades
after the Dust Bowl was over, eroded counties that were positioned to benefit from new
technology had far higher land values and agricultural revenues than those that were not.

5.3 Mechanism: Resilience on Damaged Land

To this point, the results have focused on the impact of the development of new tech-
nology that directly affected productivity in counties hit by the Dust Bowl. Historical
evidence suggests that the main benefit of new technology was that it increased resilience
on damaged land (Section 2.1). The fact that technology development was focused on
hybrids (Section 4.3.1), and was directed away from harvesting technologies and toward
biological, chemical, and planting technologies for more damaged crops (Section 4.3.2),
further indicates that innovators’ focus was not to increase productivity across the board.
Instead, these findings are consistent with technology development targeting producers
affected by environmental change, where demand for new technology was high.

This mechanism can also be documented using data on production. If price effects,
rather than “marginal product” effects, were an important mechanism, then innovation
exposure would be expected to increase productivity in all counties and not only increase
resilience in counties that directly experienced the Dust Bowl. To investigate this possibil-
ity, Figure 5 reports a partial correlation plot between county-level innovation exposure
and county-level changes in land value in non-Plains counties. In Figure 5a, the esti-
mate is un-weighted, and in Figure 5b, the estimate is weighted by initial farm area in
order to make sure the finding is not driven by non-agricultural counties. In both cases,

27In particular, Figure 4 plots the function g(q) = 100 · (β + φ · InnovationExposure(q)) where
InnovationExposure(q) is quantile q of the empirical distribution of InnovationExposurei
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Figure 5: InnovationExposurei vs. ∆ log Land Value per Acre: Non-Plains Counties. The
unit of observation is the county and each graph reports a partial correlation plot with state fixed
effects. The sample includes all non-Plains counties. Coefficient estimates, standard errors, and
t-statistics are reported at the bottom of each graph.

the coefficient estimate is small and statistically insignificant. Thus, exposure to Dust
Bowl-induced innovation had no discernible impact in counties that were not facing en-
vironmental hardship. This null result makes it unlikely that terms of trade effects, which
should affect all counties that grow a given crop, drive the estimates in Table 3.

Another possibility would have been for new technology to expand the land area on
which damaged crops could be productively grown. US history is rife with examples of
technological progress expanding the area on which agricultural production could take
place, for example as settlers traveled West (Olmstead and Rhode, 2008). Even absent
innovation, one adaptive response to the Dust Bowl might have been a re-allocation of
production toward healthier land. This mechanism, however, also does not seem consis-
tent with the data. I estimate the relationship between Dust Bowl exposure and cultivated
area outside the Dust Bowl by combining data on crop-by-county planted areas from the
1929 and 1959 Censuses of Agriculture. Figure A2 displays the relationship between crop-
level damage from the Dust Bowl and the change (1929-1959) in land area devoted to the
crop in non-Plains counties (A2a) and in Plains counties with below-median land erosion
(A2b). In both cases, the coefficient estimate is small in magnitude and indistinguishable
from zero, suggesting a limited role for cross-crop production reallocation.
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Together, these findings are consistent with the results from Sections 4.3.1 and 4.3.2,
suggesting that technology development was driven by a rise in demand for specific tech-
nologies that would increase resilience on distressed land. I find no evidence that Dust
Bowl-induced innovation exposure raised productivity on environmentally healthy land,
or that it facilitated the re-allocation of production.

6 Conclusion

Innovation is a potentially crucial force driving adaptation in moments of catastrophe.
The coronavirus pandemic has thrown into stark relief our economy’s reliance on techno-
logical progress and ingenuity during and in the aftermath of major shocks. The idea that
technology development may progress especially quickly during moments of great need
has also guided much of the historical narrative about the growth of US innovation, and
agricultural biotechnology in particular. However, little is known systematically about
how innovation reacts to environmental distress or the extent to which directed techno-
logical change is an adaptive force in moments of crisis.

This paper documents a sharp re-direction of innovation in US agriculture during
and in the aftermath of the Dust Bowl, perhaps the most extreme environmental crisis in
American history. Technology development was directed toward crops that were more
exposed to environmental distress, and research shifted toward technologies that would
be most useful for environmental adaptation. Counties that, due to their crop compo-
sition, were best positioned to benefit from Dust Bowl-induced technological progress
experienced more muted declines in land value and agricultural revenue, suggesting that
innovation allowed production to adapt to the severe environmental shock.

While this paper investigates a historical episode of environmental catastrophe, mod-
ern crises may also require technological responses. Anthropogenic climate change is
characterized not only by slow-moving changes in climate, but also by an increase in the
number and severity of environmental disasters (Hsiang and Jina, 2014). Future health
crises are also increasingly seen as a likely part of reality, potentially accelerated by envi-
ronmetal change. By investigating the response of technology to a historical disaster—as
well as the mechanisms underpinning the technological shift—this paper takes one step
toward a more complete understanding of how invention shapes the human toll of crises.
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Online Appendix

A Supplementary Empirical Results

Figure A1: Main Sample and County-Level Erosion. This figure maps the Plains counties in-
cluded in the empirical analysis. Counties are shaded by erosion level, where black corresponds
to high erosion (greater than 75% topsoil eroded), grey corresponds to medium erosion (25-75%
topsoil eroded) and white corresponds to low erosion (less than 25% topsoil eroded). This figure is
reproduced from Hornbeck (2012a) and its original source is the US National Archives in College
Park, Maryland.
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Figure A2: Crop-Level Damage vs. ∆ Area Planted Outside Dust Bowl. Partial correlation plots
at the crop-level. The dependent variable is the change in log total area harvested (1929-1959) in
(a) non-Plains counties or (b) Plains counties with below-mean land erosion. Coefficient estimates,
standard errors, and t-statistics are reported at the bottom of each graph.

Table A1: Crop-Level Land Erosion: Balance Across Other Crop-Level Features
(1) (2) (3) (4) (5) (6)

Variable	Name
Sample	

Mean

Correlation	with	

High	Erosion	

Exposure

Variable	Name
Sample	

Mean

Correlation	with	

High	Erosion	

Exposure

Single	Stem	Plant	(0/1) 0.520 0.154** Annual	Plant	(0/1) 0.535 -0.000950

(0.0719) (0.0388)

Min.	Crop	Cycle	(Days) 82.80 0.386 Max.	Crop	Cycle	(Days) 194.9 4.575

(3.202) (6.407)

Opt.	Soil	Depth	(cm) 2.000 0.0590 Opt.	Soil	Salinity	(dS/m) 1.023 -0.00352

(0.0549) (0.0123)

Temp.	Opt.	Range,	Max.	(°C) 26.12 0.610 Temp.	Opt.	Range,	Min. 16.02 0.357

(0.423) (0.249)

Rain	Opt.	Range,	Max.	(mm) 1247 7.085 Rain	Opt.	Range,	Min. 720.9 6.643

(31.84) (17.85)

pH	Opt.	Range,	Max.	(0-14) 6.895 0.0126 pH	Opt.	Range,	Min. 5.868 0.242

(0.0363) (0.176)

Hybrid	Compatible	(Imperfect	Flowers)	 0.140 0.0380 Vegetative	Reproduction 0.279 -0.0162

(0.0276) (0.0365)

log	Area	Harvested	(1929) 11.78 0.250 log	Crop	Varieties	Released	(pre-1930) 1.711 0.0605

(0.224) (0.150)

Notes: 	The	unit	of	observation	is	a	crop.	Columns	1	and	4		list	a	series	of	crop-level	characteristics,	and	columns	2	and	5	report	the	sample	mean	
of	each	corresponding	characteristic.	Columns	3	and	6	report	estimates	of	the	relationship	between	each	characteristic	and	crop-level	exposure	

to	high	levels	of	erosion.		*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A2: Dust Bowl Exposure and New Varieties: Controlling for Trends in State Shares

(1) (2) (3) (4) (5) (6)

Exposurec			x		3tPost	1930 0.0727*** 0.0859** 0.0912** 0.0558* 0.0564** 0.0744**
(0.0234) (0.0393) (0.0412) (0.0305) (0.0261) (0.0331)

Initial	area	weighted	estimates:	
Exposurec			x		3tPost	1930 0.125*** 0.127*** 0.107*** 0.117*** 0.115*** 0.0880*

