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Abstract

Administrative data reveal large spreads in the U.S. unsecured credit market that are in
excess of and vary sharply with default risk. Incorporating the empirically correct incidence
of these borrowing premia allows standard unsecured credit models to match key granular
credit moments, including the distribution of credit balances by default risk. The incidence
and response of premia to aggregate shocks influence cross-sectional patterns in and ag-
gregate dynamics of borrowing and default. An extended model infers lending standards
from observed shifts in borrowing premia; we find that standards tightened only for risky
borrowers at the start of the recession in 2020.
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The U.S. unsecured credit market has experienced extraordinary transformation in recent
decades, with credit balances and bankruptcies increasing substantially.1 A growing literature
has found that households, particularly those with low income and wealth, rely heavily on un-
secured credit, and a rich body of quantitative research has made significant advancements in
understanding this markets in environments with household heterogeneity.2 A particular focus
of this existing work has been on how loan size choices and the evolution of idiosyncratic and
aggregate states map into borrower risk, i.e. probabilities of default. Such theories deliver a linear
relationship between loan prices and default probabilities (yellow line, Figure 1) in which default
risk premia account fully for the spread between the benchmark interest rate and the loan rate.

In stark contrast, using administrative data, we document that the slope of interest rate
spreads on credit card loans with respect to default probability is much smaller than such models
predict (black dashed line, Figure 1). This implies the presence of large borrowing premia –
interest rate spreads in excess of those required to compensate for default risk – in the unsecured
credit market. For example, we estimate that these premia averaged 11.3 percentage points (pp)
in 2019 and vary significantly across borrowers. These premia point to key pricing frictions which
are absent from existing quantitative models of unsecured credit. How do these borrowing premia
shape borrowing, saving, and default behavior in the cross-section and through time?

To address this question, we embed empirically consistent borrowing premia into an otherwise
standard heterogeneous agent model with defaultable debt. By incorporating these premia, the
relationship between interest rates and default probabilities in our model matches its empirical
counterpart exactly (blue line, Figure 1). This involves striking a balance in terms of the slope
of the interest rate schedule: a model in which default risk alone drives spreads yields too high a
slope (yellow line), but a model with no default risk premia and a pure fixed cost of borrowing
delivers too low a slope (red line). We use our quantitative model to analyze the effects of the
cross-sectional incidence and dynamic evolution of borrowing premia on credit outcomes.

Our analysis delivers four main takeaways. First, borrowing premia in the data: (i) are large
on average; (ii) decline with borrower risk; (iii) cannot be explained by other borrower-, account-
, or bank-specific factors; and (iv) increase in downturns, especially for high risk borrowers.
Second, we demonstrate that incorporating these premia into our model allows it to match not
only standard aggregate credit moments, but also an important set of granular moments, such
as the distribution of loan balances across levels of borrower risk and income. An alternative

1See, for example, Livshits et al. (2010).
2For example, Gross and Souleles (2002) and Sullivan (2008) find that unsecured credit is used to smooth

consumption: households whose income declines accumulate more debt and declare bankruptcy more often.
Furthermore, Herkenhoff et al. (2016) find that self-employment increases with credit scores and limits. After
bankruptcy, individuals are more likely to start a new business and borrow. For quantitative work in stationary
settings, see, for example, Athreya (2002), Athreya et al. (2009), Livshits et al. (2007, 2010), Chatterjee et al.
(2007), Chatterjee et al. (2020). For work in non-stationary settings, see Nakajima and Ríos-Rull (2019).
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Figure 1: Interest rate spreads in the data and alternative models
Notes: The black line uses the Y-14M / Equifax sample described in Section 1.2. The blue line is our model’s
schedule of spreads. The yellow line uses the workhorse framework described in Section 1.1, and the red line
imposes a fixed interest rate spread that does not depend on default risk.

model which captures the average level but not the cross-sectional incidence of these borrowing
premia performs worse with respect to these disaggregated features, despite matching aggregate
moments just as well by construction. Third, we show that both the cross-sectional incidence of
borrowing premia and their response to aggregate shocks play a crucial role in shaping aggregate
credit market dynamics. For example, in response to a negative aggregate shock, we show that
the tightening of borrowing premia induces a more pronounced drop in total borrowing, while
the declining relationship between borrowing premia and default risk promotes borrowing among
riskier agents. Fourth, we show that an extension of our model allows us to use observed shifts
in borrowing premia to infer a measure of lending standards. This provides a more concrete,
quantitative interpretation of survey evidence that is widely used to proxy credit supply. Using
this approach, we find that standards were essentially unchanged for all but the highest risk
borrowers at the outset of the Covid-19 recession in 2020:Q2. We proceed as follows.

In Section 1 we combine two large administrative data sets – Y-14M and the FRBNY Consumer
Credit Panel (Equifax) – to document the relatively flat relationship between interest rate spreads
and default probability in Figure 1. Using a “wedge” measurement approach adapted to workhorse
unsecured credit pricing theories,3 we use these spreads to quantify borrowing premia which are
large on average – far exceeding pure default risk premia – and decline with borrower risk. We
estimate a balance-weighted average borrowing premium of 11.3 pp, with a range from 14.5 pp
for FICO scores near 800 to 0.5 pp for FICO scores near 620. This declining pattern is puzzling

3This wedge approach was developed in the context of business cycle accounting in Chari et al. (2007).
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because it implies a relatively small difference between credit prices faced by low and high risk
borrowers. In this paper, we do not solve this puzzle in the sense of determining why these
premia arise; rather, we document it empirically and measure its impact on borrower behavior.4

Notably, though, we establish that systematic differences by credit score in loan recovery rates –
a common free parameter in the literature – cannot explain our results. We show further that
this pattern is robust to controlling for income and other borrower or account characteristics,
allowing for bank-specific effects, and comparing “normal” and “crisis” periods.

In Section 2 we augment a standard quantitative model of unsecured credit to include bor-
rowing premia in a flexible way. Our model economy closely resembles Chatterjee et al. (2007).
In this workhorse model, borrowers’ idiosyncratic states and loan choices determine repayment
probabilities, which in turn pin down loan prices via simple discounting. In our model, states
and loan choices determine repayment probabilities in the exact same way, but the mapping from
repayment probabilities into loan prices is changed to reflect a given schedule of borrowing premia.

We consider two versions of this model. The first captures the heterogeneous incidence of
borrowing premia estimated in Section 1 exactly; we call this our baseline or “heterogeneous
premia” (HP) economy. The resulting pricing system implies higher costs for low risk loans
and lower costs for high risk loans than in Chatterjee et al. (2007) because borrowing premia
decline as default risk premia increase, leading to a relatively flat profile of interest rates. The
second version is a “fixed premium” (FP) economy which matches the average level of borrowing
premia but not their incidence; all loans bear the same premium in excess of default risk. This
economy features one-for-one drops in loan discount prices (increases in loan rates) with default
probabilities, yielding the familiar steep profile of interest rates from the literature.

In Section 3 we calibrate both versions of the model to a standard set of aggregate unsecured
credit moments. Comparing these two models under the same parameterization is illustrative, but
we calibrate each version to emphasize how the HP model adds additional explanatory power even
conditional on matching key aggregates. Both calibrated economies have the exact same average
interest rate spread and borrowing premium by construction. This implies that the differences
between these two economies stem from cross-sectional variation in credit prices, not differences
in their overall level. To match U.S. credit data, the FP model requires an implausibly high degree
of impatience, as well as lower default costs than the HP model does.

We compare key dis-aggregated, cross-sectional properties of these two model economies
in Section 4. The primary insight from this analysis is that the HP model closely matches the
empirical joint distribution of credit balances and default risk, whereas the FP model overstates the
riskiness of the safest 75% of loans in the economy. Moreover, the HP model more closely captures
the profile of average loan spreads and leverage by income quartile, especially outperforming

4We address this important question empirically in an ongoing companion paper, Castro et al. (2020).
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the FP model for the highest and lowest earners. The mechanism underlying these findings is
straightforward: by accurately capturing the marginal costs of borrowers’ loan choices on loan
prices, the HP model more accurately explains their actual loan choices.

