### Strategic Learning and Corporate Investment



NBER Summer Institute Corporate Finance

July 12, 2022

4日 + 4日 + 4日 + 4日 + 3000

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

- (1) Micro & Finance (Conley and Udry, AER 2010; Leary and Roberts, JF 2014)
- (2) Macro (Fajgelbaum et al., QJE 2017)

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

Econ. Theory: Anticipation of information spillover from peers  $\rightarrow$ war-of-attrition regarding the timing of investment and delays (Chamley and Gale, ECTA 1994)

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

Econ. Theory: Anticipation of information spillover from peers  $\longrightarrow$  war-of-attrition regarding the timing of investment and delays (Chamley and Gale, ECTA 1994)



"Tesla has set some important and good impulses in the industry," but Volkswagen was a "second mover, who would rather check a couple of times more whether the standards are right." [...] "But maybe the German manufacturers were too slow. It could be."

— Andreas Renschler, Board Member, Volkswagen

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

Econ. Theory: Anticipation of information spillover from peers  $\longrightarrow$  war-of-attrition regarding the timing of investment and delays (Chamley and Gale, ECTA 1994)



"Tesla has set some important and good impulses in the industry," but Volkswagen was a "second mover, who would rather check a couple of times more whether the standards are right." [...] "But maybe the German manufacturers were too slow. It could be."

— Andreas Renschler, Board Member, Volkswagen

Firms are willing to wait to learn from peers' decisions and outcomes.

Décaire and Wittry

Learning and Investment

July 12, 2022

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

Econ. Theory: Anticipation of information spillover from peers  $\rightarrow$ war-of-attrition regarding the timing of investment and delays (Chamley and Gale, ECTA 1994)

Studying how anticipation of peers' information revelation affects firms is challenging:

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

Econ. Theory: Anticipation of information spillover from peers  $\rightarrow$ war-of-attrition regarding the timing of investment and delays (Chamley and Gale, ECTA 1994)

Studying how anticipation of peers' information revelation affects firms is challenging:

- (1) Identify peers
- (2) Observe when real options are available and exercised
- (3) Measure project-level inputs

- (4) Separate the anticipation of peers' information spillover channel
- (5) Quantify the amount anticipated information

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Empirical Evidence: Firms learn from their peers

Social learning is pervasive in information theory: A driving force explaining dynamics among economic agents

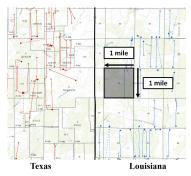
Econ. Theory: Anticipation of information spillover from peers  $\rightarrow$ war-of-attrition regarding the timing of investment and delays (Chamley and Gale, ECTA 1994)

Studying how anticipation of peers' information revelation affects firms is challenging:

- (1) Identify peers
- (2) Observe when real options are available and exercised
- (3) Measure project-level inputs

- (4) Separate the anticipation of peers' information spillover channel
- (5) Quantify the amount anticipated information

<u>This paper</u>: Reveals how the <u>anticipation</u> of peers' information spillover impacts the <u>timing</u> of firms' corporate investment.


▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Projects: 8,725 distinct real options in the oil and gas sector

- $\Rightarrow$  537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1) Simple and homogeneous projects (mean investment = 4.23 million)
  - $\Rightarrow$  Output price
  - $\Rightarrow$  Implied volatility
  - $\Rightarrow$  Time-varying cost of drilling
  - $\Rightarrow$  Risk-free rate
  - $\Rightarrow$  Estimates of expected production
- (2) Standardized unit of observation for options
- Clearly identify a firm and its peers (3)

Projects: 8,725 distinct real options in the oil and gas sector

- 537,093 option-month observations in Oklahoma and Louisiana (2005-2020)  $\Rightarrow$
- (1)Simple and homogeneous projects (mean investment = 4.23 million)
- (2)Standardized unit of observation for options
  - $\Rightarrow$  Land survey method
  - Drilling and spacing requirements ⇒
- Clearly identify a firm and its peers (3)



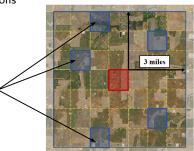
4 E b

Projects: 8,725 distinct real options in the oil and gas sector

- $\Rightarrow$  537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1)Simple and homogeneous projects (mean investment = 4.23 million)
- (2)Standardized unit of observation for options
- (3) Clearly identify a firm and its peers

Projects: 8,725 distinct real options in the oil and gas sector

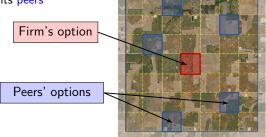
- $\Rightarrow$  537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1) Simple and homogeneous projects (mean investment = \$4.23 million)
- (2) Standardized unit of observation for options
- (3) Clearly identify a firm and its peers




< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Projects: 8,725 distinct real options in the oil and gas sector

- $\Rightarrow$  537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1) Simple and homogeneous projects (mean investment = \$4.23 million)
- (2) Standardized unit of observation for options
- (3) Clearly identify a firm and its peers

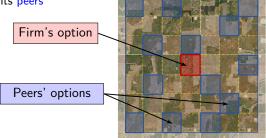

Who are the peers?1) Also engaged in O&G exploration and production2) Own similar options exactly next to the firm's option



< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Projects: 8,725 distinct real options in the oil and gas sector

- $\Rightarrow$ 537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1)Simple and homogeneous projects (mean investment = 4.23 million)
- (2)Standardized unit of observation for options
- Clearly identify a firm and its peers (3)




Theory (CG94)  $\longrightarrow$  Empirics:

(1) Incentive to wait increases with the quantity of information that firms anticipate will be released

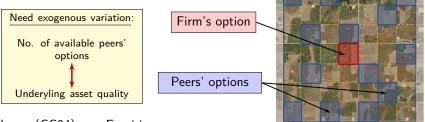
Projects: 8,725 distinct real options in the oil and gas sector

- $\Rightarrow$  537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1) Simple and homogeneous projects (mean investment = \$4.23 million)
- (2) Standardized unit of observation for options
- (3) Clearly identify a firm and its peers



Theory (CG94)  $\longrightarrow$  Empirics:

- (1) Incentive to wait increases with the quantity of information that firms anticipate will be released
- (2) Quantity of anticipated information increases with the number of real options that could be exercised next to a firm


Décaire and Wittry

Learning and Investment

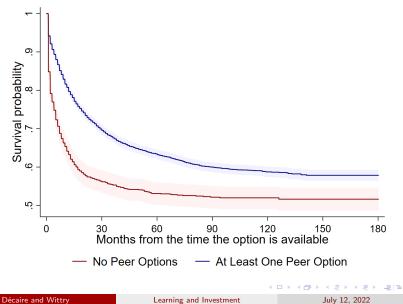
July 12, 2022

Projects: 8,725 distinct real options in the oil and gas sector

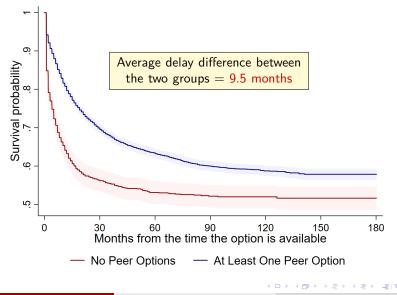
- $\Rightarrow$  537,093 option-month observations in Oklahoma and Louisiana (2005-2020)
- (1) Simple and homogeneous projects (mean investment = \$4.23 million)
- (2) Standardized unit of observation for options
- (3) Clearly identify a firm and its peers



Theory (CG94)  $\longrightarrow$  Empirics:


- (1) Incentive to wait increases with the quantity of information that firms anticipate will be released
- (2) Quantity of anticipated information increases with the number of real options that could be exercised next to a firm

Décaire and Wittry


Learning and Investment

July 12, 2022

### Main Finding - In a nutshell



### Main Finding - In a nutshell



### Corporate Investment:

- (1) A one-standard deviation increase in the number of nearby peer options reduces the likelihood of project exercise at a given point in time by 13%
  - $\Rightarrow$  Causality  $\rightarrow$  instrumental variable
- (2) Costs vs. benefits tradeoffs?
  - $\Rightarrow$  Wait for more information when project is less likely to be profitable
  - $\Rightarrow$  Wait less when it is financially costly to do so
- (3) What sources of information do firms focus on?
  - ⇒ Similar projects
  - $\Rightarrow$  Skilled peers
- (4) When are these information spillovers most valuable?
  - $\Rightarrow$  When information is scarce

### Quantifying the cost-benefit tradeoff:

- $\Rightarrow$  Back-of-the-envelope calculation:
  - When firms can learn from their peers, they select projects that are 8.3%more productive
  - Costs 7.4% of NPV in pure time-value-of-money

#### Aggregate Investment:

Regions with more dispersed options ownership are associated with 19% less  $\Rightarrow$ drilling activity

#### Corporate Investment:

- $\Rightarrow$  A one-standard deviation increase in the number of nearby peer options reduces the likelihood of project exercise at a given point in time by 13%
  - Causality  $\longrightarrow$  instrumental variable

#### Quantifying the cost-benefit tradeoff:

- $\Rightarrow$  Back-of-the-envelope calculation:
  - When firms can learn from their peers, they select projects that are 8.3% more productive
  - Costs 7.4% of NPV in pure time-value-of-money

#### Aggregate Investment:

 $\Rightarrow$  Regions with more dispersed options ownership are associated with 19% less drilling activity

#### Robustness:

 ⇒ Aggregate demand shock/Local coord. gains → falsification test, Local resource constraints → Local rig utilization rates, Firm-region matching → HDFE, Local prod. optimization → Short wells, Exclude JV and SAs, Alt. variable def. and model specs.

### Corporate Investment:

- $\Rightarrow$  A one-standard deviation increase in the number of nearby peer options reduces the likelihood of project exercise at a given point in time by 13%
  - Causality —> instrumental variable

Quantifying the cost-benefit tradeoff:

- ⇒ Back-of-the-envelope calculation:
  - When firms can learn from their peers, they select projects that are 8.3% more productive
  - Costs 7.4% of NPV in pure time-value-of-money

#### Aggregate Investment:

 $\Rightarrow\,$  Regions with more dispersed options ownership are associated with 19% drilling activity

# A novel mechanism through which information externalities impact corporate investment.

| Déca | ire | and | Wittry |
|------|-----|-----|--------|
|      |     |     |        |

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

## Identifying Real Options and Measuring Exercise Incentives

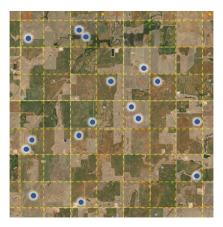


Décaire and Wittry

Learning and Investment

July 12, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


1. Real Options & Peers

DrillingInfo All horizontal O&G wells in OK and LA

#### Sample properties

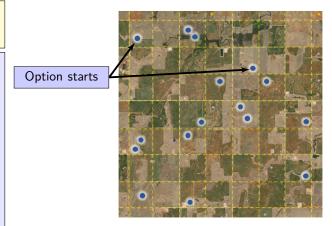
- $\Rightarrow$  442 firms
  - 14% public firms
- $\Rightarrow$  8,725 real options
  - 68% publicly held

Precise drilling time & GPS location

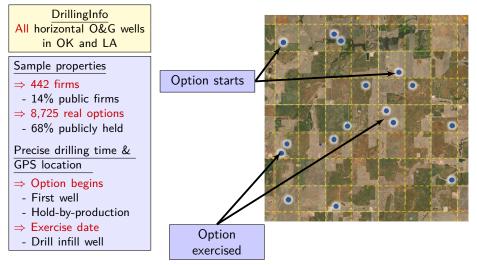


1. Real Options & Peers

DrillingInfo All horizontal O&G wells in OK and LA


#### Sample properties

 $\Rightarrow$  442 firms


- 14% public firms
- $\Rightarrow$  8,725 real options
  - 68% publicly held

Precise drilling time & GPS location

- $\Rightarrow$  Option begins
  - First well
  - Hold-by-production



1. Real Options & Peers



1. Real Options & Peers

DrillingInfo All horizontal O&G wells in OK and LA

#### Sample properties

- $\Rightarrow$  442 firms
- 14% public firms
- $\Rightarrow$  8,725 real options
  - 68% publicly held