(0.0222) (0.0311) (0.0326) (0.0328) (0.0300) (0.0451)
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes
Year	Fixed	Effects Yes Yes Yes Yes Yes Yes
Texas	Share	x	Year	Fixed	Effects Yes No No No No No
Oklahoma	Share	x	Year	Fixed	Effects No Yes No No No No
Kansas	Share	x	Year	Fixed	Effects No No Yes No No No
New	Mexico	Share	x	Year	Fixed	Effects No No No Yes No No
Colorado	Share	x	Year	Fixed	Effects No No No No Yes No
Nebraska	Share	x	Year	Fixed	Effects No No No No No Yes
Crops	 43 43 43 43 43 43
Observations 1,720 1,720 1,720 1,720 1,720 1,720
R-squared 0.663 0.663 0.663 0.675 0.675 0.669

Dependent	Variable	is	New	Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects.	The	outcome	variable	
is	the	inverse	hyperbolic	sine	of	the	number	of	new	varieties	in	a	crop-year.	The	controls	included	in	each	specification	are	
noted	at	the	bottom	of	each	panel.	Each	set	of	controls	is	the	share	of	the	crops	national	area	planted	in	the	listed	state	
interacted	with	year	fixed	effects.	Estimates	of	the	coefficient	of	interest	from	analogous	specifications	in	which	the	
regression	is	weighted	by	each	crop's	initial	area	are	also	reported.	Standard	errors,	clustered	by	crop,	are	reported	in	
parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A3: Dust Bowl Exposure and New Varieties: Falsification & Robustness

(1) (2) (3) (4) (5) (6) (7)

Exposurec			x		!tPost	1930 0.0627** 0.0793* 0.0700*** 0.0661*** 0.0835** 0.0698*** 0.0800**
(0.0254) (0.0408) (0.0235) (0.0231) (0.0338) (0.0251) (0.0328)

Exposure	Outside	Plainsc		x		!tPost	1930 -0.00644
(0.00420)

Low	Exposurec		x		!tPost	1930 0.00261
(0.00815)

Initial	area	weighted	estimates:	
Exposurec			x		!tPost	1930 0.117*** 0.139*** 0.0941** 0.0616** 0.130*** 0.0924** 0.0674*

(0.0247) (0.0260) (0.0372) (0.0297) (0.0344) (0.0413) (0.0355)
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Year	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Initial	Varieties	x	Year	Fixed	Effects No No Yes No No No Yes
AAA	Inclusion	x	Year	Fixed	Effects No No No Yes No No Yes
Exposurec		x	WWII No No No No Yes No Yes
Exposurec		x	Depression No No No No Yes No Yes
Hybrid	Compat.	x	Year	Fixed	Effects No No No No No Yes Yes
Crops	 43 43 43 43 43 43 43
Observations 1,720 1,720 1,720 1,720 1,720 1,720 1,720
R-squared 0.663 0.663 0.675 0.675 0.669 0.667 0.699

Dependent	Variable	is	New	Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects.	The	outcome	
variable	is	the	inverse	hyperbolic	sine	of	the	number	of	new	varieties	in	a	crop-year.	The	controls	included	in	
each	specification	are	noted	at	the	bottom	of	each	panel.	Estimates	of	the	coefficient	of	interest	from	analogous	
specifications	in	which	the	regression	is	weighted	by	each	crop's	initial	area	are	also	reported.	Standard	errors,	
clustered	by	crop,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A4: Dust Bowl Exposure and New Varieties: Excluding the Largest Crops

(1) (2) (3) (4)

Exposurec			x		!tPost	1930 0.144** 0.191** 0.201** 0.265**

(0.0536) (0.0764) (0.0720) (0.103)

Crop	Fixed	Effects Yes Yes Yes Yes

Year	Fixed	Effects Yes Yes Yes Yes

All	Additional	Controls No Yes No Yes

Observations 1,280 1,280 840 840

R-squared 0.620 0.676 0.572 0.644

Dependent	Variable	is	New	Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects.	
The	outcome	variable	is	the	inverse	hyperbolic	sine	of	the	number	of	new	varieties	in	a	crop-year.	

The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	panel.	In	columns	1-2,	

the	sample	excludes	the	25%	of	crops	with	the	largest	pre-period	national	land	area,	and	in	columns	

3-4	the	sample	excludes	crops	with	above	median	pre-period	area.	Standard	errors,	clustered	by	

crop,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Excluding	25%	Largest	

Crops	by	Pre-Period	Area

Excluding	50%	Largest	

Crops	by	Pre-Period	Area

Table A5: Dust Bowl Exposure and New Varieties: Het. by Hybrid Ease

(1) (2)

Exposurec			x		!tPost	1930 0.0510** 0.0532**

(0.0239) (0.0242)

Exposurec			x		!tPost	1930		x	Hybridc 0.0945*** 0.0831**

(0.0292) (0.0392)

Crop	and	Year	Fixed	Effects Yes Yes

Initial	Varieties	x	Year	Fixed	Effects No Yes

AAA	Inclusion	x	Year	Fixed	Effects No Yes

Hybrid	Compat.	x	Year	Fixed	Effects Yes Yes

Crops 43 43

Observations 1,720 1,720

R-squared 0.669 0.695

Dependent	Variable	is	

New	Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects.	The	outcome	
variable	is	the	inverse	hyperbolic	sine	of	the	number	of	new	varieties	in	a	crop-year.	The	controls	included	in	
each	specification	are	noted	at	the	bottom	of	each	panel.	Standard	errors,	double-clustered	by	crop	and	year,	are	
reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A6: Dust Bowl Exposure and New Varieties: Het. by Pre-Period Innovation

(1) (2) (3) (4) (5)

Exposurec			x		!t1930s 0.00753 0.00659 0.00711 0.00656 0.00472
(0.0137) (0.0142) (0.0139) (0.0142) (0.0147)

Exposurec			x		!t1940s 0.0464*** 0.0474*** 0.0457*** 0.0395** 0.0391**
(0.0142) (0.0148) (0.0156) (0.0152) (0.0173)

Exposurec			x		!t1950s 0.126** 0.129** 0.129** 0.123** 0.132**
(0.0588) (0.0603) (0.0554) (0.0595) (0.0581)

Exposurec			x		!t1930s		x	Pre-Period	Varietiesc 0.000499 0.000448 0.000687 0.000600 0.000808 	

(0.000339) (0.000378) (0.000606) (0.000558) (0.000810)
Exposurec			x		!t1940s		x	Pre-Period	Varietiesc -0.000518 -0.000463 -0.000214 0.000194 0.000698

(0.000629) (0.000630) (0.000837) (0.000843) (0.00108)
Exposurec			x		!t1950s		x	Pre-Period	Varietiesc -0.00321* -0.00306* -0.00484*** -0.00292 -0.00460**

(0.00162) (0.00159) (0.00169) (0.00178) (0.00189)

Crop	Fixed	Effects Yes Yes Yes Yes Yes

Year	Fixed	Effects Yes Yes Yes Yes Yes

Initial	Varieties	x	Year	Fixed	Effects No Yes No No Yes

AAA	Inclusion	x	Year	Fixed	Effects No No Yes No Yes

Hybrid	Compat.	x	Year	Fixed	Effects No No No Yes Yes

Crops 43 43 43 43 43

Observations 1,720 1,720 1,720 1,720 1,720

R-squared 0.680 0.691 0.693 0.685 0.709

(1) (2) (3) (4) (5)

Exposurec			x		!t1930s 0.00753 0.00659 0.00711 0.00656 0.00472
(0.0137) (0.0142) (0.0139) (0.0142) (0.0147)

Exposurec			x		!t1940s 0.0464*** 0.0474*** 0.0457*** 0.0395** 0.0391**
(0.0142) (0.0148) (0.0156) (0.0152) (0.0173)

Exposurec			x		!t1950s 0.126** 0.129** 0.129** 0.123** 0.132**
(0.0588) (0.0603) (0.0554) (0.0595) (0.0581)

Exposurec			x		!t1930s		x	Pre-Period	Varietiesc 0.000499 0.000448 0.000687 0.000600 0.000808
(0.000339) (0.000378) (0.000606) (0.000558) (0.000810)

Exposurec			x		!t1940s		x	Pre-Period	Varietiesc -0.000518 -0.000463 -0.000214 0.000194 0.000698
(0.000629) (0.000630) (0.000837) (0.000843) (0.00108)

Exposurec			x		!t1950s		x	Pre-Period	Varietiesc -0.00321* -0.00306* -0.00484*** -0.00292 -0.00460**
(0.00162) (0.00159) (0.00169) (0.00178) (0.00189)

Crop	Fixed	Effects Yes Yes Yes Yes Yes

Year	Fixed	Effects Yes Yes Yes Yes Yes

Controls None Var AAA Hyb Var,AAA,Hyb

Observations 1,720 1,720 1,720 1,720 1,720

R-squared 0.680 0.691 0.693 0.685 0.709

(1) (2)

Exposurec			x		!t1930s		x	Pre-Period	Varietiesc 0.000499 0.000808
(0.000339) (0.000810)

Exposurec			x		!t1940s		x	Pre-Period	Varietiesc -0.000518 0.000698
(0.000629) (0.00108)

Exposurec			x		!t1950s		x	Pre-Period	Varietiesc -0.00321* -0.00460**
(0.00162) (0.00189)

Crop	Fixed	Effects Yes Yes

Year	Fixed	Effects Yes Yes

Controls None All

Observations 1,720 1,720

R-squared 0.680 0.709

Dependent	Variable	is	New	

Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects.	
The	outcome	variable	is	the	inverse	hyperbolic	sine	of	the	number	of	new	varieties	in	a	crop-year.	

