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Abstract

This paper studies the origins and consequences of the opioid epidemic. Drawing on

unsealed records from state litigation against Purdue Pharma, we exploit detailed

features of the marketing of OxyContin—which initially targeted the cancer pain

market—to assess the role of supply-side factors in the origins of the epidemic. We

exploit the differential promotion of OxyContin and its competitors across geogra-

phies as a source of exogenous variation in the supply of opioids to quantify its

effects on opioid mortality, adult wellbeing, and to assess its intergenerational im-

pacts. We document a strong link between Purdue Pharma’s promotional targeting

and future increases in the supply of prescription opioids and overdose deaths. The

epidemic triggered a significant increase in disability and SNAP claims, a worsening

of health at birth, and an increase in non-marital fertility rates.
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I. Introduction

Over the last two decades, mortality from opioid overdoses in the United States has

increased at an alarming rate. Since 1999, prescription opioid overdoses have claimed

the lives of over 300,000 individuals (CDC, 2021); contributing to the longest sustained

decline in life expectancy in the last century, excluding the influenza and Covid pandemics

(Dyer, 2018 and Andrasfay and Goldman, 2021). Opioids are highly addictive, with

rapid progression to physiological dependence with tolerance and withdrawal, even at

prescribed doses and within a short time (Sharma et al., 2016; Hah et al., 2017). In 2012,

the national opioid dispensing rate peaked at 81.3 prescriptions per 100 persons (CDC,

2020). Although the dispensing rate has declined since then, by 2020, there were still

43.3 prescriptions per 100. The potential effects of the rise in the supply of prescription

opioids can stretch beyond the increase in overdose deaths and include the transition to

the use of illegal opioids such as heroin and fentanyl, a decline in one’s ability to work,

recover from illness, and care for children, among other daily activities (Alpert et al.,

2018; Lynch et al., 2018; Meinhofer and Angleró-Dı́az, 2019).

Tracing the effects of the opioid crisis and its origin is challenging because the variation

in the level of prescription opioids across geographies and over time is not random (Ruhm,

2019). On the one hand, deteriorating socio-economic conditions in certain geographic

areas could cause an increase in the demand for opioids and also explain the subsequent

decline in outcomes in the same areas, which would lead to negatively biased estimates

(Carpenter et al., 2017; Case and Deaton, 2017). On the other hand, the origin of the

epidemic coincides with dramatic supply-side changes such as the aggressive marketing

of prescription opioids, a shift in physician prescribing attitudes, and the increase in the

availability of potent opioids.1 It has been documented that this increase is positively

linked to access to healthcare and the number of physicians per capita (Finkelstein et al.,

2018). As a result, areas with higher access to opioids are positively selected along these

variables, which could, in turn, attenuate the estimates of the effects of the epidemic.

In this paper, we provide new evidence of the central role that the initial marketing

of prescription opioids played in the unfolding of the opioid epidemic. We also document

its consequences on the wellbeing of adults and its intergenerational effects. We exploit

detailed features of the initial marketing of prescription opioids, which we obtained from

unsealed court records from state litigation against Purdue Pharma, the manufacturer of

OxyContin, a prescription opioid at the center of the opioid epidemic.2 We document that

OxyContin was initially promoted to the cancer pain market with the plan to quickly

expand to the much larger non-cancer pain market. This targeting implied that non-

1See for example: Fernandez and Zejcirovic (2018); Alpert et al. (2022); Eichmeyer and Zhang (2020);
Schnell and Currie (2018); Finkelstein et al. (2018) and Miloucheva (2021); among others.

2These court documents are from case 07-CI-01303 Commonwealth of Kentucky v. Purdue Pharma,
and case CJ-2017-816 State of Oklahoma v. Purdue Pharma et al.
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cancer physicians and patients in high-cancer areas were first exposed to OxyContin

promotion and gained access to potent prescription opioids to treat moderate and chronic

pain. Furthermore, Purdue Pharma’s later strategy to target top prescribers—those in

the highest deciles of the opioid dispensing distribution—created a path dependency from

where the promotion started to where it expanded. Drawing on these insights, we exploit

the geographic variation in cancer mortality in the mid-nineties—as a proxy for the cancer

pain market served by Purdue Pharma—to assess the role of supply-side factors in the

unfolding of the opioid epidemic. We use this variation as an instrument for the supply

of prescription opioids and estimate its effect on a broad range of outcomes.

We collect data from multiple sources and construct a panel of commuting zones cov-

ering the United States from 1989 to 2018.3 We use data from the Drug Enforcement

Agency (DEA) on the distribution of controlled substances to measure the level of pre-

scription opioid at the commuting zone level. We measure adult wellbeing using data on

mortality from opioids and other causes from the National Vital Statistics System, and

data on beneficiaries of social safety net programs—Supplemental Nutrition Assistance

Program (SNAP), Supplemental Security Income (SSI)—and Social Security Disability

Insurance (SSDI) program. To capture the intergenerational effects of the epidemic, we

exploit linked data on births and maternal outcomes.

We start by showing the link between Purdue’s marketing targets and the unfolding

of the growth in prescription opioids. Specifically, we estimate a strong and robust

relationship between higher cancer mortality in the mid-nineties and the future growth

of prescription opioids after the launch of OxyContin. This relationship is mostly driven

by prescribed oxycodone, the active ingredient in OxyContin.4 Commuting zones with

the highest cancer incidence—the 95th percentile relative to the 5th percentile—at the

time of the launch of OxyContin received 1.96 more doses of opioids per capita, which

accounts for 64% of the average growth in prescription opioids from 1999 to 2018.

Turning to the effects of the epidemic we find three key results. In terms of opioid-

related mortality, increasing the supply of opioids from the 25th-to-the-75th percentile

caused an 89% increase in prescription opioids deaths and a 39% increase in deaths

from all opioids. This corresponds to approximately 200,000 deaths. These deaths are

concentrated in young and middle-aged adults, with no effects on those 55 and older. We

do not find effects of the rise in opioid supply on non-opioid deaths of despair—such as,

suicide and alcohol related deaths—or other causes of death.5 Second, the opioid epidemic

3Commuting zones are geographic areas defined to capture local economic markets. They encompass
all metropolitan and non-metropolitan areas in the US. While less granular than counties, commuting
zones are much more granular than states (Tolbert and Sizer, 1996).

4See Figure 1. Oxycodone is a semi-synthetic opioid that is 50% more potent than morphine and
prescribed for the management of acute pain.

5Our measure of deaths of despair follows Case and Deaton (2017)’s definition but excludes drug
overdose deaths, these are counted in the prescription opioids and all opioid death categories. More
details on these definitions are provided in Section III.
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had large effects on communities. Claims for social safety net programs increased: A

change from the 25th to the 75th percentile of prescriptions caused a 57% increase in

the share of SNAP recipients and a 47% increase in the share of the population receiving

SSI. We also find a 76% increase in the share of the population receiving SSDI. Third, we

document large intergenerational effects. We estimate a 10% increase in fertility rates,

which is driven entirely by increases in non-marital births, and is concentrated among

women aged 25-29. We find a decline in pregnancy duration of 0.24 weeks, a reduction

in birth weight of 0.7%, and a worsening of APGAR scores by 0.9%.6 We estimate that

there is no effect on infant mortality, but we find an increase in the APGAR score of

infants who died in the first year, meaning that healthier infants died. Taken together,

these results point to a general decline in health at birth.

Our identification strategy requires that in the absence of OxyContin’s marketing,

areas with higher cancer mortality would exhibit the same trends as areas with lower

cancer mortality in terms of our outcome variables (Goldsmith-Pinkham et al., 2020). To

test this, we use an event-study approach and investigate the presence of pre-trends. We

do not find any evidence of a relationship between mid-nineties cancer mortality and the

growth of any of our outcomes variables before the launch of OxyContin. In contrast,

reduced-form event-study graphs show that soon after the introduction of OxyContin,

our instrument starts to predict higher opioid mortality, SNAP and disability claims, and

fertility. In addition, we document that areas with higher cancer mortality are not on

a differential trend with respect to socio-economic variables such as education, income,

or other health variables. For example, we find that high- and low-cancer mortality

commuting zones were on the same trend regarding suicide mortality and the share of

employment in manufacturing and mining industries. These results suggest that the

evolution in socio-economic conditions is not different in high and low cancer mortality

places. That is not to say that the variation in cancer mortality across space is randomly

distributed. In fact, we find strong demographic predictors of cancer, such as the share

of the population over 65 and the share non-Hispanic population. What we require and

provide evidence in favor of is that high and low cancer areas are on the same trends

along our health and economic outcomes.

Further, we propose two placebo exercises. First, we show that mid-1990s mortality

rates from other causes, such as cerebrovascular disease mortality, are not predictive of

the future prescription opioids distribution. In a second placebo exercise, we relate cancer

mortality in 1989-1990—the first year of our data—to the evolution of outcomes of interest

before the launch of OxyContin. That is, we test if there is a relationship between lagged

cancer mortality and the growth of our outcomes outside the analysis period, and find no

6The APGAR score is a measure of the physical condition of a newborn infant. It is obtained by
adding points (2, 1, or 0) for heart rate, respiratory effort, muscle tone, response to stimulation, and skin
coloration; a score of 10 represents the best possible condition.
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evidence of such link. Both of these exercises suggest that the connection between cancer

mortality and prescription opioid distribution is not driven by other underlying health

trends, but by the link created by Purdue Pharma through the marketing of OxyContin.

Finally, we show that our results are not driven by the differential exposure to: Chinese

import competition, the 2001 economic recession or unemployment at the time of the

introduction of OxyContin.

This paper makes four contributions. First, we provide new evidence linking the

launch of OxyContin to the origin and evolution of the opioid epidemic. This adds to

the literature documenting the importance of supply-side factors in the evolution of the

opioid epidemic. Eichmeyer and Zhang (2020) and Schnell and Currie (2018) document

the role of physicians, Powell et al. (2020) highlight the importance of access to healthcare,

and Fernandez and Zejcirovic (2018) and Miloucheva (2021) underscore the importance

of pharmaceutical promotions. This paper is closest to Alpert et al. (2022), who use

state-level variation in the regulations regarding the prescription of Schedule II drugs.7

They show that five states that had a more cumbersome process for prescribing opioids at

the time of OxyContin’s launch, were not as targeted by Purdue Pharma in their initial

marketing plans.8 Subsequently, those five states reported lower levels of prescription

opioids and overdose deaths. We extend and improve their work in multiple dimensions.

Exploiting commuting-zone level variation in the initial marketing of OxyContin, we can

account for important counfounders at the state and year level.9 We also expand the work

of Alpert et al. (2022) by investigating the effects of the epidemic on important social

outcomes beyond mortality.10 Mortality from opioids is only one of the many social costs

associated with drug use. In 2019, an estimated 10.1 million people in the US aged 12

or older misused opioids (SAMHSA, 2020). These numbers are an order of magnitude

larger than the number of deaths.

Second, this paper introduces a novel instrument to identify the causal effect of the opi-

7The DEA defines Schedule II drugs as drugs with a high potential for abuse, with use potentially
leading to severe psychological or physical dependence. These drugs are also considered dangerous.

8Our reading of Purdue and other pharma and academic documents suggests that the industry’s
perception of what constitutes a “triplicate” program could differ from the designation used by Alpert
et al. (2022). Appendix C examines this evidence and extends the anaylsis in Alpert et al. (2022).

9During this period there is relevant state-level variation in response to the opioid epidemic, such
as, the implementation of Prescription Drug Monitoring Programs (PDMP), the regulation of “pill mill”
clinics, and the availability of naloxone. The term “pill mill” is typically used to describe a doctor, clinic,
or pharmacy that prescribes or dispenses controlled prescription drugs inappropriately (Malbran, 2007).
Naloxone is a drug that can reverse an opioid overdose if administered quickly. The level of naloxone
access varies by state and over time. Between 2001 and 2017, every US state has passed a law that
facilitates widespread distribution and use of naloxone (Doleac and Mukherjee, 2019).

10We exploit commuting-zone level variation which improves power. Griffin et al. (2020) document
that empirical strategies exploiting state-level variation to estimate effects on opioid mortality have very
low statistical power to detect a significant policy effect. They assess the relative performance of multiple
statistical methods commonly used in evaluation studies of state-level opioid policies using a simulation
study based on observed state-level opioid-related outcomes. Their main result indicates that many
commonly used methods have very low statistical power to detect a significant policy effect (< 10%)
when the policy effect size is small yet sizable (e.g., 5% reduction in opioid mortality).
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oid epidemic. Previous literature often relies on the staggered introduction of state-level

PDMPs—and other policy changes—and its effect on the level of prescription opioids, to

then indirectly assess the impact of the opioid epidemic on a broad set of outcomes.11 The

nature of such research designs do not allow researchers to control for state-year fixed

effects. Our instrument improves on this literature exploiting commuting-zone quasi-

exogenous variation on the level of prescription opioids, which leverage to estimate direct

effects of the opioid epidemic.

Third, this paper is the first to document the direct effects of the increase in access to

prescription opioids on the demand for disability benefits and on one of the largest anti-

poverty programs in the United States, SNAP, which has not been studied before. Our

work is related to Savych et al. (2019) who find evidence that an increase in long-term

opioid prescribing leads to a considerably longer duration of temporary disability, and to

Park and Powell (2021) who document that the rise in access and consumption of illicit

opioids—such as heroin and fentanyl—increase disability applications by 7%.

Finally, this paper also contributes to the literature that studies the intergenerational

impacts of the opioid epidemic. The epidemic has primarily affected individuals in early

adulthood through mid-life, with potential costs beyond the generation directly impacted.

Heil et al. (2011) and Caudillo and Villarreal (2021) document a positive correlation

between opioid use and unintended pregnancies; and between opioid overdose deaths and

non-marital births. We provide the first causal estimates of the effects of the opioid

epidemic on fertility and the first direct effects on birth outcomes.

II. Background: The Marketing of OxyContin and the Opioid

Epidemic

In 1996, Purdue Pharma introduced OxyContin to the market. When patented, OxyCon-

tin was described as a controlled-release oxycodone compound that substantially reduces

the time and resources needed to titrate patients who require pain relief on opioid anal-

gesics (Oshlack et al., 1996). Two key technological innovations are responsible for its

success. First, its long-acting formula provided 12 hours of continuous pain relief, an

improvement over the standard practice of pain relief every 6-8 hours. Second, it is a

single-agent narcotic, so there is no ceiling on the amount of oxycodone per tablet.12

Both of these factors significantly increased patients’ access to potent doses of opioids

and augmented the risk of dependency and use disorder. For example, Percocet was the

11There is no consensus on what constitutes an operational or mandatory PDMP; definitions change
across the literature, making it difficult to leverage this variation to estimate the effects of the opioids
epidemic. See Meara et al. (2016), Buchmueller and Carey (2018), Evans et al. (2020), Ziedan and
Kaestner (2020), and Gihleb et al. (2022).

12Other oxycodone products on the market were a combination of oxycodone and ibuprofen or ac-
etaminophen, and the toxicity of the former sets a limit on the amount of active ingredients in the
formula.
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most common oxycodone product on the market before 1996 and was mostly sold in the

form of 2.5 mg of oxycodone per tablet. In contrast, the most common forms of OxyCon-

tin were 20 mg and 40 mg tablets of oxycodone, while 80 mg and 160 mg tablets were

also available. Furthermore, OxyContin users rapidly learned that crushing or dissolving

the pill causes the oxycodone to be delivered all at once—instead of the slow release over

12 hours—which causes strong euphoric effects.

Prior to the introduction of OxyContin, pain management focused on cancer and

end-of-life pain treatment. Patients who suffered from debilitating chronic pain but who

do not have a terminal illness were excluded from long-term therapy with opioids, based

on care providers’ fears of the risk of addiction (Melzack, 1990). In this context, MS

Contin, a drug also produced by Purdue Pharma, was the gold standard for cancer

pain treatment. OxyContin’s development was in response to the generic competition

Purdue Pharma expected to face when MS Contin’s patent protection expired in 1996.

In their words:“Because a bioequivalent AB rated generic control-release morphine sulfate

is expected to be available sometime during the later part of 1996, one of the primary

objectives is to switch patients who would have been started on MS Contin onto OxyContin

as quickly as possible” (OxyContin Launch Plan, September 1995).

OxyContin was intended to take over MS Contin’s market and gain ground in the

much larger non-cancer pain treatment market, in which opioids were almost absent.

Nonetheless, establishing the use of OxyContin for moderate and chronic pain was not an

easy task; it was clear to Purdue that they were going to face pushback when expanding to

the non-cancer market. Specifically, based on physicians’ focus groups in 1995, Purdue

concluded that “there is not the same level of enthusiasm toward this drug for use in

non-cancer pain as we identified in cancer pain” (Purdue Pharma, 1995). The two main

barriers Purdue Pharma faced were (i) the stigma related to the use of opioids for non-

terminal or non-cancer pain and (ii) the administrative barriers physicians and pharmacies

had to overcome to prescribe and sell Schedule II drugs.