Precise drilling time &

**GPS** location

### 2. Exercise Incentives

Public filings, regulatory documents, Bloomberg, St. Louis FRFD

#### Cost of drilling

- $\Rightarrow$  Time-varying estimate
- $\Rightarrow$  Hand-collected

#### Bloomberg

- $\Rightarrow$  Futures price
- $\Rightarrow$  Implied volatility
- 18-month horizon

Cost of Equity

 $\Rightarrow$  CAPM



### 3. Landownership Data

Bureau of Land Management

Historical landownership  $\Rightarrow$  Land assignments under various government programs during states' settlement period - Used for the IV

Ad for the Dawes Act of 1887

ELE NOR

1. Real Options & Peers

DrillingInfo All horizontal O&G wells in OK and LA

Sample properties

- $\Rightarrow$  442 firms
- 14% public firms
- $\Rightarrow$  8,725 real options
  - 68% publicly held

Precise drilling time &

GPS location

2. Exercise Incentives

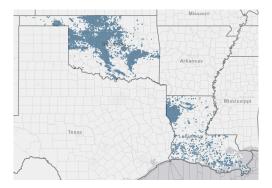
Public filings, regulatory documents, Bloomberg, St. Louis FRED

Cost of drilling

Futures price and implied volatility

Cost of Equity

3. Landownership Data


Bureau of Land Management

Historical landownership ⇒ Land assignments under various government programs during states' settlement period

- Used for the IV

# Clearly identify real options Precisely measure factors related to exercise

## Number of Peer Options and the Timing of Corporate Investment



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

|                                                  | Hazard Model for Project Exercise                           |                             |       |                             |         |                             |             |
|--------------------------------------------------|-------------------------------------------------------------|-----------------------------|-------|-----------------------------|---------|-----------------------------|-------------|
|                                                  |                                                             | (1)                         |       | (2)                         |         |                             | )           |
|                                                  |                                                             | Estimates                   | HI(%) | Estimates                   | HI(%)   | Estimates                   | HI(%)       |
| Cox hazard rate model                            | Unexercised Investment Opportunities (Peers) <sub>j,t</sub> | -0.030***                   | -2.93 | -0.037***                   | -3.65   | -0.037***                   | -3.62       |
|                                                  | Cumulative Number of Wells Drilled <sub>j,t</sub>           | (0.011)<br>0.053***         | 5.41  | (0.011)<br>0.048***         | 4.95    | (0.010)<br>0.050***         | 5.18        |
| $\Rightarrow$ Enter when initial well is drilled | Unexercised Investment Opportunities $(Own)_{j,t}$          | (0.004)<br>-0.035***        | -3.47 | (0.004)<br>-0.043***        | -4.23   | (0.004)<br>-0.051***        | -4.99       |
| $\Rightarrow$ Exit when infill well              | Portfolio Concentration <sub>i,t</sub>                      | (0.011)<br>0.188<br>(0.181) | 20.72 | (0.011)<br>0.096<br>(0.179) | 10.06   | (0.010)<br>0.076<br>(0.168) | 7.94        |
| is drilled                                       | Mean Distance Between $Options_{i,t}$                       | -0.059<br>(0.037)           | -5.75 | -0.067*<br>(0.035)          | -6.46   | -0.074**<br>(0.034)         | -7.17       |
| Unit of cheenvetion                              | Firm Skill Level <sub>i,t</sub>                             | -0.032<br>(0.057)           | -3.14 | -0.237***<br>(0.083)        | -21.06  | -0.192**<br>(0.083)         | -17.48      |
| Unit of observation                              | Royalty Rate <sub>k</sub> (%)                               | 0.007<br>(0.007)            | 0.69  | 0.007<br>(0.007)            | 0.67    | 0.006 (0.007)               | 0.58        |
| $\Rightarrow$ Option-month level                 | Well Lateral Length <sub><math>j,t</math></sub> (1,000 ft.) | (0.001)                     |       | -0.047** (0.023)            | -4.56   | -0.012<br>(0.020)           | -1.22       |
|                                                  | First Well's Market $Value_{j,t}$                           |                             |       | 0.233***<br>(0.068)         | 26.21   | 0.207*** (0.061)            | 23.00       |
|                                                  | Peers' Wells' Mkt. Value <sub>j,t</sub>                     |                             |       | 0.063***<br>(0.015)         | 6.48    | 0.058***<br>(0.014)         | 5.97        |
|                                                  | Oil-to-Gas Ratio <sub>j</sub>                               |                             |       | 0.308**<br>(0.133)          | 36.03   | 0.340***<br>(0.124)         | 40.51       |
|                                                  | Drilling Cost <sub>j,t</sub>                                |                             |       | -0.019 (0.042)              | -1.90   | -0.039 (0.030)              | -3.84       |
|                                                  | Futures Pricet                                              |                             |       | ( )                         |         | 0.009*** (0.003)            | 0.90        |
|                                                  | Implied Volatility <sub>t</sub> (%)                         |                             |       |                             |         | -0.022***<br>(0.007)        | -2.15       |
|                                                  | 10-Year Risk Free Rate <sub>t</sub> (%)                     |                             |       |                             |         | 0.176***<br>(0.057)         | 19.27       |
|                                                  | County Strata                                               | Yes                         |       | Yes                         |         | Ye                          | s           |
|                                                  | <i>Pseudo — Loglikelihood</i><br>Wald Chi <sup>2</sup>      | -17,28<br>398               | 36    | -17,1<br>541                |         | -17,0                       |             |
|                                                  | Observations 537,093                                        |                             | 93    | 537,093                     |         | 1,105<br>537,093            |             |
|                                                  |                                                             | •                           |       |                             | e 🖂     | 리에 관계                       | · • • • • • |
| Décaire and Wittry                               | Learning and Investmen                                      | nt                          |       | July                        | 12, 202 | 22                          | 8/13        |

8/13

|                                      | Hazard Model for Project Exercise                         |                             |       |                              |         |                                |        |
|--------------------------------------|-----------------------------------------------------------|-----------------------------|-------|------------------------------|---------|--------------------------------|--------|
|                                      |                                                           | (1)                         |       | (2)                          |         | (3                             |        |
|                                      |                                                           | Estimates                   | HI(%) | Estimates                    | HI(%)   | Estimates                      | HI(%)  |
| Variable of interest                 | Unexercised Investment Opportunities $(Peers)_{j,t}$      | -0.030***<br>(0.011)        | -2.93 | -0.037***<br>(0.011)         | -3.65   | -0.037***<br>(0.010)           | -3.62  |
|                                      | Cumulative Number of Wells Drilled <sub>i.t</sub>         | 0.053***                    | 5.41  | 0.048***                     | 4.95    | 0.050***                       | 5.18   |
| $\Rightarrow$ Number of peer         | Unexercised Investment Opportunities (Own) <sub>i.t</sub> | (0.004)<br>-0.035***        | -3.47 | (0.004)<br>-0.043***         | -4.23   | (0.004)<br>-0.051***           | -4.99  |
| options within <u>three</u><br>miles | Portfolio Concentration <sub>i,t</sub>                    | (0.011)<br>0.188<br>(0.181) | 20.72 | (0.011)<br>0.096<br>(0.179)  | 10.06   | (0.010)<br>0.076<br>(0.168)    | 7.94   |
|                                      | Mean Distance Between Options <sub>i,t</sub>              | -0.059                      | -5.75 | -`0.067*́                    | -6.46   | -Ò.074* <sup>*</sup> *         | -7.17  |
| Robust to alternative                | Firm Skill Level <sub>i,t</sub>                           | (0.037)<br>-0.032           | -3.14 | (0.035)<br>-0.237***         | -21.06  | (0.034)<br>-0.192**            | -17.48 |
| definitions                          | Royalty Rate <sub>k</sub> (%)                             | (0.057)<br>0.007            | 0.69  | (0.083)<br>0.007             | 0.67    | (0.083)<br>0.006               | 0.58   |
| $\Rightarrow$ Two and four miles     | Well Lateral Length <sub>i.t</sub> (1,000 ft.)            | (0.007)                     |       | (0.007)<br>-0.047**          | -4.56   | (0.007)<br>-0.012              | -1.22  |
|                                      | First Well's Market Value <sub>i,t</sub>                  |                             |       | (0.023)<br>0.233***          | 26.21   | (0.020)<br>0.207***            | 23.00  |
|                                      | FIRST WEILS MARKET VALUE;,t                               |                             |       | (0.068)                      | 20.21   | (0.061)                        | 23.00  |
|                                      | Peers' Wells' Mkt. Value <sub>j,t</sub>                   |                             |       | 0.063***<br>(0.015)          | 6.48    | 0.058***<br>(0.014)            | 5.97   |
|                                      | Oil-to-Gas Ratioj                                         |                             |       | 0.308**                      | 36.03   | 0.340***                       | 40.51  |
|                                      | Drilling Cost <sub>j,t</sub>                              |                             |       | (0.133)<br>-0.019<br>(0.042) | -1.90   | (0.124)<br>-0.039<br>(0.030)   | -3.84  |
|                                      | Futures Pricet                                            |                             |       | (0.042)                      |         | 0.009***                       | 0.90   |
|                                      | Implied Volatility: (%)                                   |                             |       |                              |         | (0.003)<br>-0.022***           | -2.15  |
|                                      | 10-Year Risk Free Rate $_t$ (%)                           |                             |       |                              |         | (0.007)<br>0.176***<br>(0.057) | 19.27  |
|                                      | County Strata                                             | Yes                         | 5     | Yes                          |         | Ye                             | s      |
|                                      | <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup>    | -17,2<br>398                |       | -17,1<br>541                 |         | -17,0<br>1,1                   |        |
|                                      | Observations                                              | 537,0                       |       | 537,0                        |         | 537,                           |        |
|                                      |                                                           |                             |       |                              |         |                                |        |
| Décaire and Wittry                   | Learning and Investment                                   | nt                          |       | July                         | 12, 202 | 22                             | 8/13   |

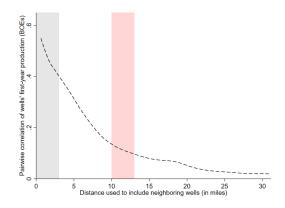
|                                   | Hazard Model for Project Exercise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |       |                      |         |                                |                |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|----------------------|---------|--------------------------------|----------------|
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)                  |       | (2)                  |         | (3                             | )              |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Estimates            | HI(%) | Estimates            | HI(%)   | Estimates                      | HI(%)          |
| Economic magnitude                | Unexercised Investment Opportunities (Peers) <sub>j</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.011)              | -2.93 | -0.037***<br>(0.011) | -3.65   | -0.037***<br>(0.010)           | -3.62          |
| $\Rightarrow$ One SD increase in: | Cumulative Number of Wells Drilled <sub>j,t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.053***<br>(0.004)  | 5.41  | 0.048***<br>(0.004)  | 4.95    | 0.050*** (0.004)               | 5.18           |
| ,                                 | Unexercised Investment Opportunities $(Own)_{j,t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.035***<br>(0.011) | -3.47 | -0.043***<br>(0.011) | -4.23   | -0.051***<br>(0.010)           | -4.99          |
| 1) No. peer options               | Portfolio Concentration <sub><math>i,t</math></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.188 (0.181)        | 20.72 | 0.096 (0.179)        | 10.06   | 0.076                          | 7.94           |
| ightarrow 13% reduction in        | Mean Distance Between $Options_{i,t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.059́              | -5.75 | -`0.067*́            | -6.46   | -Ò.074*´*                      | -7.17          |
| exercise likelihood               | Firm Skill Level <sub>i,t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.037)<br>-0.032    | -3.14 | (0.035)<br>-0.237*** | -21.06  | (0.034)<br>-0.192**            | -17.48         |
|                                   | Royalty Rate <sub>k</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.057)<br>0.007     | 0.69  | (0.083)<br>0.007     | 0.67    | (0.083)<br>0.006               | 0.58           |
|                                   | Well Lateral Length <sub>i,t</sub> (1,000 ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.007)              |       | (0.007)<br>-0.047**  | -4.56   | (0.007)<br>-0.012              | -1.22          |
|                                   | <b>o</b> <i>y</i> , <b>(</b> , <i>'</i> , , <i>'</i> , , |                      |       | (0.023)<br>0.233***  | 26.21   | (0.020) 0.207***               | 23.00          |
|                                   | First Well's Market Value <sub>j,t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |       | (0.068)              |         | (0.061)                        |                |
|                                   | Peers' Wells' Mkt. Value <sub>j,t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |       | 0.063***<br>(0.015)  | 6.48    | 0.058***<br>(0.014)            | 5.97           |
|                                   | Oil-to-Gas Ratio <sub>j</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |       | 0.308**<br>(0.133)   | 36.03   | 0.340***<br>(0.124)            | 40.51          |
|                                   | Drilling $Cost_{j,t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |       | -0.019<br>(0.042)    | -1.90   | -0.039 (0.030)                 | -3.84          |
|                                   | Futures Price:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |       | (0.042)              |         | 0.009***                       | 0.90           |
|                                   | Implied Volatility <sub>t</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |       |                      |         | (0.003)<br>-0.022***           | -2.15          |
|                                   | 10-Year Risk Free Rate: (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |       |                      |         | (0.007)<br>0.176***<br>(0.057) | 19.27          |
|                                   | County Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                  |       | Yes                  | 5       | Ye                             | s              |
|                                   | Pseudo – Loglikelihood<br>Wald Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -17,2                |       | -17,1                |         | -17,0                          |                |
|                                   | Wald Chi <sup>2</sup><br>Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 398<br>537,0         |       | 541<br>537,0         |         | 1,10<br>537,0                  |                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                    |       | ( <b>1</b> ) 🕹 👘     | E≻ ∢    | ≣ ) - El 1                     | • ୬ <b>୯</b> ( |
| Décaire and Wittry                | Learning and Investme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ent                  |       | July                 | 12, 202 | 22                             | 8/13           |