We study aggregate dynamics in Section 5. To fix ideas, in Section 5.1 we simulate an impulse
response to a negative aggregate shock. The relatively high costs of increasing leverage in the
FP economy dampen agents’ ability to smooth consumption, leading to a 0.7 pp larger drop in
total debt, 4.8 pp larger rise in bankruptcies, and a 9.1% larger drop in aggregate consumption
relative to the HP economy. We then study the effect of the upward shift in borrowing premia
we observe on impact of a recession. Since borrowing premia increase most for high risk loans,
and high risk loans comprise a higher share of total loans in a recession, credit usage declines 0.2
pp more and bankruptcies increase 2.6 pp more than in the case in which premia do not shift in
response to the shock. Section 5.2 expands these analyses to study business cycles. We show
that the HP model more closely matches key cyclical properties of the unsecured credit market
than the FP model, and that accounting for cyclical shifts in borrowing premia explains the high
volatility of interest rate spreads over the cycle.

We conclude our analysis in Section 6 by introducing a simple extension of our baseline model
which endogenizes borrowing premia as the product of two components. The first component
varies endogenously with overall credit market tightness, and the second exogenously proxies
banks’ pricing decisions via a weighting function. We consider this function a measure of lending
standards, allowing us to relate difficult-to-quantify changes in “standards” to observed changes
in prices, augmenting our understanding of this widely used proxy for credit supply. Specifically,
we impose that the model matches observed shifts in borrowing premia in response to a (negative)
aggregate shock, and use the model to control for the associated shift in aggregate credit demand,
allowing us to infer changes in standards. Our analysis delivers two key results, both consistent
with survey evidence. First, the increase in the level of borrowing premia is driven by aggregate
credit market tightening, i.e. the increase in demand for credit relative to the supply of savings.
Second, controlling for this first effect, lending standards only become tighter for the riskiest
borrowers, those with credit scores below approximately 680.5

Related literature We contribute to two broad areas in the literature: quantitative studies of
unsecured credit and empirical studies of loan supply frictions. Our contribution to the former
is both empirical and methodological. To our knowledge we are the first to incorporate pricing
data from Y-14M into a quantitative unsecured consumer credit model. Methodologically, it is
useful to think of loan pricing in two stages: how do borrower states and choices map into default

5We apply our method to the Covid-19 shock in the second quarter of 2020 due to the short history of Y-14M
data, but our approach is generalizable to any episode given data on borrowing premia.
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probabilities, and how do default probabilities map into loan prices? Our paper focuses on the
latter question and nests workhorse models with regards to the former.6 Correctly capturing the
prices consumers face is critical, and we help reconcile existing theory with data on this front.7

Several recent papers have examined the role of specific pricing and market features to explain
key trends in credit markets. For example, Raveendranathan (2020), Herkenhoff and Raveen-
dranathan (2020), and Greenwald et al. (2020) all depart from the standard pricing paradigm and
model credit contracts explicitly as long-term lines of credit. The former two papers yield pricing
relationships that are relatively flat with respect to default risk, consistent with our findings.8 An-
other example is Drozd and Kowalik (2019), which uses account-level supervisory data to study
promotional pricing, linking credit card deleveraging to the collapse in promotional activity.

Our work also provides further insights into recurring questions in the consumer credit lit-
erature. Since the pricing relationships in our model induce persistently larger, riskier debts for
borrowers, we offer an additional channel explaining the persistence of financial distress (Athreya
et al. (2018)). In the spirit of Nakajima and Ríos-Rull (2019), we find that cyclical properties of
interest rate spreads shape credit outcomes over the cycle, but we introduce the notion that not
all spread variation is attributable to default risk. Symmetrically, we complement recent studies
on how credit access shapes individual outcomes over the cycle (e.g. Herkenhoff (2019)) by
demonstrating how borrowing premia influence such access.

Lastly, our paper contributes to the empirical literature on loan supply frictions linked to
lending standards (e.g. Bassett et al. (2014) at the bank level and Lown and Morgan (2006),
Schreft and Owens (1991) in the aggregate). For example, in line with our model, Bassett et al.
(2014) find that tightening of credit supply is associated with a substantial decline in the ability
of households to borrow from banks.9 We contribute to these studies by using our model to
link lending standards and borrowing premia and to assess the impacts of observed changes in
lending standards on credit outcomes. We remain silent on the drivers of these changes beyond
aggregate credit market tightness.10

6Examples of workhorse models in this literature include Athreya (2002), Livshits et al. (2007, 2010), Chatterjee
et al. (2007), and Nakajima and Ríos-Rull (2019).

7Several studies have found similar pricing phenomena. For example, Agarwal et al. (2015) and Galenianos
and Gavazza (2020) document related pricing patterns on credit cards in the US, with a focus on the effects of
regulatory interventions, such as the 2009 CARD Act. Allen et al. (2014) and Allen et al. (2019) document and
explore price dispersion in the Canadian mortgage market.

8Herkenhoff and Raveendranathan (2020) also documents extensive markups in the U.S. credit card indus-
try. Our borrowing premia are consistent with such markups, and we measure how they vary across borrowers.
Greenwald et al. (2020) uses Y-14Q data (the counterpart of Y-14M for business loans) to show that credit lines
reproduce the observed flow of credit toward less constrained firms after adverse shocks.

9In related research, Chen et al. (2021) find that uncertainty in macroeconomic outlook rather than banks’
balance sheet positions led banks to tighten standards during the financial crisis. They build a DSGE model
consistent with this fact, arguing that credit supply shocks drive cyclical movements of lending standards.

10Our empirical companion paper Castro et al. (2020) fills this gap by combining SLOOS data with bank- and
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1 Measuring Borrowing Premia

In this section, we document the relationship between loan rates and borrower risk in the U.S.
credit card market. We describe our borrowing premium measure in Section 1.1 and our data in
Section 1.2. Section 1.3 reports our main empirical results.

1.1 Measurement approach

Standard unsecured credit pricing To fix ideas, we highlight the key elements of workhorse
unsecured loan pricing models.11 Consider an economy with competitive lenders that offer a
variety of contracts to households. Lenders can borrow at the equilibrium interest rate i(s),
where s is the aggregate state. A loan contract specifies a size ℓ < 0 and a discount price q;
the household pays the lender qℓ today in order to receive ℓ tomorrow. Lenders choose how
many contracts of size ℓ to issue to households with individual state x in aggregate state s. Next
period, households may choose to repay the loan or default. In default, the lender recovers a
fraction ξ ∈ [0, 1] of the principal ℓ. This canonical framework delivers the loan pricing equation

q(ℓ;x, s) =
p(ℓ;x, s) + ξ(1− p(ℓ;x, s))

1 + i(s)
, where p(ℓ;x, s) = P (repay ℓ tomorrow|x, s) (1)

is the expected probability of repayment. Expected repayment probabilities fully determine loan
prices, which are linear in p with slope governed by ξ and i, and low risk (high p) loans have lower
interest rates (higher prices). In light of this, much of the literature focuses on how loan size
choices and the evolution of idiosyncratic and aggregate states drive default decisions, assuming
that prices are determined according to (1).

Comparing model-implied and empirical loan rate spreads How, though, do default prob-
abilities (1−p) map into loan prices in the data? The literature has been silent on this front. We
attempt to fill this gap using a simple approach motivated by the workhorse theory. In a standard
unsecured credit model, the spread that a borrower pays over the equilibrium interest rate (i.e.
the one implied by default risk only) is computed using equation (1):

R̃(ℓ;x, s) =
q−1(ℓ;x, s)

1 + i(s)
=

1

ξ + (1− ξ)p(ℓ;x, s)
=⇒ R̃(p) =

1

ξ + (1− ξ)p
, (2)

where q−1(ℓ;x, s) is the gross interest rate on the loan. This representation makes clear that the
spread in this class of models depends on individual characteristics only through the repayment

loan-level data from Y-14M and Call Reports to investigate why and how banks change standards.
11See, for example, Athreya (2002); Chatterjee et al. (2007); Livshits et al. (2007).
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probability; that is, p is a “sufficient statistic” for borrower characteristics x, the choice of ℓ,
and aggregate conditions s. For transparency in our measurement ahead of our data description,
assume we can directly observe interest rate spreads and repayment probabilities (Rit, pit) for
each borrower i and period t.