To overcome these obstacles, Purdue deployed a comprehensive marketing strategy

based on three main pillars. First, to effectively change physician prescribing behaviors,

Purdue Pharma implemented an aggressive marketing plan that pushed the message of

an untreated pain epidemic that affected millions of Americans on a daily basis. Pain

was introduced as the fifth vital sign, with the goal of encouraging the standardized

evaluation and treatment of pain symptoms (Jones et al., 2018). This messaging also

included misleading statements—for instance, that opioid addiction rates were lower than

1% and that oxycodone was weaker than morphine when it is 50% more potent.13

13“We are well aware of the view held by many physicians that oxycodone is weaker than morphine.
We all know that this is the result of their association of oxycodone with less serious pain syndromes. This
association arises from their extensive experience with and use of oxycodone combinations to treat pain
arising from a diverse set of causes, some serious, but most less serious. This ‘personality’ of oxycodone
is an integral part of the ‘personality’ of OxyContin.” Exhibit 11 from Richard Sackler’s—chairman and
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Second, OxyContin was promoted directly to physicians by the largest and highest-

paid sales force in the industry.14 The continuous promotion of OxyContin through

advertisements, gifts, and promoted medical literature was delivered through repeated

visits and calls to physicians. These promotional efforts quickly translated into a growing

number of prescription from OxyContin (Figure A1). At the same time, the marketing

team carefully tracked physician prescription habits to concentrate on the highest pre-

scribers; OxyContin’s annual budget plans state that they will focus on physicians in

the top 3 deciles of opioid prescription distribution (OxyContin Launch Plan, September

1995; OxyContin Budget Plan, 1996).15

Third, Purdue focused its initial marketing efforts on the physicians and pharmacies

who faced less stigma around opioids and who knew how to navigate the paperwork

related to the distribution of Schedule II drugs: Those in the cancer pain market. “Oxy-

Contin Tablets will be targeted at the cancer pain Market.” (OxyContin Team Meeting,

April 1994).“OxyContin primary market positioning will be for cancer pain.” (OxyCon-

tin Team Meeting, March 1995).“At the time of launch, OxyContin will be marketed for

cancer pain.” (OxyContin Launch Plan, September 1995). This, however, was only in-

tended as their entering path to the larger non-cancer pain market. Purdue explicitly

stated that: “The use of OxyContin in cancer patients, initiated by their oncologists and

then referred back to FPs/GPs/IMs, will result in a comfort that will enable the expansion

of use in chronic non-malignant pain patients also seen by the family practice specialists”

(OxyContin Launch Plan, September 1995). That is, Purdue exploited its previously

established network of cancer patients and their physicians to introduce its newest prod-

uct to the broader pain market. This strategy also solved additional logistical problems

related to the sales of Schedule II drugs, such as OxyContin. At the time of launch, only

about half of the pharmacies in the country had the paperwork required to sell Schedule

II drugs, and because “pharmacists are generally reluctant to stock Class II opioids”,

Purdue decided that their “initial targets will be the 25,000 stores who stock MS Contin”,

where there was no additional paperwork or training required for pharmacies to stock

OxyContin.

Purdue’s marketing strategy succeeded in making the use of opioids the standard

practice in the treatment of moderate and chronic pain for a wide range of non-terminal

conditions, expanding the use of opioids to the non-cancer pain market. By 2003, nearly

half of all physicians prescribing OxyContin were primary care physicians (Van Zee, 2009).

This strategy also opened the door for other pharmaceutical companies to promote their

prescription opioids beyond the cancer market following Purdue’s leadership. These com-

president of Purdue Pharma—deposition, August 28, 2015.
14The average sales representative’s annual salary of $55,000, was complemented by annual bonuses

that averaged $71,500, with a range of $15,000 to nearly $240,000 (Van Zee, 2009).
15From 1996 to 2000, Purdue increased its total physician call list from approximately 33,400 to 44,500

to approximately 70,500 to 94,000 physicians; United States General Accounting Office (2003).
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panies—Janssen, Endo, Cephalon-Teva, Actavis, Insys, and Mallinckrodt—who are also

part of dozens of lawsuits for their role in the opioid epidemic, closely shadowed Oxy-

Contin’s marketing intending to grow by reducing OxyContin’s market share:“Success

means increasing Duragesic share at the expense of OxyContin” (Sales Force Memoran-

dum, 2001, Exhibit S0510, State of Oklahoma v. Purdue Pharma et al.).16

Finally, Purdue’s later strategy to promote only to top opioid prescribing physicians,

those in the highest three decile of the distribution (Figure A2), meant that areas with

high initial promotion as a result of the cancer market focus, also observed higher future

promotion when Purdue’s plan shifted to top prescribers.17 This created a path depen-

dency that made initial targets always relevant as the distribution of opioids expanded.

For our purposes, Purdue’s marketing strategy means that areas with a higher inci-

dence of cancer at the time of the launch of OxyContin would receive a disproportionate

amount of marketing and prescriptions for OxyContin and other opioids. In practice

this created a spillover in high cancer communities from cancer patients to non-cancer

patients. Thus, the ideal instrument is a measure of the cancer market Purdue Pharma

was serving with MS Contin prior to the introduction of OxyContin. Hypothetically,

there are multiple ways to proxy this market. One is to use mid-nineties MS Contin

prescription rates as this was Purdue’s gateway to the non-cancer pain market. However,

for the period of analysis these data are not available at the county or commuting zone

level.18 Another approach would be to exploit a direct measure of Purdue Pharma’s mar-

keting efforts—e.g., payments to physicians, areas served by sales representatives, and

the number of visits of these representatives—unfortunately, these data are not available

to the public.19 We proxy the market served by Purdue Pharma using cancer mortality

between 1994 and 1996. This variable is available at the county level, and is accurately

and consistently measured throughout the period. Additionally, it has a close connection

to the rates of cancer patients who are using opioid pain-killers to manage cancer pain

(e.g., MS Contin), especially in the later stages of cancer treatment.20

16Duragesic is a fentanyl patch manufactured by Janssen.
17This strategy is also followed by other pharmaceutical companies. For example, Janssen referes to

high decile prescribers as their highmost important customers in a Sales Force Memorandum for Duragesic
in 2001.

18From reading court litigation’s documents we know that at that time, Purdue had access to ex-
tremely granular prescription drugs data through a firm called IMS (later called Xponent and today
called IQVIA). We have contacted IQVIA to inquire about these data and they stated they do not keep
any records of historical data. Additionally, State Drug Utilization Data (SDUD) reports the number of
prescriptions paid by Medicaid agencies at the state level, which does not allow us to exploit within-state
variation.

19Court litigation’s documents refer to lists of sales representatives and visits to physicians but we
could not access these files; only extracts of these lists are available in the courts’ documents. Open
Payments Data collected by the Centers for Medicare & Medicaid Services (CMS) are available starting
in 2014, eight years after the introduction of OxyContin and four years after the introduction of the
abuse-deterrent OxyContin.

20An additional measure of cancer incidence is the rate of cancer patients in the population. Unfor-
tunately, incidence measures reported by the CDC and the Surveillance, Epidemiology, and End Results
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III. Data and Summary Statistics

A. Prescription Opioids

We digitize historical records from the Automation of Reports and Consolidated Orders

System (ARCOS) of the Drug Enforcement Administration (DEA). These reports contain

the distribution records of all Schedule II substances by active ingredient (e.g., oxycodone,

hydrocodone, and morphine) at the 3-digit ZIP code level—the smallest geographic unit

available—from 1997 to 2018.21 We construct a geographic crosswalk from 3-digit ZIP

codes to commuting zones using Geocorr (a geographic correspondence engine) powered

by the Missouri Census Data Center. Our main independent variable is grams of pre-

scription opioids per capita at the commuting-zone level; this corresponds to the sum of

oxycodone, codeine, morphine, fentanyl, hydrocodone, hydromorphone, and meperidine

in morphine-equivalent mg. The group of drugs included in the ARCOS changes over

time—e.g., to account for changes in the classification of an ingredient. Nonetheless, we

focus on a set of prescription opioids that can be tracked consistently over the period

of analysis. We report all ARCOS measures in morphine-equivalent doses, equal to 60

morphine-equivalent mg.

The first panel of Table 1 presents summary statistics of shipments of all prescrip-

tion opioids and the three main controlled substances: oxycodone, hydrocodone, and

morphine. Oxycodone represents around half of all prescription opioids shipments, and

the average commuting zone receives 3.15 doses per capita in a given year. This num-

ber masks substantial geographical variation. While some commuting zones received no

doses, others report as much as 51.31 oxycodone doses per capita in a given year, Map 1

shows this variation. Figure A3 shows the rapid growth of prescription opioids over time

and the dominant role of oxycodone in such growth.

B. Cancer Mortality

To proxy the cancer market served by Purdue Pharma at the time of OxyContin’s launch

we construct the average cancer mortality rate between 1994 and 1996 at the commut-

ing zone level using a restricted-access version of the Detailed Multiple Cause of Death

(MCOD) files.22 These files record every death in the US along with the county of resi-

(SEER) program are aggregated at the state level and are more likely to be affected by variation in
diagnosis rates, especially for early-stage cancers. In contrast, cancer mortality is available at the county
level. Importantly, the two measures are highly correlated: the correlation coefficient is 0.88. An alter-
native plausible instrument is the number of oncologists per capita. However, this measure is far too
concentrated in the largest commuting zones.

21ARCOS system data are available online from 2000 to the first half of 2020. We retrieved and
digitized the reports up to 2018, the last year of our sample. For periods before 2000, we used the
WayBack Machine application and to access reports for 1997 to 1999.

22We also consider age-adjusted cancer mortality and test if our results are sensitive to any of the
years used as our baseline cancer mortality measure. We find very similar and strong first-stage estimates
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dence, the underlying cause of death, and up to 20 additional causes and thus represent a

census of deaths in the US. The 1989-1998 data use ICD-9 codes to categorize the cause

of death, and the 1999-2018 data use ICD-10 codes.23 Map 2 shows large variation in

average cancer mortality in 1994 and 1996.

C. Outcome measures and control variables

Opioid mortality. We construct two main measures of opioid-related deaths: prescrip-

tion opioids and all opioid deaths. The prescription opioids category captures deaths

whose underlying cause is substances usually found in prescription painkillers such as

hydrocodone, methadone, morphine, and oxycodone, among others.24 We also consider

a broader measure of opioid-related deaths, in which we include deaths from heroin and

synthetic opioids; e.g., fentanyl.25 Map 3 shows this geographical variation.26 Prescrip-

tion opioid deaths vary from no deaths to as many as 106 per 100,000 residents in the

most affected commuting zones.

Deaths of despair. We also study how the marketing of prescription opioids affected

deaths of despair. Case and Deaton (2015) define deaths of despair as deaths by drug

and alcohol poisonings, suicide, and chronic liver diseases and cirrhosis. Our measure of

deaths of despair does not include drug poisonings as these are counted in prescription and

any opioids deaths. That is, our measure is limited to deaths from suicide, chronic liver

disease, cirrhosis, and poisonings that are attributable to alcohol—these deaths amount

to, on average, 79% of the deaths studied by Case and Deaton (2017).27

Demand for social insurance and welfare programs. We construct a measure of SNAP

benefit recipiency rates at the commuting-zone level, using data from the Food and

Nutrition Service of the Department of Agriculture. In particular, we use data on county-

level participation in the month of January for all years spanning 1989-2018, focusing

on beneficiaries of Food Stamps (FSP) and Electronic Benefit Transfers (EBT) in the

context of the program. We then aggregate the county-level counts to compute the share

across these alternative measures.
23We construct cancer deaths as those from malignant neoplasms (codes 140-208 in ICD-9 data and

C00-C97 in ICD-10 data) and in situ neoplasms, benign neoplasms and neoplasms of uncertain or un-
known behavior (codes 210-239 in ICD-9 data and D00-D48 in ICD-10 data).

24We use identification codes T40.2 and T40.3 to specify prescription-opioid-related overdoses in the
ICD-10 data and codes 965.00, 965.02, 965.09, E850.1, and E850.2 in the ICD-9 data.

25We use identification codes T40.0-T40.4, X42, X62, and Y12 to count deaths from any opioid in the
ICD10-data and codes 965.00, 965.01, 965.02, 965.09, E850.0, E850.1, and E850.2 in the ICD-9 data.

26The CDC reports that the transition from the ICD-9 to ICD-10 resulted in a small increase in
poison-related deaths of 2% (Warner et al., 2011). Appendix Figure A4 shows the time series for the US
for these two measures.

27We use identification codes K70, K73-74 to count deaths from alcoholic liver diseases and cirrhosis
in the ICD10-data and codes 571.0 – 571.4 and 57109 in the ICD-9 data. We count deaths from suicide
using codes X60-84 and Y87.0 in the ICD10-data and codes E950-E959 in the ICD-9 data. Deaths from
alcohol poising are counted using codes X45 and Y15 in the ICD10-data and codes E850-E858, E860,
and E980.1 in the ICD-9 data.
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of beneficiaries in the population at the commuting-zone level. When information at

the local level is not available, we impute the state-level share of SNAP recipients.28

We include two measures of disability benefits recipiency, constructed as the share of

the population 18 to 65 that receives Supplemental Security Income (SSI) and who is

blind or disabled, and the share of the population 18 to 65 that receives Social Security

Disability Insurance (SSDI). Information on the total number of SSI recipients in each

county is based on SSI Annual Statistical Reports and Old Age, Survivors and Disability

Insurance (OASDI) reports prepared by the National Social Security Administration,

which we aggregate at the commuting-zone level.29

Maternal and birth outcomes. Data on birth outcomes come from the Linked Birth and

Infant Death Data of the National Vitals Statistic System (NVSS). The microdata for each

year between 1995 and 2018 include the deaths of all infants born in that calendar year

for which the death certificate can be linked to a birth certificate and all births occurring

in a given calendar year.30 We construct infant mortality as the ratio of infant deaths to

live births in a given calendar year. The Linked Birth and Infant Death Data also include

data on the infant’s condition at birth, such as weight and length of gestation. The main

measures of infant health we compute from the birth files are the commuting-zone-level

(i) average birth weight for all live births, (ii) share of low-birth-weight newborns, (iii)

share of preterm births, (iv) APGAR score of all births, (v) APGAR score of deceased

infants, and (vi) median pregnancy duration. Finally, we use the birth files to compute

the average fertility rate at the commuting-zone level, defined as the ratio of the number

of single pregnancies to the female population aged 15 to 44 years old.31,32

Demographic controls: population data. Data on population counts comes from the

Survey of Epidemiology and End Results (SEER) which reports population at the county

level and by age, race, sex, and Hispanic origin. We use these data construct the de-

nominators for adult mortality rates computations, e.g., opioid mortality and aggregate

mortality. Denominators for infant mortality rate comes from the “Denominator File”

provided by the NVSS.

In sum, we build a data set at the commuting-zone level, covering the period from

1989 to 2018 for our outcome variables and the instrument. We choose commuting-zones

28Table A14 shows the result for the sample of commuting zones that do not require state-level
imputation. Our results are not sensitive to this sample restriction.

29We observe the number of beneficiaries at a given point in time but do not observe the number
of beneficiaries entering or exiting the programs. Thus, we cannot speak to the question of whether a
change in the stock is due to people entering more quickly or receiving benefits for a longer time.

30At least 98% of deaths are linked to their corresponding birth certificate. This figure varies by year;
e.g., in 2018, 99.3% of all infant deaths were successfully linked, while in 1998, 98.4% of death records
were linked.

31We follow the CDC’s definition to compute the aggregate or general fertility rate. In additional
results, we also present fertility rates for other age breakdowns.

32Data for the period 1989-1994 come from the Natality Birth Files. These files provide demographic
and health data for all births occurring during the calendar year that we use to construct infant mortality
rates, birth weight, fertility rate, and APGAR scores for the analysis we perform in Section IV.B.
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as our unit of observation since it is the geographic space that captures ones economic

life—which usually spans beyond county borders—and the access to the local market

for prescription opioids.33 ARCOS data are available since 1997, so analyses using this

measure are restricted to a later period.34 We restrict our sample to areas with more

than 25,000 residents. This represents 99.8% of all opioid deaths and 99.3% of the total

population. Our final dataset is a balanced panel of 590 commuting zones and consists

of 17,110 observations.