|                                                       | Hazard Model for Project Exercise                           |                      |       |                      |             |                               |        |
|-------------------------------------------------------|-------------------------------------------------------------|----------------------|-------|----------------------|-------------|-------------------------------|--------|
|                                                       |                                                             | (1)                  | (1)   |                      | (2)         |                               | )      |
|                                                       |                                                             | Estimates            | HI(%) | Estimates            | HI(%)       | Estimates                     | HI(%)  |
| Economic magnitude                                    | Unexercised Investment Opportunities $(Peers)_{j,t}$        | -0.030***<br>(0.011) | -2.93 | -0.037***<br>(0.011) | -3.65       | -0.037***<br>(0.010)          | -3.62  |
| $\Rightarrow$ One SD increase in:                     | Cumulative Number of Wells $Drilled_{j,t}$                  | 0.053***<br>(0.004)  | 5.41  | 0.048***<br>(0.004)  | 4.95        | 0.050***<br>(0.004)           | 5.18   |
| 1) No                                                 | Unexercised Investment Opportunities $(Own)_{j,t}$          | -0.035***<br>(0.011) | -3.47 | -0.043***<br>(0.011) | -4.23       | -0.051***<br>(0.010)          | -4.99  |
| 1) No. peer options $\rightarrow$ 13% reduction in    | Portfolio Concentration <sub>i,t</sub>                      | 0.188<br>(0.181)     | 20.72 | 0.096<br>(0.179)     | 10.06       | 0.076<br>(0.168)              | 7.94   |
| $\rightarrow$ 13% reduction in<br>exercise likelihood | Mean Distance Between Options <sub>i,t</sub>                | -0.059<br>(0.037)    | -5.75 | -0.067*<br>(0.035)   | -6.46       | -0.074**<br>(0.034)           | -7.17  |
|                                                       | Firm Skill Level <sub>i,t</sub>                             | -0.032<br>(0.057)    | -3.14 | -0.237***<br>(0.083) | -21.06      | -0.192**<br>(0.083)           | -17.48 |
| 2) Futures price $\rightarrow$                        | Royalty Rate <sub>k</sub> (%)                               | 0.007 (0.007)        | 0.69  | 0.007<br>(0.007)     | 0.67        | 0.006<br>(0.007)              | 0.58   |
| 17% increase in exer-                                 | Well Lateral Length <sub><math>j,t</math></sub> (1,000 ft.) |                      |       | -0.047**<br>(0.023)  | -4.56       | -0.012<br>(0.020)             | -1.22  |
| cise likelihood                                       | First Well's Market Value <sub>j,t</sub>                    |                      |       | 0.233***<br>(0.068)  | 26.21       | 0.207***<br>(0.061)           | 23.00  |
| 3) Volatility $\rightarrow$ 12%                       | Peers' Wells' Mkt. Value <sub>j,t</sub>                     |                      |       | 0.063***<br>(0.015)  | 6.48        | 0.058***<br>(0.014)           | 5.97   |
| reduction in exercise                                 | Oil-to-Gas Ratio                                            |                      |       | 0.308** (0.133)      | 36.03       | 0.340***<br>(0.124)           | 40.51  |
| likelihood                                            | Drilling Cost <sub>j,t</sub>                                |                      |       | -0.019<br>(0.042)    | -1.90       | -0.039<br>(0.030)<br>0.009*** | -3.84  |
|                                                       | Futures Price:                                              |                      |       |                      |             | (0.003)                       | 0.90   |
|                                                       | Implied Volatility <sub>t</sub> (%)                         |                      |       |                      |             | -0.022***                     | -2.15  |
|                                                       | 10-Year Risk Free Rate <sub>t</sub> (%)                     |                      |       |                      |             | 0.176***<br>(0.057)           | 19.27  |
|                                                       | County Strata                                               | Yes                  |       | Yes                  |             | Ye                            | s      |
|                                                       | Pseudo — Loglikelihood<br>Wald Chi <sup>2</sup>             | -17,28<br>398        |       | -17,1<br>541         |             | -17,0                         |        |
|                                                       | Observations                                                | 537,09               | 93    | 537,0                | 93          | 537,                          | 093    |
|                                                       |                                                             |                      |       |                      | <b>€ ► </b> | 리에 우리                         | - na   |
| Décaire and Wittry                                    | Learning and Investme                                       | nt                   |       | July                 | 12, 202     | 22                            | 8/13   |

|                                   |                                                             | Hazard Model for Project Exercise |       |                                |                    |                                |        |  |
|-----------------------------------|-------------------------------------------------------------|-----------------------------------|-------|--------------------------------|--------------------|--------------------------------|--------|--|
|                                   |                                                             | (1)                               |       | (2)                            |                    | (3                             |        |  |
|                                   |                                                             | Estimates                         | HI(%) | Estimates                      | HI(%)              | Estimates                      | HI(%)  |  |
| Economic magnitude                | Unexercised Investment Opportunities $(Peers)_{j,t}$        | -0.030***                         | -2.93 | -0.037***                      | -3.65              | -0.037***                      | -3.62  |  |
| $\Rightarrow$ One SD increase in: | Cumulative Number of Wells $Drilled_{j,t}$                  | (0.011)<br>0.053***<br>(0.004)    | 5.41  | (0.011)<br>0.048***<br>(0.004) | 4.95               | (0.010)<br>0.050***<br>(0.004) | 5.18   |  |
|                                   | Unexercised Investment Opportunities $(Own)_{j,t}$          | -0.035* <sup>**</sup>             | -3.47 | -0.043***                      | -4.23              | -0`.051***                     | -4.99  |  |
| 1) No. peer options               | Portfolio Concentration <sub>i,t</sub>                      | (0.011)<br>0.188<br>(0.181)       | 20.72 | (0.011)<br>0.096<br>(0.179)    | 10.06              | (0.010)<br>0.076<br>(0.168)    | 7.94   |  |
| $\rightarrow$ 13% reduction in    | Mean Distance Between $Options_{i,t}$                       | -0.059<br>(0.037)                 | -5.75 | -0.067*                        | -6.46              | -0.074**<br>(0.034)            | -7.17  |  |
| exercise likelihood               | Firm Skill Level <sub>i,t</sub>                             | -0.032 (0.057)                    | -3.14 | -0.237***<br>(0.083)           | -21.06             | -0.192**<br>(0.083)            | -17.48 |  |
| 2) Futures price $\rightarrow$    | Royalty Rate <sub>k</sub> (%)                               | `0.007´<br>(0.007)                | 0.69  | 0.007<br>(0.007)               | 0.67               | `0.006´<br>(0.007)             | 0.58   |  |
| 17% increase in exer-             | Well Lateral Length <sub><math>j,t</math></sub> (1,000 ft.) | (0.007)                           |       | -Ò.047*´*                      | -4.56              | -0.012<br>(0.020)              | -1.22  |  |
| cise likelihood                   | First Well's Market Value <sub>j,t</sub>                    |                                   |       | (0.023)<br>0.233***<br>(0.068) | 26.21              | (0.020)<br>0.207***<br>(0.061) | 23.00  |  |
| 3) Volatility $\rightarrow$ 12%   | Peers' Wells' Mkt. Value $_{j,t}$                           |                                   |       | 0.063*** (0.015)               | 6.48               | 0.058***<br>(0.014)            | 5.97   |  |
| reduction in exercise             | Oil-to-Gas Ratioj                                           |                                   |       | 0.308** (0.133)                | 36.03              | 0.340***<br>(0.124)            | 40.51  |  |
| likelihood                        | Drilling $Cost_{j,t}$                                       |                                   |       | -0.019<br>(0.042)              | -1.90              | -0.039<br>(0.030)              | -3.84  |  |
|                                   | Futures Pricet                                              |                                   |       | (0.042)                        |                    | 0.009***<br>(0.003)            | 0.90   |  |
| Alternative models                | Implied Volatility <sub>f</sub> (%)                         |                                   |       |                                |                    | -0.022***<br>(0.007)           | -2.15  |  |
| $\Rightarrow$ Results are robust  | 10-Year Risk Free $Rate_t$ (%)                              |                                   |       |                                |                    | (0.007)<br>0.176***<br>(0.057) | 19.27  |  |
| to OLS and Probit                 | County Strata                                               | Yes                               |       | Yes                            |                    | Ye                             | s      |  |
| models                            | Pseudo – Loglikelihood<br>Wald Chi <sup>2</sup>             | -17,2                             |       | -17,1<br>541                   |                    | -17,0                          |        |  |
|                                   | Observations                                                | 398<br>537,093                    |       | 537,093                        |                    | 1,105<br>537,093               |        |  |
|                                   |                                                             | •                                 |       |                                | <b>€ &gt; </b> < 0 | e) × leta                      | • na   |  |