We define the “borrowing premium” bit as the percentage difference between the observed
spread Rit and the theory-implied spread R̃(pit) from equation (2):12

bit =
Rit

R̃(pit)
− 1. (3)

This measure captures all additional costs of borrowing in excess of those implied by measurable
default risk.13 While these costs likely arise at least in part from supply frictions, such as lender
market power or constraints on loanable funds, we do not attempt to determine the origin of these
additional costs in the present paper, but leave this topic for future work. Rather, we measure
these costs and replicate them in a model to assess their impacts on individuals’ behavior in the
unsecured credit market.

1.2 Data and implementation

To provide evidence on how borrowing premia change with borrower risk, we combine two data
sources: (i) Y-14M, a detailed account-level panel data set built from the portfolios of large
bank holding companies in the United States, collected by the Federal Reserve Board as part
of the Comprehensive Capital Analysis and Review; and (ii) the FRBNY Consumer Credit Panel
(Equifax), a nationally representative five percent sample of all credit files for U.S. borrowers.
Combining these data sources provides the most complete picture possible of how terms of credit,
borrower characteristics, and borrowing and default behavior vary across the universe of borrowers
in the U.S.14 Specifically, this approach allows us to uncover the relationship between borrowing
premia on credit card loans and borrowers’ default probabilities. We now briefly describe the key

12We measure spreads in ratio terms (as opposed to simple differences) for ease of comparison with the extended
model presented in Section 6. We describe our measurement of p in the next section. Our empirical approach
could in principle be generalized to allow borrower choices, borrower states, and the aggregate state to matter
separately from their impact on p.

13This “wedge” measurement is similar in approach and interpretation to that presented in Chari et al. (2007),
and the notion of excess premium is consistent with Gilchrist and Zakrajsek (2012). The latter constructs a
credit spread index based on two components, one that captures firm-specific information on expected defaults
and a residual component (the excess bond premium), and uses it to predict economic activity and credit supply.
Although different in scope, our study builds on the same principle of recognizing the importance of both risk and
borrowing premia in movements in spreads on consumer loans.

14Focusing on terms of credit set by U.S. banks does not meaningfully limit our analysis. According to the
FRB G.19 release, the bank share of total revolving unsecured consumer credit is about 90%. Within the banking
sector, both the Y-14M sample) include the largest issuers of credit card loans and are representative of the U.S.
unsecured credit market.
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features of each data set and how we combine them to construct borrowing premia per equation
(3), with additional details on sample and variable construction provided in Appendix A.1.

Y-14M Y-14M is a monthly, loan-level data set built from reporting by banks as part of their
annual stress tests. This data is available starting in 2012 and covers the 35 largest U.S. banks.
It includes detailed borrower characteristics and loan terms not available in other data sets used
in the literature; in particular, it contains terms of credit (e.g. interest rates, credit limits) and
measures of both the extensive and intensive margins of credit usage that can be dis-aggregated
by borrower characteristics such as credit score and income. Y-14M’s main shortcoming for our
purposes is that it contains insufficient information on default behavior at the account level.

Equifax Consumer Credit Panel We supplement Y-14M with the Equifax Consumer Credit
Panel (henceforth Equifax) because Y-14M does not contain reliable measures of default at the
borrower level.15 The data set is a nationally representative anonymous random sample from
Equifax credit files, collected quarterly dating back to 1999. It contains rich descriptions of
consumer credit behavior, including various measures of default and outstanding balances by loan
type. Its main shortcoming is that it lacks information on income and terms of credit.

Combining the data sets To compute average borrowing premia by probability of default
according to (3), we combine Y-14M and Equifax using measures of borrower credit scores in the
two data sets as the common identifier. Our procedure does not and cannot match individual
borrowers across the two data sets. Instead, we aggregate borrowers into bins and appeal to the
huge samples in both data sets to match information at the bin level. We proceed in four steps.

First, we group borrowers in each data set by vigintiles (5% bins) based on their credit scores
in 2019.16 The credit score measure is the Equifax Risk Score (ranging from 280 to 850) in
Equifax and the FICO score (ranging from 300 to 850) in Y-14M.17

Second, we compute the average likelihood of default for each of these 20 groups using
Equifax. Our measure of default includes bankruptcy and severe derogatory, both of which affect
access to credit and interest rates on credit card loans.18 Importantly, both imply that the lender
has removed the debt from its books and thus represents the best counterpart to the model

15While information about banks’ assessment of each account’s probability of default is collected in Y-14M,
this is an optional reporting item for most banks (except those subject to the “advanced approaches” rule). As a
result, the variable is quite sparse, with less than 20% of banks reporting it.

16Our results are robust to finer partitions, for example into 2% bins.
17FICO scores come from the Y-14M data at the account level.
18“Severe derogatory” refers to any delinquency paired with a repossession, foreclosure, or charge-off. As

described in Appendix A.1, our results are robust to both broader and narrower definitions of default, but this
definition most closely matches the default institution in our model in Section 2.
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definition of default, as opposed to including delinquent loans, even with longer term past due.
Third, we compute average interest rates conditional on the median range of debt levels for

each borrower risk group using Y-14M. We control for debt level in order to control for the
effects of loan sizes on loan prices.19 We use the statutory rate, as opposed to computing an
effective rate from Y-14M, given that the retail APR represents a better measure for issuer pricing
strategies. While levels between statutory and effective rates are slightly different, the patterns
across borrower risk are the same.20 We transform raw interest rates into spreads using an average
prime rate (data analog of i(s)) of 5.28% for 2019.21

Fourth, we map borrowing premia from Y-14M to likelihood of default from Equifax. This
mapping requires two underlying assumptions. First, the population of borrowers in the two data
sets is the same. Given the dominance of the largest banks in the credit card market, Y-14M
captures almost the entire universe of credit card loans and borrowers (as represented by Equifax),
and so we view this assumption as reasonable. Second, Equifax’s Risk Score and Y-14M’s FICO
score assess borrowers’ likelihood of default in equivalent ways. There is ample evidence that this
latter assumption holds as well.22

A note on recovery rates Our borrowing premia specification (3) assumes that the recovery
rate ξ does not vary systematically with borrower characteristics. Our data does not allow us
to observe recovery rates conditional on default at the borrower level. Using Call Report data,
however, we document that there is no correlation between recovery and charge-off rates at the
bank level. This suggests that lenders do not experience systematically different recovery rates
from borrowers of different risk levels.23 In addition, we use our measurement system (1) - (3)
to run an experiment in which we assume a fixed borrowing premium (bit = bt for all i) to try
to uncover a schedule of recovery rates that would rationalize observed interest rate spreads by
borrower risk. As Appendix Figure A.5 shows, there is no such viable schedule of recovery rates.
Details of these empirical and model-based tests of recovery rates are provided in Appendix A.3.

19This is an economically important step for consistency between our model and the data. Credit card con-
tracts in the data take the form of credit lines, as opposed to a full loan-specific rate schedules. For excellent
examples of quantitative models using the credit line paradigm, see Raveendranathan (2020) and Herkenhoff and
Raveendranathan (2020).

20See, for example, the 2019 CFPB Report on The Consumer Credit Card Market. In fact, our finding that
rates flatten quite a lot for the high probability of default which holds across effective and statutory rate measures,
suggests that non-price terms seem to drive that portion of the market, justifying our censoring of the data below
the 4th credit score vigintile. Of course, the interaction between price and non-price terms is important, but is it
outside of the scope of this paper.

21This number is the evenly-weighted average of end-of-month prime rates for 2019.
22Given that multiple scoring models are used in determining applicant’s creditworthiness, one might argue

that the algorithm used to compute different credit scores might not produce identical measures for the same
consumer. However, findings in a 2012 CFPB report reveal that the scores produced by different models provide
similar information about consumers’ relative creditworthiness.

23See Appendix Figure A.4. Section 3 provides further details on how we compute recovery rates in our data.
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1.3 Empirical results

Borrowing premia by default risk Figure 1 documents the stark divergence between interest
rate spreads observed in our combined Y-14M / Equifax data set and those implied by workhorse
unsecured credit models. As default probability increases, loan rates increase in both settings,
but this rise is far steeper in standard models than in the data and is fully driven by risk premia.
Applying our measurement scheme to data from 2019 and the onset of the Covid-19 pandemic in
2020, panel (a) of Figure 2 confirms the presence of large borrowing premia in excess of these risk
premia in the unsecured credit market. The solid lines show our bin-specific borrowing premia,
and the dashed lines correspond to the balance-weighted average, b.