IV. Empirical Strategy

The level of prescription opioids in a given place and time is an equilibrium object de-

termined by supply and demand factors. Supply factors, such as the density of the

healthcare network, and demand factors, such as the incidence of pain in the population,

affect the level of prescription opioids and may also affect the evolution of our outcome

variables. Table 2 shows that the distribution of opioids is not random across space,

but rather is related to the demographic composition of the commuting zone and its

economic performance. A greater share of the white population and higher median in-

come at the commuting-zone level have a positive correlation with prescription opioids

per capita; the share of the Hispanic population, the employment rate, and the demand

for social insurance have a negative correlation with the opioid supply.35 This is in line

with Finkelstein et al. (2018), who estimate that areas with more physicians per capita,

higher levels of income and education, lower Medicare spending per capita, and higher

scores on a healthcare quality index have higher opioid abuse rates.

To identify the effect of prescription opioids on opioid-related mortality and our

outcomes of interest we use an instrumental variable strategy that exploits geographical

variation in the promotional efforts for OxyContin and other prescription opioids as an

exogenous source of variation in the opioid supply. We estimate the causal effects of the

supply of prescription opioids via the following equations, which are run over our sample

of commuting zones for the period 1997-2018:

33We will miss prescription opioid use from those who are willing to cross commuting-zone lines to
obtain opioids prescriptions, nonetheless the literature suggests that this is a rare behavior (Buchmueller
and Carey, 2018).

34We use the crosswalks developed by Autor and Dorn (2013) to go from county-level to commuting-
zone-level aggregates. Some commuting zones cross state borders. When this happens, the commuting
zone is assigned to the state where the higher share of the zone’s population is located. This criterion
helps to preserve the strong within-cluster and weak between-cluster commuting ties.

35We also find a small negative correlation between the share of employment in the manufacturing
industry and opioid prescription rates.
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First Stage:

∆ Presc. Opioidsct = α0 + ϕ CancerMRct0 + α ∆ Xct + γst + υct . (1)

Second Stage:

∆ yct = τ0 + β ̂∆Presc. Opioidsct + τ ∆ Xct + λst + εct , (2)

where c indexes commuting zones, t indexes years, s indexes states, and t0 is defined

as the average of the pre-OxyContin period. The operator ∆ works as follows: For any

random variable Wct, ∆Wct equals the difference Wct−Wct0 ; we refer to this operation as

the long-change of variable Wct. Regarding Equation (1), Presc. Opioidsct corresponds

to doses of opioids per capita shipped to commuting zone c in year t and CancerMRct0

is the cancer mortality rate in commuting zone c in 1994-1996 (t0). In Equation (2), yct

refers to one of our outcomes of interest, e.g., a measure of opioid-related mortality. Both

equations include a vector ∆ Xct that represents the long-changes in the time-varying

control variables. The control variables included are contemporaneous cancer mortality,

share of the population over 66, share of the population 18-65, share of the population

under 1 year, shares of the white and black populations, share of females, and share of

Hispanic population.

We add state times year fixed effects represented by the term γst (and λst in the

second-stage equation). These fixed effects control for the variation in outcomes over

time that is common to all commuting zones within state s, and purge the variation in

the supply of prescription opioids that results from a change in state-level policies—such

as the implementation of a PDMP, access to naloxone, and regulation of “pill mills”.

The variables υct and εct are idiosyncratic error terms. We cluster standard errors at the

commuting-zone level, which is the level of exogenous variation.

We have defined our main specification using a long-changes form—i.e., by computing

the change relative to a baseline year for each variable in the estimation. This approach

has the advantages that it allows us to control for unobservable characteristics at the

commuting-zone level. Since our exogenous variation is at the commuting-zone level, we

cannot include commuting-zone fixed effects in the regression. However, by expressing

our variable in changes, we can partially absorb some of the variation that is specific to

the commuting zone.

The parameter of interest β captures the causal effect of an increase in one dose of

opioids per capita relative to the baseline year on the change in opioid mortality rate

(and other outcomes of interest). That is, for a unit increase in the supply of prescription

opioids relative to the period 1994-1996, the mortality rate from prescription opioids (and

any other outcome) changes in β units relative to the pre-OxyContin’s launch period. For
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the IV estimator of β to be consistent, the cancer mortality rate in the baseline period

must be (i) strongly correlated with the opioid supply—i.e., the coefficient ϕ must be

statistically different from zero, and (ii) uncorrelated with the error term in the second-

stage equation (Equation 2). Evidence supporting our strategy was first presented in

Section II, in which we discussed Purdue Pharma’s marketing strategy and its rationale

for focusing on the cancer market as the place to start and expand from. Next, we

provide empirical evidence to support this strategy and assess threats to the validity of

the instrument.

A. Does cancer mortality in the mid-1990s predict growth in the supply of

prescription opioids?

We start by providing graphical evidence in Figure 1. We divide commuting zones into

quartiles according to their level of cancer mortality before the launch of OxyContin and

trace the evolution of all prescription opioids, oxycodone, hydrocodone, and morphine

in these communities. Panel (a) of Figure 1 shows the evolution of the aggregate of

prescription opioids per capita in commuting zones in the bottom and top quartiles of

cancer mortality in 1994-1996, as well as the evolution of oxycodone—the active ingredient

of OxyContin, which accounts for the largest share of this growth.36 It is clear from the

graph that communities with high rates of cancer experienced a much larger influx of

prescribed oxycodone (solid orange line) than low-cancer communities (dashed orange

line), even though the two groups started the period with a comparable prevalence of

oxycodone. Specifically, between 1997 and 2010, areas in the highest quartile of cancer

incidence saw an increase in oxycodone gm per capita of 2,900%, and areas in the lowest

quartile experienced a growth that was one-third of that, even though the incidence of

cancer varied equally across the two groups, as shown in Figure A5.

Table 3 shows the results of the first-stage regression defined in Equation 1. Column

1 is a bivariate regression of prescription opioids per capita on cancer mortality at t0.

Columns to the right add time-varying controls and different specifications of fixed effects.

Our preferred specification is the one in column 5, in which we control for state-times-

year fixed effects and our covariates. For all specifications, there is a positive and strong

relationship between cancer rates in the mid-1990s and the change in opioids per capita.

A one-unit (one-standard-deviation) increase in 1994-1996 cancer mortality increases the

change in prescription opioids per capita relative to 1997 by 1.1 (0.13 standard deviation).

To put this figure in context, a change from a commuting zone in the 5th percentile of

the cancer distribution to the 95th percentile increases opioids per capita by 64% relative

to the base period. We can see the strength of this relationship graphically in panel (b)

of Figure 1 where we plot the first stage coefficients by year. We find that starting in

36In Appendix Figure A6 we present the analogous analysis, but we split the data based on 8 octiles
of cancer mortality and observe the same pattern.

15



1998, the second year in our data, and until 2018, the last year in our data, there is a

positive and statistically significant relationship between cancer rates and prescription

opioids per capita.

The literature on weak instruments has developed a variety of tests and confidence

sets that remain valid whether or not the instruments are weak, in the sense that their

probability of incorrectly rejecting the null hypothesis and covering the true parameter

value, respectively, remains well controlled. We implement these procedures and present

weak-instrument-robust inference. We follow Andrews et al. (2019) recommendations

and present the effective first-stage F statistic proposed by Olea and Pflueger (2013) to

assess the instrument’s strength. In the rest of this paper, we refer to this as the effective

F-stat. The value of the F-statistic testing the null hypothesis that the instrument is

equal to zero in the first stage is always greater than 10, suggesting that we can reject

the null hypothesis. Nonetheless, Lee et al. (2020) suggest that this standard practice of

relying on the first-stage F exceeding some threshold (e.g., 10) delivers tests of incorrect

size. Thus, to assess the statistical significance of our estimates, we (i) compute the “tF

0.05 standard error” proposed by Lee et al. (2020), which inflates the usual standard

errors to take into account the strength of the first stage, and (ii) present p-values based

on Anderson-Rubin Test (Anderson et al., 1949).37

B. Exogeneity and exclusion restriction: Is cancer mortality in the mid-

1990s directly related to our outcome variables?

Variation in cancer mortality across locations is not random; rather, it depends on de-

mographic, environmental and socioeconomic variables. In Table A3 we find that cancer

mortality is: strongly related to share of the population over 65, negatively associated

with the share of Hispanic population and positively associated with mortality from other

causes of death. There is not, however, a correlation with our outcome variables: opioid

mortality, shares in SNAP and disability, infant mortality rate, or fertility. Nonetheless,

the validity of our identification strategy does not require that cancer be randomly dis-

tributed across areas, but rather that in the absence of OxyContin marketing, areas with

higher cancer mortality in the pre-OxyContin period (t0) exhibit the same trend as areas

with lower cancer mortality in t0 in terms of our outcome variables (Goldsmith-Pinkham

et al., 2020).

We provide evidence to support this assumption in three ways. First, we estimate

reduced-form type regressions where we interact our instrument with year dummy vari-

ables to test for the presence of pre-trends, i.e., we estimate a dynamic version of the

37Based on Lee et al. (2020), we use a correction factor of 2.75
1.96 = 1.4031 to compute the “tF 0.05

standard error.” To facilitate its interpretation, we present the t-statistic computed with the corrected
standard errors. This t-statistic should be compared with a critical value of 1.96 to assess the null
hypothesis.
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reduced form relationship between the outcome variables and our instrument. For each

outcome variable we consider the following specification, which is run over a balanced

sample of commuting zones for the years 1989 to 2018:

∆ yct = α0 +
2018∑

τ=1989

ϕτ CancerMRct01(Y ear = τ) + α ∆ Xct + γst + υct , (3)

where ∆ is the long change operator, yct is the outcome of interest, and Xct is a vector of

time-varying control variables defined previously. CancerMRct0 is the cancer mortality

rate in commuting zone c at time t0 and it is interacted with a full set of year fixed effects

index by τ . In this specification, the coefficients for the pre-OxyContin period; i.e., ϕ1989,

ϕ1990, to ϕ1995, test whether the outcome of interest yct in high and low cancer mortality

areas followed similar trends before OxyContin was introduced to the market in 1996.

Figures 2, 3, and 4 show the results of this estimation on main outcomes of interest.38 We

find that areas with higher cancer mortality in the mid-nineties were not on a differential

trend along: opioid-related mortality, despair mortality, infant mortality, birth weight,

fertility, or share of population using SNAP.39 There is no evidence of pre-trends, i.e., the

estimated coefficients for the pre-OxyContin period are jointly statistically indistinguish-

able from zero. After the introduction of OxyContin in 1996, strong patterns appear,

and mid-nineties cancer mortality starts to predict opioid-related mortality, demand for

SNAP, increased fertility, and worsening birth outcomes.

Furthermore, we show that the excess opioid mortality we estimate is entirely driven

by young adults, and opioid mortality for adults over 55 years old does not increase (see

Panel (a) of Figure 7). This supports the argument that our results are not driven by

underlying health conditions, since the population over 55 is the closest to the population

that drives the variation in our instrument, and that instead, what we observe is a

spillover from the cancer population to the younger and healthier population, through

the introduction of OxyContin in those markets. We also report event study estimates

for suicide mortality and overall 75+ mortality —excluding cancer, Figure 5. We find

that there is no evidence of any pre-trends from suicide or overall mortality prior to

the introduction of OxyContin, and we also document that there no effects after either,

suggesting there is no evidence of a systemic relationship between lagged cancer mortality

and despair or overall health trends.

Second, we provide evidence that higher cancer mortality places were not on a differ-

ential trend along economic outcomes. To do so, we perform an out-of-sample dynamic

reduced-form analysis in our pre-period. That is, we run Equation 3 over a sample of com-

38Appendix Figures A8, A11, and A12 complement this analysis.
39Data on SSDI and SSI are not available at the county level before 1996 so we can not conduct this

exercise for such outcomes.
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muting zones for the years 1989 to 1995 and estimate if lagged cancer mortality—average

cancer mortality rate in 1989 and 1990, the first years in our data—predicts our outcome

variables. We present the results of this analysis in Figure 6 and Figure A13. These

results demonstrate that before the introduction of OxyContin there is no relationship

between our outcome measures and lagged cancer mortality—the estimated coefficients

are statistically indistinguishable from zero. In Appendix Figure A14, we test for a rela-

tionship between the share of employment in the manufacturing and mining industry and

cancer mortality before the launch of OxyContin and find no evidence of a differential

trends in these variables.

Finally, for variables such as income per capita, educational attainment, or our out-

come variables SSI and SSDI rates, for which we do not have yearly data for 1989-1995,

we test whether lagged cancer mortality in 1989 and 1990, predicts changes in these vari-

ables, using a cross-sectional reduced form analysis. Table 4 presents the results of this

exercise. In column 1, we find no evidence of a relationship between cancer incidence and

relevant economic indicators, and similarly in column 2, which replicates this analysis for

our outcome variables, including SSI and SSDI, we do not find any relationship. Taken

together these results suggest that in the absence of OxyContin marketing, areas with

higher cancer mortality exhibit the same trends as areas with lower cancer mortality in

terms of our outcome variables and additional socio-economic measures.

V. Results

A. Effects on Opioid-related Mortality

We start by inspecting the raw data; in panel (a) of Figure 2 we split commuting zones

based on the cancer mortality distribution and document that early in the 2000s, a

wedge starts to appear between high- and low-cancer-incidence groups, and by the end of

the sample opioid mortality in high-cancer areas is 75% higher.40 Second, following the

reduced-form approach from Equation 3, we estimate that after the launch of OxyContin

a strong relationship emerges between mid-nineties cancer mortality and opioid-related

mortality as shown in Panel (b) of Figure 2.41

Next we take Equations 1 and 2 to the data. Commuting zones with the highest

cancer incidence at the time of OxyContin’s launch received 64% more opioids per capita

than their counterparts—i.e., the 95th percentile relative to the 5th percentile. Using

this increase as an exogenous change, we estimate that an additional dose of prescription

opioids per capita caused an increase in prescription opioid mortality of 0.0068 points

40In Appendix Figure A7 we present the analogous analysis, but we split the data based on 8 octiles
of cancer mortality and observe the same pattern.

41In Appendix Figure A8 we replicate this analysis for any opioid mortality and document similar
trends.
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and in all opioid mortality of 0.0065 points. The estimates presented in columns 3 and

6 of Table 5 are statistically significant using t-ratio inference, Anderson-Rubin weak

instrument robust inference, and the recent tF procedure suggested by Lee et al. (2020).

Our results imply that when doses per capita increase from the 25th to the 75th per-

centile—i.e., a 5.02 dose increase—mortality from prescription opioids increases by 88.6%

and all opioid mortality increases by 39.3%.42

The ordinary least squares (OLS) estimates (columns 1 and 4 of Table 5) differ con-

siderably from the IV estimates. We find a positive correlation between opioid supply

and opioid mortality rate, but the difference in magnitude between the OLS and the IV

estimates suggests that the former suffers from attenuation bias. Put another way, by

looking at the correlation between opioid supply and opioid deaths, we would underes-

timate the role of the supply of prescription opioids in explaining the rise in mortality.

The negative bias in the OLS estimates is consistent with commuting zones that receive a

disproportionate amount of marketing being positively selected on observable character-

istics: Areas initially targeted by OxyContin campaigns had better access to healthcare

and a larger number of physicians per capita, which served as OxyContin initial network.

These results are consistent with Finkelstein et al. (2018), who document that higher

opioid abuse rates are correlated with more physicians per capita, higher levels of income

and education, lower Medicare spending per capita, and higher scores on a healthcare

quality index.

Heterogeneous effects. The excess opioid-related mortality induced by the marketing

of OxyContin is by and large coming from young and middle-aged adults and is driven

mainly by white adults at the begging of the epidemic. In Figure 7, we present the

interactive-reduced-form analysis for three age groups (panel a) and for men and women

(panel b). The analysis by age shows (i) no evidence of pretends on opioid mortality for

any of these groups, and (ii) opioid mortality increases that are concentrated among indi-

viduals aged less than 55 years old. For those 55 and older we see no effects. This pattern

also alleviates concerns that our results could be driven by underlying health trends that

correlate with mid-nineties cancer mortality. Additionally, we find the epidemic affected

men and women similarly. We also study the effects by race, we find that estimates for

whites are positive and statistically significant starting soon after the launch of OxyCon-

tin. For non-whites it takes around a decade for estimates to be positive and statistically

significant (Appendix Figure A10).

The opioid crisis can be viewed as having occurred in three waves (Maclean et al.,

2020). Panel A of Table A4 reproduces the estimates of the first stage for different starting

and ending years, and Panel B replicates the main instrumental variables regressions. We

42The standard deviation of the distribution of prescription opioids per capita between 1997-2018 is
4.34, thus a change from the 25th to the 75th percentile in such distribution represents 1.15 of a standard
deviation.
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find a strong first-stage relationship between mid-nineties cancer mortality and the supply

of prescription opioids in all the stages of the crisis. In terms of the effects, our results

suggest that the increase in the supply of prescription opioids had a stronger impact on

opioid-related mortality in the first wave of the epidemic. However, differences across

periods are not statistically significant.