The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	panel.	The	three	reported	

coefficients	are	the	effect	of	the	triple	interaction	between	Dust	Bowl	exposure,	pre-period	variety	

releases,	and	indicators	for	the	1930s,	the	1940s,	and	the	1950s	respectively.	Standard	errors,	

double	clustered	by	crop	and	year,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	

the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	New	Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects.	The	outcome	variable	is	the	inverse	hyperbolic	
sine	of	the	number	of	new	varieties	in	a	crop-year.	The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	panel.	The	first	three	

coefficients	reported	are	coefficients	on	interation	terms	between	crop-specfic	Dust	Bowl	exposure	and	indicators	that	equal	one	for	all	years	in	the	

1930s,	1940s,	and	1950s	respectively.	The	last	three	coefficients	reported	are	coefficients	on	interaction	terms	between	the	first	three	variables	and	

the	numer	of	pre-period	varieties	released	for	each	crop.	Standard	errors,	double	clustered	by	crop	and	year,	are	repoted	in	parentheses.	*,	**,	and	

***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	New	Varieties	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.		Standard	errors,	double	clustered	by	crop	and	year,	are	repoted	in	parentheses.	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Table A7: Dust Bowl Exposure and Mechanical vs. Bio-Chemical Patents: Direct Effects

(1) (2) (3) (4) (5) (6)

Citation	
Weighted

Citation	
Weighted

Exposurec			x		<t
Post	1930 -0.0299*** -0.0231** -0.0281* 0.0447* 0.0420* 0.0588**

(0.00856) (0.00858) (0.0161) (0.0242) (0.0225) (0.0268)

Crop	and	Year	Fixed	Effects Yes Yes Yes Yes Yes Yes
All	Additional	Controls No Yes Yes No Yes Yes
Observations 1,720 1,720 1,720 1,720 1,720 1,720
R-squared 0.714 0.734 0.617 0.567 0.627 0.542

Baseline Baseline

Mechanical	Patents	(asinh) BioChem	Patents	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects,	as	well	as	the	set	of	
controls	listed	at	the	bottom	of	each	column.	In	columns	1-2	and	4-5,	the	dependent	variable	is	the	(asinh)	number	of	
patents;	in	3	and	6	it	is	the	(asinh)	citation-weighted	number	of	patents.	In	columns	1-3,	dependent	variables	are	
constructed	from	all	mechanical	harvesting	and	post-harvest	patents	(A01D,F,G)	and	in	columns	4-6,	they	are	constructed	
from	all	biological	and	chemical	patents	(A01H,N).		Standard	errors,	clustered	by	crop,	are	reported	in	parentheses.	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A9: Comparing Exposure to Medium and High Levels of Erosion

(1) (2) (3) (4)

High	Exposurec		x		!tPost	1930 0.0694*** 0.114***

(0.0243) (0.0274)

Medium	Exposurec		x		!tPost	1930 0.0155** 0.0193

(0.00604) (0.0168)

T-statistic	of	difference 2.15260741

Crop	Fixed	Effects Yes Yes Yes Yes 2.94645504

Year	Fixed	Effects Yes Yes Yes Yes

Weighting None None Initial	Area Initial	Area

Crops	 43 43 43 43

Observations 1,720 1,720 1,720 1,720

R-squared 0.663 0.660 0.828 0.818

Dependent	Variable	is	New	Varieties	(asinh)

2.152 2.946

Notes :	The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	
fixed	effects.	The	outcome	variable	is	the	inverse	hyperbolic	sine	of	the	number	of	

new	varieties	in	each	crop-year.	In	columns	1	and	3	the	independent	variable	of	

interest	is	the	main	indepenent	variable	throughout	the	paper,	the	share	of	the	crop's	

land	under	high	levels	of	erosion.	In	columns	2	and	4	the	independent	variable	of	

interest	is	the	share	of	the	crop's	land	under	medium	levels	of	erosion.	In	columns	1-2	

the	regression	is	unweighted	and	in	columns	3-4	it	is	weighted	by	crops'	area	

harvested	during	the	pre-period.		Standard	errors,	clustered	by	crop,	are	reported	in	

parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A10: Dust Bowl Exposure and Patented Technologies: Citation Weighted

(1) (2)

Exposurec			x		!tPost	1930		x		!kS 0.0357* 0.0783***

(0.0178) (0.0205)

Crop	x	Year	Fixed	Effects Yes Yes
Crop	x	Technology	Class	Fixed	Effects Yes Yes
Year	x	Technology	Class	Fixed	Effects Yes Yes
Weighting None Initial	Area
Crops 43 43
Observations 15,867 7,052
R-squared 0.725 0.785

Citation-Weighted	Patents	in	the	Crop-
Year-Class	Bin	(asinh)

Notes: 		The	unit	of	observation	is	a	crop-year-technology	class.	All	specifications	include	crop-by-year	
fixed	effects,	crop-by-technology	class	fixed	effects,	and	year-by-technology	class	fixed	effects.	The	
outcome	variable	is	the	inverse	hyperbolic	sine	of	the	number	of	citation-weighted	patents	in	a	crop-
year-class	bin.	Standard	errors,	double	clustered	by	crop	and	year,	are	reported	in	parentheses.	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.								

Bio-Chemical	Patents		vs.	Mechanical	
Harvest	+	Post-Harvest	Patents

Table A11: Dust Bowl Exposure and Patented Technologies: Private vs. Public Sector

(1) (2) (3) (4)

Exposurec			x		$t
Post	1930

		x		$k
S

0.0188* 0.0305*** 0.000232 0.000618

(0.0103) (0.0106) (0.000380) (0.00101)

Crop	x	Year	Fixed	Effects Yes Yes Yes Yes

Crop	x	Technology	Class	Fixed	Effects Yes Yes Yes Yes

Year	x	Technology	Class	Fixed	Effects Yes Yes Yes Yes

Weighting None	 Initial	Area None Initial	Area

Observations 8,815 8,815 8,815 8,815

R-squared 0.703 0.668 0.273 0.273

(1) (2) (3)

Private	Firms
All	Not	

Private	Firms

Govt.	&	

University

Exposurec			x		$t
Post	1930

		x		$k
BioChem

0.0188* 0.0294* 0.000232

(0.0103) (0.0146) (0.000380)

Initial	area	weighted	estimates:	
Exposurec			x		$t

Post	1930		x		$k
BioChem

0.0305*** 0.0749*** 0.000618

(0.0106) (0.0234) (0.00101)

Crop	x	Year	Fixed	Effects Yes Yes Yes

Crop	x	Technology	Class	Fixed	Effects Yes Yes Yes

Year	x	Technology	Class	Fixed	Effects Yes Yes Yes

Observations 8,815 8,815 8,815

R-squared 0.703 0.668 0.273

Private	Firms

Patent	Assignee:

Notes: 				The	unit	of	observation	is	a	crop-year-technology	class	and	all	two-way	
fixed	effects.	In	column	1,	the	dependent	variable	is	all	patents	assigned	to	private-
sector	firms.	In	column	2,	it	is	all	other	patents	(i.e.	all	patents	that	were	not	assigned	
to	private	sector	firms).	In	column	3,	it	is	the	number	of	patents	assigned	to	
government	organizations	and	universities/colleges.		Standard	errors,	clustered	by	
crop,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	
and	1%	levels.