Figure 2 contains four primary findings. First, there is a large wedge between the risk-free
rate and the loan rate even for risk-free loans. Borrowing premia for loans with no default risk
face an average borrowing premium of 11.4%. This figure reaches as high as 14.6% for the
highest-premium bin, whose default probability is a mere 0.65%. This distorts credit usage along
the extensive margin, since there is a discrete jump in interest rates from savings to even the
safest loan. Second, borrowing premia are (statistically significantly) different across credit score
bins and are non-monotone and non-linear in default probability. For all but the lowest risk bins,
borrowing premia dissipate as risk premia increase. This distorts credit usage along the intensive
margin since the pricing penalty for a higher risk loan is much smaller in the data than in standard
models. As default risk premia rise, borrowing premia tend to decline to offset them. Third, this
pattern is preserved at the onset of the recession in 2020, despite an upward shift in premia across
the board. Premia increased most in proportional terms for high risk borrowers with this shift.
Fourth, panel (b) highlights that these patterns are preserved across income quartiles. Small
shifts in default probability correspond to much larger differences in borrowing premia than even
large differences in income. Conditional on default risk bin, the differences in premia in the top
three income quartiles relative to the bottom are below 1 percentage point (pp). In contrast, the
difference between low risk and high risk borrowers is just under 14 pps.

Determinants of borrowing premia A crucial assumption in our measurement approach is
that the benchmark spread (2) is summarized completely by default risk, which we map from
credit scores. Therefore, variation in borrowing premia (3) must also be explainable by variation
in credit score. Is this assumption valid? Our income-specific measures from panel (b) of Figure
2 address this question to some extent, suggesting that indeed default probability is the central
determinant of borrowing premia for credit card loans. Here we conduct a more formal regression
analysis to document the relative importance of default risk, income, and other observable factors
in explaining variation in interest rate spreads and borrowing premia.
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Figure 2: Borrowing premia by default probability and income quartile
Notes: This figure is constructed using the combined Equifax and Y-14M sample described in Section 1.2, with
b(p) defined in (3). The balance-weighted average premium is b = 11.3%. for 2019 and 11.8% for 2020.

Specifically, we estimate regressions of the following form via OLS:24

bit = α + β1FICOit + β2incomeit + γ1Xit + γ2Yt + γ3Zj(i,t) + εit (4)

where: bit, FICOit, and incomeit are the borrowing premium, credit score, and reported income,
(all in logs) for account i in quarter t, respectively; Xit is a vector of other borrower or account
characteristics; Yt is a quarter fixed effect; Zj(i,t) is a bank fixed effect for the bank j at which
account i is held at time t; and εit is an error term. Examples of characteristics included in
Xit are: (i) whether the account is a revolver; (ii) whether the borrower holding the account has
multiple relationships with the same lender; and (iii) whether the account is newly originated. Our
primary objects of interest from these regression analyses are the coefficients β1 and β2, as well
as the increase in explanatory power from including income, other account-specific characteristics
Xit, and bank and time fixed effects.

Table 1 presents our estimates for a range of sub-specifications from equation (4), providing
three main takeaways. First, FICO scores explain most of the variation in borrowing premia.
Our simplest specification with FICO only and no controls (column [1]) explains 60.7% of the
variation of borrowing premia. When adding income (column [2]), the explanatory power increases
by only 0.1 pp. This finding is robust across alternative sets of controls, such as when additional
account characteristics like revolver status and multiple relationships are included (columns [3]
and [4]).25 Additionally, the coefficients on FICO and income are all statistically significant at the

24Details on sample and variable construction are in Appendix A.
25Alternatively, one could imagine starting with income and adding in FICO; in that exercise, the explanatory

power of the income-only analog of column [1] from Table 1 is only 0.7%.
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dependent variable: borrowing premium
[1] [2] [3] [4] [5] [6]

FICO score 0.909 0.913 0.913 0.918 0.918 0.913
(2e-4) (2e-4) (2e-4) (2e-4) (2e-4) (2e-4)

income -0.004 -0.005 -0.005 -0.006
(2e-5) (3e-5) (3e-5) (3e-5)

revolver X X X X
multiple relationships X X X X
new account X X X X
quarter FE X X
bank FE X

R2 0.607 0.608 0.609 0.610 0.610 0.621

Table 1: Determinants of borrowing premia: regression analysis
Notes: Number of observations is 14,426,760. All estimates are significant at 1 percent level. All specifications
are variations on estimating equation (4). Column [1] imposes β2 = γ1 = γ2 = γ3 = 0; [2] imposes
γ1 = γ2 = γ3 = 0; [3] imposes β2 = γ2 = γ3 = 0; [4] imposes γ2 = γ3 = 0; [5] imposes γ3 = 0; and [6]
estimates all coefficients. All continuous variables are in logs. Details of variable and sample construction, as
well as alternative specifications, may be found in Appendix A.1.

1% level and have the expected signs.26 Second, other borrower and account characteristics have
little independent contribution to borrowing premia, as evidenced by the small gain in explanatory
power in columns [3] and [4] relative to [1] and [2]. These first two findings suggest that borrower
risk indeed encapsulates all the relevant observable borrower-level (i.e. idiosyncratic) information
that determines borrowing premia in excess of risk premia. Third, macroeconomic and bank-
specific (i.e. aggregate) characteristics – captured via quarter and bank fixed effects in columns
[5] and [6] – add little explanatory power.

Robustness One cause for concern for our estimates might be the linearity of equation (4)
in FICO score, given the shape of the borrowing premium schedule in Figure 2. An alternative
quadratic formulation (estimated in Panel A of Appendix Table A.1), however, highlights that
our findings are robust to such an alternative specification.

Another concern might be that the results in Table 1 are mechanical, since our binning
procedure already uses FICO to construct our borrowing premia estimates. To assuage this
concern, we repeat the analysis of equation (4) and Table 1 with APR (in spread terms, Rit) as

26The significance is unsurprising given the large sample size. A positive β1 indicates that higher FICO scores
(i.e. lower default probabilities) correspond to higher borrowing premia on average. A negative β2 implies that
higher income corresponds to a lower borrowing premium.
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the dependent variable, rather than borrowing premium (bit). Results for this analysis are in Panel
B of Appendix Table A.1. Consistent with our baseline analysis, we find that borrower risk explains
far more of the variation in APRs than any other borrower- or account-level characteristics, though
the total amount of variation explained declines in this case. Notably, we find that bank fixed
effects add appreciable explanatory power to these regressions.

Summary We find empirical evidence for borrowing premia in excess of pure default risk premia
that are large on average and vary with borrower risk, tending to decline as borrower risk increases.
Borrower risk is a sufficient statistic for these premia; other characteristics like income and the
relationship between the borrower and the lender, as well as macroeconomic and bank-specific
factors, are secondary. The model we build in Section 2 is designed to incorporate this evidence
into existing theory, delivering empirically consistent terms for consumer credit.

2 A Model of Unsecured Credit with Borrowing Premia

The model adapts Chatterjee et al. (2007) to match empirically observed interest rates by prob-
ability of default. Time is discrete, and there are no aggregate shocks. There is a single good
used for consumption and investment and a single asset available for saving and borrowing. All
quantities are measured in real terms. There are three types of agents. First, there is a unit mass
of infinitely lived households who decide each period how much to consume, how much to borrow
or save, and whether or not to default on existing debt. Second, there is a representative firm
which produces according to a constant returns to scale production function and hires capital
and labor in competitive factor markets. Third, there is a representative, competitive lender who
offers menus of borrowing and saving contracts to households.

2.1 Legal environment and market arrangements

Bankruptcy Following Chatterjee et al. (2007), the bankruptcy procedure in the model captures
Chapter 7 bankruptcy in the U.S. A household’s credit history is summarized by a “bankruptcy
flag” f ∈ {0, 1}. A status of f = 1 (f = 0) indicates the presence (lack of) default in the
household’s recent credit history. A household without a bankruptcy flag has access to the credit
market and may borrow or save, choosing wealth tomorrow a′ ⋚ 0; in contrast, a household with
a bankruptcy flag cannot borrow and must choose a′ ≥ 0.