B. Adult Wellbeing and Intergenerational effects

In this section, we study whether the access to potent opioids has deteriorated the well-

being of adults by looking at the demand for social insurance and welfare programs and

assess its intergenerational effects.

Other mortality measures. We ask whether the dramatic increase in opioid supply

affected all-cause mortality, excluding cancer deaths. These results are presented in Table

6. We find no relationship between overall mortality and the increase in prescription

opioids. To put this result into context, note that at their peak in 2017, opioid-related

deaths accounted for 1.8% of all deaths. The introduction of very effective pain medication

could have improved the wellbeing of individuals with high incidence of pain and low risks

of addiction. To asses if there is any indication of such improvements we estimate our

reduced-form exercise on mortality rate for those 75 and older, but find no evidence of

any reduction or increase in mortality (Appendix Figure 5).

Case and Deaton (2017) document a dramatic decline in life expectancy for white

non-Hispanic Americans, which is mostly driven by deaths from despair such as drug

overdoses, suicides, and alcohol-related liver mortality, and point to a possible connection

to the opioid epidemic. We explore this connection studying the effects of opioid supply

on non-opioid-related deaths of despair. In Appendix Figure A11 we show that there

is only a weak link between the increase in the supply of opioids and deaths of despair

during the last wave of the opioid epidemic that is driven by alcohol-related deaths. We

estimate a positive but small increase in deaths from alcoholic liver diseases and cirrhosis

significant only at the 10% level and no effect on suicides, see Table 6. The category

alcoholic liver diseases includes causes of deaths such as hepatitis and related conditions,

that may be directly affected by opioid use (Ruhm, 2021), so it is possible this small effect

is directly driven by opioid use. Furthermore, the fact that we do not find an effect on

suicides (Figure A11), suggests that first, there are no pre-trends between our instrument

and this measure of despair, and second, that the marketing of OxyContin did not trigger

further despair. Similarly, we do not find evidence of changes in smoking rates (Figure

A15).

Demand for social insurance and welfare programs. Addiction to and misuse of pre-

scription opioids could reduce work capacity and put people at risk of permanently reduc-

ing their labor supply; in this context, disability insurance applications are a useful proxy
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for socioeconomic conditions and longer-term labor force attachment. We document a

tight link between the opioid epidemic and an increase in disability beneficiaries. These

results are presented in Table 7. We find positive and significant effects for measures of

both disability programs. A change from the 25th to the 75th percentile in the growth of

opioids per capita caused a 47% increase in the share of the population receiving SSI and

a 76% increase in the share receiving SSDI.43 We do not have data for SSI or SSDI claims

in the pre-period, but we can estimate our reduced-form event-study after the introduc-

tion of OxyContin. Figure A9 shows the strong positive pattern between mid-nineties

cancer mortality and disability claims.

SNAP is designed to act as a safety net for low-income families. In our context,

applications to SNAP are a useful proxy for deteriorating economic conditions. We find

a positive effect on the share of SNAP beneficiaries: Our estimates suggest that a change

from the 25th to the 75th percentile in the growth of oxycodone per capita caused a 57%

increase in the share of the population enrolled in SNAP. This effect is comparable to

an increase of 3.78 percentage points in the unemployment rate (Ganong and Liebman,

2018).44 These results point to a substantial worsening of economic conditions. The

effects we observe on SSDI and SNAP are particularly strong during the third wave

of the epidemic, when the incidence of illicit drug use, such as of heroin and fentanyl,

increased (Table A5). Figure 3 shows the dynamic evolution of these effects.

Maternal and birth outcomes. One in five pregnant women filled a prescription for

opioids from 2000 to 2007 (Desai et al., 2014); and between 2008 and 2012, 39% of women

of reproductive age covered by Medicaid obtained a prescription for opioids. These figures,

joint with the staggering increase in the incidence of neonatal abstinence syndrome (NAS)

(Patrick et al., 2015) raise concerns about the risks and consequences of opioid abuse in

this population.45 To the best of our knowledge, we are the first to document a causal

rise in fertility as a result of the opioid epidemic. Specifically, a 25th-to-75th percentile

increase in opioids increases fertility by 10% (Table 8). This result is entirely explained

by non-marital births as we can see in column 1 of Appendix Table A6. By age, we

find that most of the increase in fertility is coming from women 25 to 29 years old,

which compensates a decline in fertility for those over 35 years old. Terplan et al. (2015)

document that the higher rates of unwanted pregnancies in the population of women who

take opioids is mostly driven by the lack of adherence to contraception.

43SSDI uses 1996 data as the baseline year, and SSI uses 1998 as the baseline year.
44The receipt of benefits from multiple programs is not uncommon. SNAP administrative data from

2011 indicate that 20% of SNAP households received SSI benefits and 22% received Social Security
benefits (see, for example, Strayer et al., 2012). We claim that our estimated effect on SNAP applications
cannot be entirely driven by dual applicants. Under the assumption that 20% of SNAP recipients are
also SSI recipients, the lower bound for the effect on SNAP recipiency rate is 15.6% (0.20 × 78). Our
estimated effect is well above this figure, suggesting that the average effect on SNAP applications is also
driven by low-income workers.

45Neonatal abstinence syndrome is a result of the sudden discontinuation of fetal exposure to medicine
or drugs that were used or abused by the mother during pregnancy.
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Regarding birth outcomes, we find evidence that a 25th-to-75th-percentile increase in

the supply of prescription opioids decreases birth weight by 0.7%, deteriorates APGAR

scores by 1% relative to its mean value, and reduces median pregnancy duration by 0.63%

which translates to a reduction in the median length of pregnancy of 0.24 weeks. We also

estimate increases in the incidence of preterm births and the share of low-weight births,

but these are not statistically significant. We find an increase in the APGAR score of

infants who died in the first year, which means that healthier infants died. However, in

aggregate terms we do not find any increase in the infant mortality rate.

Our estimated declines in birth weight are not small in magnitude. For a reference,

Almond et al. (2011) estimate an increase in birth weight of 0.5% as a result of the roll-out

of food stamps among participants, i.e., a treatment on the treated estimates.46 Hoynes

et al. (2015) find a 0.3% increase in birth weight from the expansion of the Earned Income

Tax Credit (EITC). This is particularly relevant in light of evidence on the importance

of birth weight and health at birth for future health, schooling, and earnings (Behrman

and Rosenzweig, 2004).

In summary, our results suggest that the opioid epidemic lead to important increases in

fertility, driven by young and unmarried mothers. While not affecting directly the infant

mortality rate, the epidemic worsened birth outcomes through reductions in pregnancy

duration and infant health at birth. In 24 states and the District of Columbia, the use

of any illegal substance during pregnancy constitutes child abuse, and can lead to foster

care placement. Nonetheless, Eichmeyer and Kent (2021) document that treatment for

opioid use disorder increases in the year after childbirth, and that the timing of this

increase is consistent with pregnancy triggering treatment for a pre-existing disorder.

Using, state-level data, Buckles et al. (2020) document that greater exposure to the crisis

increases the likelihood that a child’s mother or father is absent from the household and

it increases the likelihood that he or she lives in a household headed by a grandparent.

Unfortunately, after multiple efforts we were not able to access foster care records with

county or commuting zone identifiers.47 Future work is needed to quantify the effect of

the opioid crisis on foster care placements, and to assess the future outcomes for these

children.

C. Complier Analysis

Our instrumental variable estimates identify the causal effects of the increased supply

of opioids for commuting zones where marketing was more aggressive because of higher

cancer mortality in the mid-nineties. Variation in underlying characteristics across com-

46Estimates are higher for black participants: between 0.4% and 1.4%.
47The Adoption and Foster Care Analysis and Reporting System (AFCARS) provides case level data,

but county identifiers are only available for counties with more than a 1,000 cases.
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muting zones could have made such opioids’ marketing more or less successful. In Table 9

we characterize compliers based on observable characteristics before OxyContin’s launch.

First, we assess the strength of the first stage in different sub-samples. Column 1

shows that the positive and strong relationship between cancer rates in the mid-1990s

and the change in opioids per capita is present in all the considered sub-samples. Nonethe-

less, there are important differences on the strength of this relationship. The first-stage

is stronger in commuting zones with higher poverty rates, employment in mining, and

cocaine and alcohol mortality rates, however, these difference are not statistically signif-

icant. Next, we follow Abadie (2003), to recover the fraction of compliers for different

characteristics. We find that commuting zones with higher poverty rates, lower edu-

cational attainment, and a higher share of mining employment are more likely to be

compliers. In terms of health outcomes, areas with a higher number of primary care

physicians (PCP) per capita are overrepresented among the compliers, as is the case for

places with higher smoking rates and higher cocaine and alcohol mortality rates.

VI. Robustness Checks

In this section, we explore alternative explanations for our findings and test the robustness

of our results. We start by presenting alternative specifications of the first stage and then

test the robustness of the main results.

A. First Stage

A potential concern with our choice of instrument is that mid-nineties cancer mortality

may be capturing demographic variation along the age distribution. Our baseline re-

gression already controls for the change in the share of the population over 65, but our

instrument is expressed in levels, so some of this variation may still be important. We

directly test this by including the share of population over 65, the size of the population

over 65, and total population as additional control variables. Table A8 shows the results

of this exercise. We find that the first stage regression is as strong as in our baseline

regression.

Additionally, we test the robustness of the first stage to alternative choices of in-

struments. Column 1 of Table A9, replicates the first stage with age-adjusted cancer

mortality, we find a very similar and strong first-stage estimates. We also test whether

the relationship between future opioid distribution and mid nineties cancer mortality is

sensitive to any of the years used as our baseline cancer mortality measure. Columns two

to four show there is a strong first-stage for 1994, 1995 and 1996 cancer mortality. In

column five we estimate a population weighted regression and find similar results. As an

additional robustness check, in panel b we construct a measure of cancer mortality that

exclude deaths from lung cancer, this measure is less likely to be driven by behavioral
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and environmental factors that could correlate with our outcome variables. As with other

alternative instruments, in column one, we find a strong first stage coefficient. In columns

two to four we use mid-nineties cancer mortality for those over 55, 65 and 75 respectively,

and find a positive and statistically significant first stage in all cases. Finally, we inspect

the dynamic relation between mid-nineties cancer mortality and opioid supply. Panel

(a) of Figure A16 presents the dynamic first-stage using cancer mortality in 1994 as the

instrument and the remaining panels in this Figure show the dynamic reduced-form for

the main outcomes of interest. The pattern of the estimated coefficients is equivalent to

the one we obtain using the cancer 1994-1996 as instrument. Additionally, we do not find

evidence of pre-trends in the relation between opioid mortality—and the main outcomes

of interest—and mid-nineties cancer mortality in this alternative specification.

Our instrumental variable approach is similar in spirit to a shift-share instrument.

In this research design, the shares measure differential exposure to common shocks and

identification is based on its exogeneity (Goldsmith-Pinkham et al., 2020). In our ap-

plication, the shares are cancer rates in the mid-1990s, which capture exposure to the

marketing of prescription opioids, and the shift is the national growth of Purdue Pharma’s

marketing or the growth in the supply of prescription opioids. Our preferred specification

uses as an instrument cancer mortality before the launch of OxyContin, which highlights

the fact that our only source of exogenous variation corresponds to the shares. In Ap-

pendix Table A7, we show results using the shift-share instrument. To construct this

instrument, we use the national growth rate of prescription opioids as the shift compo-

nent. The results are quantitatively indistinguishable from our preferred specification.

As Goldsmith-Pinkham et al. (2020) point out, using a Bartik instrument is “equivalent”

to exploiting the shares as an instrument. This is because the temporal variation induced

by the growth of prescription opioids is mostly absorbed by the time dimension of our

state times year fixed effects.

Finally, we test whether the positive relationship in our first stage is driven by a

state or a group of states. Figure A17 presents the estimate of the first stage coefficient

restricting the sample to (i) all non-triplicate states, (ii) only triplicate states, and (iii)

to the exclusion of all states, one at the time. We find that the relationship between

mid-nineties cancer mortality and the supply of opioids is present in both triplicate and

non-triplicate states, and is robust to the exclusion of any state.

B. Placebo checks

Are other mid-1990s mortality rates predictive of future prescription opioids per capita

distribution? Our identification strategy connects mid-1990s cancer mortality to future

growth in the supply of prescription opioids through the targeted marketing of Purdue

Pharma. This implies that we can test the validity of our design by estimating first-stage
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regressions for placebo instruments—i.e., mid-1990s mortality from causes unrelated to

cancer. Finding a good placebo instrument is challenging, given that the causes that

underlie the incidence of cancer and other conditions, such as heart disease are not in-

dependent (Chiang, 1991 and Honoré and Lleras-Muney, 2006). As a result, there is

substantial overlap across underlying causes and the correlation across measures is very

high. With this caveat, in Table A10 we show placebo instrument regressions for three

mortality rates that are less likely to be affected by the previous concern: Cerebrovascular

disease (CVD), transit accidents, and homicide.48 We find that none of these measures

predict future distribution of opioids (Columns 1 to 3) or change the predicted power of

our instrument (Columns 4 to 6).

C. Alternative Definitions: Opioid Supply and Opioid Mortality

Many pharmaceutical companies—Janssen, Endo, Cephalon-Teva, Actavis, Insys, and

Mallinckrodt—promoted their prescription opioids beyond the cancer market following

Purdue’s leadership. Nonetheless, Purdue Pharma was the pioneer of the use of opioids

in the non-cancer pain market. So, as an additional check, we use data only on Oxy-

codone—the active ingredient in OxyContin—as an alternative measure of opioid supply.

We find a positive relationship between cancer mortality rates and this measure of opioid

supply. In Table A11, columns (2) and (3) we estimate that an additional dose of oxy-

codone per capita caused an increase in prescription opioid mortality of 91% and in all

opioid mortality of 40%.

Drug overdose deaths can be hard to categorize, specially when using data that spans

more than one version of the ICD codes. We construct an additional outcome measure for

opioid mortality and present the results using this measure in Table A12. This measure

has the advantage that comparisons across years are less affected by changes in the ICD

classification, but this comes at the cost of including a broader set of drugs as the cause

of deaths.49 Exploiting this measure, we arrive at similar conclusions: An additional

dose of opioids per capita caused an increase in the drug-induced mortality rate of 0.0112

points. An increase from the 25th to the 75th percentile of prescription opioids per capita

increases drug-induced mortality by 47%.

D. Alternative Sample Restrictions and Specifications

In our main specification, we restrict our sample to areas with more than 25,000 residents,

which represents 99.8% of all opioid deaths and 99.3% of the total population. In Table

48A good candidate for this placebo check is mortality from external causes of deaths. External causes
are defined as intentional and unintentional injury and poisoning (including drug overdose). From this
category, we construct measures of mortality that do not include any of our outcome measures: accidental
poisoning and suicide.

49Drug-induced deaths category includes deaths from poisoning and medical conditions caused by the
use of legal or illegal drugs, as well as deaths from poisoning due to medically prescribed and other drugs.
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A13 we reproduce our analysis using alternative restrictions on the size of commuting

zones. We arrive at analogous conclusions to the main analysis; there is a strong and

positive relation between mid-nineties cancer mortality and supply of prescription opi-

oids which translates to (i) increases in opioid-related mortality, and (ii) deteriorating

economic conditions and health outcomes.

Finally, SNAP benefit recipiency rates at the commuting-zone level required impu-

tations for some commuting zones with no available data at the local level. Table A14

shows the result for the sample of commuting zones that do not require state-level impu-

tation. Our results are not sensitive to this sample restriction. Finally, in Table A15 we

expand the set of controls in our regression to include either the unemployment rate or

the employment rate and we find our results are quantitatively indistinguishable.

E. Trade shocks & the 2001 Economic Recession

During our period of study, the US experienced significant economic changes that af-

fected communities differentially. In October, 2000, the US Congress passed a bill grant-

ing permanent normal trade relations (PNTR) with China. This trade liberalization

communities, as a function of the importance of the manufacturing industries for local

employment, in industries subjected to import competition from China. Researchers have

estimated the impact of this trade shock on a host of outcomes. Regions more exposed

to Chinese import competition experienced relatively large declines in employment and

a greater uptake of social welfare programs (Autor and Dorn, 2013). Additionally, ar-

eas more exposed to Chinese import competition exhibit relative increases in fatal drug

overdoses (Pierce and Schott, 2020).

In light of this evidence, we ask whether our results are confounded or mediated

by this trade policy. To answer this, we follow the trade literature to construct two

alternative measures of exposure to PNTR and then estimate our first-stage and reduced-

form models controling for these exposure measures (Pierce and Schott, 2020 and Autor

and Dorn, 2013). Table A16 columns two to four reproduce the first stage when we

control for exposure to Chinese import competition. We find the results are unaffected

by the inclusion of these variables. Figure A18 replicates our main results adding the

china shock measures to our event-study specification. Here as well we find our estimates

do not change with this exercise. This is the result of a very low correlation between

our instrument and the exposure to Chinese import competition. Similarly, the timing

of some of our results overlaps with the 2001 economic recession. To asses whether the

recession is mediating some of our effects, we construct a measure of exposure to the

recession as the change in the unemployment rate from 2001 to 2000 at the commuting

zone. Similar to the china shock, we find that our instrument and this exposure measure

have a very low correlation level (ρ=0.03), and our first stage estimate are completely
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unaffected (column 1 in Table A16). More broadly, in the last three columns of Table

A16 we add controls for the unemployment rate in years 1994 to 1996, respectively, and

find that our estimates do not change.