Govt.	&	University

Patent	Assignee:

Notes: 				The	unit	of	observation	is	a	crop-year-technology	class	and	all	two-way	fixed	effects.	In	
columns	1-2,	the	dependent	variable	is	all	patents	assigned	to	private-sector	firms.	In	columns	3-4,	it	
is	the	number	of	patents	assigned	to	government	organizations	and	universities/colleges.		Standard	
errors,	clustered	by	crop,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	
5%,	and	1%	levels.
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Table A12: Dust Bowl Exposure and US Station Experiments

(1) (2) (3) (4)

High	Exposurec		x		!t
Post	1930

-0.00775 -0.000547 0.000127 -0.00134

(0.00869) (0.00917) (0.00386) (0.00787)

R-squared 0.705 0.736 0.533 0.571

High	Exposurec		x		!t
Post	1930

-0.0146 -0.0148* -0.00422 -0.00928

(0.0105) (0.00745) (0.00534) (0.00623)

R-squared 0.630 0.714 0.548 0.608

Crop	and	Year	Fixed	Effects Yes Yes Yes Yes

All	Additional	Controls No Yes No Yes

Observations 1,548 1,118 1,548 1,118

Experiments	(asinh) Any	Experiment	(0/1)

Panel	B:	Experiment	Stations	in	Dust	Bowl	States

Panel	A:	All	Experiment	Stations

Notes: 	The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects,	abd	
columns	2	and	4	also	include	all	baseline	controls.	In	columns	1-2,	the	outcome	variable	is	the	inverse	
hyperbolic	sine	of	the	number	of	experiments	and	in	columns	3-4,	it	is	an	indicator	that	equals	one	if	at	
least	one	experiment	was	conducted	and	in	column	3	it	is	the	inverse	hyperbolic	sine	of	the	citation-
weighted	number	of	articles.		Standard	errors,		clustered	by	crop,	are	reported	in	parentheses.	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A13: Dust Bowl Exposure and Scientific Articles

(1) (2) (3)

Articles	
(asinh)

Any	
Articles	
(0/1)

Citation	
Weighted	
Articles	
(asinh)

High	Exposurec		x		!t
Post	1930 0.0502** 0.0169*** 0.0688*

(0.0244) (0.00408) (0.0352)

Crop	and	Year	Fixed	Effects Yes Yes Yes
All	Baseline	Controls Yes Yes Yes
Observations 1,548 1,548 1,548
R-squared 0.661 0.517 0.575

Crop	Fixed	Effects
Year	Fixed	Effects
Initial	Patents	x	Year	Fixed	Effects
AAA	Inclusion	x	Year	Fixed	Effects
Hybrid	Compat.	x	Year	Fixed	Effects

Dependent	Variable	Is:

Notes: 	The	unit	of	observation	is	a	crop-year.	All	specifications	include	crop	and	year	fixed	effects,	as	well	as	
all	baseline	controls.	In	column	1,	the	outcome	variable	is	the	inverse	hyperbolic	sine	of	the	number	of	new	
articles;	in	column	2,	it	is	an	indicator	that	equals	one	if	at	least	one	article	was	published;	and	in	column	3	it	
is	the	inverse	hyperbolic	sine	of	the	citation-weighted	number	of	articles.		Standard	errors,		clustered	by	
crop,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A14: Standard Error Adjustments for Spatial Correlation

(1) (2) (3) (4) (5) (6) (7)

200 300 400 500 1000

t-statistic 2.93 2.70 2.77 3.52 3.98 2.37 2.74

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Kernel	distance	for	spatial	correlation	(km): State-
Year	
and	

County

State

Notes: 	Coefficient	estimate	t-statistics	from	the	baseline	county-level	specification	(with	log	of	
agricultural	land	values	as	the	dependent	variable)	with	alternative	standard	error	clustering	
strategies.	Columns	1-5	follow	Hsiang	(2010)'s	implementation	of	Conley	(2008)	standard	errors,	for	
five	different	values	of	the	kernel	cut	off	distance	(measured	in	km).	In	columns	6	and	7,	standard	
errors	are	double	clustered	by	state-year	and	clustered	by	state	respectively.		

Coefficient	estimate	t-statistic

Table A15: Innovation and Adaptation: Flexible Output Prices Controls

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.330*** -1.006*** -1.735*** -0.349** -0.268** -1.301***

(0.415) (0.328) (0.521) (0.139) (0.106) (0.466)

CropMixDamagei			x		Kt
Post	1930

3.278** 3.089** 5.381** -0.0340 2.420*** 6.702***

(1.503) (1.237) (2.196) (0.659) (0.384) (2.003)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 13.43*** 9.058** 16.86*** 3.192** 2.370** 12.67**

(5.034) (3.839) (6.047) (1.626) (1.183) (5.439)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Output	Price	Aggregate Yes Yes Yes Yes Yes Yes

Erosioni			x		Kt
Post	1930		

x		Output	Price	Aggregate Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.953 0.975 0.885 0.801 0.953 0.924

Erosioni			x		Kt
Post	1930

-0.661*** -0.722*** -1.072*** -0.111 -0.255*** -0.777**

(0.206) (0.219) (0.390) (0.0785) (0.0752) (0.313)

CropMixDamagei			x		Kt
Post	1930

4.078*** 1.342 7.761*** 0.359 2.057*** 7.983***

(0.728) (0.950) (1.549) (0.329) (0.238) (1.185)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 5.094** 5.423** 8.904* 0.843 2.517*** 5.716

(2.414) (2.528) (4.547) (0.913) (0.871) (3.637)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Output	Price	Aggregate Yes Yes Yes Yes Yes Yes

Erosioni			x		Kt
Post	1930		

x		Output	Price	Aggregate Yes Yes Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,958 6,364 7,164

R-squared 0.961 0.961 0.892 0.729 0.962 0.923

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.330*** -1.006*** -1.735*** -0.349** -0.268** -1.301***

(0.415) (0.328) (0.521) (0.139) (0.106) (0.466)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 13.43*** 9.058** 16.86*** 3.192** 2.370** 12.67**

(5.034) (3.839) (6.047) (1.626) (1.183) (5.439)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Output	Price	Aggregate Yes Yes Yes Yes Yes Yes

Erosioni			x		Kt
Post	1930		

x		Output	Price	Aggregate Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.953 0.975 0.885 0.801 0.953 0.924

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.330*** -1.006*** -1.735*** -1.301***

(0.415) (0.328) (0.521) (0.466)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 13.43*** 9.058** 16.86*** 12.67**

(5.034) (3.839) (6.047) (5.439)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Output	Price	Aggregate Yes Yes Yes Yes

Erosioni			x		Kt
Post	1930		

x		Output	Price	Aggregate Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,592

R-squared 0.953 0.975 0.885 0.924

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	year	is	either	1920	or	1925	and	ending	

year	either	1940	or	1959,	depending	on	data	availability.		The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	

fixed	effects	and	census	round-by-state	fixed	effects.	Each	specification	also	includes	the	county-by-year	level	agricultural	output	price	measure	and	this	

measure	interacted	with	Dust	Bowl	exposure.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	reported	

in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	Long	Difference	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	Panel	A	presents	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	depending	on	data	

availability.	In	Panel	B,	the	sample	includes	all	censuses	from	1910-1959.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	

include	county	fixed	effects	and	census	round-by-state	fixed	effects.	Each	specification	also	includes	the	county-by-year	level	agricultural	output	price	

measure	and	this	measure	interacted	with	Dust	Bowl	exposure.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	

county	are	repoted	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	B:	Panel	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	year	is	

either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.		The	sample	of	counties	was	selected	

as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-state	fixed	effects.	Each	

specification	also	includes	the	county-by-year	level	agricultural	output	price	measure	and	this	measure	interacted	with	Dust	

Bowl	exposure.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	reported	in	

parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A16: Innovation and Adaptation: Panel Estimates

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.412*** -0.956*** -1.694*** -0.346** -0.370*** -1.286***

(0.450) (0.324) (0.536) (0.139) (0.126) (0.480)

CropMixDamagei			x		Kt
Post	1930

7.080*** 4.072*** 8.171*** 0.344 4.259*** 8.904***

(1.487) (1.165) (2.182) (0.631) (0.518) (1.997)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 12.21** 8.011** 15.97** 3.408** 3.338** 11.97**

(5.321) (3.864) (6.361) (1.637) (1.446) (5.672)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.949 0.974 0.881 0.800 0.941 0.922

Erosioni			x		Kt
Post	1930

-0.729*** -0.669*** -1.084*** -0.125 -0.275*** -0.771**

(0.217) (0.220) (0.400) (0.0796) (0.0797) (0.321)

CropMixDamagei			x		Kt
Post	1930

4.419*** 1.787** 7.965*** 0.444 2.154*** 8.093***

(0.786) (0.909) (1.623) (0.338) (0.285) (1.244)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 5.294** 4.755* 9.102* 0.909 2.696*** 5.888

(2.568) (2.592) (4.720) (0.925) (0.928) (3.764)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,958 6,364 7,164

R-squared 0.960 0.960 0.892 0.727 0.960 0.923

Matchi			x	Erpsioni		Kt
Post	1930

Erosioni			x		Kt
Post	1930s		

x	Matchi

(1) (2) (3) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.416*** -0.964*** -1.660*** -1.265***