A household who enters the current period with debt must choose whether to file for bankruptcy
(BK) or repay (R). In the event of a bankruptcy, the household: (i) cannot borrow or save in the
current period (a′ = 0); (ii) begins the next period with a bankruptcy flag (f ′ = 1); (iii) incurs a
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fixed pecuniary cost κ > 0; (iv) incurs a fixed non-pecuniary utility cost (“stigma”) χ > 0; and
(v) pays back only a fraction ξ ∈ [0, 1] of its debt. A household with a bankruptcy flag loses the
flag and regains access to the credit market with i.i.d. probability θ ∈ [0, 1], yielding an average
duration of bad credit standing of 1/θ. The institution of bankruptcy implies that competitive,
profit-maximizing lenders must price loans today to reflect the probability of default tomorrow.
In the case of default, lenders receive the fraction ξ of the loan that is repaid.27

Production and factor markets The single good is produced by the representative firm ac-
cording to the constant returns production function Y = F (K,N) = KαN1−α, where: Y is
aggregate output; K is aggregate capital; N is aggregate labor supply (in effective units); and
α ∈ (0, 1) is a parameter measuring the capital share in production. Since there are no gov-
ernment expenditures, all production must be channeled toward: aggregate consumption, C;
aggregate investment, I = K ′ − (1 − δ)K, where δ ∈ [0, 1] is the depreciation rate on capital;
and aggregate default costs. The rental rate on capital r and the wage rate w are determined
competitively, delivering standard factor prices r = α

(
K
N

)α−1 and w = (1 − α)
(
K
N

)α. The
equilibrium interest rate is i = r − δ.

Lending and saving markets The competitive, representative lender offers a variety of con-
tracts to households to maximize expected profits. A contract specifies a size ℓ and a discount
price q, whereby the household pays the lender qℓ today in order to receive ℓ tomorrow. The
appropriate sign convention thus defines contracts with ℓ < 0 as loans and those with ℓ > 0 as
savings. In the current period, the lender must choose a mass of contracts, m′(ℓ;x), of size ℓ to
issue to households with state x. Lenders can borrow at the equilibrium risk-free interest rate i

and are fully diversified against individual risk given the assumption of a continuum of households.

2.2 Households

Preferences Households are risk averse, value consumption flows according to the CRRA utility
function u(c) = c1−γ−1

1−γ
, and supply their full labor productivity inelastically. They discount the

future at rate β ∈ [0, 1), which evolves stochastically according to Γβ. Furthermore, households
receive a pair of additively separable i.i.d. shocks, ν = {νBK , νR}, which are attached to the
options to declare bankruptcy or repay and are drawn from a type one extreme value distribution
with scale parameter ζ and location parameter ν. These shocks serve three purposes. First,
they capture the fact that many defaults are associated not with income shocks, but with events
such as marital disruptions and medical expenses which we do not model explicitly. Second,

27Including this partial recovery is important for consistency with the data, since empirically a bankrupt or
severely derogatory account does not imply a zero return for the lender.
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these shocks imply a positive probability of default on even the safest loans, consistent with data.
Third, they smooth out individuals’ repayment probability functions – and therefore loan price
schedules –, which eases computation of the model.

Endowments and states Households begin the current period with net worth a ∈ R. Each
household has labor productivity ϵ1ϵ2ϵ3, where ϵ1 ∈ R+ is a permanent component or type,
ϵ2 ∈ R+ is a persistent AR(1) component with persistence ρϵ2 and innovation variance σϵ2 , and
ϵ3 ∈ R+ is a transitory component. We denote the transition process over labor productivity by
Γϵ.28 The full idiosyncratic state of the household is x = (a, β, f, ϵ = (ϵ1, ϵ2, ϵ3), ν), and the
endogenous distribution of households over x is µ(x).

Decision problem A household in good credit standing (f = 0) who is in debt (a < 0) first
decides whether or not to default, solving:

V0(a, β, ϵ, ν) = max
{
V BK
0 (a, β, ϵ) + νBK , V R

0 (a, β, ϵ) + νR
}
, (5)

where V BK
0 and V R

0 are the values associated with bankruptcy and repaying, respectively:

V BK
0 (a, β, ϵ) = u (ξa+ wϵ1ϵ2ϵ3 − κ)− χ+ βE [V1(0, β

′, ϵ′)] (6)

V R
0 (a, β, ϵ) = max

a′∈F0(β,a,ϵ)
u (c(a′; β, ϵ)) + βE [V0(a

′, β′, ϵ′, ν ′)] (7)

The bankruptcy value (6) reflects the fact that a defaulting household can neither borrow nor
save, incurs pecuniary and non-pecuniary default costs, loses good credit standing, and must still
pay back a fraction ξ of the loan. The value of not defaulting (7) reflects the fact that the
household can either borrow or save, choosing a′ from the set of feasible choices F0(a, β, ϵ) =

{a′ ∈ A : c(a′; a, β, ϵ) ≥ 0}, which accounts for equilibrium prices via the budget constraint:

c(a′; a, β, ϵ) =

a+ wϵ1ϵ2ϵ3 − q(a′; β, ϵ)a′ if a′ < 0

a+ wϵ1ϵ2ϵ3 − qa′ if a′ ≥ 0
(8)

The equilibrium price of a loan, q(a′; a, β, ϵ), depends on the household state and loan size,
whereas the equilibrium price of a savings contract q is a scalar.

28This earnings process is tailored to accommodate the implementation of Storesletten et al. (2004), but of
course it may be extended to other processes.
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Since ν follows a type one extreme value distribution, the probability of a bankruptcy is

gBK(a, β, ϵ) ≡ P (d = BK|a, β, ϵ) =

0 if a ≥ 0[
1 + exp

{
V R
0 (a,β,ϵ)−V BK

0 (β,ϵ)

ζ

}]−1

if a < 0
(9)

The same analysis shows that the ex-ante value of being in good credit standing is

V 0(a, β, ϵ) =

V R
0 (a, β, ϵ) if a ≥ 0

ζ log
[
exp

{
V BK
0 (β,ϵ)

ζ

}
+ exp

{
V R
0 (a,β,ϵ)

ζ

}]
− ζ log(2) if a < 0

(10)

where the branching reflects that agents not in debt do not receive the extreme value shocks
associated with the default decision.29

A household in bad credit standing (f = 1) can neither default nor borrow. Therefore, such
a household decides only how much to save:

V1(a, β, ϵ) = max
a′∈F1(β,a,ϵ)

u(c(a′; a, β, ϵ)) + βE
[
(1− θ)V1(a

′, β′, ϵ′) + θV 0(a
′, β′, ϵ′)

]
(11)

The feasible set F1(a, β, ϵ) = {a′ ∈ A+|c(a′; a, β, ϵ) ≥ 0}, with c(a′; a, β, ϵ) given by the bottom
expression in (8), reflects that borrowing is forbidden. The optimal savings policy is ga(x).

2.3 Loan pricing

To determine the price of a loan, the lender must determine the probability that a loan of size ℓ to
a borrower in state x will be repaid tomorrow. Taking into account decision rules and transitions
over exogenous idiosyncratic states, this probability is

p(ℓ; β, ϵ) =

∫
B×E

[1− gBK(ℓ, β
′, ϵ′)] Γβ(dβ′|β)Γϵ(dϵ′|ϵ). (12)

In order to determine loan price schedules given the repayment probability (12), the lender must:
(i) account for the recovery rate, ξ; (ii) discount at the equilibrium rate of return, i (the discount
price of a riskless savings contract is q = (1 + i)−1); and (iii) incorporate any borrowing premia.

29These results are standard in discrete choice. For recent applications to macroeconomic models with default,
see Chatterjee et al. (2020); Dvorkin et al. (2019). It can be shown that for the case when a < 0

V 0(a, β, ϵ) =

∫
V
V0(a, β, ϵ, ν)dF (ν) = ν + ζγE + ζ log

[
exp

{
V D
0 (β, ϵ)

ζ

}
+ exp

{
V ND
0 (a, β, ϵ)

ζ

}]
where γE is the Euler-Mascheroni constant and ν = −ζ(γE + log 2) is the location parameter for F (ν). This
normalization of ν insures that, a priori, there is no additional value to being in debt associated with the option
value of receiving the extreme value shocks.
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In our baseline version of the model, these borrowing premia are modeled as exogenous wedges.
Combining these three facets, the loan price schedule is

q(ℓ; β, ϵ) =
p(ℓ; β, ϵ) + ξ(1− p(ℓ; β, ϵ))

(1 + i) (1 + b(p(ℓ; β, ϵ)))
(13)

The numerator is the expected repayment per unit of principal (adjusting for default risk and
the recovery rate in the case of default), and the denominator reflects that borrowers pay an
additional premium b above and beyond the base cost of funds adjusted for expected repayment.
Inverting (13) and filtering out the interest rate confirms that this wedge maps exactly into
our measurements from Section 1. Consistent with our empirical analysis, we assume that the
borrowing premium depends on the size of the loan and the idiosyncratic state of the borrower
only insofar as these objects affect the repayment probability p.