VII. Policy Implications and Conclusions

This paper studies the origins of the opioid epidemic and its effect on a broad range

of outcomes. We exploit geographical variation in the initial promotion of OxyContin

that targeted the cancer patients market. We document that this initial targeting had

long-term effects on the supply of prescription opioids, overdose deaths involving opioids,

along with a deterioration in adult wellbeing measured by the demand for SSDI, SSI,

and SNAP. This effects will continue to unfold as a result of the increase in non-marital

fertility and the worsening of birth outcomes. In this paper, we sought to provide a

complete picture of the effects of the opioid epidemic. However, data access limitations

have prevented us from speaking to some important topics, such as the effects on children’s

living arrangements and environments, foster care referrals, and the demand for and use

of healthcare. We hope that future research will shed light on these subjects. In terms of

policy recommendations we want to highlight how complex and far-reaching the effects

of the opioids epidemic are, and how this calls for a coordinated response from multiple

policy angles. Monitoring, limiting and restricting access to prescription opioids, which

has been the main policy response, is important, but it falls short to the needs of the

affected population. Increasing access to rehabilitation treatments and programs aimed at

reincorporating parents and workers to their lives should be at the center of this response.

Finally, our results have direct policy implications regarding the desirability of pro-

motional efforts of addictive drugs by pharmaceutical companies that target physicians,

pharmacies, and patients. We document the devastating consequences of aggressive and

deceitful marketing. Although marketing expanded over the 25 years since the introduc-

tion of OxyContin, regulatory oversight remains relatively limited.50 Some regulatory

initiatives constitute small steps in the right direction, such as the Sunshine Act of 2010

that required the reporting of payments from the pharmaceutical industry to physicians,

with a recent expansion that includes payments to physician assistants, nurse practition-

ers, nurses, pharmacists, and dietitians. Furthermore, a growing segment of the medical

community has spoken out against the pharmaceutical industry’s effort to influence doc-

tors, and a number of teaching hospitals have enacted policies that restrict or ban visits

from pharmaceutical representatives. However, most of these initiatives are concerned

with the rising costs of prescription drugs, and not with the risks of abuse and addiction.

50Currently, prescription drug marketing practices in the US include direct-to-consumer and profes-
sional branded advertising, detailing visits, free drug samples, and direct physician and hospital payments
(e.g., speaker fees, food, travel accommodations).
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More can be done to restrict the pharmaceutical promotion that carries this risk.
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VIII. Maps and Figures

Map 1: Prescription Opioids Distribution at the Peak of the Epidemic (2010).

10.5+ doses
7.5−10.5 doses
5.5 − 7.5 doses
0 − 5.5 doses
Not in sample

Notes: This map shows the distribution of prescription opioids at the commuting zone level in 2010, the year when the distribution of prescription
opioids peaked as shown in Figure 1. Lighter shades indicate commuting zones with a lower prescription-opioid supply and darker shades indicate
commuting zones with a higher prescription-opioid supply. Each group corresponds to one quartile of the prescription opioids distribution; i.e., each
color accumulates 25% of the mass of this distribution. Commuting zones included in our sample represent 99.8% of all opioid deaths and 99.3% of the
total population. This figure is referenced in Section III.A.
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Map 2: Distribution of Cancer Mortality Rates Before the OxyContin’s Launch.

High cancer
Medium − high cancer
Low − medium cancer
Low cancer
Not in sample

Notes: This map shows the cancer mortality rate at the commuting-zone level for the year 1994 - 1996, before OxyContin was introduced to the market.
Lighter shades indicate commuting zones with lower cancer prevalence, while darker shades indicate commuting zones with higher cancer prevalence.
Each group corresponds to one quartile of the cancer mortality distribution; i.e., each color accumulates 25% of the mass of this distribution. Commuting
zones included in our sample represent 99.8% of all opioid deaths and 99.3% of the total population. This figure is referenced in Section III.B.
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Map 3: Prescriptions Opioid Mortality Rate 1999 - 2018

MR > 0.09
MR 0.056−0.090
MR 0.036 − 0.056
MR 0−0.036 
Not in sample

Notes: This map shows the distribution of prescription opioid mortality at the commuting zone level for the period 1999 - 2018. Lighter shades indicate
commuting zones with lower opioid mortality, while darker shades indicate commuting zones with higher opioid mortality. Each group corresponds to
one quartile of the opioid mortality distribution; i.e., each color accumulates 25% of the mass of this distribution. Commuting zones included in our
sample represent 99.8% of all opioid deaths and 99.3% of the total population. This figure is referenced in Section III.C.
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Figure 1: Prescription Opioids Distribution by Cancer Prevalence

(a) Trends in High versus Low Cancer Mortality CZs
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Notes: Panel (a) shows the evolution oxycodone, hydrocodone, and morphine in commuting zones in the bottom (dashed lines) and top (solid lines)
quartiles of cancer mortality before the launch of OxyContin. Oxycodone is OxyContin’s active ingredient. Between 1997 and 2010, areas in the highest
quartile of cancer incidence saw an increase in oxycodone grams per capita of 2,900%, while areas in the lowest quartile experienced a growth that was
one-third that. All prescription opioids and oxycodone are measured in morphine-equivalent doses. Panel (b) shows estimates of the coefficients of the
dynamic first stage. We regress our measure of prescription opioids distribution on a set of year-dummy variables interacted with the instrument—cancer
mortality in 1994-1996—and present estimates of these coefficients. This figure is referenced in Section I., Section IV.A., and in Section VI.
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Figure 2: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Prescription Opioid Mortality

(a) High versus Low Cancer Mortality CZs
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(b) Reduced Form - Event Study Approach
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Notes: This figure shows the effects of the increase in prescription opioid supply in prescription opioid mortality. Panel (a) shows the raw data, early in
the 2000s, a wedge starts to appear between high- and low-cancer-incidence groups, and by 2018 prescription opioid mortality in high-cancer areas is 75%
higher. Panel (b) shows the dynamic reduced-form estimation. We regress prescription opioid mortality on a set of year-dummy variables interacted with
our instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for
the presence of pre-trends in the relation between opioid mortality and mid-nineties cancer mortality; we do not reject the null hypothesis that the esti-
mated coefficients before 1996 are jointly equal to zero, the p value of this test equals 0.2926. This figure is referenced in Section IV.B., and in Section V.A.
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Figure 3: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Demand
for Social Assistance
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Notes: This figure shows the effects of the increase in prescription opioid supply on SNAP claims
per capita. We present the results of a dynamic reduced-form estimation were we regress SNAP
claims per capita on a set of year-dummy variables interacted with our instrument—cancer
mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use
this specification to test for the presence of pre-trends in the relation between SNAP claims and
mid-nineties cancer mortality; we do not reject the null hypothesis that the estimated coefficients
before 1996 are jointly equal to zero, the p value of this test equals 0.6539. This figure is referenced
in Section IV.B., and in Section V.B.
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Figure 4: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Fertility Rates and Birth Outcomes

(a) Fertility Rate of Unmarried Women
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(b) Infant Mortality Rate
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Notes: This figure shows the effects of the increase in prescription opioid supply in the fertility rate of unmarried women (panel a) and in infant mortality rate
(panel b). We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our
instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for the presence
of pre-trends in the relation between birth and maternal outcomes and mid-nineties cancer mortality; we do not reject the null hypothesis that the estimated co-
efficients before 1996 are jointly equal to zero, the p value of these tests are presented in the figures. This figure is referenced in Section IV.B., and in Section V.B.
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Figure 5: Trends on Despair and Overall Health

(a) Suicide Mortality Rate
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(b) Non-cancer Mortality for Adults Aged +75 Years Old.
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Notes: This figure shows the dynamic reduced-form relationship between suicide mortality rate (panel a) and mortality of 75-years-old and older adults (panel
b) and our instrument. That is, the figure presents the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy
variables interacted with our instrument—cancer mortality in 1994-1996. We use this specification to test for the presence a relationship between our outcomes
and mid-nineties cancer mortality before the introduction of OxyContin. We do not reject the null hypothesis that the estimated coefficients are jointly equal to
zero, the p value of these tests are presented in the figures. This figure is referenced in Section IV.B.

44



Figure 6: Robustness Check: Dynamic Reduced Form for Out-of-sample Opioid-Mortality

(a) Prescription Opioids Mortality
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(b) All Opioid Mortality
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Notes: This figure shows the dynamic reduced-form relationship between outcomes of interest and our instrument in a out-of-sample period. That is, we replicate
our dynamic reduced-form analysis in the pre-OxyContin period. We regress each outcome on a set of year-dummy variables interacted with the out-of-sample
instrument—cancer mortality in 1989 - 1990. We use this specification to test for the presence a relationship between our outcomes and mid-nineties cancer
mortality before the introduction of OxyContin. We do not reject the null hypothesis that the estimated coefficients are jointly equal to zero, the p value of
these tests are presented in the figures. This figure is referenced in Section IV.B.
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Figure 7: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Opioid Mortality by Age and Gender

(a) Age groups
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(b) Gender
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Notes: This figure shows the effects of the increase in prescription opioid supply in opioid related mortality by age group (panel a) and by gender (panel
b). We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our
instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for the presence
of pre-trends in the relation between opioid mortality and mid-nineties cancer mortality; we do not reject the null hypothesis that the estimated coefficients
before 1996 are jointly equal to zero, the p values of these tests are: 0.4946 ( 20-34 years old); 0.7302 (35-54 years old); 0.1934 (+55 years old) for the estimates
presented in panel (a), and 0.3823 (female) and 0.3103 (male) for the estimates presented in panel (b). This figure is referenced in Section V.A.
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IX. Tables

Table 1: Summary Statistics for 1999-2018

Mean Median SD Min Max Obs.
(1) (2) (3) (4) (5) (6)

Opioid Prescriptions: Doses per capita
All Prescription Opioids 6.42 5.48 4.32 0.00 57.65 11,800
Oxycodone 3.15 2.52 2.60 0.00 51.31 11,800
Hydrocodone 1.93 1.55 1.50 0.00 16.66 11,800
Morphine 0.94 0.77 0.69 0.00 10.67 11,800

Cancer Mortality per 1,000
Cancer mortality rate 1994-1996 2.53 2.53 0.58 0.12 6.24 590
Cancer mortality rate 2.48 2.49 0.55 0.59 4.75 11,800

Opioid-related Mortality per 1,000
Prescription opioids 0.04 0.03 0.05 0.00 1.06 11,800
Any opioids 0.07 0.05 0.07 0.00 1.22 11,800

Other Mortality Measures per 1,000
All-cause mortality (+20 years old) 9.87 9.93 2.06 2.79 20.92 11,800
Deaths of despair 0.27 0.25 0.10 0.00 1.17 11,800
Alcoholic liver diseases and cirrhosis 0.12 0.11 0.06 0.00 0.63 11,800
Suicide 0.15 0.14 0.06 0.00 0.48 11,800

Demand for Social Services
Share SSI 0.04 0.03 0.02 0.00 0.30 11,800
Share SSDI 0.05 0.04 0.02 0.01 0.16 11,800
Share SNAP 0.12 0.11 0.07 0.00 1.20 11,800

Infant and Maternal Outcomes
Infant MR (per 1,000 births) 6.86 6.54 2.87 0.00 30.61 11,800
Birth weight 3,274.25 3,276.53 79.47 2,930.28 3,569.76 11,800
Share low birth weight 0.08 0.08 0.02 0.02 0.20 11,800
Share preterm 0.12 0.12 0.03 0.05 0.62 11,800
APGAR score - all infants 8.82 8.84 0.19 5.00 10.00 11,800
APGAR score - dead infants 5.62 6.00 2.28 0.00 10.00 11,460
Median gestation 38.95 39.00 0.24 35.00 40.00 11,800
Fertility rate 0.08 0.08 0.01 0.04 0.19 11,800
Fertility rate 25-29 0.13 0.12 0.02 0.05 0.27 11,800
Fertility rate - unmarried women 0.03 0.03 0.01 0.00 0.09 11,800

Notes: This table presents summary statistics for our main outcomes, measures of the prescription opioid supply,
and cancer mortality incidence for the period 1999 - 2018. We leverage data from multiple sources. Prescription
drugs distribution data come from the DEA. Data on opioid, cancer, birth, and maternal outcomes come from the
NVSS. We use data from the Food and Nutrition Service of the Department of Agriculture and the SSA to construct
demand for the Supplemental Nutrition Assistance Program (SNAP), Supplemental Security Income (SSI), and
Social Security Disability Insurance (SSDI). This table is referenced in Section III.
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Table 2: Determinants of the Opioid Distribution in 2000

Dependent variable: Prescription opioids per capita

(1) (2)

Demographics (in shares) Crime (in rates)

White 3.526*** Overall -0.0000622

[0.961] [0.0000752]

Hispanic -3.323*** Violent 0.00160***

[0.807] [0.000614]

Female 6.709 Economic characteristics

[9.973] Ln income 2.517***

Aged 18-65 21.67*** [0.922]

[4.348] Share below poverty line 0.0521

Aged +66 6.211 [0.0625]

[7.665] Share employed in manufacturing -0.0374***

Infants -100.8* [0.0105]

[56.42] Share with some college education 0.00938

Labor market [0.0135]

Employment rate -16.18*** Health outcomes

[6.031] Cancer mortality rate -0.164

Labor Force Participation -1.805 [0.330]

[2.493] Infant mortality rate -0.0117

Safety net and social insurance [0.0199]

SSDI 48.45*** Birth weight 0.000336

[9.821] [0.00127]

SSI 5.740 Share preterm births 2.330

[8.944] [4.796]

SNAP -1.914 Gestation -0.200

[3.848] [0.396]

Fertility rate 52.51***

[14.07]

Mean dependent variable 2.8567

Year 2000

Observations 590

Notes: This table presents estimated coefficients from a cross-section regression of oxycodone distribution per capita
on demographic characteristics, labor market outcomes, measures of social assistance demand, crime outcomes,
economic characteristics, and health outcomes at the commuting-zone level. Data on economic characteristics come
from county-level tabulations of Decennial Census Data. The variable share with some college measures the share of
the population older than 25 years old who have some education at the college level or higher. Standard errors are
robust to heteroskedasticity. *p<0.10, **p<0.05, *** p<0.01. This table is referenced in Section IV.
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Table 3: First-stage Results

Dependent variable: Prescription opioids per capita
(1) (2) (3) (4) (5)

Cancer MR 94-96 0.960*** 1.091*** 1.061*** 1.132*** 1.078***
se [0.210] [0.222] [0.231] [0.258] [0.264]
t-stat 4.571 4.914 4.593 4.388 4.083
Effective F-stat 20.894 24.147 21.096 19.254 16.630

Effect size 56.92 64.69 62.91 67.12 63.92

Controls No No No Yes Yes
FE No State Year State × Year State Year State × Year
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.019 0.524 0.559 0.533 0.564

Notes: This table presents estimates of the first-stage equation. The dependent variable is the long change in prescrip-
tion opioids per capita and it is constructed using a baseline the year 1997—the first year ARCOS data are available.
Control variables are contemporaneous cancer mortality rate, share of population under 1 year old, share of population
between 18 and 65, share of population over 66 years, share of Black, White, and Hispanic population, and share of
female population. Effect size is computed as the predicted changes in doses of prescription opioids per capita from
an increase in cancer mortality that would change a commuting zone in the 5th percentile of the cancer distribution
to the 95th percentile. t − stat corresponds to the t − statistic for the null hypothesis that the coefficient on cancer
mortality rate is equal to zero. Effective F-stat corresponds to the the effective first-stage F statistic proposed by Olea
and Pflueger (2013). Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is
referenced in Section IV.A.
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Table 4: Cancer Mortality Rate: Out-of-sample Analysis

Cancer MR 89-90 Cancer MR 89-90

(1) (2)

Dependent variables: Dependent variables:

Income per capita 19.42 Prescription Opioids MR -0.000795

[62.24] [0.000580]

Share with some college 0.0063 Any Opioids MR -0.00101

[0.00386] [0.000671]

Share with high school or less 0.00257 Share SNAP -0.000529

[0.00420] [0.000840]

Share working in manufacturing 0.0063 Share SSDI -0.000523

[0.00386] [0.000890]

Labor Force Participation -0.00153* Share SSI 0.000151

[0.000821] [0.000345]