(0.441) (0.317) (0.530) (0.474)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 11.99** 7.931** 15.25** 11.42**

(5.160) (3.745) (6.231) (5.555)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,592

R-squared 0.949 0.974 0.881 0.922

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-0.736*** -0.678*** -1.068*** -0.121 -0.274*** -0.764**

(0.214) (0.217) (0.393) (0.0782) (0.0783) (0.316)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 5.224** 4.759* 8.663* 0.853 2.614*** 5.596

(2.498) (2.525) (4.593) (0.899) (0.903) (3.664)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,958 6,364 7,164

R-squared 0.960 0.960 0.892 0.727 0.960 0.923

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-0.736*** -0.678*** -1.068*** -0.764**

(0.214) (0.217) (0.393) (0.316)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 5.224** 4.759* 8.663* 5.596

(2.498) (2.525) (4.593) (3.664)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Observations 7,959 3,184 7,164 7,164

R-squared 0.960 0.960 0.892 0.923

Notes:	 The	unit	of	observation	is	a	county-year.	All	estimates	are	from	panel	estimates	including	all	census	rounds	

for	which	each	dependent	varaible	was	recorded.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).	All	

specifications	include	county	fixed	effects	and	census	round-by-state	fixed	effects.	The	dependent	variable	is	listed	

at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	are	reported	in	parentheses.	*,	**,	and	***	indicate	

significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	Long	Difference	Estimates

Panel	B:	Panel	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	Panel	A	presents	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	

depending	on	data	availability.	In	Panel	B,	the	sample	includes	all	censuses	from	1910-1959.	The	sample	of	counties	was	selected	as	in	

Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-state	fixed	effects.	The	dependent	variable	is	listed	at	the	

top	of	each	column.	Standard	errors,	clustered	by	county	are	repoted	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	

levels.

Notes:	 The	unit	of	observation	is	a	county-year.	All	estimates	are	from	panel	estimates	including	all	census	rounds	for	which	each	dependent	

varaible	was	recorded.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).	All	specifications	include	county	fixed	effects	and	census	

round-by-state	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	are	reported	in	

parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	 The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	

year	is	either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	

counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-

state	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	

are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A17: Innovation and Adaptation: Excluding State × Round Fixed Effects

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Shareof	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		!tPost	1930 -2.368*** -1.575*** -2.473*** -0.563*** -0.568*** -1.873***

(0.544) (0.462) (0.579) (0.140) (0.162) (0.534)

CropMixDamagei			x		!tPost	1930 -0.232 -1.939 5.384*** -0.509 3.737*** 6.520***

(1.605) (1.435) (1.663) (0.488) (0.396) (1.433)

Erosioni			x		!tPost	1930		x		CropMixDamagei 22.49*** 16.05*** 22.48*** 5.484*** 4.772*** 16.65***

(6.517) (5.455) (6.750) (1.669) (1.791) (6.124)

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.900 0.926 0.865 0.752 0.920 0.909

Erosioni			x		!tPost	1930 -1.035*** -0.860*** -1.511*** -0.244*** -0.384*** -1.043***

(0.281) (0.321) (0.450) (0.0862) (0.0981) (0.385)

CropMixDamagei			x		!tPost	1930 0.363 -2.445** 3.661*** 0.0283 1.944*** 4.391***

(0.911) (1.051) (1.348) (0.277) (0.225) (1.029)

Erosioni			x		!tPost	1930		x		CropMixDamagei 8.858*** 8.062** 11.59** 1.925* 3.512*** 7.341*

(3.369) (3.758) (5.327) (1.020) (1.096) (4.436)

Observations 7,959 3,184 7,164 7,958 6,364 7,164

R-squared 0.930 0.915 0.867 0.668 0.947 0.897

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		!tPost	1930 -2.390*** -1.588*** -2.448*** -0.558*** -0.566*** -1.852***

(0.531) (0.451) (0.568) (0.137) (0.160) (0.527)

Erosioni			x		!tPost	1930		x		InnovationExposurei 22.49*** 16.05*** 21.85*** 5.383*** 4.634*** 16.11***

(6.301) (5.285) (6.558) (1.620) (1.750) (5.978)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.900 0.926 0.865 0.752 0.920 0.909

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		!tPost	1930 -2.390*** -1.588*** -2.448*** -1.852***

(0.531) (0.451) (0.568) (0.527)

Erosioni			x		!tPost	1930		x		InnovationExposurei 22.49*** 16.05*** 21.85*** 16.11***

(6.301) (5.285) (6.558) (5.978)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	Fixed	Effects Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,592

R-squared 0.900 0.926 0.865 0.909

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	year	is	either	1920	or	1925	
and	ending	year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	

specifications	include	county	fixed	effects	and	census	round	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	

errors,	clustered	by	county	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	Long	Difference	Estimates

Panel	B:	Panel	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	Panel	A	presents	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	
depending	on	data	availability.	In	Panel	B,	the	sample	includes	all	censuses	from	1910-1959.	The	sample	of	counties	was	selected	as	in	

Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	

each	column.	Standard	errors,	clustered	by	county	are	repoted	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	
year	is	either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	

counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round	fixed	

effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	

reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A18: Innovation and Adaptation: Controlling for Policy

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Shareof	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.390*** -0.939*** -1.539*** -0.310** -0.333*** -1.181**

(0.458) (0.328) (0.535) (0.138) (0.127) (0.484)

CropMixDamagei			x		Kt
Post	1930

7.522*** 4.243*** 8.616*** 0.364 4.089*** 9.288***

(1.497) (1.205) (2.135) (0.646) (0.521) (1.996)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 11.89** 7.813** 14.22** 3.008* 2.985** 10.80*

(5.391) (3.903) (6.338) (1.631) (1.470) (5.705)

Observations 1,584 1,584 1,584 1,582 1,584 1,584

R-squared 0.950 0.975 0.885 0.803 0.942 0.924

Erosioni			x		Kt
Post	1930

-0.703*** -0.647*** -1.011** -0.112 -0.257*** -0.728**

(0.221) (0.222) (0.400) (0.0785) (0.0804) (0.323)

CropMixDamagei			x		Kt
Post	1930

4.493*** 1.815* 8.572*** 0.445 2.136*** 8.519***

(0.795) (0.932) (1.577) (0.346) (0.290) (1.232)

Erosioni			x		Kt
Post	1930		

x		CropMixDamagei 4.995* 4.526* 8.186* 0.754 2.507*** 5.368

(2.605) (2.610) (4.699) (0.910) (0.937) (3.779)

Observations 7,919 3,168 7,128 7,918 6,332 7,128

R-squared 0.961 0.961 0.897 0.732 0.962 0.927

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

AAA	Payments	x	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

Relief	Spending	x	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

New	Deal	Loans	x	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.398*** -0.947*** -1.505*** -0.298** -0.330*** -1.159**

(0.450) (0.322) (0.529) (0.136) (0.126) (0.479)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 11.70** 7.740** 13.51** 2.833* 2.836** 10.25*

(5.235) (3.787) (6.211) (1.592) (1.435) (5.592)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

AAA	Payments	x	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

Relief	Spending	x	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

New	Deal	Loans	x	Round	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 1,584 1,584 1,584 1,582 1,584 1,584

R-squared 0.950 0.975 0.885 0.803 0.942 0.924

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

Erosioni			x		Kt
Post	1930

-1.398*** -0.947*** -1.505*** -1.159**

(0.450) (0.322) (0.529) (0.479)

Erosioni			x		Kt
Post	1930		

x		InnovationExposurei 11.70** 7.740** 13.51** 10.25*

(5.235) (3.787) (6.211) (5.592)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	Fixed	Effects Yes Yes Yes Yes

AAA	Payments	x	Round	Fixed	Effects Yes Yes Yes Yes

Relief	Spending	x	Round	Fixed	Effects Yes Yes Yes Yes

New	Deal	Loans	x	Round	Fixed	Effects Yes Yes Yes Yes

Observations 1,584 1,584 1,584 1,584

R-squared 0.950 0.975 0.885 0.924

Notes: 	The	unit	of	observation	is	a	county-year.		All	estimates	are	from	long	differences	specifications;	the	starting	year	is	either	1920	or	1925	and	ending	

year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	

effects	and	census	round	fixed	effects.	All	specifications	also	include	AAA	payments,	relief	spending,	and	new	deal	loans,	interacted	with	a	full	set	of	census	

round	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	reported	in	parentheses.	*,	**,	and	***	

indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	Long	Difference	Estimates