Décaire and Wittry

Learning and Investment


July 12, 2022 8 / 13

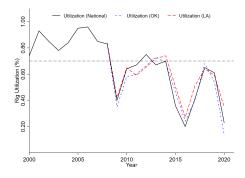
#### **Baseline Cox Model Results**

|                            |                                                             |                                | Haza  | rd Model for                   | Project B | xercise                        |        |
|----------------------------|-------------------------------------------------------------|--------------------------------|-------|--------------------------------|-----------|--------------------------------|--------|
|                            |                                                             | (1)                            |       | (2)                            |           | (3                             | )      |
|                            |                                                             | Estimates                      | HI(%) | Estimates                      | HI(%)     | Estimates                      | HI(%)  |
| Firm-level controls        | Unexercised Investment Opportunities (Peers) <sub>j,t</sub> | -0.030***                      | -2.93 | -0.037***                      | -3.65     | -0.037***                      | -3.62  |
| <u>Fimi-level controls</u> | Cumulative Number of Wells $Drilled_{j,t}$                  | (0.011)<br>0.053***<br>(0.004) | 5.41  | (0.011)<br>0.048***<br>(0.004) | 4.95      | (0.010)<br>0.050***<br>(0.004) | 5.18   |
|                            | Unexercised Investment Opportunities $(Own)_{j,t}$          | -0.035***                      | -3.47 | -0.043***                      | -4.23     | -0.051***                      | -4.99  |
| Project-level controls     | Portfolio Concentration $_{i,t}$                            | (0.011)<br>0.188<br>(0.181)    | 20.72 | (0.011)<br>0.096<br>(0.179)    | 10.06     | (0.010)<br>0.076<br>(0.168)    | 7.94   |
|                            | Mean Distance Between $Options_{i,t}$                       | -0.059 (0.037)                 | -5.75 | -0.067* (0.035)                | -6.46     | -0.074**<br>(0.034)            | -7.17  |
| Market-level controls      | Firm Skill Level <sub>i,t</sub>                             | -0.032 (0.057)                 | -3.14 | -0.237***<br>(0.083)           | -21.06    | -0.192**<br>(0.083)            | -17.48 |
|                            | Royalty Rate <sub>k</sub> (%)                               | 0.007                          | 0.69  | 0.007                          | 0.67      | 0.006 (0.007)                  | 0.58   |
| County Stratification      | Well Lateral Length <sub><math>j,t</math></sub> (1,000 ft.) | (0.007)                        |       | -Ò.047*´*                      | -4.56     | -0.012                         | -1.22  |
| 1) Underlying asset        | First Well's Market Value <sub>j,t</sub>                    |                                |       | (0.023)<br>0.233***            | 26.21     | (0.020)<br>0.207***            | 23.00  |
| quality                    | Peers' Wells' Mkt. Value <sub>j,t</sub>                     |                                |       | (0.068)<br>0.063***<br>(0.015) | 6.48      | (0.061)<br>0.058***<br>(0.014) | 5.97   |
| 100.0                      | Oil-to-Gas Ratioj                                           |                                |       | (0.015)<br>0.308**<br>(0.133)  | 36.03     | (0.014)<br>0.340***<br>(0.124) | 40.51  |
|                            | Drilling Cost <sub>j,t</sub>                                |                                |       | -0.019<br>(0.042)              | -1.90     | -0.039<br>(0.030)              | -3.84  |
|                            | Futures Pricet                                              |                                |       | (0.042)                        |           | 0.009*** (0.003)               | 0.90   |
|                            | Implied Volatility: (%)                                     |                                |       |                                |           | -0.022***                      | -2.15  |
|                            | 10-Year Risk Free Rate $_t$ (%)                             |                                |       |                                |           | (0.007)<br>0.176***<br>(0.057) | 19.27  |
|                            | County Strata                                               | Yes                            |       | Yes                            |           | Ye                             | s      |
|                            | Pseudo – Loglikelihood<br>Wald Chi <sup>2</sup>             | -17,28                         |       | -17,1                          |           | -17,0                          |        |
|                            | Wald Chi <sup>2</sup><br>Observations                       | 398<br>537,093                 |       | 541<br>537,093                 |           | 1,105<br>537,093               |        |
|                            |                                                             |                                |       |                                | È► ∢      | 로 ▶ (포)=                       | ୬ ଏଟ   |
| Décaire and Wittry         | Learning and Investment                                     | nt                             |       | July 12, 202                   |           | 22                             | 8 / 13 |

#### Confounding cases:

(1) Is the effect driven by a regional shock or coordination gains with peers?  $\rightarrow$  Falsification test with peer options located within 10-13 miles




-47 ▶

-

ъ.

#### Confounding cases:

- (1) Is the effect driven by a regional shock or coordination gains with peers?
   → Falsification test with peer options located within 10-13 miles
- (2) Is the effect driven by local resources constraints?
  - Subsample with low local rig utilization rate



ELE NOR

#### Confounding cases:

- (1) Is the effect driven by a regional shock or coordination gains with peers?  $\rightarrow$  Falsification test with peer options located within 10-13 miles
- (2) Is the effect driven by local resources constraints?
  - Subsample with low local rig utilization rate
- (3) Is the effect driven by projects with poor prospects?
  - Subsample test in prolific regions
- (4) Is the effect driven by firms' optimization constraints?
  - Subsample with short wells
- (5) Is the effect driven by JV or SA information sharing (Beshears, 2013)? Subsample with no JVs/SAs
- (6) Is the effect driven by matching between firms and regions?
  - Include a firm-county strata

#### Confounding cases:

- (1) Is the effect driven by a regional shock or coordination gains with peers?
   → Falsification test with peer options located within 10-13 miles
- (2) Is the effect driven by local resources constraints?
  - Subsample with low local rig utilization rate
- (3) Is the effect driven by projects with poor prospects?
  - Subsample test in prolific regions
- (4) Is the effect driven by firms' optimization constraints?
  - Subsample with short wells
- (5) Is the effect driven by JV or SA information sharing (Beshears, 2013)?
   Subsample with no JVs/SAs
- (6) Is the effect driven by matching between firms and regions?
  - Include a firm-county strata

### Introduce an instrumental variable

Décaire and Wittry

Learning and Investment

< □ > < □ > < Ξ > < Ξ > < Ξ ≤ · < Ξ ≤ · < □ >

#### Challenge:

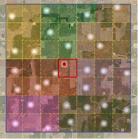
 $\Rightarrow$  Exogenous variation in the number of surrounding options that are held by any of a firm's peers

#### Challenge:

⇒ Exogenous variation in the number of surrounding options that are held by any of a firm's peers

Main concern: Number of peers is correlated with the underlying asset quality




<<p>A 目 > A 目 > A 目 > 目 = のQQ

#### Challenge:

- ⇒ Exogenous variation in the number of surrounding options that are held by any of a firm's peers
- ⇒ Solution: Fragmentation of landownership







Challenge:

- ⇒ Exogenous variation in the number of surrounding options that are held by any of a firm's peers
- ⇒ Solution: Fragmentation of landownership
- ⇒ Intuition: Areas with fragmented landownership make it harder for a single firm to acquire all the leases, before any of its peers








<<p>A 目 > A 目 > A 目 > 目 = のQQ

Challenge:

- ⇒ Exogenous variation in the number of surrounding options that are held by any of a firm's peers
- ⇒ Solution: Fragmentation of landownership
- ⇒ Intuition: Areas with fragmented landownership make it harder for a single firm to acquire all the leases, before any of its peers







<<p>A 目 > A 目 > A 目 > 目 = のQQ

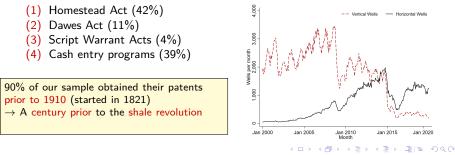
Main concern: Number of peers is correlated with the underlying asset quality

 $\Rightarrow$  A remaining challenge: Contemporaneous landownership structure may be correlated with land potential (Libecap and Lueck, JPE 2011).

Main concern: Number of peers is correlated with the underlying asset quality

- A remaining challenge: Contemporaneous landownership structure may be  $\Rightarrow$ correlated with land potential (Libecap and Lueck, JPE 2011).
- Solution: Historical landownership (Bureau of Land Management)
  - Homestead Act (42%) (1)
  - Dawes Act (11%) (2)
  - Script Warrant Acts (4%) (3)
  - Cash entry programs (39%) (4)

Settling, farming, and rewarding soldiers

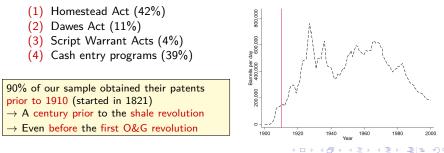



#### Challenge:

 $\Rightarrow\,$  Exogenous variation in the number of surrounding options that are held by any of a firm's peers

Main concern: Number of peers is correlated with the underlying asset quality

- ⇒ A remaining challenge: Contemporaneous landownership structure may be correlated with land potential (Libecap and Lueck, JPE 2011).
- ⇒ Solution: Historical landownership (Bureau of Land Management)

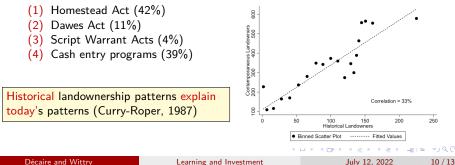



#### Challenge:

⇒ Exogenous variation in the number of surrounding options that are held by any of a firm's peers

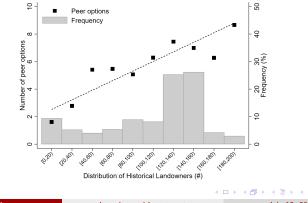
Main concern: Number of peers is correlated with the underlying asset quality

- ⇒ A remaining challenge: Contemporaneous landownership structure may be correlated with land potential (Libecap and Lueck, JPE 2011).
- ⇒ Solution: Historical landownership (Bureau of Land Management)




#### Challenge:

⇒ Exogenous variation in the number of surrounding options that are held by any of a firm's peers


Main concern: Number of peers is correlated with the underlying asset quality

- ⇒ A remaining challenge: Contemporaneous landownership structure may be correlated with land potential (Libecap and Lueck, JPE 2011).
- ⇒ Solution: Historical landownership (Bureau of Land Management)



#### Relevance condition:

- $\Rightarrow$  First stage is **positive** 
  - $\Rightarrow$  Consistent with intuition
- ⇒ First-stage F-tests > 12 (Staiger and Stock, ECTA 1997; Stock and Yogo, 2006)



|                                                                        | Hazard Model for Project Exercise |        |                           |        |                           |        |  |  |  |  |
|------------------------------------------------------------------------|-----------------------------------|--------|---------------------------|--------|---------------------------|--------|--|--|--|--|
|                                                                        | (1)                               |        | (2)                       | (2)    |                           | )      |  |  |  |  |
|                                                                        | Estimates                         | HI(%)  | Estimates                 | HI(%)  | Estimates                 | HI(%)  |  |  |  |  |
| Instrumented Unexercised Investment Opportunities $(Peers)_{j,t}$      | -0.262**<br>(0.120)               | -23.02 | -0.253**<br>(0.114)       | -22.39 | -0.249**<br>(0.113)       | -22.02 |  |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |        | Yes<br>Yes<br>No          |        | Yes<br>Yes<br>Yes         |        |  |  |  |  |
| County Strata                                                          | Yes                               |        | Yes                       |        | Yes                       |        |  |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations | -13,651<br>84<br>414,176          |        | -13,564<br>112<br>414,176 |        | -13,481<br>190<br>414,176 |        |  |  |  |  |

|                                                                             | Hazard Model for Project Exercise |        |                     |        |                     |        |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------|--------|---------------------|--------|---------------------|--------|--|--|--|--|
|                                                                             | (1)                               |        | (2)                 |        | (3)                 |        |  |  |  |  |
|                                                                             | Estimates                         | HI(%)  | Estimates           | HI(%)  | Estimates           | HI(%)  |  |  |  |  |
| Instrumented Unexercised<br>Investment Opportunities (Peers) <sub>j,t</sub> | -0.262**<br>(0.120)               | -23.02 | -0.253**<br>(0.114) | -22.39 | -0.249**<br>(0.113) | -22.02 |  |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls      | Yes<br>No<br>No                   |        | Yes<br>Yes<br>No    |        | Yes<br>Yes<br>Yes   |        |  |  |  |  |
| County Strata                                                               | Yes                               |        | Yes                 |        | Yes                 |        |  |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup>                      | -13,651<br>84                     |        | -13,564<br>112      |        | -13,481<br>190      |        |  |  |  |  |
| Observations                                                                | 414,1                             | 76     | 414,1               | 76     | 414,176             |        |  |  |  |  |

Validates the reduced-form result: firms delay exercise to learn from their peers

|                                                                             | Hazard Model for Project Exercise |        |                           |                  |                           |                   |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------|--------|---------------------------|------------------|---------------------------|-------------------|--|--|--|--|
|                                                                             | (1)                               |        | (2)                       |                  | (3)                       |                   |  |  |  |  |
|                                                                             | Estimates                         | HI(%)  | Estimates                 | HI(%)            | Estimates                 | HI(%)             |  |  |  |  |
| Instrumented Unexercised<br>Investment Opportunities (Peers) <sub>j,t</sub> | -0.262**<br>(0.120)               | -23.02 | -0.253**<br>(0.114)       | -22.39           | -0.249**<br>(0.113)       | -22.02            |  |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls      | No Y                              |        | Yes                       | Yes<br>Yes<br>No |                           | Yes<br>Yes<br>Yes |  |  |  |  |
| County Strata                                                               | Yes                               | 5      | Yes                       |                  | Yes                       |                   |  |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations      | -13,651<br>84<br>414.176          |        | -13,564<br>112<br>414,176 |                  | -13,481<br>190<br>414,176 |                   |  |  |  |  |

Validates the reduced-form result: firms delay exercise to learn from their peers

A potential case of affirmative bias:

- $\Rightarrow\,$  Positive correlation between the number of peers' options and the quality of the underlying asset
- $\Rightarrow$  Higher quality assets should get exercised faster (i.e,  $E[\beta_{quality}] \ge 0$ )