Employment rate -0.000781 Infant Mortality Rate -0.0989

[0.000489] [0.154]

Total crime rate 44.5 Fertility rate -0.641

[28.63] [0.490]

Notes: Each coefficient corresponds to a separate regression where the dependent variable is measured as the change
with respect to 1989-1990. For prescription opioids, any opioids, labor market variables, SNAP, and infant mortality
rate, we run a panel regression; for the other variables, where yearly data are not available, we run one cross-sectional
regression. MR stands for mortality rate. All regressions include as control variables: cancer mortality rate, share
of population under 1 year, share of population between 18 and 65, share of population over 66 years old, share of
Black, White, and Hispanic population, and share of female population. In panel-level regressions, standard errors are
clustered at the commuting-zone level; in cross-sectional regressions, standard errors are robust to heteroskedasticity.
* p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section IV.B.
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Table 5: Direct Effects on Opioid Mortality

Dependent var: Prescription opioids MR Any Opioid MR

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.00374*** 0.00679*** 0.00419*** 0.00646***
[0.00117] [0.00200] [0.00139] [0.00231]

tF 0.05 se (0.00281) (0.00324)
t-stat using tF 0.05 se 2.3876 1.9747
AR p-value 0.0000 0.0019

Cancer MR 94-96 0.00732*** 0.00697***
[0.00167] [0.00229]

Effect size (%) 49.47 88.63 25.73 39.30

Model OLS RF IV OLS RF IV
Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590
Adj R2 0.4304 0.3908 0.5368 0.5144
Effective F-stat 16.63 16.63
Cragg-Donald Wald F-stat 358.58 358.58

Notes: Control variables are contemporaneous cancer mortality rate, share of population under 1 year old, share of
population between 18 and 65, share of population over 66 years old, share of Black, White, and Hispanic population,
and share of female population. All regressions include state times year fixed effects. MR stands for mortality rate.
Effect size indicates the percent change in the dependent variable relative to its mean when doses of prescription
opioids per capita increase from the 25th to the 75th percentile. Standard errors in square brackets are clustered at
the CZ level. Using these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05
se, and the AR p-value correspond to weak-instrument-robust inference procedures. This table is referenced in Section
V.A.
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Table 6: Effects of the Opioid Epidemic on Other Mortality Measures

Dependent var: All cause mortality Deaths of Despair

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0213 0.0286 -0.000442 -0.00494
[0.0136] [0.0469] [0.000732] [0.00621]

tF 0.05 se (0.0658) (0.0087)
t-stat using tF 0.05 se 0.4346 -0.459
AR p-value 0.5319 0.4311

Cancer MR 94-96 0.0309 -0.00533
[0.0515] [0.00699]

Effect size (%) 3.68 4.94 -0.74 -7.39
Model OLS RF IV OLS RF IV

Dependent var: Alcoholic Liver Diseases and Cirrhosis Suicide

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000765** 0.00552* -0.0000460 -0.00582
[0.000353] [0.00292] [0.000430] [0.00378]

tF 0.05 se (0.0041) (0.0053)
t-stat using tF 0.05 se 1.3473 -1.0974
AR p-value 0.0351 0.1065

Cancer MR 94-96 0.00596** -0.00628
[0.00302] [0.00402]

Effect size (%) 3.23 23.34 -0.16 -19.80
Model OLS RF IV OLS RF IV

Notes: The all-cause mortality measure excludes deaths from cancer. Deaths of despair refers to deaths from suicide,
chronic liver disease, cirrhosis, and poisonings that are attributable to alcohol. Each regression is run over a sample
of 11,800 observations with 590 clusters (commuting zones). Control variables are contemporaneous cancer mortality
rate, share of population under 1 year old, share of population between 18 and 65, share of population over 66 years
old, share of Black, White, and Hispanic population, and share of female population. All regressions include state
times year fixed effects. Effect size: indicates the percent change in the respective dependent variable relative to its
mean when doses of prescription opioids per capita increase from the 25th to the 75th percentile. Standard errors in
square brackets are clustered at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01.
tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust inference procedures.
This table is referenced in Section V.B.
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Table 7: Effects of the Opioid Epidemic on Demand for Social Services

Dependent var: SSDI SSI

(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000444*** 0.00574*** 0.00000709 0.00311**
[0.0000985] [0.00132] [0.000147] [0.00144]

tF 0.05 se (0.0018) (0.0020)
t-stat using tF 0.05 se 3.1250 1.5833
AR p-value 0.0000 0.0114

Cancer MR 94-96 0.00619*** 0.00335**
[0.000385] [0.00137]

Effect size (%) 5.36 76.39 0.11 46.88
Model OLS RF IV OLS RF IV

Dependent var: SNAP

(1) (2) (3)

Prescription opioids pc 0.000144 0.00982***
[0.000285] [0.00299]

tF 0.05 se (0.0041)
t-stat using tF 0.05 se 2.4134
AR p-value 0.0000

Cancer MR 94-96 0.0106***
[0.00227]

Effect size (%) 0.58 56.70
Model OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters (commuting zones). Control
variables are contemporaneous cancer mortality rate, share of population under 1 year old, share of population between
18 and 65, share of population over 66 years old, share of Black, White, and Hispanic population, and share of female
population. All regressions include state times year fixed effects. Effect size: indicates the percent change in the
respective dependent variable relative to its mean when doses of prescription opioids per capita increase from the 25th
to the 75th percentile. Standard errors in square brackets are clustered at the CZ level; using these standard errors,
we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to
weak-instrument-robust inference procedures. This table is referenced in Section V.B.
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Table 8: Effects of the Opioid Epidemic on Infant and Maternal Outcomes

Dependent var: Infant Mortality Rate Birth Weight

(1) (2) (3) (4) (5) (6)
Prescription opioids pc 0.0511** -0.0232 -0.552* -4.490**

[0.0242] [0.140] [0.331] [2.143]
tF 0.05 se (0.19643) (3.00676)
t-stat using tF 0.05 se -0.1181 -1.4933
AR p-value 0.8678 0.0163
Cancer MR 94-96 -0.0250 -4.843**

[0.157] [2.127]
Effect size (%) 4.06 -1.84 -0.08 -0.69
Model OLS RF IV OLS RF IV

Dependent var: Share low birth weight Preterm births

(1) (2) (3) (4) (5) (6)
Prescription opioids pc 0.000169* 0.000905 0.000270* 0.00141

[0.000102] [0.000640] [0.000150] [0.000937]
tF 0.05 se (0.00090) (0.00131)
t-stat using tF 0.05 se 1.0023 1.0649
AR p-value 0.1272 0.1126
Cancer MR 94-96 0.000976 0.00152

[0.000665] [0.00100]
Effect size (%) 0.62 5.55 0.84 5.90
Model OLS RF IV OLS RF IV

Dependent var: APGAR Score - All Infants APGAR Score - infant casualties

(1) (2) (3) (4) (5) (6)
Prescription opioids pc -0.000501 -0.0169* 0.0155 0.282*

[0.00188] [0.00994] [0.0179] [0.153]
tF 0.05 se (0.01395) (0.21467)
t-stat using tF 0.05 se -1.2118 1.3137
AR p-value 0.0674 0.0383
Cancer MR 94-96 -0.0189* 0.319*

[0.0107] [0.164]
Effect size (%) -0.03 -0.96 1.38 25.17
Model OLS RF IV OLS RF IV

Dependent var: Fertility rate Gestation

(1) (2) (3) (4) (5) (6)
Prescription opioids pc 0.0000665 0.00153*** -0.000164 -0.0489***

[0.0000621] [0.000566] [0.00304] [0.0186]
tF 0.05 se (0.00079) (0.02610)
t-stat using tF 0.05 se 1.9266 -1.8738
AR p-value 0.001 0.0011
Cancer MR 94-96 0.00165*** -0.0527***

[0.000482] [0.0171]
Effect size (%) 0.43 9.85 0.00 -0.63
Model OLS RF IV OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters (commuting zones). Control
variables are contemporaneous cancer mortality rate, share of population under 1 year old, share of population between
18 and 65, share of population over 66 years old, share of Black, White, and Hispanic population, and share of female
population. All regressions include state times year fixed effects. Effect size: indicates the percent change in the
respective dependent variable relative to its mean when doses of prescription opioids per capita increase from the 25th
to the 75th percentile. Standard errors in square brackets are clustered at the CZ level; using these standard errors,
we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to
weak-instrument-robust inference procedures. This table is referenced in Section V.B.
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Table 9: Complier Analysis

Commuting zone characteristic First Stage P [X = x] P [X = x|Complier] P [X=x|Complier]
P [X=x]

(1) (2) (3) (4)

High sh. of pop below poverty line 1.382*** 0.52 0.991 1.923
[0.499] [0.178]

Low sh. of pop below poverty line 0.629*** 0.48 0.00863 0.018
[0.236] [0.178]

High sh. of pop w/ less 1.125*** 0.51 0.964 1.883
than HS degree [0.419] [0.210]

Low sh. of pop w/ less 0.855*** 0.49 0.0365 0.075
than HS degree [0.322] [0.210]

High sh. of employment in mining 1.232*** 0.50 0.931 1.856
[0.356] [0.235]

Low sh. of employment in mining 0.820* 0.50 0.0694 0.139
[0.471] [0.235]

High sh. of PCP per capita 1.180** 0.50 1.427 2.854
[0.518] [0.224]

Low sh. of PCP per capita 1.103*** 0.50 -0.427 -0.854
[0.218] [0.224]

High sh. of smoking 1.012*** 0.54 0.645 1.197
[0.365] [0.213]

Low sh. of smoking 0.825*** 0.46 0.355 0.770
[0.298] [0.213]

High cocaine and alcohol MR 1.273*** 0.50 1.12 2.240
[0.440] [0.188]

Low cocaine and alcohol MR 0.656** 0.50 -0.12 -0.240
[0.275] [0.188]

Notes: Column 1 corresponds to the first stage regression for each specific group. Column 2 is the frequency of the
group in the estimation sample. Column 3 corresponds to the estimation of the characteristic in the complier sample,
following Abadie (2003) this is a 2SLS regression where the dependent variable corresponds to the endogenous variable
multiplied by the indicator of the group. Column 4 divides column 3 by column 2 and corresponds to the complier
relative likelihood. For each of the commuting zone characteristics, we consider a commuting zone to be in the low
(high) group if the value of such characteristic is below (above) the median value. Poverty, share of the population
with less than a high school (HS) degree, and employment in the mining sector are measured in 1994. Primary care
physicians (PCP) per capita, smoking, and cocaine and alcohol mortality rates are measured in 1996. This table is
referenced in Section V.C.
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A Additional Figures

Figure A1: OxyContin Marketing Budget and Total Prescription Sales
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Notes: Author’s constructions based on OxyContin Budget Plans 1998-2002 and United States.
General Accounting Office (GAO). Prescription Drugs: OxyContin Abuse and Diversion and
Efforts to Address the Problem: Report to Congressional Requesters. 2003. This figure is
referenced in Section II.
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Figure A2: Purdue Pharma Budget Plan 1997: Target Audiences

Notes: This figure is an extract of Purdue Pharma marketing plan. It shows that Purdue marketing
targeted top opioid prescribers. Purdue Pharma Budget Plan 1997, p.25. This figure is referenced
in Section II.

57

https://www.industrydocuments.ucsf.edu/docs/kxlh0228


Figure A3: Evolution of Prescription Opioid Distribution
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Notes: This figure shows the evolution of shipments of all prescription opioids and the three
main components: oxycodone, hydrocodone and morphine. Oxycodone is the active ingredient of
OxyContin. Shipments of prescription opioids are expressed in morphine-equivalent doses. Data on
opioids distribution come from the ARCOS. The mortality rate (MR) from prescription opioids is
constructed using data from the National Vital Statistic System and plotted in the right-hand-side
axis. Details on the construction of this measure are found in C. This figure is referenced in Section
III.A.
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Figure A4: Evolution of Prescription Opioid and All Opioid Mortality Rates
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Notes: This figure shows the evolution of prescription opioid and all opioid mortality rates from
1989 to 2018. The 1989-1998 data use ICD-9 codes to categorize the cause of death, and the
1999-2018 data use ICD-10 codes. The time series show that the transition from ICD-9 to ICD-10
classifications resulted in a small increase in poison-related deaths; this is consistent with what the
CDC reports (Warner et al., 2011). This figure is referenced in Section III.C.
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Figure A5: Evolution of Cancer Mortality and Prescription Opioid Supply
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Notes: This figure shows the evolution of prescription opioids (light blue lines in the left-hand axis)
and cancer mortality rates (dark-blue lines in the right-hand axis) over time for commuting zones
in the top and bottom quartiles of the cancer mortality distribution. Areas in the top quartile of
the cancer distribution experienced an influx of opioids that was up to 3 times larger than the
one experience by areas in the bottom quartile. Changes in cancer mortality does not explain
this discrepancy; trends in carcer mortality rates in these groups of commuting zones suggest that
mortality was quite stable in the period. Prescription opioids is measured in morphine-equivalent
mg. This figure is referenced in Section IV.A.
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Figure A6: Evolution of Oxycodone by Octiles of the 1994-1996 Cancer Prevalence
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Notes: This figure shows the evolution of oxycodone in eight groups of commuting zones. Each
group is composed of those commuting zones in the n-th octile of the cancer mortality rate
distribution before the launch of OxyContin. Darker colors indicate groups with higher cancer
prevalence (e.g., the 8th octile corresponds to the series that peaked in 2010 at 19 morphine-
equivalent millions of gm per capita). Lighter colors indicate groups with lower cancer prevalence.
This figure is referenced in Section IV.A.
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Figure A7: Opioid Mortality Rate by Octiles of the 1994-1996 Cancer Prevalence
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(b) All Opioids
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Notes: This figure shows the evolution of prescription opioid (panel a) and all opioids (panel b) mortality in eight groups of commuting zones. Each group is
composed of those commuting zones in the n-th octile of the cancer mortality rate distribution before the launch of OxyContin. Darker colors indicate groups
with higher cancer prevalence. Lighter colors indicate groups with lower cancer prevalence. This figure is referenced in Section V.A.
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Figure A8: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on All-Opioid Mortality

(a) High vs Low Cancer Mortality CZs
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(b) Reduced Form - Event Study Approach
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Notes: This figure shows the effects of the increase in prescription opioid supply in all-opioid mortality. Panel (a) shows the raw data, early in the
2000s, a wedge starts to appear between high- and low-cancer-incidence groups. Panel (b) shows the dynamic reduced-form estimation. We regress
all-opioid mortality on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These coefficients corresponds to
the estimate of ϕt in Equation 3. We use this specification to test for the presence of pre-trends in the relation between opioid mortality and mid-nineties
cancer mortality; we do not reject the null hypothesis that the estimated coefficients before 1996 are jointly equal to zero, the p value of this test equals
0.1574. This figure is referenced in Section IV.B., in Section V.A., and in Section V.B.
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Figure A9: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Disability Claims
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Notes: We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our
instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. This figure is referenced in Section V.B.