Panel	B:	Panel	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	Panel	A	presents	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	depending	on	data	

availability.	In	Panel	B,	the	sample	includes	all	censuses	from	1910-1959.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	

include	county	fixed	effects	and	census	round	fixed	effects.	All	specifications	also	include	AAA	payments,	relief	spending,	and	new	deal	loans,	interacted	with	

a	full	set	of	census	round	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	repoted	in	

parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	county-year.		All	estimates	are	from	long	differences	specifications;	the	starting	year	is	

either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	counties	was	selected	

as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round	fixed	effects.	All	specifications	also	

include	AAA	payments,	relief	spending,	and	new	deal	loans,	interacted	with	a	full	set	of	census	round	fixed	effects.	The	

dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	reported	in	parentheses.	*,	**,	

and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A19: Innovation and Adaptation: “Leave-State-Out” Estimates

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	

Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	

per	Acre

Erosioni			x		!tPost	1930 -1.412*** -0.956*** -1.694*** -0.346** -0.370*** -1.286***

(0.450) (0.324) (0.536) (0.139) (0.126) (0.480)

Erosioni			x		!tPost	1930		x		InnovationExposurei 12.21** 8.011** 15.97** 3.408** 3.338** 11.97**

(5.321) (3.864) (6.361) (1.637) (1.446) (5.672)

County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.953 0.975 0.885 0.801 0.953 0.924

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	

per	Acre

Erosioni			x		!tPost	1930 -1.412*** -0.956*** -1.694*** -1.286***

(0.450) (0.324) (0.536) (0.480)

Erosioni			x		!tPost	1930		x		InnovationExposurei 12.21** 8.011** 15.97** 11.97**

(5.321) (3.864) (6.361) (5.672)

County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,592

R-squared 0.953 0.975 0.885 0.924

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	year	is	either	1920	or	1925	and	
ending	year	either	1940	or	1959,	depending	on	data	availability.		The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	

include	county	fixed	effects	and	census	round-by-state	fixed	effects.	Innovation	exposure	is	estimated	excluding	crop-level	damage	in	the	county's	

state.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	are	reported	in	parentheses.	*,	**,	and	***	

indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	
year	is	either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.		The	sample	of	

counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-

state	fixed	effects.	Innovation	exposure	is	estimated	excluding	crop-level	damage	in	the	county's	state.	The	dependent	

variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county,	are	reported	in	parentheses.	*,	**,	

and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

13



Table A20: Innovation and Adaptation: Comparing High and Medium Levels of Local
and Aggregate Exposure

(1) (2) (3) (4) (5) (6)

Dependent	Variable	(Long	Difference	Estimates):

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

Share	of	

County	Land	

Devoted	to	

Farms

Share	of	

Farmland	

Devoted	to	

Crops

log	Total	

Revenue	per	

Acre

High	Erosioni			x		!tPost	1930 -1.344*** -0.909*** -1.590*** -0.339** -0.355*** -1.163**

(0.427) (0.308) (0.538) (0.137) (0.126) (0.472)

High	Erosioni			x		!tPost	1930		x		High	CropMixDamagei 9.743** 6.470* 12.69** 2.857* 2.848** 9.257*

(4.961) (3.644) (6.232) (1.601) (1.432) (5.464)

Medium	Erosioni			x		!tPost	1930 0.140 0.104 0.357 -0.0419 0.0473 0.446

(0.288) (0.219) (0.353) (0.0969) (0.0839) (0.333)

Medium	Erosioni			x		!tPost	1930		x		Medium	CropMixDamagei -1.760 -1.133 -2.778** -0.212 -0.398 -2.619*

(1.125) (0.851) (1.398) (0.407) (0.325) (1.346)

t-statistic	of	difference	between	φ	and	φ med 2.261 2.032 2.422 1.858 2.211 2.110
County	Fixed	Effects Yes Yes Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,590 1,592 1,592

R-squared 0.953 0.975 0.888 0.811 0.942 0.925

(1) (2) (3) (4)

Dependent	Variable	(Long	Difference	Estimates):

log	Value	of	

Land	and	

Buildings	

per	Acre

log	Value	of	

Land	per	

Acre

log	Total		

Revenue

log	Total	

Revenue	per	

Acre

High	Erosioni			x		!tPost	1930 -1.344*** -0.909*** -1.590*** -1.163**

(0.427) (0.308) (0.538) (0.472)

High	Erosioni			x		!tPost	1930		x		High	CropMixDamagei 9.743** 6.470* 12.69** 9.257*

(4.961) (3.644) (6.232) (5.464)

Medium	Erosioni			x		!tPost	1930 0.140 0.104 0.357 0.446

(0.288) (0.219) (0.353) (0.333)

Medium	Erosioni			x		!tPost	1930		x		Medium	CropMixDamagei -1.760 -1.133 -2.778** -2.619*

(1.125) (0.851) (1.398) (1.346)

t-statistic	of	difference	between	φ	and	φ med 2.261 2.032 2.422 2.110
County	Fixed	Effects Yes Yes Yes Yes

Census	Round	x	State	Fixed	Effects Yes Yes Yes Yes

Observations 1,592 1,592 1,592 1,592

R-squared 0.953 0.975 0.888 0.925

Notes: 	The	unit	of	observation	is	a	county-year.	All	specifications	are	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	depending	on	data	
availability.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	county	fixed	effects	and	census	round-by-state	fixed	effects.	

The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors,	clustered	by	county	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	

at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	county-year.	All	specifications	are	long	differences	estimates	between	1920	or	1925	and	1940	
or	1959	depending	on	data	availability.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).		All	specifications	include	

county	fixed	effects	and	census	round-by-state	fixed	effects.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	

errors,	clustered	by	county	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A21: Innovation and Adaptation to the Dust Bowl: Heterogeneity by Farm Size

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

log	Value	of	
Land	and	
Buildings	
per	Acre

log	Value	of	
Land	per	
Acre

log	Total		
Revenue

Shareof	
County	
Land	

Devoted	to	
Farms

Share	of	
Farmland	
Devoted	
to	Crops

log	Total	
Revenue	
per	Acre

Erosioni		x	Kt
Post	1930		

x	CropMixDamagei x	Above	Med.	Farm	Sizei 34.87** 23.02** 11.17 5.532 6.859* 11.40

(13.63) (11.23) (16.16) (4.102) (3.583) (15.36)

Observations 1,584 1,584 1,584 1,582 1,584 1,584
R-squared 0.952 0.977 0.889 0.804 0.946 0.927

Erosioni		x	Kt
Post	1930		

x	CropMixDamagei x	Above	Med.	Farm	Sizei 17.54*** 14.19* 13.02 0.910 4.664* 12.38

(6.621) (7.755) (12.77) (2.195) (2.466) (10.37)

Observations 7,919 3,168 7,128 7,918 6,332 7,128
R-squared 0.962 0.962 0.899 0.733 0.963 0.928
County	Fixed	Effects Yes Yes Yes Yes Yes Yes
Round	x	State	Fixed	Effects Yes Yes Yes Yes Yes Yes
Relief	Controls	x	Round	FE Yes Yes Yes Yes Yes Yes

(1) (2) (3) (4)

Dependent	Variable:

log	Value	of	
Land	and	
Buildings	
per	Acre

log	Value	of	
Land	per	
Acre

log	Total		
Revenue

log	Total	
Revenue	
per	Acre

Erosioni		x	Kt
Post	1930		

x	InnovationExposurei x	Above	Med.	Sizei 34.23** 22.38** 10.80 11.19

(13.41) (11.11) (15.84) (15.14)

County	Fixed	Effects Yes Yes Yes Yes
Round	x	State	Fixed	Effects Yes Yes Yes Yes
Relief	Controls	x	Round	FE Yes Yes Yes Yes
Observations 1,584 1,584 1,584 1,584
R-squared 0.952 0.977 0.889 0.927

Panel	A:	Long	Difference	Estimates

Panel	B:		Panel	Estimates

Notes: 	The	unit	of	observation	is	a	county-year.	Panel	A	presents	long	differences	estimates	between	1920	or	1925	and	1940	or	1959	depending	
on	data	availability.	In	Panel	B,	the	sample	includes	all	censuses	from	1910-1959.	The	sample	of	counties	was	selected	as	in	Hornbeck	(2012).			
Above	Med.	Farm	Size	is	an	indicator	that	equals	one	if	the	average	farm	size	in	a	county	in	1930	(measured	as	total	county	revenue	divided	by	the	
number	of	farms)	is	above	the	within-sample	median.	Standard	errors,	clustered	by	county	are	repoted	in	parentheses.	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	county-year.	All	estimates	are	from	long	differences	specifications;	the	starting	year	is	
either	1920	or	1925	and	ending	year	either	1940	or	1959,	depending	on	data	availability.	The	sample	of	counties	was	
selected	as	in	Hornbeck	(2012).			Above	Med.	Farm	is	an	indicator	that	equals	one	if	the	average	farm	size	in	a	county	in	
1930	(measured	as	total	county	revenue	divided	by	the	number	of	farms)	is	above	the	within-sample	median.	Standard	
errors,	clustered	by	county,	are	reported	in	parentheses.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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B Omitted Proofs