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

|                                                                             | Hazard Model for Project Exercise |        |                           |                  |                           |                   |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------|--------|---------------------------|------------------|---------------------------|-------------------|--|--|--|--|
|                                                                             | (1)                               |        | (2)                       |                  | (3)                       |                   |  |  |  |  |
|                                                                             | Estimates                         | HI(%)  | Estimates                 | HI(%)            | Estimates                 | HI(%)             |  |  |  |  |
| Instrumented Unexercised<br>Investment Opportunities (Peers) <sub>j,t</sub> | -0.262**<br>(0.120)               | -23.02 | -0.253**<br>(0.114)       | -22.39           | -0.249**<br>(0.113)       | -22.02            |  |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls      | No Y                              |        | Yes                       | Yes<br>Yes<br>No |                           | Yes<br>Yes<br>Yes |  |  |  |  |
| County Strata                                                               | Yes                               | 5      | Yes                       |                  | Yes                       |                   |  |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations      | -13,651<br>84<br>414.176          |        | -13,564<br>112<br>414,176 |                  | -13,481<br>190<br>414,176 |                   |  |  |  |  |

Validates the reduced-form result: firms delay exercise to learn from their peers

A potential case of affirmative bias:

- $\Rightarrow$  Positive correlation between the number of peers' options and the quality of the underlying asset
- ⇒ Higher quality assets should get exercised faster (i.e,  $E[\beta_{quality}] \ge 0$ )

Suggests that the coefficient in the endogenous regression is biased upward

イロト イボト イヨト イヨト

ELE NOR

#### Conclusion

Methodological contribution

 $\Rightarrow$  Introduce a novel instrument

Key result

Firms anticipate information spillover and delay their investment decision to learn from their peers

#### Additional Results

- Firms appear to trade off costs with benefits of waiting for peers' information  $\Rightarrow$
- Firms' incentive to wait for peers' information is greater when the source of  $\Rightarrow$ information is more relevant
- $\Rightarrow$  Results suggest that the anticipation of information has an aggregate level effect on investment

#### When are information spillovers most valuable?



Décaire and Wittry

Learning and Investment

July 12, 2022

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

#### Spillovers matter most when information is scarce!

|                                                                      | Haza                        | ard Model for Project Exerci |
|----------------------------------------------------------------------|-----------------------------|------------------------------|
|                                                                      | (1)                         |                              |
| Quantity of Prior Information Released $=$                           | Small                       |                              |
|                                                                      | Estimates HI(%)             |                              |
| Inexercised Investment Opportunities $(Peers)_{j,t}$                 | -0.506*** -39.68<br>(0.056) |                              |
| irm-level controls<br>roject-level controls<br>1arket level controls | Yes<br>Yes<br>Yes           |                              |
| County Strata                                                        | Yes                         |                              |
| Pseudo – Loglikelihood<br>Vald Chi <sup>2</sup>                      | -3,936                      |                              |
| bservations                                                          | 365<br>183,015              |                              |

| Small amount of prior information | I |
|-----------------------------------|---|
|-----------------------------------|---|

| $\Rightarrow$ Median number | of | options | drilled | = 0 |
|-----------------------------|----|---------|---------|-----|
|-----------------------------|----|---------|---------|-----|

 $\Rightarrow$  Mean number of options drilled = 0.6

#### Spillovers matter most when information is scarce!

|                                                                        | Hazard Model for               | r Project Exercise         |  |  |
|------------------------------------------------------------------------|--------------------------------|----------------------------|--|--|
|                                                                        | (1)                            | (3)                        |  |  |
| Quantity of Prior Information Released =                               | Small                          | Large                      |  |  |
|                                                                        | Estimates HI(%)                | Estimates HI(%)            |  |  |
| Unexercised Investment Opportunities $(\text{Peers})_{j,t}$            | -0.506*** -39.68<br>(0.056)    | -0.052 -5.03<br>(0.053)    |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>Yes<br>Yes              | Yes<br>Yes<br>Yes          |  |  |
| County Strata                                                          | Yes                            | Yes                        |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations | -3,936<br>365<br>183,015       | -4,882<br>978<br>166,972   |  |  |
| Small amount of prior information                                      | Large amount of                | prior information          |  |  |
| $\rightarrow$ Median number of options drilled                         | $= 0 \rightarrow$ Median numbe | r of options drilled = 8   |  |  |
| $\Rightarrow$ Mean number of options drilled =                         | $0.6 \Rightarrow$ Mean number  | of options drilled $= 9.1$ |  |  |

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

#### Spillovers matter most when information is scarce!

|                                                      | Hazard Model for Project Exercise |                                                   |                      |        |                   |       |  |  |
|------------------------------------------------------|-----------------------------------|---------------------------------------------------|----------------------|--------|-------------------|-------|--|--|
|                                                      | (1                                | )                                                 | (2)                  |        | (3                | )     |  |  |
| Quantity of Prior Information Released $=$           | Sm                                | Small                                             |                      | Medium |                   | ge    |  |  |
|                                                      | Estimates                         | HI(%)                                             | Estimates            | HI(%)  | Estimates         | HI(%) |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$ | -0.506***<br>(0.056)              | -39.68                                            | -0.326***<br>(0.040) | -27.83 | -0.052<br>(0.053) | -5.03 |  |  |
| Firm-level controls                                  | Y                                 |                                                   | Yes                  |        | Yes               |       |  |  |
| Project-level controls<br>Market level controls      | Y                                 |                                                   | Yes                  |        | Yes               |       |  |  |
| Market level controls                                | Y                                 | es                                                | Yes                  |        | Yes               |       |  |  |
| County Strata                                        | Y                                 | es                                                | Yes                  |        | Yes               |       |  |  |
| Pseudo – Loglikelihood                               | -3,9                              | 936                                               | -4,875               |        | -4,882            |       |  |  |
| Wald Chi <sup>2</sup>                                | 36                                |                                                   | 453                  |        | 978               |       |  |  |
| Observations                                         | 183                               | 015                                               | 187,1                | 06     | 166,              | 972   |  |  |
| Small amount of prior information                    | Small amount of prior information |                                                   |                      |        |                   |       |  |  |
| $\Rightarrow$ Median number of options drilled :     | = 0 =                             | $\Rightarrow$ Median number of options drilled =  |                      |        |                   |       |  |  |
| $\Rightarrow$ Mean number of options drilled =       | 0.6 =                             | $\Rightarrow$ Mean number of options drilled = 9. |                      |        |                   |       |  |  |

 $\Rightarrow$  Effect gradually decreases with the quantity of information already revealed

-

4 A I

EL OQO

#### Spillovers matter most when information is scarce!

|                                                      | Hazard Model for Project Exercise |                                                    |                      |            |                   |          |  |  |  |
|------------------------------------------------------|-----------------------------------|----------------------------------------------------|----------------------|------------|-------------------|----------|--|--|--|
|                                                      | -                                 | (1)                                                | (2                   | )          | (3                | 5)       |  |  |  |
| Quantity of Prior Information Released $=$           | S                                 | Small                                              |                      | Medium     |                   | ge       |  |  |  |
|                                                      | Estimate                          | es HI(%)                                           | Estimates            | HI(%)      | Estimates         | HI(%)    |  |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$ | -0.506**<br>(0.056)               |                                                    | -0.326***<br>(0.040) | -27.83     | -0.052<br>(0.053) | -5.03    |  |  |  |
| Firm-level controls                                  |                                   | Yes                                                |                      | Yes        |                   | es       |  |  |  |
| Project-level controls<br>Market level controls      |                                   | res<br>res                                         |                      | Yes<br>Yes |                   | es<br>es |  |  |  |
|                                                      |                                   | 105                                                | 10                   | 165        |                   | 5        |  |  |  |
| County Strata                                        | •                                 | Yes                                                | Ye                   | Yes        |                   | es       |  |  |  |
| Pseudo – Loglikelihood                               | -3                                | ,936                                               | -4,875               |            | -4,8              | 882      |  |  |  |
| Wald Chi <sup>2</sup>                                |                                   | 365                                                |                      | 453        |                   | '8       |  |  |  |
| Observations                                         | 18                                | 3,015                                              | 187,                 | 106        | 166,              | 972      |  |  |  |
| Small amount of prior information                    |                                   | Large a                                            | mount of p           | orior inf  | ormation          |          |  |  |  |
| $\Rightarrow$ Median number of options drilled       | = 0                               | $0 \Rightarrow$ Median number of options drilled = |                      |            |                   |          |  |  |  |
| $\Rightarrow$ Mean number of options drilled =       | 0.6                               | $\Rightarrow$ Mean number of options drilled = 9.1 |                      |            |                   |          |  |  |  |

 $\Rightarrow$  Effect gradually decreases with the quantity of information already revealed  $\Rightarrow$  Incentives to wait are concentrated in cases with limited available information

Décaire and Wittry

Learning and Investment

July 12, 2022

< □ > < /□ >

### Costs vs. Benefits Tradeoffs



|                                                                        | Hazard Model for Project Exercise |       |                      |        |                        |        |  |  |
|------------------------------------------------------------------------|-----------------------------------|-------|----------------------|--------|------------------------|--------|--|--|
|                                                                        | (1)                               |       | (2)                  |        | (3                     | )      |  |  |
|                                                                        | Estimates                         | HI(%) | Estimates            | HI(%)  | Estimates              | HI(%)  |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                   | -0.095**<br>(0.038)               | -9.07 | -0.107***<br>(0.038) | -10.14 | -0.115***<br>(0.038)   | -10.83 |  |  |
| Unexercised Inv. Opp. (Peers) $_{j,t} \times$ Cost of Equity $_{i,t}$  | 0.007*<br>(0.004)                 | 0.68  | 0.008**<br>(0.004)   | 0.77   | 0.009**<br>(0.004)     | 0.86   |  |  |
| Cost of Equity <sub><math>i,t</math></sub> (%)                         | -0.049* <sup>**</sup><br>(0.023)  | -4.74 | -0.065***<br>(0.024) | -6.25  | -0̀.069**́*<br>(0.026) | -6.69  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No     |        | Yes<br>Yes<br>Yes      |        |  |  |
| County Strata                                                          | Yes                               |       | Yes                  |        | Yes                    |        |  |  |
| Pseudo – Loglikelihood                                                 | -7,033                            |       | -6,981               |        | -6,943                 |        |  |  |
| Wald Chi <sup>2</sup><br>Observations                                  | 532<br>273,427                    |       | 671<br>273,427       |        | 1,390<br>273,427       |        |  |  |

|                                                                                                          | Hazard Model for Project Exercise |       |                      |                          |                      |                 |  |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------|-------|----------------------|--------------------------|----------------------|-----------------|--|--|--|
|                                                                                                          | (1)                               |       | (2)                  |                          | (3                   | )               |  |  |  |
|                                                                                                          | Estimates                         | HI(%) | Estimates            | HI(%)                    | Estimates            | HI(%)           |  |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                                                     | -0.095**<br>(0.038)               | -9.07 | -0.107***<br>(0.038) | -10.14                   | -0.115***<br>(0.038) | -10.83          |  |  |  |
| Unexercised Inv. Opp. (Peers) <sub><i>j</i>,<i>t</i></sub> × Cost of Equity <sub><i>i</i>,<i>t</i></sub> | 0.007*<br>(0.004)                 | 0.68  | 0.008**<br>(0.004)   | 0.77                     | 0.009**<br>(0.004)   | 0.86            |  |  |  |
| Cost of Equity <sub><math>i,t</math></sub> (%)                                                           | -0.049**<br>(0.023)               | -4.74 | -0.065***<br>(0.024) | -6.25                    | -0.069***<br>(0.026) | -6.69           |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls                                   | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No     |                          | Yes<br>Yes<br>Yes    |                 |  |  |  |
| County Strata                                                                                            | Yes                               |       | Yes                  |                          | Yes                  |                 |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations                                   | -7,033<br>532<br>273,427          |       | 671                  | -6,981<br>671<br>273,427 |                      | 43<br>90<br>427 |  |  |  |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

|                                                                                                          | Hazard Model for Project Exercise |       |                          |        |                            |        |  |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--------------------------|--------|----------------------------|--------|--|--|--|
|                                                                                                          | (1)                               |       | (2)                      |        | (3                         | )      |  |  |  |
|                                                                                                          | Estimates                         | HI(%) | Estimates                | HI(%)  | Estimates                  | HI(%)  |  |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                                                     | -0.095**<br>(0.038)               | -9.07 | -0.107***<br>(0.038)     | -10.14 | -0.115***<br>(0.038)       | -10.83 |  |  |  |
| Unexercised Inv. Opp. (Peers) <sub><i>j</i>,<i>t</i></sub> × Cost of Equity <sub><i>i</i>,<i>t</i></sub> | 0.007*<br>(0.004)                 | 0.68  | 0.008**<br>(0.004)       | 0.77   | 0.009**<br>(0.004)         | 0.86   |  |  |  |
| Cost of Equity <sub><math>i,t</math></sub> (%)                                                           | -0.049**<br>(0.023)               | -4.74 | -0.065***<br>(0.024)     | -6.25  | -0.069***<br>(0.026)       | -6.69  |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls                                   | Yes Yes<br>No Yes<br>No No        |       | Ye<br>Ye<br>Ye           | s      |                            |        |  |  |  |
| County Strata                                                                                            | Yes                               |       | Yes                      |        | Yes                        |        |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations                                   | -7,033<br>532<br>273,427          |       | -6,981<br>671<br>273,427 |        | -6,943<br>1,390<br>273,427 |        |  |  |  |