2.4 Equilibrium

A stationary recursive competitive equilibrium in this model is a list of: (i) value functions V (x)

for households, with associated default and savings policies gBK(x) and ga(x); (ii) factor prices
r, w, and i; (iii) contract prices q and q(ℓ;x); (v) aggregate quantities N , K, and Y ; and (vi) a
distribution of households over idiosyncratic states µ(x) such that

1. Households optimize: The value function and associated optimal policies are consistent
with the household problem represented by equations (5) through (11);

2. Firms optimize: r, w, and i are consistent with the firm’s optimization problem;

3. Lenders optimize: q(ℓ;x) satisfies (13), and q = (1 + i)−1;

4. Consistency: the distribution µ(x) is stationary and consistent with household decisions;

5. Markets clear for: (i) labor: N =
∫
ϵ1ϵ2ϵ3µ(dx); (ii) capital: K =

∫
aµ(dx); and (iii)

contracts: m′(ℓ;x) =
∫
1[ℓ = ga(x)]µ(dx). (Goods clear via Walras’ Law.)

2.5 An illustration of pricing and borrowing premia in the model

Panel (a) of Figure 3 plots the empirical borrowing premium schedule against default probability
(estimated in Section 1), as well as the fit to that schedule which we use in our baseline model.30

We call this baseline a heterogeneous premia model (HP) because the level of the borrowing
premium varies with default risk. We compare our baseline HP model to two common versions in

30See Section 3.1 for details.
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Figure 3: An illustration of price schedules in the model

the literature: a fixed borrowing premium model (FP), and no borrowing premium model (NP).
Both the FP and NP models are special cases with b(p) = b for all p: the fixed premium case
has b > 0, while the no premia case imposes b = 0. Both the HP and FP models feature more
expensive credit for all borrowers than the NP model. Low risk borrowers face higher borrowing
premia in the HP economy than in the FP economy, but high risk borrowers face lower premia.

Of course, no borrower cares solely about borrowing premia; rather, she cares about the all-in
cost of a loan. Therefore, panel (b) of Figure 3 plots the loan price schedule against default risk,
q(p), which includes both risk premia and borrowing premia. The conclusion is straightforward:
borrowers face lower marginal penalties for taking on high risk loans in our baseline HP model
than either alternative. The HP price schedule is nearly flat in default risk, while the cost of a
loan increases sharply as risk increases in both the FP and NP economies.

Panel (c) presents panel (b) using the typical convention from the literature, charting a specific
individual’s price schedule q(ℓ;x). This panel illustrates the effect of leverage choices alone on
prices by fixing the individual’s state x as well as the repayment probability function p(ℓ;x) across
all three model variants. We highlight two main features. First, both the HP and FP economies
feature large wedges between the return on savings and the rate on a riskless loan. Second, our
baseline HP model features a price schedule that closely – but not exactly – approximates linear
pricing, with interest rates rising only slightly as leverage and default risk increase from zero. By
contrast, both alternative models feature sharp increases in interest rates as leverage increases.
This property is critical to our quantitative analysis.

3 Mapping Models to Data

This section describes our calibration approach. We proceed in three phases. First, we directly
estimate the schedule of borrowing premia over default risk from our Y-14M / Equifax data.
Second, we assign a set of standard parameters reflecting with technology, the legal environment,
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and idiosyncratic labor productivity shocks. Third, we calibrate the remaining parameters via
simulated method of moments (SMM) to match a set of credit market moments widely targeted
in the literature. Notably, in this third phase, we calibrate both our baseline model with het-
erogeneous borrowing premia (HP) and an alternative with a fixed borrowing premium (FP).
These two calibrated models allow us to demonstrate how the empirical incidence of borrowing
premia shapes credit market outcomes. We re-calibrate the FP model – rather than simply apply
the parameters from our baseline – so that the differences we highlight cannot be explained by
aggregate differences between the credit markets in the two economies.

3.1 Borrowing premia estimation

The goal of our borrowing premia estimation is to match the empirical schedule as closely as
possible since borrowing premia are exogenous in our baseline model. To construct the borrow-
ing premium schedule for our baseline HP model, we seek a smooth function defined for all p
(interpolated between the measured bins). To achieve this, we fit a 20th-order polynomial to the
schedule for FY2019 in Figure 2. A high order polynomial is required to match the sharp curva-
ture in the schedule at very low levels of default risk. The resulting premium schedule matches
the empirical one almost exactly. For details on fit and parameter estimates, see Figure B.1 and
Table B.1 in Appendix B.1.

3.2 Parameters assigned outside the model

Technology Panel A of Table 2 describes the key parameters which we specify outside the
model. Risk aversion, capital share, and depreciation parameters are standard from the literature.
The direct cost of default κ is set to 1.52% of median earnings as in Chatterjee et al. (2020).
The probability of regaining access to the credit market, θ = 1/7, is consistent with an average
duration of limited credit access upon default of seven years. The recovery rate, ξ = 16%,
matches estimates from Call Report data between 1990 and 2020.31

Labor productivity The individual labor productivity process is taken from Storesletten et al.
(2004). We choose this process since it captures the rich heterogeneity in earnings across indi-
viduals and allows for countercyclical earnings variance, which is useful in later experiments with
aggregate dynamics. The permanent and transitory components of this process are distributed
log-normally around zero, with variances σϵ1 = 0.448 and σϵ3 = 0.351, respectively. The persis-
tent component of the process follows an AR(1) process in logs, where the standard deviation of

31Recall from Section 1 that we find no evidence that borrowers of different risk levels have systematically
different recovery rates. See Appendix A.3 for details on how we compute recovery rates.
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shocks is σϵ2 = 0.129 and the persistence coefficient is ρϵ2 = 0.957.32 Appendix Figure B.2 shows
that our earnings process yields an economy-wide earnings distribution which closely matches the
one observed in Y-14M data.

3.3 Parameters estimated within the model

Conditional on these externally assigned parameters, we estimate the remaining ones by iteratively
searching the parameter space using the Nelder-Mead simplex approach.33 We target a set of
statistics widely used in the unsecured credit literature: bankruptcy and charge-off rates, debt
to income ratio, fraction of households in debt, and the average loan rate. Given the general
equilibrium nature of the model, we target the capital-output ratio as well. Lastly, following
Herkenhoff and Raveendranathan (2020), we use the share of default coming from events other
than job loss or income shocks from the Panel Survey of Income Dynamics (PSID) to capture
defaults not driven purely by income shocks in our model.

Our approach yields an overidentified system with six parameters and seven targets. When
reporting out estimates, we provide intuition for how these parameters shape model moments
and, in turn, how our empirical targets determine our parameter estimates. We also describe the
overall fit of the model and precision of our estimates to the extent possible. After performing
this analysis for the baseline HP model, we compare our estimates to the FP case in the next
subsection. See Appendix B.2 for an extended discussion of these issues.

Discount factors Following Athreya et al. (2018) and Krusell and Smith (1998), we assume
there are two β levels governed by transition matrix Γβ.34 The discount factor process has four
parameters: (i) the average β level, β = 0.876; (ii) the difference between high and low β levels,
∆β ≡ βH − βL = 0.379; (iii) the ergodic share of the population with high β, µH = 0.704; and
(iv) the transition probability from βL to βH , Γβ

LH′ = 0.077. This process implies high and low
β levels of βH = 0.988 and βL = 0.609, and a more persistent high β, Γβ

HL′ = 0.032.
32The number for σϵ2 comes from averaging the estimates for recessions and expansions in Storesletten et al.

(2004). The permanent and transitory components are discretized with 5 points. The persistent component is
discretized into a 10-state Markov chain using the Tauchen method, which allows the grid points for ϵ2 to remain
the same as the transition matrix changes over the cycle by manipulating the “step size.”