64



Figure A10: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Opioid
Mortality by Race
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Notes: This figure shows the effects of the increase in prescription opioid supply in opioid related mortal-
ity by race. We present the results of a dynamic reduced-form estimation were we regress these outcomes
on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These
coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for the
presence of pre-trends in the relation between opioid mortality and mid-nineties cancer mortality; we do
not reject the null hypothesis that the estimated coefficients before 1996 are jointly equal to zero, the p
values of these tests are: 0.2551 (white) and 0.3021 (non-white). This figure is referenced in Section V.A.
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Figure A11: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Deaths of Despair

(a) Deaths of Despair (excluding opioids)
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(b) Alcohol-related Deaths
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Notes: This figure shows the effects of the increase in prescription opioids supply in various measures of deaths of despair; excluding deaths which cause is opioid
poisoning. We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our instrument.
We test for the presence of pre-trends in the relation between deaths of despair and mid-nineties cancer mortality and do not reject the null hypothesis that the estimated
coefficients before 1996 are jointly equal to zero. This figure is referenced in Section IV.B., in Section V.A., and in Section V.B.
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Figure A12: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Birth Outcomes

(a) Birth Weight

OxyContin's launch

Jointly equal 0
p-val = 0.1086

RF (static) estimate:
-4.8430 (se=2.127)

-20

-10

0

10

20

C
oe

ffi
ci

en
t a

nd
 9

5%
 C

I

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

(b) APGAR Score
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Notes: This figure shows the effects of the increase in prescription opioids supply in birth weight (panel a) and in APGAR score (panel b). The APGAR
score is a measure of the physical condition of a newborn infant. It varies from 0 to 10, a score of 10 represents the best possible condition. We present the
results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our instrument—cancer
mortality in 1994-1996. These coefficients corresponds to the estimate of ϕt in Equation 3. We use this specification to test for the presence of pre-trends
in the relation between infant outcomes and mid-nineties cancer mortality; we do not reject the null hypothesis that the estimated coefficients before 1996
are jointly equal to zero, the p value of these tests are presented in the figures. This figure is referenced in Section IV.B., in Section V.A., and in Section V.B.
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Figure A13: Dynamic Reduced Form Estimates - Out-of-sample Analysis
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(c) Infant Mortality Rate
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(d) Birth Weight
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(e) Fertility Rate - 25 to 29 years old
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(f) Fertility Rate - unmarried woman
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Notes: This figure shows the dynamic reduced-form relationship between outcomes of interest
and our instrument in an out-of-sample period. That is, we replicate our dynamic reduced-form
analysis in the pre-OxyContin period. We regress each outcome on a set of year-dummy variables
interacted with the out-of-sample instrument—cancer mortality in 1989 - 1990. We use this
specification to test for the presence a relationship between our outcomes and mid-nineties cancer
mortality before the introduction of OxyContin. We do not reject the null hypothesis that the
estimated coefficients are jointly equal to zero, the p value of these tests are presented in the
figures. This figure is referenced in Section IV.B.
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Figure A14: Dynamic Reduced Form Estimates - Out-of-sample Analysis: Labor Market Outcomes
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(b) Mining
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(c) Labor Force Participation
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Notes: This figure shows the dynamic reduced-form relationship between the share of employment in the manufacturing and mining industries and labor
force participation and our instrument in an out-of-sample period. The first year of available data is 1990. We use this specification to test for the
presence a relationship between our outcomes and mid-nineties cancer mortality before the introduction of OxyContin. We do not reject the null hypoth-
esis that the estimated coefficients are jointly equal to zero, the p value of these tests are presented in the figures. This figure is referenced in Section IV.B.
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Figure A15: Effects of Purdue Pharma’s Mid-nineties Cancer-market Targeting on Share
of Smokers
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Notes: This figure shows the effects of the increase in prescription opioids supply in the share of smokers.
We present the results of a dynamic reduced-form estimation were we regress the outcome on a set of
year-dummy variables interacted with our instrument. We construct the share of smokers using data from the
Behavioral Risk Factor Surveillance System (BRFSS). We perform the analysis up to 2010 since starting in
2011, BRFSS changed its data collection, structure, and weighting methodology. In 2011 there is an increase
in the proportion of people being surveyed on cell phones and it also coincides with a rise in the percentage of
respondents with unknown smoking status as documented by DeCicca et al. (2022). This figure is referenced
in Section V.B.
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Figure A16: Dynamic First Stage and Reduced Form Estimates - Alternative specification

(a) First Stage
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(c) Any Opioid Mortality
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(d) SNAP
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(e) Birth Weight
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(f) Fertility Rate of Unmarried woman

Jointly equal 0
p-val = 0.6012

RF (static) estimate:
0.00101 (se=0.000213)

-.002

0

.002

.004

C
oe

ffi
ci

en
t a

nd
 9

5%
 C

I

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

Notes: This figure shows the dynamic first stage (panel a) and reduced-form (panels b to f) relations
between outcomes of interest and an alternative instrument: cancer mortality rate in 1994. That
is, we regress the outcomes of interest on a set of year-dummy variables interacted with cancer
mortality in 1994. This figure provides a robustness check for our preferred specification which
uses cancer mortality in 1994-1996 as an instrument. We do not find evidence for the presence
of pre-trends in the relation between opioid mortality—and other outcomes of interest—and
mid-nineties cancer mortality in this alternative specification. We test if the estimated coefficients
before 1996 are jointly equal to zero and do not reject the null hypotheses, the p values are reported
in each panel. This figure is referenced in Section VI.A.
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Figure A17: Robustness check: Leave-ones-out estimates

(a) First-stage coefficient estimates
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(b) Prescription opioids: Reduced-form coefficient estimates
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Notes: Panel (a) of this figure reports the estimated coefficient ϕ of the first stage equation (Equation
1) and the corresponding 95% confidence interval. Panel (b) of this figure reports the estimated
reduced-form coefficient. The first coefficient and confidence interval of each graph replicate the main
result result—see column 5 of Table 3 and column 2 of Table 5. Each of the subsequent coefficients are
computed by excluding all commuting zones in the state or group of states indicated on the horizontal
axis. Triplicate states are: California, Idaho, Illinois, New York, and Texas. Not triplicate group
excludes all these 5 states. This figure is referenced in Section VI.A.
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Figure A18: Robustness check: Control for exposure to permanent normal trade
relations to China (“China shock”)

(a) NTR gap (Pierce and Schott, 2020)
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(b) Change in Chinese import exposure (ADH, 2013)
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Notes: This figure presents the baseline dynamic reduced-form estimates and the dynamic reduced-form
estimates when we control for exposure to permanent normal trade relations (PNTR) to China—termed
the China shock in the trade literature. In October, 2000, the US Congress passed a bill granting
permanent normal trade relations to China, a trade liberalization that granted China imports access to
normal trade relations (NTR) tariff rates. This trade liberalization differentially exposed US regions
to increased import competition from China via their industry structure. We test whether results on
opioid mortality are driven by this differential exposure. First, we follow Pierce and Schott (2020) and
construct a measure of exposure to trade liberalization as the difference between the non-NTR rates to
which tariffs could have risen prior to PNTR and the NTR rates that were locked in by the change in
policy. A higher NTR gap indicates a larger trade liberalization after the passage of PNTR. Panel (a)
shows estimates of the reduced-form when we control for the commuting-zone-level NTR gap. Second,
we measure exposure to trade liberalization following David et al. (2013): in this case, we control for
the change in Chinese import exposure per worker in a commuting zone. These results are presented in
Panel (b). This figure is referenced in Section VI.E.
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B Additional Tables

Table A1: Additional Summary Statistics: Opioid Prescriptions, doses per capita

Mean Median SD Min Max Observations

1997

All opioids 1.49 1.40 0.67 0.04 7.64 590

Oxycodone 0.35 0.32 0.21 0.01 1.76 590

Hydrocodone 0.55 0.49 0.34 0.01 2.73 590

Morphine 0.31 0.29 0.17 0.01 1.89 590

2007

All opioids 7.03 6.24 4.01 0.22 36.24 590

Oxycodone 3.26 2.76 2.33 0.08 26.86 590

Hydrocodone 2.33 1.87 1.72 0.04 14.30 590

Morphine 1.04 0.89 0.68 0.04 8.58 590

2017

All opioids 6.97 6.30 3.50 0.19 27.47 590

Oxycodone 3.75 3.42 2.25 0.11 15.34 590

Hydrocodone 1.86 1.63 1.17 0.04 10.57 590

Morphine 0.92 0.82 0.50 0.03 5.27 590

Notes: This table presents summary statistics for our measure of the prescription opioids supply and the
distribution of oxycodone, hydrocodone, and morphine for the years 1997, 2007, and 2017. Data come
from the ARCOS and are expressed in morphine-equivalent mg. This table is referenced in Section III.A.
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Table A2: Summary statistics: Pre-period and sample period.

1989 - 1995 1999 - 2018

Mean SD Mean SD

(1) (2) (3) (4)

Cancer Mortality per 1,000

Cancer mortality rate 1994-1996 2.53 0.58 2.53 0.58

Cancer mortality rate 2.53 0.59 2.48 0.55

Opioid-related Mortality per 1,000

Prescription opioids 0.01 0.01 0.04 0.05

Any opioids 0.01 0.02 0.07 0.07

Other Mortality Measures per 1,000

All-cause mortality (+20 years old) 9.81 2.07 9.87 2.06

Deaths of despair 0.24 0.08 0.27 0.10

Deaths of despair - alcohol only 0.09 0.04 0.12 0.06

Deaths of despair - suicide only 0.13 0.05 0.15 0.06

Demand for Social Services

Share SNAP 0.10 0.06 0.12 0.07

Infant and Maternal Outcomes

Infant MR (per 1,000 births) 8.87 3.22 6.86 2.87

Birth weight 3416.31 80.77 3274.25 79.47

Share low birth weight 0.07 0.02 0.08 0.02

Share preterm 0.11 0.02 0.12 0.03

APGAR score - all infants 8.24 2.65 8.82 0.19

APGAR score - dead infants 6.14 2.15 5.62 2.28

Median gestation 39.12 0.32 38.95 0.24

Fertility rate 0.08 0.03 0.08 0.01

Fertility rate 25-29 0.12 0.04 0.13 0.02

Fertility rate - unmarried women 0.02 0.01 0.03 0.01

Notes: This table presents summary statistics for our main outcomes and cancer mortality incidence
for the period before the launch of OxyContin (1989-1995) and the period of analysis (1999 - 2018).
We leverage data from multiple sources. The last two columns reproduce columns (2) and (4) of Table
1. Data on opioid, cancer, birth, and maternal outcomes come from the NVSS. We use data from the
Food and Nutrition Service of the Department of Agriculture and the SSA to construct demand for the
Supplemental Nutrition Assistance Program (SNAP), Supplemental Security Income (SSI), and Social
Security Disability Insurance (SSDI). This table is referenced in Section III.
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Table A3: Determinants of Cancer Mortality Rate 94-96

Dependent variable: Cancer MR 94-96
(1) (2)

Sh. of population over 66 11.13*** Adult MR excluding cancer 0.0439**
[1.895] [0.0179]

Sh. of population 18-65 -0.664 Income per capita -0.00000857
[1.361] 0.118

Sh. of population under 1 2.156 Share with some college 0.518*
[9.066] [0.274]

Share Black 0.127 Share with high school or less 0.124
[0.241] [0.191]

Share Hispanic -1.215*** Share working in manufacturing -0.199
[0.303] [0.133]

Share female -1.48 Labor Force Participation 0.528
[1.565] [0.399]

Prescription Opioids MR 1.093 Employment rate -1.984*
[1.078] [1.118]

Infant Mortality rate -0.00288 Share SNAP 0.484
[0.00337] [0.383]

Fertility rate 0.311 Share SSDI 1.856
[0.426] [1.929]

Observations 590 R2 0.847

Notes: This table presents estimates of the determinants of the 1994-1996 cancer mortality rate at the
commuting zone level. This regression includes state fixed effects. Robust to heteroskedasticity standard
errors are in brackets. MR stands for Mortality rate. * p<0.10, ** p<0.05, *** p<0.01. This table is
referenced in Section IV.B.
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Table A4: Baseline Results with Different Time Periods

Panel A: First Stage

Dependent variable: Prescription Opioids pc

(1) (2) (3) (4)

Cancer MR 94-96 1.078*** 0.916*** 1.047*** 1.474***

se [0.264] [0.258] [0.277] [0.330]

t-stat 4.08 3.55 3.78 4.46

Effective F-stat 16.63 12.62 14.25 19.90

Observations 11,800 7,080 8,850 5,310

Adjusted R2 0.564 0.565 0.582 0.425

Sample All 1999-2010 1999-2013 2010-2018

Panel B: Instrumental Variables

Dependent variable: Prescription Opioids Mortality Rate

(1) (2) (3) (4)

Presc. Opioids pc 0.00679*** 0.00785*** 0.00769*** 0.00533***

[0.00200] [0.00259] [0.00230] [0.00169]

Observations 11,800 7,080 8,850 5,310

Sample All 1999-2010 1999-2013 2010-2018

Dependent variable: Any Opioid Mortality Rate

(1) (2) (3) (4)

Presc. Opioids pc 0.00646*** 0.00677*** 0.00672*** 0.00562**

[0.00231] [0.00256] [0.00232] [0.00237]

Observations 11,800 7,080 8,850 5,310

Sample All 1999-2010 1999-2013 2010-2018

Notes: Panel A presents results for the first-stage regression using alternative periods. Column (1)
reproduces the main results for 1999-2018, column (2) presents estimates for the first wave of the
opioid epidemic, column (3) presents estimates for the first and second waves pooled together, and
column (4) presents estimates for the after-OxyContin reformulation period. Panel B presents results
from a regression of the opioid mortality measure on all prescription opioids distribution per capita,
instrumenting the latter by the cancer incidence in the commuting zone in 1994-1996; i.e., reproduces
the results presented in Table 5 under alternative periods. All regressions include state times year fixed
effects and a set of control variables: contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years old, share of Black,
White, and Hispanic population, and share of female population. Standard errors are clustered at the
CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section V.A.
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Table A5: Baseline Results with Different Time Periods. IV Estimates.

SNAP SSDI

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00455* 0.00487** 0.00680*** 0.00584*** 0.00605*** 0.00718***

[0.00250] [0.00219] [0.00205] [0.00144] [0.00141] [0.00135]

Effective F 15.22 17.06 25.70 15.22 17.06 25.70

Sample 1999-2010 1999-2013 2010-2018 1999-2010 1999-2013 2010-2018

SSI IMR

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00226* 0.00248* 0.00320* 0.0458 0.0512 0.0846

[0.00133] [0.00141] [0.00174] [0.185] [0.160] [0.113]

Effective F 15.22 17.06 25.70 15.22 17.06 25.70

Sample 1999-2010 1999-2013 2010-2018 1999-2010 1999-2013 2010-2018

Birth weight Fertility

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc -5.989** -5.093** -2.915* 0.00210*** 0.00233*** 0.00350***

[2.811] [2.316] [1.623] [0.000696] [0.000674] [0.000778]

Effective F 15.22 17.06 25.70 15.22 17.06 25.70

Sample 1999-2010 1999-2013 2010-2018 1999-2010 1999-2013 2010-2018

Notes: This table presents results from a regression of outcome y on prescription opioids distribution per capita,
instrumenting the latter by the cancer incidence in the commuting zone in 1994-1996; i.e., reproduces the results
presented in Tables 7 and 8 under alternative periods. Columns (1) and (4) present estimates for the first wave
of the opioid epidemic, columns (2) and (5) present estimates for the first and second waves pooled together,
and columns (3) and (6) present estimates for the after-OxyContin reformulation period. All regressions include
state times year fixed effects and a set of control variables: contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66 years old,
share of Black, White, and Hispanic population, and share of female population. Standard errors are clustered
at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section V.B.
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Table A6: Effects on Fertility Rate by Marital Status and Age

Dependent variable: Fertility rate

(1) (2) (3) (4) (5) (6)

Pres. Opioids pc 0.00166*** -0.000119 -0.00107 0.00327*** 0.0000223 -0.00123**

[0.000475] [0.000517] [0.00111] [0.00115] [0.000446] [0.000497]

Sample Non-marital Marital All 20-24 All 25-29 All 30-34 All 35-39

births births

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Notes: This table presents results from a regression of measures of fertility rate on prescription
opioids distribution per capita, instrumenting the latter by the cancer incidence in the commuting
zone in 1994-1996. All regressions include state times year fixed effects and a set of control variables:
contemporaneous cancer mortality rate, share of population under 1 year old, share of population
between 18 and 65, share of population over 66 years old, share of Black, White, and Hispanic
population, and share of female population. Standard errors are clustered at the CZ level. * p<0.10, **
p<0.05, *** p<0.01. This table is referenced in Section V.B.
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Table A7: Baseline Results under a Shift-share Instrument

Dependent var: Presc. Opioids pc Presc. Opioids MR Any Opioids MR SNAP SSDI

(1) (2) (3) (4) (5)

Shift Share 0.00417***

[0.000997]

Effective F 17.47

Presc. Opioids pc 0.00644*** 0.00635*** 0.00927*** 0.00553***

[0.00188] [0.00219] [0.00277] [0.00127]

Model FS IV IV IV IV

Dependent var: SSI Infant Mortality Rate Fertility rate Birth weight

(6) (7) (8) (9)

Presc. Opioids pc 0.00319** -0.0218 0.00149*** -4.344**

[0.00158] [0.120] [0.000548] [1.964]

Model IV IV IV IV

Notes: Column 1 reports the estimated coefficient for the first stage. Columns 2 to 9 present results from IV regressions using the shift-share instrument. Each
regression is run over a sample of 11,800 observations with 590 clusters (commuting zones). All regressions include state times year fixed effects and a set of
control variables: contemporaneous cancer mortality rate, share of population under 1 year old, share of population between 18 and 65, share of population over
66 years old, share of Black, White, and Hispanic population, and share of female population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05,
*** p<0.01. This table is referenced in Section VI.A.
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Table A8: First Stage Results with Population Size Controls

Dependent variable: Prescription opioids per capita

(1) (2) (3) (4) (5)

Cancer MR 94-96 1.078*** 1.635*** 1.072*** 1.046*** 1.608***

se [0.264] [0.483] [0.276] [0.266] [0.490]

t-stat 4.08 3.39 3.88 3.94 3.28

Effective F-stat 16.63 11.49 15.05 15.52 10.76

Share pop +65 yo No Yes No No Yes

Total pop +65 yo No No Yes No No

Total population No No No Yes Yes

Observations 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590

Adj. R2 0.56 0.57 0.56 0.57 0.57

Notes: All specifications include as control variables: contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66 years,
share of Black, White, and Hispanic population, and share of female population. Standard errors are
clustered at the commuting-zone level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in
Section VI.A.
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Table A9: First Stage Robustness Check - Alternative choices of instrument

Panel A.