B.1 Proposition 1

Suppose there is a shift from F(.) to FDB(.) where F first order stochastic dominates
FDB(.). Define θ as the technology level in the equilibrium before the Dust Bowl and θDB

as the technology level in the equilibrium after the Dust Bowl. We assumed that G(.) is
concave and twice continuously differentiable and that the cost of innovation C(θ) is con-
vex and differentiable. Therefore, a necessary and sufficient condition that equilibrium
technological progress is the solution to the innovator’s profit maximization problem is
satisfied if the following first order conditions hold:

p
1
α

∫
G2(Ai, θ)dF(A) =

d
dθ

C(θ)

p
1
α

∫
G2(Ai, θDB)dFDB(A) =

d
dθ

C(θDB)

First, consider the case where G12 < 0 and suppose that θ > θDB. Since F first order
stochastic dominates FDB, it must be true that∫

G2(Ai, θ)dF(A) ≤ G2(Ai, θ)dFDB(A)

Moreover, since θ > θDB and G is concave in θ, it is also the case that∫
G2(Ai, θ)dFDB(A) ≤ G2(Ai, θDB)dFDB(A)

Combining both expressions with the first order conditions above:

d
dθ

C(θDB) = G2(Ai, θDB)dFDB(A) ≥
∫

G2(Ai, θ)dFDB(A) ≥
∫

G2(Ai, θ)dF(A) =
d
dθ

C(θ)

However, by assumption, θ > θDB and since C(.) is convex, this implies that

d
dθ

C(θ) >
d
dθ

C(θDB)
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This is a contradiction and implies that θDB ≥ θ, as desired.
Now consider the case where G12 ≥ 0 and suppose that θ < θDB. By analogous

arguments to the first case, it must be true that∫
G2(Ai, θ)dF(A) ≥ G2(Ai, θ)dFDB(A)

and that ∫
G2(Ai, θ)dFDB(A) ≥ G2(Ai, θDB)dFDB(A)

Combining these inequalities with the first order conditions:

d
dθ

C(θDB) = G2(Ai, θDB)dFDB(A) ≤
∫

G2(Ai, θ)dFDB(A) ≤
∫

G2(Ai, θ)dF(A) =
d
dθ

C(θ)

However, by assumption, θ < θDB and since C(.) is convex, this implies that

d
dθ

C(θ) <
d
dθ

C(θDB)

This is a contradiction and implies that θDB ≤ θ, as desired. This completes the proof.

C Detailed Data Description and Balance

County-level erosion was measured using data from detailed Reconnaissance Erosion
Surveys, digitized in map form by Hornbeck (2012a). These maps were constructed from
direct measurement by specialists sent to each county. The first surveys of this kind were
carried out during the mid-1930s; as a result, the data capture cumulative erosion prior to
this point and not the erosion that took place since the start of the Dust Bowl period. The
original map was constructed by the Soil Conservation Service (SCS) from the individ-
ual soil survey reports; this was then traced and merged with county boundaries using
Geographical Information Systems (GIS) software (Hornbeck, 2012a, p. 1484). For each
county, it is possible to measure the share of land under high, medium, and low levels
of topsoil erosion at the time of the survey. The sample of Dust Bowl counties included
in the analysis also follows the methodology outlined in Hornbeck (2012a, p. 1484) to
identify the set of contiguous and ecologically similar Plains counties.
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The county-level erosion data are used to construct a crop-level measure of Dust Bowl
exposure, as outlined in Section 3.2. This measure captures the share of total crop land
area in the sample of Plains counties and under high levels of topsoil erosion. There is
substantial variation across crops, ranging from zero exposure to 29.2% of national crop
land area. The difference between the 90th and 10th percentile is 6.7% of national land
area. The share of national crop land under high or medium levels of topsoil erosion
ranges from zero to 72.51% and the difference between the 90th and 10th percentile is
31.66% of national land area.

While the main analysis does not require perfect balance across crops that were more
or less exposed to erosion, and instead requires a parallel trends assumption, here I inves-
tigate in more detail any cross-sectional differences across crops that were more- or less-
exposed to soil erosion during the Dust Bowl. In particular, I estimate the relationship
between crop-level exposure to high levels of erosion—the main measure of crop-level
Dust Bowl exposure—and a range of crop-level characteristics, controlling only for the
share of each crops’ land in Plains counties in order to absorb any mechanical relationship
driven by the Dust Bowl’s regional concentration. These estimates are reported in Table
A1. The first six rows rely on crop-level biological and growing characteristics, compiled
from the Food and Agriculture Organization’s ECOCROP database, which contains infor-
mation about plant-specific characteristics and growing conditions for over 2,500 species
compiled from a range of expert agronomist surveys.28

Physiological characteristics of plants shape the structure, method, and demands of
crop breeding; indeed, since much of variety development is designed to adapt plants to
different ecological conditions, a crop’s baseline optimal growing conditions play a major
role in shaping the demands of research. The covariates included are: an indicator that
equals one if a plant has a single stem, an indicator that equals one if a crop is an annual
plant, the minimum and maximum crop cycle length, the optimal soil depth and salin-
ity, and the upper and lower values for the crop’s optimal temperature, rainfall, and pH
range. The relationship is significant for just one variable (the single stem indicator), and
the effect is very small relative to the sample mean. Moreover, while the significant coef-
ficient could be due to random chance, all baseline estimates are very similar controlling
for the single stem indicator interacted with year fixed effects (not reported).

28This data source is discussed at greater length in Moscona and Sastry (2021).
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Next, I investigate the relationship between erosion exposure and a crop level hy-
brid compatibility indicator (as discussed in Section 4.2) and vegetative reproduction
indicator—in both cases, the correlation is small and insignificant. Finally, I estimate
the relationship between erosion exposure and two proxies for pre-determined crop-level
market size: (log of) the total land area devoted to the crop and (log of) total varieties
released prior to 1930. Again, in both cases the correlation is small in magnitude and sta-
tistically insignificant. Together, these results suggest that at the crop-level, exposure to
Dust Bowl erosion is not related in any systematic or obvious way to a range of crop-level
characteristics that affect the structure and demands of crop research.

D Crop Planting Patterns and the Dust Bowl

In this section, I investigate planting re-allocation during the study period and whether
crop-specific reallocation might affect the interpretation of the results. First, I investigate
the extent to which crop planting patterns persisted during the sample period. I construct
a crop-by-county data set that reports the area devoted to each crop in each county in
1929—prior to the onset of disaster—and in 1959—the point I use as the end year for
empirical analysis throughout the paper. I then estimate:

log(Area1959
i,c ) = ξ · log(Area1929

i,c ) + εi,c (D.1)

if ξ is close to one, crop-reallocation was limited during the sample period and crop allo-
cations at the start of the period closely resemble crop allocations throughout. Estimating
(D.1) on the full sample of US counties, weighting each observation by its pre-period
area, I find that ξ = 1.112; estimating an augmented version of (D.1) that includes crop
and county fixed effects, I find ξ = 0.949. On average, crop allocations in 1929 closely
resembled those in 1959.

Repeating the same two specifications on the sample of Plains counties used in the
analysis, estimates of ξ are 1.103 and 1.017 respectively. I also find no evidence that the
extent of persistence differed across counties depending on their exposure to land erosion.
Including an interaction term between log(Area1929

i,c ) and the share of county land area un-
der high levels of erosion, I find that the coefficient on the interaction term is −0.008 with
a standard error of 0.008. Together, these estimates suggest that crop planting allocations
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were strongly persistent during the sample period, and that the persistence of planting
pattern was not different across counties that were more- or less-exposed to land erosion.
This finding is consistent with narrative evidence discussed and referenced in Section 2.1
on the inter-generational persistence in crop choice and crop-specific expertise during the
sample period (e.g. Schaper, 2012; Huffman, 2001, for a review).