33Given the many nonlinearities and complexity of solving our model, a derivative-based approach is infeasible.
The Nelder-Mead method (attempted for many sets of initial conditions) yields consistent, stable results.

34Athreya et al. (2018) find that discount factor heterogeneity is crucial to capture the persistence of financial
distress at the borrower level. Krusell and Smith (1998) (and others since) find that this heterogeneity also helps
replicate the empirical distribution of wealth in the U.S. economy. We find this as well; see Appendix Figure B.2.
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Panel A: parameters assigned directly and common across models
Parameter Value Notes

(i) technology and legal
capital share α 0.360 standard
depreciation rate δ 0.072 standard, annual model
risk aversion γ 3.0 CRRA preferences
bankruptcy filing cost κ 0.0152 author’s calculations
prob. regain credit access θ 0.143 7-yr avg. exclusion
recovery rate ξ 0.160 midpoint of estimates [0.157 - 0.163]

(ii) labor productivity
standard deviation, ϵ1 σϵ1 0.448 permanent component, log-normal
persistence, ϵ2 ρϵ2 0.957 persistent component, AR(1) in logs
standard deviation, ϵ2 σϵ2 0.129 std. dev. of innovations
standard deviation, ϵ3 σϵ3 0.351 transitory component, log-normal

Panel B: parameters estimated internally for each model
Parameter HP FP Notes

average discount factor β 0.876 0.871 βL = β − µH∆β = βH −∆β
difference, high to low β ∆β 0.379 0.531 (βV P

L , βV P
H ) = (0.609, 0.988)

high β share µβH
0.704 0.831 (βFP

L , βFP
H ) = (0.430, 0.961)

low to high β trans. prob. Γβ
LH′ 0.077 0.052 Γβ

HL′ = Γβ
LH′(µ

−1
H − 1)

utility cost of default χ 0.727 0.548
extreme value scale ζ 0.123 0.104

Panel C: target moments for model calibration
Moment (pp) Data HP FP Source

bankruptcy rate 0.404 0.374 0.390 US Bankruptcy Courts
fraction in debt 11.7 12.3 12.2 Equifax
debt to income 4.30 4.34 4.32 Y-14M
average loan rate 19.6 21.1 21.1 Y-14M
capital-output ratio 3.00 3.09 3.09 BEA
charge-off rate 3.70 3.79 3.69 Call Reports
suboptimal bankrupt share 44.8 45.5 45.7 PSID

SSE - 3.07 3.15

Table 2: Baseline and fixed premium model: parameterization and targets
Notes: The model period is annual. The labor productivity process is taken from Storesletten et al. (2004),
Table 2 Row B. All moments are evenly weighted, and the sum of squared errors (SSE) is computed using
absolute deviations. Section 3.1 descibes the calibration of the borrowing premium schedule for the HP model;
the fixed borrowing premium for the FP model is the balance-weighted average from the HP model, 12.2%.
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The average level of discounting describes overall patience in the economy and therefore
has first order effects on the capital-output ratio and bankruptcy statistics. Conditional on this
average level, the other three parameters describe higher order moments of the discount factor
process. While all model parameters are jointly determined, they are closely tied to the fraction
of households in debt and the debt to income ratio. Intuitively, credit quantity moments (along
both the extensive and intensive margins) help inform the distance between and population shares
of the two β levels because our model is a closed economy and we target the average level of
wealth via the capital-output ratio.

Other preference parameters We estimate a non-pecuniary cost of default, or “stigma,” of
χ = 0.727. The extreme value scale parameter is ζ = 0.123. Both parameters are sensitive to
the size of the debt market and determine the bankruptcy rate. In addition, both parameters are
pinned down by the charge-off rate and the suboptimal bankruptcy share.35 Our model matches
empirical bankruptcy and charge-off rates, and is also consistent with the empirical fact that
around 45% of bankruptcies have a primary cause other than income or job loss.

Model fit and quality of estimates We obtain a close fit of the model to our empirical
targets, with a sum of squared errors of 3.07. While our parameter estimates are consistent
with related estimates in the literature, one would ideally evaluate the precision of our estimates
by obtaining standard errors. We face two difficulties in calculating these. First, since our
empirical moments come from several different data sources, obtaining an empirical variance-
covariance matrix requires strong assumptions on the correlations between moments computed
from different data sets. Second, some of our moments (e.g. bankruptcy and average interest
rates) are computed from almost the full “universe” of observations, suggesting that there is
essentially no variation in the calculated “sample” moment.

Still, to provide insight into both the precision of our estimates and into what features of the
data drive our estimates, we conduct two analyses in Appendix B.2 which we summarize here.
First, we compute the Jacobian matrix around our estimated parameters in order to measure the
elasticity of each model moment with respect to a deviation in each estimated parameter. This
reveals which parameters drive the largest changes in particular moments as discussed above.

Second, we compute the sensitivity matrix Λ from Andrews et al. (2017) around our estimates
to measure the elasticity of each parameter estimate with respect to each empirical moment. This
analysis reveals which moments drive the estimates of each parameter. We highlight three main
findings. First, the average discount factor is the most precisely estimated of our parameters.

35The suboptimal bankruptcy share is the share of bankruptcies accounted for by agents for whom bankruptcy
is not the action delivering the highest “fundamental” value. See Appendix A.5 for a formal description of this
and other model moments.

22



Second, the other three parameters of the discount factor process are sensitive to measures of the
fraction of households in debt and the debt to income ratio. Since we have no reason to believe
that there is substantial mismeasurement in these moments, we are confident in the precision of
our estimates of these parameters. Third, the stigma and extreme value scale parameters are the
parameters most strongly affected by the share of suboptimal default and the charge-off rate.
While this speaks to the merit of targeting both these moments, it is reasonable to suspect that
these are less precisely measured and therefore that the default preference parameters are less
precisely estimated than the others.36

3.4 Parameter differences between HP and FP economies

We re-calibrate the FP model so that any differences we document with respect to our baseline
HP model are not attributable to gaps in aggregate targets. We keep all externally assigned
parameters (besides borrowing premia) the same in the baseline and FP economies and set the
fixed borrowing premium, b, equal to 12.2% so that the two economies have the exact same
balance-weighted average borrowing premium.37 This feature insures that all differences we
document stem from differences in the incidence of borrowing premia, not in their average level.
We focus on two main differences between the estimated parameters for these model economies.

First, while we find very similar average discount factors across the two economies, the
discount factor processes differ meaningfully. Relative to the baseline, the FP economy features:
(i) lower β’s for both high and low levels; (ii) a 40% larger difference between the high and low
levels; (iii) an 18% higher ergodic share of high β; and (iv) more persistence in β overall (68%
lower transition probability for βH , 33% lower for βL). Second, the utility cost of default and
extreme value scale parameters are 25% and 16% lower in the FP economy, respectively.

These findings have a common economic driver which is central to our analysis. As highlighted
in Figure 3, a key difference is that loans with high default probabilities are much more expensive
in the FP economy than the baseline, while loans with low default probabilities are modestly
cheaper. This has two important corollaries. First, across households, those whose idiosyncratic
states make them fundamentally less risky – i.e. those with higher discount factors or higher levels
of labor productivity – face lower borrowing costs in the FP economy. By contrast, households in
riskier states face higher borrowing costs in the FP economy. Second, for a given household, the
FP economy features a higher elasticity of the loan rate to leverage: that is, marginal increases

36The share of suboptimal bankruptcies is a necessarily difficult object to measure since there can be many
reasons operative simultaneously in a household’s decision to file. Moreover, we measure this moment using survey,
rather than administrative, data. Charge-off rates have the potential to be noisy since recovery is a lengthy and
idiosyncratic process.

37While exogenous in the FP model, this average is endogenous in our baseline HP economy because the
borrowing premium on a given loan depends on the default risk of that loan, which is endogenous.
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in the size of the debt have a larger effect on credit prices than in the baseline.38

How do these forces manifest in our estimates? In order to replicate the share of agents
in debt and their leverage, the FP economy features implausibly more impatient borrowers who
are willing to bear these higher costs, explaining the downward shift in both βH and βL. By
construction, though, the FP economy must deliver the same average wealth, and so the gap
between β levels and the share of high β households increase to preserve the average level of
discounting.