Dependent variable: Prescription Opioids pc

(1) (2) (3) (4) (5)

Cancer MR 0.868*** 1.171*** 0.930*** 0.754*** 1.417***

[0.229] [0.272] [0.260] [0.223] [0.284]

Mean cancer MR 2.5168 2.5403 2.5477 2.5221 2.2582

Instrument version: Age adjusted 1994 1995 1996 Weighted

MR 94-96

Observations 11,800 11,800 11,800 11,800 11,800

Clusters 590 591 592 593 594

Adj. R2 0.553 0.565 0.557 0.551 0.553

Panel B.

Dependent variable: Prescription Opioids pc

(1) (2) (3) (4) (5)

Cancer MR 1.186*** 0.402*** 0.210** 0.127** 11.72***

[0.315] [0.149] [0.0988] [0.0563] [4.317]

Mean cancer MR 0.6836 9.8072 13.1382 17.5892 0.1342

Instrument version: Excluding 55+ 65+ 75+ Sh. Pop 66+

lung cancer

Observations 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590

Adj. R2 0.55 0.55 0.56 0.56 0.57

Notes: All regressions include state times year fixed effects and a set of control variables: con-
temporaneous cancer mortality rate, share of population under 1 year old, share of population
between 18 and 65, share of population over 66 years, share of Black, White, and Hispanic
population, and share of female population. Standard errors are clustered at the commuting-
zone level. * p<0.10, ** p<0.05, ***p<0.01. This table is referenced in Section VI.A.
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Table A10: Placebo Check - Alternative Instruments

Dependent variable: Prescription opioids per capita

(1) (2) (3) (4) (5) (6)

CVD MR 94 96 0.372 -2.023**

[0.611] [0.822]

Accidental MR 94 96 1.067 -1.639

[1.411] [1.406]

Homicides MR 94 96 0.214 -0.474

[3.379] [3.173]

Cancer MR 94 96 1.381*** 1.015*** 0.923***

[0.347] [0.245] [0.233]

Model FS FS FS FS FS FS

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Adjusted R2 0.55 0.549 0.549 0.565 0.561 0.562

Notes: CVD stands for cerebrovascular diseases. Columns 1-3 report first-stage regression with
alternative instrument. Columns 4-6 add our baseline instrument. All regressions include state times
year fixed effects and a set of control variables: labor force participation, contemporaneous cancer
mortality rate, share of population under 1 year old, share of population between 18 and 65, share
of population over 66 years old, share of Black, White, and Hispanic population, and share of female
population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table
is referenced in Section VI.B.



Table A11: Alternative Measure of Opioid Supply.

Dependent var: Oxycodone pc Presc. opioids MR All opioids MR

(1) (2) (3)

Cancer MR 94-96 0.605***

[0.186]

Oxycodone pc 0.0121*** 0.0115***

[0.00412] [0.00436]

tF 0.05 se (0.00578) (0.00612)

t-stat using tF 0.05 se 2.0932 1.8799

Effect size (%) 38.00 91.50 40.37

Model FS IV IV

Observations 11,800 11,800 11,800

Clusters 590 590 590

Adjusted R2 0.526

Notes: All regressions include state times year fixed effects. Control variables are contemporaneous
cancer mortality rate, share of population under 1 year old, share of population between 18 and 65,
share of population over 66 years old, share of Black, White, and Hispanic population, and share of
female population. This table reproduces the main analysis using Oxycodone shipments as the measure
of opioid supply. Effect size in column (1) is computed as the predicted changes in doses of oxycodone
and prescription opioids per capita from an increase in cancer mortality that would change a commuting
zone in the 5th percentile of the cancer distribution to the 95th percentile. Effect sizes in columns (2) and
(3) indicate the percent change in the dependent variable relative to its mean when doses of prescription
opioids per capita increase from the 25th to the 75th percentile. Standard errors in square brackets
are clustered at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01.
tF 0.05 se, and t-stat using tF0.05 se correspond to weak-instrument-robust inference procedures. This
table is referenced in Section VI.C.



Table A12: Direct Effects. Alternative Measure of Opioid Mortality

Dependent var: Drug Induced Mortality Rate

(1) (2) (3)

Prescription opioids pc 0.00505*** 0.0112***

[0.00152] [0.00369]

tF 0.05 se 0.00518

t-stat using tF 0.05 se 2.16329

AR p-value 0.00010

Cancer MR 94-96 0.0121***

[0.00314]

Effect size (%) 20.96 46.94

Model OLS RF IV

Observations 11,800 11,800 11,800

Clusters 590 590 590

Adjusted R2 0.4304 0.3908

Effective F-stat 16.63

Cragg-Donald Wald F-stat 358.58

Notes: Control variables are contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years old, share
of Black, White, and Hispanic population, and share of female population. Effect size indicates
the percent change in the dependent variable relative to its mean when doses of prescription
opioids per capita increase from the 25th to the 75th percentile. Standard errors in square
brackets are clustered at the CZ level. Using these standard errors, we report * p<0.10, **
p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to
weak-instrument-robust inference procedures. This table is referenced in Section VI.C.



Table A13: Baseline Results under Alternative Sample Restrictions

Dependent var: Presc. Opioids pc Prescription Opioids MR

(1) (2) (3) (4) (5) (6)

Cancer MR 94-96 1.191*** 1.055*** 1.018***

[0.249] [0.297] [0.288]

Presc. Opioids pc 0.00355*** 0.00684*** 0.00826***

[0.00134] [0.00231] [0.00268]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Any Opioids MR All-cause mortality over 20

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00152 0.00697** 0.00885*** 0.0137 0.0515 0.102

[0.00171] [0.00273] [0.00329] [0.0361] [0.0477] [0.0668]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

SSDI SSI

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00504*** 0.00586*** 0.00652*** 0.00204** 0.00339** 0.00438*

[0.00106] [0.00155] [0.00173] [0.000851] [0.00169] [0.00239]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

SNAP IMR

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.00941*** 0.00997*** 0.00919*** 0.175 -0.0297 0.0604

[0.00248] [0.00336] [0.00307] [0.130] [0.142] [0.150]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Birth weight Fertility

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc -4.896*** -3.770* -6.480** 0.00108*** 0.00156** 0.00160**

[1.852] [2.240] [2.624] [0.000404] [0.000632] [0.000706]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Notes: This table presents results for the first-stage regression and IV results using alternative sample
definitions. Our preferred specification restricts the sample to commuting zones with population higher
than 25,000 residents. When the sample is restricted to population above 15,000, the sample size
is 12,820 observations and 641 clusters. Analogously, when restricted to population above 40,000,
sample size is 10,880 and 544 cluster, and 9,620 and 481 clusters when restriction is above 55,000. All
regressions include state times year fixed effects and a set of control variables: contemporaneous cancer
mortality rate, share of population under 1 year old, share of population between 18 and 65, share
of population over 66 years old, share of Black, White, and Hispanic population, and share of female
population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table
is referenced in Section III.C. and in Section VI.D.



Table A14: Alternative Sample Results for SNAP

Dependent variable: Share SNAP

(1) (2) (3) (4) (5) (6)

Presc. Opioids pc 0.000144 0.00982*** 0.000213 0.0106***

[0.51] [3.28] [0.74] [3.23]

Cancer 94 96 0.0106*** 0.0116***

[4.67] [5.53]

Effective F-stat 16.63 13.70

Model OLS RF IV OLS RF IV

Sample Baseline Baseline Baseline Restricted Restricted Restricted

Observations 11,800 11,800 11,800 9,962 9,962 9,962

Clusters 590 590 590 533 533 533

Notes: Columns 1-3 report baseline results and columns 4-6 report results only for commuting zones
where county-level data were available. All regressions include state times year fixed effects and a set of
control variables: labor force participation, contemporaneous cancer mortality rate, share of population
under 1 year old, share of population between 18 and 65, share of population over 66 years old, share of
Black, White, and Hispanic population, and share of female population. Standard errors are clustered
at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section VI.D.



Table A15: Alternative Specifications

Dependent var: Presc. Op Any Op. SSDI SSI SNAP Fertility

Mortality Mortality

Presc. Opioids pc 0.00684*** 0.00643*** 0.00579*** 0.00322** 0.00922*** 0.00145***

[0.00204] [0.00232] [0.00136] [0.00152] [0.00270] [0.000529]

Extra covariate Empl. Empl. Empl. Empl. Empl. Empl.

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Dependent var: Presc. Op Any Op. SSDI SSI SNAP Fertility

Mortality Mortality

Presc. Opioids pc 0.00684*** 0.00643*** 0.00579*** 0.00322** 0.00922*** 0.00145***

[0.00204] [0.00232] [0.00136] [0.00152] [0.00270] [0.000529]

Extra covariate Unemp. Unemp. Unemp. Unemp. Unemp. Unemp.

Observations 11,800 11,800 11,800 11,800 11,800 11,800

Clusters 590 590 590 590 590 590

Notes: All regressions include state times year fixed effects and a set of control variables: contempora-
neous cancer mortality rate, share of population under 1 year old, share of population between 18 and
65, share of population over 66 years old, share of Black, White, and Hispanic population, and share of
female population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01.
This table is referenced in Section VI.D.



Table A16: First Stage with Additional Control Variables: Recession, China Shock &
Unemployment

Presc. Opioids pc (1) (2) (3) (4) (5) (6) (7)

Cancer MR 94 96 1.078*** 1.137*** 1.101*** 1.104*** 1.075*** 1.074*** 1.075***

[0.266] [0.272] [0.268] [0.268] [0.264] [0.264] [0.263]

Extra control Recession NTR
Gap

ADH
1990

ADH
2000

Unemp.
94

Unemp.
95

Unemp.
96

Observations 11,800 11,800 11,740 11,740 11,800 11,800 11,800

Adjusted R2 0.57 0.57 0.57 0.57 0.56 0.56 0.56

Clusters 590 590 587 587 590 590 590

Notes: This table estimate the first stage including additional control variables to account for the 2001
Economic Recession and the China Shock. All regressions include state times year fixed effects and a
set of control variables Standard errors are clustered at the CZ level. All regressions are run on panel
at the CZ level with 11,800 observations and 590 clusters. * p<0.10, ** p<0.05, *** p<0.01. This table
is referenced in Section VI.E.



C Triplicate States and the Promotion of OxyContin

From our review of Purdue Pharma and other pharmaceutical companies’ internal doc-

uments, we believe that when Purdue referred to “Triplicate States” it meant a group

of nine states and not five as stated in Alpert et al. (2022). At least on two separate

occasions, Purdue explicitly referred to triplicates as the “nine states” (Figure C1), and

to our knowledge, never mentioned only five. Academic documents that explain the pre-

scription drug monitoring programs that were in effect at the time, also refer to a group

of nine states. These documents are more precise in their language and refer to these pro-

grams as multiple-copy prescription programs (Joranson et al., 2002 and Fishman et al.,

2004). Similar to today’s PDMPs, different states had different versions of the program,

but the informal industry name for these programs was “triplicate programs”. In an

internal email between Mallinckrodt sales specialists, also disclosed as part of the opioid

litigation, one sales specialist lists and explains to the other the history of the triplicate

programs, and lists the original nine states (see Figure C2). These states are: California,

Hawaii, Idaho, Indiana, Michigan, Illinois, New York, Rhode Island, and Texas.51

Figure C1: Reference to Nine Triplicate States in OxyContin Launch Plan

Notes: This figure shows extracts of OxyContin Launch plans. The left panel reproduces a segment
of the OxyContin Launch Plan, page 27 September 27th 1995. The right panel is an extract from
OxyContin Budget Plan 1996, page 29. This figure is referenced in Section C.

51Mallinckrodt is a pharmaceutical company that is also part of the opioid litigation for their role in
the opioid epidemic. More precisely, “Collectively, Purdue, Actavis, Cephalon, Janssen, Endo, Insys, and
Mallinckrodt are referred to as “Marketing Defendants” Case No. 17-md-2804. United States District
Court for the Northern District of Ohio Eastern Division.



Figure C2: Reference to Nine Triplicate States in Internal Communications

Notes: This figure shows extracts of the internal email from the opioid litigation with details on
the list of triplicate states. This figure is referenced in Section C.

In light of these alternative definitions of the group of states with triplicate programs

we inspect the time trends of overdose mortality in triplicate states and replicate the

main results in Alpert et al. (2022).52 First, in Figure C3 we inspect patterns in the raw

data. Panels (a) and (b) show the evolution of overdose mortality in five triplicate states

and in nine triplicate states respectively, compared to the evolution in the rest of the

country. Using the alternative definition of triplicates provide a less clear evidence that

“triplicate states” fare better in terms of overdose mortality.

52We define overdose deaths as deaths involving underlying cause of death ICD-9 codes E850-E858,
E950.0-E950.5, E962.0, or E980.0-E980.5 and ICD-10 codes X40-X44, X60-64, X85, or Y10-Y14.



Figure C3: All Drug Overdose Mortality By Triplicate Status.

(a) Triplicate definition as in Alpert et al.
(2022).
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(b) Alternative triplicate definition
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Notes: Time series for all drug overdose mortality. Panel (a) defines triplicates as California,
Idaho, Illinois, New York, and Texas. Panel (b) adds Hawaii, Indiana, Michigan, and Rhode Island
for a total of 9 triplicate states. This figure is referenced in Appendix C.

Event studies models in Figure C4 suggest a similar story. While the main results are

mostly robust to this alternative definition, they are attenuated and are often equal to

zero statistically, suggesting a smaller effect of the triplicate status on overdose mortality.

We estimate the event studies with and without population weights. The unweighted

version is more sensitive to the definition of triplicate status, which is natural since even

though the sample of “treated” states is increasing by 80%, the treated population is

only changing by 21%. Finally, Table C1 replicates the main estimate in Alpert et al.

(2022). Consistent with the event study estimates, results are attenuated when using

the alternative definition and are more sensitive when regressions are not weighted by

population.



Figure C4: All Drug Overdose Mortality By Triplicate Status - Unweighted analysis.

(a) 5 Triplicates unweighted
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(b) 9 Triplicates unweighted
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(c) 5 Triplicates weighted
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(d) 9 Triplicates weighted
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Notes: Figures in panels (a) and (c) reproduce Figure 4 in Alpert et al. (2022). Panels (b) and (d)
present the analysis using the alternative definition of triplicate states: we add Hawaii, Indiana,
Michigan, and Rhode Island for a total of 9 triplicate states. Event study models include state
and year fixed effects. 95% confidence intervals are generated using a clustered (at state) wild
bootstrap. Estimates are normalized to zero in 1995. This figure is referenced in Appendix C.



Table C1: Replication of Table 1 Alpert et al. (2022)

Triplicate state group (n) Nine Five Nine Five

Nontriplicate × (1) (2) (3) (4)

1996–2000 0.998*** 1.173 0.711 1.229**

SE, CI [0.356] [0.390, 2.374] [0.538] [0.017, 2.483]

Coeff. change 14.9% 42.1%

2001–2010 2.257** 3.667** 1.998** 3.232**

SE, CI [0.913] [1.521, 6.210] [0.994] [1.011, 5.318]

Coeff. change 38.5% 38.2%

2011–2017 2.793 6.061** 3.203** 4.714***

SE, CI [1.891] [2.812, 9.371] [1.337] [1.811, 7.253]

Coeff. change 53.9% 32.1%

Weighted No No Yes Yes

Covariates No No Yes Yes

Region-time dummies No No Yes Yes

Observations 1,377 1,377 1,377 1,377

Notes: Columns (2) and (4) of this table reproduce columns (1) and (4) of Table 1 in
Alpert et al. (2022) respectively. Columns (1) and (3) present the analysis using an
alternative definition of triplicate status. This table is referenced in Section C.


	Introduction
	Background: The Marketing of OxyContin and the Opioid Epidemic
	Data and Summary Statistics
	Prescription Opioids
	Cancer Mortality
	Outcome measures and control variables

	Empirical Strategy
	Does cancer mortality in the mid-1990s predict growth in the supply of prescription opioids?
	Exogeneity and exclusion restriction: Is cancer mortality in the mid-1990s directly related to our outcome variables?

	Results
	Effects on Opioid-related Mortality
	Adult Wellbeing and Intergenerational effects
	Complier Analysis

	Robustness Checks
	First Stage
	Placebo checks
	Alternative Definitions: Opioid Supply and Opioid Mortality
	Alternative Sample Restrictions and Specifications
	Trade shocks & the 2001 Economic Recession

	Policy Implications and Conclusions
	Maps and Figures
	Tables
	Additional Figures
	Additional Tables
	Triplicate States and the Promotion of OxyContin