1) Cross-partial derivative coefficient (CPDC) at the mean = 0.003

2) CPDCs are positive over the full support of the variable of interest

3) Interaction term is positive in the OLS case

| Déca |  |  |
|------|--|--|
|      |  |  |
|      |  |  |

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

|                                                                                                          | Hazard Model for Project Exercise |       |                       |        |                      |                            |  |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-----------------------|--------|----------------------|----------------------------|--|--|--|
|                                                                                                          | (1)                               |       | (2)                   |        | (3                   | )                          |  |  |  |
|                                                                                                          | Estimates                         | HI(%) | Estimates             | HI(%)  | Estimates            | HI(%)                      |  |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                                                     | -0.095**<br>(0.038)               | -9.07 | -0.107***<br>(0.038)  | -10.14 | -0.115***<br>(0.038) | -10.83                     |  |  |  |
| Unexercised Inv. Opp. (Peers) <sub><i>j</i>,<i>t</i></sub> × Cost of Equity <sub><i>i</i>,<i>t</i></sub> | 0.007*<br>(0.004)                 | 0.68  | 0.008**<br>(0.004)    | 0.77   | 0.009**<br>(0.004)   | 0.86                       |  |  |  |
| Cost of Equity <sub><math>i,t</math></sub> (%)                                                           | -0.049**<br>(0.023)               | -4.74 | -0.065***<br>(0.024)  | -6.25  | -0.069***<br>(0.026) | -6.69                      |  |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls                                   | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No      |        | Yes<br>Yes<br>Yes    |                            |  |  |  |
| County Strata                                                                                            | Yes                               |       | Yes                   |        | Yes                  |                            |  |  |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations                                   | -7,033<br>532<br>273,427          |       | -6,98<br>671<br>273,4 | 671    |                      | -6,943<br>1,390<br>273,427 |  |  |  |

| Costs of Waiting for Info. Spillovers           |
|-------------------------------------------------|
| $\Rightarrow$ Firms wait less on peers when the |
| TVM increases                                   |

 $\Rightarrow$  Back-of-the-envelope: 7.4% drop in NPV due to pure TVM

### Benefits of Waiting

|                                                                          |           | Hazard Model for Project Exercise |           |        |           |                        |  |  |
|--------------------------------------------------------------------------|-----------|-----------------------------------|-----------|--------|-----------|------------------------|--|--|
|                                                                          | (1)       |                                   | (2)       |        | (3        | )                      |  |  |
|                                                                          | Estimates | HI(%)                             | Estimates | HI(%)  | Estimates | (3)<br>Estimates HI(%) |  |  |
| Unexercised Investment Opportunities (Peers) <sub><math>i,t</math></sub> | -1.106*** | -66.91                            | -0.980*** | -62.49 | -0.816*** | -55.77                 |  |  |
|                                                                          | (0.158)   |                                   | (0.145)   |        | (0.141)   |                        |  |  |
| Unexercised Inv. Opp. (Peers) <sub><math>i,t</math></sub>                | 0.071***  | 7.31                              | 0.062***  | 6.41   | 0.051***  | 5.27                   |  |  |
| $\times$ Peers' Wells' Mkt. Value <sub>i.t</sub>                         | (0.011)   |                                   | (0.010)   |        | (0.009)   |                        |  |  |
| Peers' Wells' Value <sub>i.t</sub>                                       | 0.062***  | 6.42                              | 0.058***  | 5.92   | 0.054***  | 5.54                   |  |  |
| <b>3</b> 7                                                               | (0.015)   |                                   | (0.013)   |        | (0.013)   |                        |  |  |
| Firm-level controls                                                      | Yes       |                                   | Yes       |        | Yes       |                        |  |  |
| Project-level controls                                                   | No        |                                   | Yes       |        | Yes       |                        |  |  |
| Market level controls                                                    | No        |                                   | No        |        | Ye        | s                      |  |  |
| County Strata                                                            | Yes       |                                   | Yes       |        | Yes       |                        |  |  |
| Pseudo – Loglikelihood                                                   | -17,1     | -17,194                           |           | 32     | -17,0     | )46                    |  |  |
| Wald Chi <sup>2</sup>                                                    | 775       |                                   | 884       | ļ      | 1,63      | 36                     |  |  |
| Observations                                                             | 537,0     | 93                                | 537,0     | 93     | 537,0     | 093                    |  |  |

| Costs of Waiting for Info. Spillovers            | Benefits of Waiting for Info. Spillovers         |
|--------------------------------------------------|--------------------------------------------------|
| $\Rightarrow$ Firms wait less on peers when the  | $\Rightarrow$ Wait for more information when the |
| TVM increases                                    | project is less likely to be profitable          |
| $\Rightarrow$ Back-of-the-envelope: 7.4% drop in | $\Rightarrow$ When firms can learn from their    |
| NPV due to pure TVM                              | peers, they select projects that are 8.3%        |
|                                                  | more productive                                  |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

#### Benefits of Waiting

|                                                                                                                    |                       | Haza   | rd Model for          | Project E      | Exercise             |           |
|--------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-----------------------|----------------|----------------------|-----------|
|                                                                                                                    | (1)                   |        | (2)                   |                | (3                   | )         |
|                                                                                                                    | Estimates             | HI(%)  | Estimates             | HI(%)          | Estimates            | HI(%)     |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                                                               | -1.106***<br>(0.158)  | -66.91 | -0.980***<br>(0.145)  | -62.49         | -0.816***<br>(0.141) | -55.77    |
| Unexercised Inv. Opp. (Peers) <sub><i>j</i>,<i>t</i></sub> × Peers' Wells' Mkt. Value <sub><i>j</i>,<i>t</i></sub> | 0`.071****<br>(0.011) | 7.31   | 0`.062***<br>(0.010)  | 6.41           | 0`.051***<br>(0.009) | 5.27      |
| Peers' Wells' Value <sub>j,t</sub>                                                                                 | 0`.062***<br>(0.015)  | 6.42   | 0`.058****<br>(0.013) | 5.92           | 0`.054***<br>(0.013) | 5.54      |
| Firm-level controls<br>Project-level controls<br>Market level controls                                             | Yes<br>No<br>No       |        | Yes<br>Yes<br>No      |                | Ye<br>Ye<br>Ye       | s         |
| County Strata                                                                                                      | Yes Yes               |        | Yes                   |                |                      |           |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup>                                                             | -17,1<br>775          | i      | 884                   | -17,132<br>884 |                      | )46<br>36 |
| Observations                                                                                                       | 537,0                 | 93     | 537,0                 | 93             | 537,                 | 093       |

Firms appear to trade off the benefits of collecting additional information from peers with the costs of waiting

Décaire and Wittry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Relevance of Information Sources



Décaire and Wittry

Learning and Investment

July 12, 2022

6/19

# Project Similarity

|                                                                        |                                     | Haza   | rd Model for         | Project E | Exercise             |        |
|------------------------------------------------------------------------|-------------------------------------|--------|----------------------|-----------|----------------------|--------|
|                                                                        | (1)                                 |        | (2)                  |           | (3                   | )      |
|                                                                        | Estimates                           | HI(%)  | Estimates            | HI(%)     | Estimates            | HI(%)  |
| Unexercised Investment Opportunities (Same Resource)_{j,t}             | -0.112***<br>(0.035)                | -10.60 | -0.136***<br>(0.034) | -12.75    | -0.138***<br>(0.032) | -12.87 |
| Unexercised Investment Opportunities (Different Resource)_{j,t}        | -0.026<br>(0.025)                   | -2.58  | -0.040<br>(0.027)    | -3.91     | -0.036<br>(0.025)    | -3.49  |
| Chi² (Same Resource—Different Resource)<br>(p-Value)                   | 8.25*** 17.25***<br>(0.004) (0.000) |        | 15.90<br>(0.00       |           |                      |        |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                     |        | Yes<br>Yes<br>No     | ;         | Ye<br>Ye<br>Ye       | s      |
| County Strata                                                          | Yes                                 |        | Yes                  |           | Yes                  |        |
| Pseudo – Loglikelihood                                                 | -17,285                             |        | -17,1                | 74        | -17,0                | )74    |
| Wald Chi <sup>2</sup><br>Observations                                  | 474<br>537,0                        |        | 563<br>537,0         |           | 1,1<br>537,0         |        |

| /hicl |
|-------|
|       |
|       |
|       |
|       |

| Which peer | /project | characteristics | matter? |
|------------|----------|-----------------|---------|
|------------|----------|-----------------|---------|

# Project Similarity

|                                                                                   | Hazard Model for Project Exercise |                            |                              |                |                              |        |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------|----------------------------|------------------------------|----------------|------------------------------|--------|--|--|
|                                                                                   | (1)                               |                            | (2)                          |                | (3                           | )      |  |  |
|                                                                                   | Estimates                         | HI(%)                      | Estimates                    | HI(%)          | Estimates                    | HI(%)  |  |  |
| Unexercised Investment Opportunities (Same Resource) <sub><i>i</i>,<i>t</i></sub> | -0.112***                         | -10.60                     | -0.136***                    | -12.75         | -0.138***                    | -12.87 |  |  |
| Unexercised Investment Opportunities (Different Resource)_{j,t}                   | (0.035)<br>-0.026<br>(0.025)      | -2.58                      | (0.034)<br>-0.040<br>(0.027) | -3.91          | (0.032)<br>-0.036<br>(0.025) | -3.49  |  |  |
| Chi² (Same Resource—Different Resource)<br>(p-Value)                              | 8.25***<br>(0.004)                |                            | 17.25***<br>(0.000)          |                | 15.90***<br>(0.000)          |        |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls            | No                                | Yes Yes<br>No Yes<br>No No |                              | Ye<br>Ye<br>Ye | s                            |        |  |  |
| County Strata                                                                     | Yes                               |                            | Yes                          |                | Yes                          |        |  |  |
| Pseudo – Loglikelihood                                                            | -17,2                             | 85                         | -17,1                        | 74             | -17,0                        | )74    |  |  |
| Wald Chi <sup>2</sup><br>Observations                                             | 474<br>537,0                      |                            | 563<br>537,0                 |                | 1,1<br>537,0                 |        |  |  |

| How do we do it?                                    | Which peer/project characteristics matter? |
|-----------------------------------------------------|--------------------------------------------|
| $\Rightarrow$ Split variable into options producing |                                            |
| the same and different majority resources           |                                            |
| (oil vs. gas)                                       |                                            |
|                                                     |                                            |