A final concern might be, even if crop switching were limited on average, that the po-
tential for crop switching were correlated with the baseline measure of crop-specific Dust
Bowl exposure. If the most exposed crops were also the crops for which it is most diffi-
cult to shift production across locations, then this could be a key part of the mechanism
and would be important to incorporate in the theoretical and empirical analysis. To in-
vestigate this, I test whether there is any relationship between crop-specific Dust Bowl
exposure and the ease of crop switching. To proxy for the ex ante ease of crop switch-
ing for each crop c, I measure average share of cropland in each county devoted to crop
c across all counties where c is grown. Intuitively, for higher values of this proxy, the
locations where production can take place and set of other crops that require similar con-
ditions are more limited. I then estimate the relationship between crop-specific erosion
and crop-specific “switchability,” controlling for log of total planted area in 1930. The re-
lationship is small in magnitude, statistically insignificant, and negative, suggesting that
if anything the more Dust Bowl exposed crops are less geographically constrained. The
beta coefficient is −0.017 and the p-value is 0.886. Moreover, it is more straightforward to
shift the production allocation of annual (as opposed to perennial) plants, and Table A1
(row 1) showed no evidence that crops more exposed to the Dust Bowl were more likely
to be annual. Thus, it does not appear to be easier to shift the production of more Dust
Bowl exposed crops ex ante.

Finally, I investigate the extent to which ex post persistence in crop planting patterns
was related to crop-specific Dust Bowl exposure. I estimate an augmented version of
Equation (D.1):

log(Area1959
i,c ) = ∑

c
ξc ·
(

log(Area1929
i,c )× Ic

)
+ αc + δi + εi,c (D.2)

Now, each ξc estimates the relationship between pre- and post- period planted areas for
crop c. I then estimate the relationship between crop-specific Dust Bowl exposure and the
ξ̂c’s:
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ξ̂c = π · Exposurec + εc (D.3)

The estimated relationship π is statistically indistinguishable from zero (p = 0.71) and
very small in magnitude; a one standard deviation increase in Dust Bowl exposure is
associated with a 0.05 standard deviation in increase in ξ̂c. The results are qualitatively
similar when the dependent variable in (D.3) is instead |1− ξ̂c| (p-value = 0.385), further
indicating that there is no relationship between Dust Bowl exposure and the extent of
crop switching.

Together, these null results suggest that the ease of crop reallocation and realized per-
sistence of planting patterns in the data are not correlated with Dust Bowl exposure. This
makes it unlikely that crop switching has a major impact on the paper’s empirical es-
timates of interest and suggests that, consistent with the general results of Hornbeck
(2012a), production re-allocation in response to the Dust Bowl was limited.

E Sensitivity Analysis of County-Level Estimates

Alternative Specifications While the baseline county-level results report long difference
estimates since technology development is a long-term process, full panel estimates are
reported in Table A16. The coefficient estimates are intuitively smaller in magnitude than
the long difference estimates, consistent with new technology accumulating over time,
but the findings are qualitatively very similar.

There is a debate about the appropriateness of including state-by-time fixed effects in
county-level analyses of US agricultural production (see Deschênes and Greenstone, 2007;
Burke and Emerick, 2016). In particular, the concern is that state-by-time fixed effects
absorb a large share of the variation in agricultural production and environmental shocks,
making the remaining variation difficult to interpret. Table A17 reproduces the baseline
results with only census round and county fixed effects; the results are very similar and
if anything suggest a larger role for innovation in dampening the effect of the Dust Bowl
on agricultural outcomes.

Controlling for New Deal Policy A potential concern is that the result is driven, in
part, by government spending. It is might be the case that that counties that produced
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crops that were, on average, more affected, received more federal assistance. Particularly
relevant is the AAA, which had a crop-specific component and might have dispropor-
tionately allocated funds toward counties whose crops were more damaged nationally
(see Section 4.2). To address this, I control directly for several measures of New Deal
spending at the county-level—including AAA spending—interacted with Census round
indicators. This set of controls flexibly captures any dynamic impact of New Deal policy
on county-level outcomes. These results are presented in Table A18 and the coefficients
of interest remain similar.

Ruling Out Local Spillovers The innovation exposure measure (5.1) captures national
Dust Bowl damage to each county’s crop mix. Since innovation was re-directed toward
more damaged crops, counties with higher innovation exposure have access to more Dust
Bowl induced technology. The cultivation of certain crops, however, is concentrated in
space and thus county-level innovation exposure may also capture the fact that nearby
counties were exposed to the Dust Bowl; this could have a direct effect on agricultural
production via local spillovers. To directly address this, I estimate a version of innovation
exposure after dropping data from all other counties within the same state; this ensures
that innovation exposure does not capture the Dust Bowl exposure of nearby counties.
I replicate all baseline estimates using this alternative innovation exposure measure in
Table A19 and the results are very similar.

Exploiting Variation in Dust Bowl Intensity In Section 4.2, I show that innovation was
more strongly affected by crop-level exposure to areas with high levels of erosion than
exposure to areas with medium levels of erosion. If innovation is driving the estimates of
φ in Table 3, then the results should be weaker when the Dust Bowl exposure and inno-
vation exposure are computed in terms of exposure to medium levels of erosion rather
than high levels of erosion.29 Analogous to the crop-level estimates, the differential ef-
fect of exposure to high and medium levels of Dust Bowl exposure—both in terms of the
direct effect of the Dust Bowl and exposure to innovation—might do a better job hold-
ing other county-level features fixed and comparing more Dust Bowl-exposed and more

29Moreover, counties whose crop composition was very exposed to medium levels of erosion during the
Dust Bowl may be a more appropriate comparison group for counties whose crop composition was exposed
to high levels of erosion; this follows from the logic of the identification strategy in Hornbeck (2012a).
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innovation-exposed counties to an appropriate control group. To investigate this, I esti-
mate an augmented version of Equation 5.2:

yit =αi + δst + β ·
(

HighErosioni · I
Post 1930
t

)
+ γ ·

(
HighInnovationExposurei · I

Post 1930
t

)
+

φ ·
(

Erosioni · IPost 1930
t ·HighInnovationExposurei

)
+

βmed ·
(

MedErosioni · IPost 1930
t

)
+ γmed ·

(
MedInnovationExposurei · I

Post 1930
t

)
+

φmed ·
(

MedErosioni · IPost 1930
t ·MedInnovationExposurei

)
+ εit

(E.1)
where “MedErosioni” is the share of land in county i under medium levels of erosion from
the Dust Bowl and “MedInnovationExposurei” is analogous to InnovationExposurei ex-
cept it captures the aggregate exposure of county i’s crop mix to medium levels of erosion.
Since innovative activity was most responsive to crop-level exposure to high levels of ero-
sion, the exposure of county’s crop composition to high levels of erosion should have a
larger dampening effect on the Dust Bowl’s impact than the exposure of a county’s crop
composition to medium levels of erosion. In the context of the estimating equation, this
would mean that φ > φmed.

Table A20 reports estimates of Equation (E.1). Across specifications, I find that φ > 0;
moreover, I also find that φ > φmed and that this difference is statistically significant
across outcome variables. This more subtle set of results further points toward technology
development as the key mechanism driving the estimates in Table 3.

E.1 Exploiting Variation in Farm Size

Not all farms might benefit equally from new innovation; in particular, larger farms were
perhaps better able to afford, adopt, and incorporate new technology. Table A21 repro-
duces the baseline county-level results with the inclusion of an interaction term between
the independent variable of interest—Erosioni · IPost 1930

t · InnovationExposurei—and an
indicator that equals one if a county’s average farm size was above the within-sample
median in 1929. The coefficient on the quadruple interaction is positive in all specifica-
tions and statistically significant in half. This suggests that, on average, counties with
larger farms were better positioned to adapt to the Dust Bowl via the adoption of new
technology.
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This finding also supports interpretation of the baseline county-level result as the im-
pact of induced innovation rather than output price changes. Recall that the concern is
that innovation exposure may also be a shifter of county-level output prices; while I con-
trol in all specifications for the direct effect of innovation exposure, this channel could
still bias the estimates if prices had a non-log-linear relationship with features of agricul-
tural production. A primary reason this could be the case is if credit constraints limited
farmers from adjusting production; farmers producing crops that were more damaged on
average may have then been less constrained due to the increased price of their output.
If this is true, the baseline estimates could be capturing the differential ability of farmers
across counties to afford production adjustments rather than variation in the benefits of
new innovation.

If the credit constraints channel were important, however, the baseline effects should
be largest for counties with the most constrained farms. If, on the other hand, the channel
is innovation, the baseline effect, if anything, would likely be larger for the least con-
strained farms since they would be better able to access and afford improved technolo-
gies. While ideally one would measure credit constraints at the county level and investi-
gate whether more or less constrained counties are driving the result, to my knowledge
a direct measure of credit constraints does not exist. Therefore, the fact that the baseline
finding is stronger for counties with larger farms that are less likely to be constrained is
inconsistent with the main results being driven by price effects and credit constraints.
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