## Project Similarity

|                                                                        | Hazard Model for Project Exercise |        |                      |        |                      |        |  |  |
|------------------------------------------------------------------------|-----------------------------------|--------|----------------------|--------|----------------------|--------|--|--|
|                                                                        | (1)                               |        | (2)                  |        | (3                   | )      |  |  |
|                                                                        | Estimates                         | HI(%)  | Estimates            | HI(%)  | Estimates            | HI(%)  |  |  |
| Unexercised Investment Opportunities (Same Resource)_{j,t}             | -0.112***<br>(0.035)              | -10.60 | -0.136***<br>(0.034) | -12.75 | -0.138***<br>(0.032) | -12.87 |  |  |
| Unexercised Investment Opportunities (Different Resource)_{j,t}        | -0.026<br>(0.025)                 | -2.58  | -0.040<br>(0.027)    | -3.91  | -0.036<br>(0.025)    | -3.49  |  |  |
| Chi <sup>2</sup> (Same Resource—Different Resource)<br>(p-Value)       | 8.25***<br>(0.004)                |        | 17.25***<br>(0.000)  |        | 15.90***<br>(0.000)  |        |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |        | Yes<br>Yes<br>No     |        | Yes<br>Yes<br>Yes    |        |  |  |
| County Strata                                                          | Yes                               |        | Yes                  |        | Yes                  |        |  |  |
| Pseudo – Loglikelihood                                                 | -17,285                           |        | -17,174              |        | -17,074              |        |  |  |
| Wald Chi <sup>2</sup><br>Observations                                  | 474<br>537,0                      |        | 563<br>537,093       |        | 1,161<br>537,093     |        |  |  |

| $\begin{array}{l} \label{eq:how-do-we-do-it} \hline How do we do it? \\ \Rightarrow \mbox{ Split variable into options producing the same and different majority resources (oil vs. gas)} \end{array}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Project Similarity

|                                                                        | Hazard Model for Project Exercise   |        |                      |        |                      |        |  |
|------------------------------------------------------------------------|-------------------------------------|--------|----------------------|--------|----------------------|--------|--|
|                                                                        | (1)                                 |        | (2)                  |        | (3                   | )      |  |
|                                                                        | Estimates                           | HI(%)  | Estimates            | HI(%)  | Estimates            | HI(%)  |  |
| Unexercised Investment Opportunities (Same Resource)_{j,t}             | -0.112***<br>(0.035)                | -10.60 | -0.136***<br>(0.034) | -12.75 | -0.138***<br>(0.032) | -12.87 |  |
| Unexercised Investment Opportunities (Different Resource)_{j,t}        | -0.026<br>(0.025)                   | -2.58  | -0.040<br>(0.027)    | -3.91  | -0.036<br>(0.025)    | -3.49  |  |
| Chi <sup>2</sup> (Same Resource—Different Resource)<br>(p-Value)       | 8.25*** 17.25***<br>(0.004) (0.000) |        | 15.90***<br>(0.000)  |        |                      |        |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes Yes<br>No Yes<br>No No          |        | Ye<br>Ye<br>Ye       | s      |                      |        |  |
| County Strata                                                          | Yes                                 |        | Yes                  |        | Yes                  |        |  |
| Pseudo – Loglikelihood                                                 | -17,285                             |        | -17,174              |        | -17,074              |        |  |
| Wald Chi <sup>2</sup><br>Observations                                  | 474<br>537,0                        |        | 563<br>537,0         |        | 1,10<br>537,0        |        |  |

| How do we do it?                                                                              | Which peer/project characteristics matter?                 |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|
| $\Rightarrow$ Split variable into options producing the same and different majority resources | $\Rightarrow$ Focus on options producing the same resource |
| (oil vs. gas)                                                                                 |                                                            |
| $\Rightarrow$ Magnitudes are statistically different                                          |                                                            |

|                                                                        | Hazard Model for Project Exercise    |        |                      |        |                      |        |  |
|------------------------------------------------------------------------|--------------------------------------|--------|----------------------|--------|----------------------|--------|--|
|                                                                        | (1)                                  |        | (2)                  |        | (3                   | )      |  |
|                                                                        | Estimates                            | HI(%)  | Estimates            | HI(%)  | Estimates            | HI(%)  |  |
| Unexercised Investment Opportunities (High-Skill Peers) $_{j,t}$       | -0.125***<br>(0.041)                 | -11.77 | -0.154***<br>(0.044) | -14.23 | -0.148***<br>(0.040) | -13.79 |  |
| Unexercised Investment Opportunities (Low-Skill Peers)_{j,t}           | 0.026<br>(0.024)                     | 2.65   | 0.021<br>(0.024)     | 2.16   | 0.007<br>(0.024)     | 0.70   |  |
| Chi <sup>2</sup> (High Skill—Low Skill)<br>(p-Value)                   | 11.40*** 12.54***<br>(0.001) (0.000) |        | 11.94***<br>(0.001)  |        |                      |        |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                      |        | Yes<br>Yes<br>No     |        | Ye<br>Ye<br>Ye       | s      |  |
| County Strata                                                          | Yes Yes                              |        | Yes                  |        |                      |        |  |
| Pseudo – Loglikelihood                                                 | -17,280                              |        | -17,168              |        | -17,071              |        |  |
| Wald Chi <sup>2</sup><br>Observations                                  | 435<br>537,0                         |        | 580<br>537,0         |        | 1,2<br>537,0         |        |  |

| How do we do it? | Which peer/project characteristics matter?                 |
|------------------|------------------------------------------------------------|
|                  | $\Rightarrow$ Focus on options producing the same resource |

| Déc: | aire | and | Wittry | / |
|------|------|-----|--------|---|
|      |      |     |        |   |

|                                                                                     | Hazard Model for Project Exercise |        |                      |        |                      |        |  |
|-------------------------------------------------------------------------------------|-----------------------------------|--------|----------------------|--------|----------------------|--------|--|
|                                                                                     | (1)                               |        | (2)                  |        | (3                   | )      |  |
|                                                                                     | Estimates                         | HI(%)  | Estimates            | HI(%)  | Estimates            | HI(%)  |  |
| Unexercised Investment Opportunities (High-Skill Peers) <sub><math>j,t</math></sub> | -0.125***<br>(0.041)              | -11.77 | -0.154***<br>(0.044) | -14.23 | -0.148***<br>(0.040) | -13.79 |  |
| Unexercised Investment Opportunities (Low-Skill Peers) <sub><math>j,t</math></sub>  | 0.026<br>(0.024)                  | 2.65   | 0.021<br>(0.024)     | 2.16   | 0.007<br>(0.024)     | 0.70   |  |
| Chi <sup>2</sup> (High Skill—Low Skill)<br>(p-Value)                                | 11.40 <sup>°</sup><br>(0.00       |        | 12.54<br>(0.00       |        | 11.94<br>(0.00       |        |  |
| Firm-level controls<br>Project-level controls<br>Market level controls              | Yes<br>No<br>No                   |        | Yes<br>Yes<br>No     |        | Ye<br>Ye<br>Ye       | s      |  |
| County Strata                                                                       | Yes                               |        | Yes                  |        | Ye                   | s      |  |
| Pseudo – Loglikelihood                                                              | -17,2                             |        | -17,1                | 68     | -17,0                |        |  |
| Wald Chi <sup>2</sup><br>Observations                                               | 435<br>537,0                      |        | 580<br>537,0         |        | 1,2<br>537,0         |        |  |

| $\Rightarrow$ Split variable into options owned by |
|----------------------------------------------------|
| $\rightarrow$ Split variable into options owned by |
| skilled and unskilled peers                        |

#### Which peer/project characteristics matter?

How do we do it?

|                                                                                     | Hazard Model for Project Exercise |        |                      |                   |                      |        |  |
|-------------------------------------------------------------------------------------|-----------------------------------|--------|----------------------|-------------------|----------------------|--------|--|
|                                                                                     | (1)                               |        | (2)                  |                   | (3                   | )      |  |
|                                                                                     | Estimates                         | HI(%)  | Estimates            | HI(%)             | Estimates            | HI(%)  |  |
| Unexercised Investment Opportunities (High-Skill Peers) <sub><math>j,t</math></sub> | -0.125***<br>(0.041)              | -11.77 | -0.154***<br>(0.044) | -14.23            | -0.148***<br>(0.040) | -13.79 |  |
| Unexercised Investment Opportunities (Low-Skill Peers) $_{j,t}$                     | 0.026<br>(0.024)                  | 2.65   | 0.021<br>(0.024)     | 2.16              | 0.007<br>(0.024)     | 0.70   |  |
| Chi <sup>2</sup> (High Skill—Low Skill)<br>(p-Value)                                | 11.40*** 12.54<br>(0.001) (0.00   |        |                      | 11.94<br>(0.00    |                      |        |  |
| Firm-level controls<br>Project-level controls<br>Market level controls              | Yes Yes<br>No Yes<br>No No        |        |                      | Yes<br>Yes<br>Yes |                      |        |  |
| County Strata                                                                       | Yes                               |        | Yes                  |                   | Yes                  |        |  |
| Pseudo – Loglikelihood                                                              | -17,280                           |        | -17,168              |                   | -17,071              |        |  |
| Wald Chi <sup>2</sup><br>Observations                                               | 435<br>537,0                      |        | 580<br>537,0         |                   | 1,2<br>537,0         |        |  |

| $\Rightarrow$ Split variable into options owned by |
|----------------------------------------------------|
| skilled and unskilled peers                        |

#### Which peer/project characteristics matter?

How do we do it?

|                                               | HI(%)<br>-11.77<br>2.65                           | (2)<br>Estimates<br>-0.154***<br>(0.044)<br>0.021   | HI(%)<br>-14.23                                                                                                                                                                        | (3)<br>Estimates<br>-0.148***<br>(0.040)                                                                                                                                                 | )<br>HI(%)<br>-13.79                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 125***<br>.041)<br>.026                       | -11.77                                            | -0.154***<br>(0.044)<br>0.021                       | -14.23                                                                                                                                                                                 | -0.148***                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                              |
| .041)<br>.026                                 |                                                   | (0.044)<br>0.021                                    |                                                                                                                                                                                        |                                                                                                                                                                                          | -13.79                                                                                                                                                                                                                                                                                                       |
| .026                                          | 2.65                                              | `0.021´                                             | 0.4.6                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
|                                               |                                                   | (0.024)                                             | 2.16                                                                                                                                                                                   | 0.007<br>(0.024)                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                         |
| 11.40*** 12.54***<br>(0.001) (0.000)          |                                                   | 11.94***<br>(0.001)                                 |                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
| Yes Yes<br>No Yes<br>No No                    |                                                   |                                                     | Yes<br>Yes<br>Yes                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
| Yes Yes                                       |                                                   | Yes                                                 |                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
| -17,280 -17,168<br>435 580<br>537,093 537,093 |                                                   | -17,071<br>1,254<br>537,093                         |                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
| ,                                             | Yes<br>No<br>No<br>Yes<br>-17,28<br>435<br>537,09 | Yes<br>No<br>No<br>Yes<br>-17,280<br>435<br>537,093 | Yes         Yes           No         Yes           No         No           Yes         Yes           -17,280         -17,10           435         580           537,093         537,09 | Yes         Yes           No         Yes           No         No           Yes         Yes           -17,280         -17,168           435         580           537,093         537,093 | Yes         Yes         Yes           No         Yes         Yes           No         No         Yes           Yes         Yes         Yes           Yes         Yes         Yes           Yes         Yes         Yes           17,280         -17,168         -17,0           435         580         1,25 |

 $\Rightarrow$  Split variable into options owned by skilled and unskilled peers

 $\Rightarrow$  Magnitudes are statistically different

 $\Rightarrow$  Focus on options producing the same resource

 $\Rightarrow$  Focus on peers that are better at selecting and designing wells

< □ > < 同 > < 回 > < 回 > < 回 >

EL OQO

|                                                                        | Hazard Model for Project Exercise |        |                      |        |                        |        |  |
|------------------------------------------------------------------------|-----------------------------------|--------|----------------------|--------|------------------------|--------|--|
|                                                                        | (1)                               |        | (2)                  |        | (3                     | )      |  |
|                                                                        | Estimates                         | HI(%)  | Estimates            | HI(%)  | Estimates              | HI(%)  |  |
| Unexercised Investment Opportunities (High-Skill Peers)_{j,t}          | -0.125***<br>(0.041)              | -11.77 | -0.154***<br>(0.044) | -14.23 | -0.148***<br>(0.040)   | -13.79 |  |
| Unexercised Investment Opportunities (Low-Skill Peers)_{j,t}           | 0.026<br>(0.024)                  | 2.65   | 0.021<br>(0.024)     | 2.16   | 0.007<br>(0.024)       | 0.70   |  |
| Chi <sup>2</sup> (High Skill—Low Skill)<br>(p-Value)                   | 11.40 <sup>°</sup><br>(0.00       |        | 12.54<br>(0.00       |        | 11.94<br>(0.00         |        |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |        | Yes<br>Yes<br>No     |        | Ye<br>Ye<br>Ye         | s      |  |
| County Strata                                                          | Yes                               |        | Yes                  |        | Ye                     | s      |  |
| Pseudo – Loglikelihood<br>Wald Chi <sup>2</sup><br>Observations        | -17,280<br>435<br>537,093         |        | 435 580              |        | -17,0<br>1,29<br>537,0 | 54     |  |

Firms appear to wait more to obtain information from sources that are more relevant

| Déca | ire | and | Wittry |
|------|-----|-----|--------|
|------|-----|-----|--------|

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Appendix

#### Falsification Tests - Peer Options 10-13 Miles Away

|                                                                                       | Hazard Model for Project Exercise |       |                        |       |                             |       |  |
|---------------------------------------------------------------------------------------|-----------------------------------|-------|------------------------|-------|-----------------------------|-------|--|
|                                                                                       | (1)                               |       | (2)                    |       | (3)                         |       |  |
|                                                                                       | Estimates                         | HI(%) | Estimates              | HI(%) | Estimates                   | HI(%) |  |
| Falsified Unexercised Investment<br>Opportunities (Peers) <sub><math>j,t</math></sub> | -0.002<br>(0.003)                 | -0.20 | -0.003<br>(0.003)      | -0.28 | -0.001<br>(0.002)           | -0.11 |  |
| Firm-level controls<br>Project-level controls<br>Market level controls                | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No       |       | Yes<br>Yes<br>Yes           |       |  |
| County Strata                                                                         | Yes                               |       | Yes                    | Yes   |                             | S     |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations                | -17,296<br>461<br>537,093         |       | -17,19<br>527<br>537,0 |       | -17,091<br>1,257<br>537,093 |       |  |

Back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Appendix

#### Subsample of Periods with Low Rig Utilization Rates

|                                                                        | Hazard Model for Project Exercise |       |                     |       |                           |       |  |
|------------------------------------------------------------------------|-----------------------------------|-------|---------------------|-------|---------------------------|-------|--|
|                                                                        | (1)                               |       | (2)                 |       | (3                        | )     |  |
|                                                                        | Estimates                         | HI(%) | Estimates           | HI(%) | Estimates                 | HI(%) |  |
| Unexercised Investment Opportunities $(\text{Peers})_{j,t}$            | -0.026**<br>(0.012)               | -2.52 | -0.031**<br>(0.012) | -3.03 | -0.033***<br>(0.011)      | -3.29 |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No    |       | Ye<br>Ye<br>Ye            | 5     |  |
| County Strata                                                          | Yes                               |       | Yes                 |       | Yes                       |       |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations | -11,733<br>367<br>465,960         |       | 571                 |       | -11,598<br>621<br>465,960 |       |  |

Back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Subsample of Projects likely to be Valuable if Exercised Immediately

|                                                                          | Hazard Model for Project Exercise |       |                       |       |                        |       |  |
|--------------------------------------------------------------------------|-----------------------------------|-------|-----------------------|-------|------------------------|-------|--|
|                                                                          | (1)                               |       | (2)                   |       | (3                     | )     |  |
|                                                                          | Estimates                         | HI(%) | Estimates             | HI(%) | Estimates              | HI(%) |  |
| Unexercised Investment Opportunities (Peers) <sub><math>j,t</math></sub> | -0.029**<br>(0.013)               | -2.86 | -0.029**<br>(0.014)   | -2.90 | -0.031**<br>(0.012)    | -3.04 |  |
| Firm-level controls<br>Project-level controls<br>Market level controls   | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No      |       | Ye<br>Ye<br>Ye         | s     |  |
| County Strata                                                            | Yes                               |       | Yes                   |       | Yes                    |       |  |
| Pseudo — Loglikelihood<br>Wald Chi <sup>2</sup><br>Observations          | -11,0<br>272<br>268,5             |       | -10,8<br>892<br>268,5 |       | -10,8<br>1,30<br>268,5 | )6    |  |

Back

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

#### Appendix

# Subsample of Projects with Initial Well Drilled on a Single Section

|                                                                        | Hazard Model for Project Exercise |       |                      |       |                           |       |  |
|------------------------------------------------------------------------|-----------------------------------|-------|----------------------|-------|---------------------------|-------|--|
|                                                                        | (1)                               |       | (2)                  | (2)   |                           | )     |  |
|                                                                        | Estimates                         | HI(%) | Estimates            | HI(%) | Estimates                 | HI(%) |  |
| Unexercised Investment Opportunities $(\text{Peers})_{j,t}$            | -0.029**<br>(0.011)               | -2.83 | -0.036***<br>(0.012) | -3.52 | -0.035***<br>(0.011)      | -3.48 |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No     |       | Ye<br>Ye<br>Ye            | s     |  |
| County Strata                                                          | Yes                               |       | Yes                  |       | Yes                       |       |  |
| <i>Pseudo – Loglikelihood</i><br>Wald Chi <sup>2</sup><br>Observations | -16,041<br>307<br>509,632         |       | 307 446              |       | -15,829<br>893<br>509,632 |       |  |

Back

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

## County-Firm Strata

|                                                                        | Hazard Model for Project Exercise |       |                      |       |                      |       |
|------------------------------------------------------------------------|-----------------------------------|-------|----------------------|-------|----------------------|-------|
|                                                                        | (1)                               |       | (2)                  |       | (3)                  | )     |
|                                                                        | Estimates                         | HI(%) | Estimates            | HI(%) | Estimates            | HI(%) |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                   | -0.032***<br>(0.010)              | -3.18 | -0.035***<br>(0.011) | -3.40 | -0.038***<br>(0.010) | -3.74 |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No     |       | Ye<br>Ye<br>Ye       | 5     |
| County-Firm Strata                                                     | Yes                               |       | Yes                  |       | Yes                  |       |
| Pseudo – Loglikelihood<br>Wald Chi <sup>2</sup><br>Observations        | -10,058<br>498<br>537,093         |       | 664                  |       | 664 1,009            |       |

#### Probit Model

| Dependent variable =                               | Project Exercise |           |           |  |  |
|----------------------------------------------------|------------------|-----------|-----------|--|--|
|                                                    | (1)              | (2)       | (3)       |  |  |
| Unexercised Investment Opportunities (Peers)_{j,t} | -0.005           | -0.009    | -0.012**  |  |  |
|                                                    | (0.005)          | (0.006)   | (0.005)   |  |  |
| Firm-level controls                                | Yes              | Yes       | Yes       |  |  |
| Project-level controls                             | No               | Yes       | Yes       |  |  |
| Market-level controls                              | No               | No        | Yes       |  |  |
| County FE                                          | Yes              | Yes       | Yes       |  |  |
| Pseudo – Loglikelihood                             | -20384.91        | -19692.98 | -19011.27 |  |  |
| Observations                                       | 530,251          | 530,251   | 530,251   |  |  |

### **OLS Model**

| Dependent variable =                                                     | Project Exercise |           |            |  |  |
|--------------------------------------------------------------------------|------------------|-----------|------------|--|--|
|                                                                          | (1)              | (2)       | (3)        |  |  |
| Unexercised Investment Opportunities (Peers) <sub><math>j,t</math></sub> | -0.0001          | -0.0002** | -0.0002*** |  |  |
|                                                                          | (0.0001)         | (0.0001)  | (0.0001)   |  |  |
| Firm-level controls                                                      | Yes              | Yes       | Yes        |  |  |
| Project-level controls                                                   | No               | Yes       | Yes        |  |  |
| Market-level controls                                                    | No               | No        | Yes        |  |  |
| County FE                                                                | Yes              | Yes       | Yes        |  |  |
| Observations                                                             | 540,765          | 540,765   | 540,765    |  |  |
| R <sup>2</sup>                                                           | 0.00             | 0.00      | 0.01       |  |  |

#### Alternative Peer Distance Definitions

|                                                                        | Hazard Model for Project Exercise |       |                      |         |                      |       |  |  |
|------------------------------------------------------------------------|-----------------------------------|-------|----------------------|---------|----------------------|-------|--|--|
|                                                                        | (1)                               |       | (2)                  |         | (3                   | )     |  |  |
| Peers Distance Definition =                                            | 2 Mil                             | es    | 3 Mil                | 3 Miles |                      | les   |  |  |
|                                                                        | Estimates                         | HI(%) | Estimates            | HI(%)   | Estimates            | HI(%) |  |  |
| Unexercised Investment Opportunities $(Peers)_{j,t}$                   | -0.065***<br>(0.016)              | -6.28 | -0.037***<br>(0.010) | -3.62   | -0.015***<br>(0.005) | -1.54 |  |  |
| Firm-level controls<br>Project-level controls<br>Market level controls | Yes<br>No<br>No                   |       | Yes<br>Yes<br>No     |         | Yes<br>Yes<br>Yes    |       |  |  |
| County Strata                                                          | Yes                               |       | Yes                  |         | Yes                  |       |  |  |
| Pseudo – Loglikelihood                                                 | -17,075                           |       | -17,074              |         | -17,084              |       |  |  |
| Wald Chi <sup>2</sup><br>Observations                                  | 1,140<br>537,093                  |       | 1,105<br>537,093     |         | 1,040<br>537,093     |       |  |  |

#### Direction of Observed Bias

| Panel B: Direction of Bias                          |                     |                                   |
|-----------------------------------------------------|---------------------|-----------------------------------|
| Dependent variable =                                | log(First We        | ell's Market Value <sub>j</sub> ) |
|                                                     | (1)                 | (2)                               |
| Unexercised Investment Opportunities (Peers) $_{j}$ | 0.040***<br>(0.009) | 0.015*<br>(0.008)                 |
| Controls<br>County FE                               | No<br>Yes           | Yes<br>Yes                        |
| Observations $R^2$                                  | 8,718<br>0.33       | 8,718<br>0.47                     |

### Gain From Waiting

| Dependent variable =                                | log(Second Well's Market Value <sub>j</sub> ) |         |         |  |  |
|-----------------------------------------------------|-----------------------------------------------|---------|---------|--|--|
|                                                     | (1)                                           | (2)     | (3)     |  |  |
| Number of Peer Options Firm Waited For <sub>j</sub> | 0.033                                         | 0.067** | 0.068** |  |  |
|                                                     | (0.032)                                       | (0.029) | (0.028) |  |  |
| Firm-level controls                                 | Yes                                           | Yes     | Yes     |  |  |
| Project-level controls                              | Yes                                           | Yes     | Yes     |  |  |
| Market level controls                               | Yes                                           | Yes     | Yes     |  |  |
| County FE                                           | Yes                                           | Yes     | Yes     |  |  |
| Observations $R^2$                                  | 3,462                                         | 3,462   | 3,462   |  |  |
|                                                     | 0.40                                          | 0.47    | 0,47    |  |  |

#### Source of Drilling Costs per Lateral Foot

Cause CD No. 202001656-T Calyx Energy III, LLC Final Order of the Commission Pooling

Said owners named in Exhibit "A" attached hereto must make one or any combination of the following elections within <u>20</u> days from the date of this Order.

7.1 <u>Participate</u>: To participate in the development of the unit and common source of supply by agreeing to pay such owner's proportionate part of the actual cost of the well and unit covered hereby and by paying, as set out below, to Operator such owner's proportionate part of the estimated completed for production cost thereof, or by providing the Operator with an irrevocable letter of credit for such payment satisfactory to the Operator, within <u>25</u> days from the date of this Order, as follows:

| Completed as a dry hole  | \$ 962,323  |
|--------------------------|-------------|
| Completed for production | \$4,013,194 |

Provided further, however, that in the event an owner elects to participate in said unit well or wells by paying his proportionate part of the costs thereof and further does not elect to defer payment of well costs as set out in paragraph 7 ta below and thereafter fails or refuses to pay or



▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Page 2 of 9