While these discount factor adjustments bring the FP model in line with debt quantity mo-
ments, they also increase the riskiness of borrowing in the economy ceteris paribus. As a result,
there must be offsetting adjustments in the utility cost of default and extreme value scale pa-
rameter to match loan rate spreads and our bankruptcy and charge-off targets. The discount
factor shifts, however, must be considered in tandem with the fundamental decrease in riskiness
implied by households’ responses to the additional steepness of interest rate schedules in the
FP economy. This makes the required changes in χ and ζ ambiguous ex ante. Our findings
suggest that striking the right balance requires that both these parameters be reduced relative to
the baseline. Reducing stigma lowers the costs of default, increasing the riskiness of borrowing
all else equal. Reducing the variance of the taste shocks on default lowers bankruptcies and
charge-offs on average, but also makes the default decision more predictable.

4 Credit Composition and Borrowing Premia

To this point, we have shown that both the heterogeneous premia and fixed premium economies
can match key credit aggregates equally well, though each requires meaningfully different param-
eterizations. We now analyze how the incidence of borrowing premia shapes key cross-sectional
features of the unsecured credit market by comparing a set of untargeted moments across the
HP and FP economies. We consider two ways of disaggregating the market: by default risk
(Section 4.1) and by income (Section 4.2). These two sets of model-to-data comparisons allow
us to further illustrate the differences between the HP and FP models, and also provide us a set
of untargeted empirical tests which are useful for weighing the relative merits of each model.

4.1 The distribution of debt with respect to default risk

As discussed in Section 3.4, the key difference between the HP and FP economies is how default
risk is reflected in credit prices. An immediate question arises: how do these prices translate into

38Of course, both effects are relevant for all agents. We systematically find, though, that agents with low
discount factors and low labor productivities face significant default risk on any loans they might take, and so
they never benefit in practice from the cheapness of low risk debt in the FP economy.
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Figure 4: Share of debt balances by default risk, models and data
Notes: This figure plots the cumulative share of total debt balances (y-axis) up to each level of default
probability (x-axis) in several model variants and in the data. The data are from our Y-14M sample, with
default risk bins determined by credit score.

shifts in the composition of credit balances? Figure 4 provides insights into this by plotting the
cumulative share of total debt balances by default probability for three versions of the model: (i)
our baseline HP model; (ii) the re-calibrated FP model; and (iii) an FP economy solved under our
baseline HP parameterization. This set of moments provides a straightforward way to summarize
the joint distribution of credit quantities and riskiness in the model, just as Figure 3 does for
credit prices and riskiness.

First, we compare the baseline HP model to the FP model with the same parameter values.
This latter economy differs only due to the shape of loan price schedules and not parameter values.
As such, this FP economy is sharply tilted towards low risk debt because households respond to
the high costs of risky borrowing. The cumulative shares of debt with default probability less
than 1%, 5%, and 10% are 21.2%, 12.6%, and 7.6% higher, respectively, in this “naive” (i.e. not
re-calibrated) FP model compared to the baseline.39

Second, we compare the baseline HP and re-estimated FP models in order to account simul-
taneously for the shape of price schedules and estimated parameter differences. In this case, the
CDF for the FP economy gathers mass more quickly than its counterpart for the baseline for all
but very low risk levels, with much lower cumulative shares at low risk levels (32.4% lower at 1%

39Appendix Table B.3 reports the target moments of the FP model under HP parameters, as well as their
deviations from the HP model. The differences are consistent with the results reported here: agents ration their
borrowing primarily along the intensive margin, opting for lower risk, smaller loans than in the baseline model.
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default probability), higher cumulative shares at high risk levels (2.7% higher at 15%), and very
similar shares at intermediate levels (0.45% at 5%). The differences at low default probabilities
stem from the lower discount factors and stigma costs in the FP economy: agents are riskier
across the board. In the middle of the range of riskiness, though, the fundamental pricing force
takes over, and agents begin to respond to incentives by staying away from high risk loans, leading
to a thinner right tail in the FP model than in the baseline.

How do these models compare to the data with respect to this key metric? Even though
the set of moments in Figure 4 is untargeted, our baseline model closely matches the empirical
distribution from our merged Y-14M / Equifax data. By contrast, the FP model does not. This is
intuitive: households’ debt choices respond to prices, and our baseline model accurately captures
how these prices respond to risk. Therefore, our baseline model also more accurately captures
the distribution of debt balances with respect to risk. This offers an important additional reason
for unsecured credit models to account for empirically correct borrowing premia.

4.2 Moments by income

Our unique data set allows us to construct key moments by conditioning directly on default risk.
Since many widely-used data sets preclude this, most existing studies turn to a more readily
available measure for cross-sectional analysis: borrower income. For comparability, Figure 5 plots
key data moments by income quartile together with their counterparts in our baseline HP and
FP models. Again, we find that our baseline model outperforms the FP model. First, panel (a)
shows that our baseline delivers the observed modest decline in loan rates as income increases.
The FP model, by contrast, delivers a much steeper profile, particularly overstating the interest
rates paid by the bottom income quartile. Second, consistent with the share of debt by default
risk from Figure 4, panel (b) demonstrates that, in line with the data, our baseline model features
the lowest (highest) income quartiles taking on a larger (smaller) share of total debt than the FP
model. Finally, panel (c) highlights that our baseline is also more consistent with the observed
sharp decline in average individual leverage with respect to income, though neither model hits
the high level of indebtedness for the lowest income quartile.

Summary of cross-sectional comparisons Motivated by our empirical analysis in Section 1,
borrowing premia in our baseline HP model decline with borrower risk. The flat price schedules
induced by these borrowing premia alter households’ budget sets relative to the standard FP
model, dampening their disincentives to take on high risk loans. While both the HP and FP
models match key aggregate credit market features by construction, the HP model outperforms
the main alternative in terms of matching untargeted disaggregated empirical patterns for key

26



Figure 5: Untargeted moments by income quartile: data vs HP and FP models
Notes: Each figure plots the indicated moment by income quartile in several model variants and in the data.
The data are from our merged Y-14M / Equifax sample, using income at origination as the income measure.
Empirical rates are raw APRs scaled by the prime rate. The sums of squared errors between model and data for
the average loan rate / share of total debt / debt to income ratio / total, evenly weighted across quartiles and
moments, are 0.45 / 54.5 / 9.99 / 65.0 for the baseline model and 14.9 / 96.5 / 20.5 / 131.9 for the FP model.

credit variables by both borrower income and default risk. We view this as strong evidence in
favor of incorporating empirically consistent borrowing premia in unsecured credit models.

5 Aggregate Dynamics and Borrowing Premia

Our analysis so far has examined the steady state of the HP and FP models to highlight cross-
sectional effects of incorporating the variable incidence of borrowing premia we observe in the
data. In this section, we use the model to study aggregate dynamics with a particular focus
on two areas. First, we examine the differences between our baseline heterogeneous premia and
fixed premium economies to highlight how the incidence of borrowing premia shape aggregate
dynamics. Second, using data from our Y-14M / Equifax sample from the second quarter of
2020 – corresponding to the beginning of the Covid-19 pandemic –, we analyze how the response
of borrowing premia to a negative shock affects aggregate dynamics. Our aggregate shock omits
several salient features of the Covid-19 recession, but it is the only recession available in our
Y-14M sample period, and so we use it for illustrative purposes.
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5.1 Impulse response to a negative shock

The aggregate shock and borrowing premia We simulate a negative aggregate shock with
two exogenous components: a 1% reduction in TFP and an increase in labor productivity risk.40

This latter feature is important: income risk is critical for determining default risk, and therefore
both default risk premia and borrowing premia. On impact, the variance of earnings increases
from σϵ2 = 0.129 to σR

ϵ2
= 0.163, following Storesletten et al. (2004). The persistence of the

shock, ρz = 1/3, is consistent with a three-year recession.
In addition to these standard components, we consider two possible scenarios for the schedule

of borrowing premia b(p). In the first, there is no response: the schedule remains unchanged from
its steady state level, which matches the average for the year 2019 as described in Section 3.1.
In the second, the schedule shifts up on impact of the shock to the average observed on impact
of the Covid-19 crisis (March to June 2020).41 This upward shift raises the level of borrowing
premia across the board, but does so more in relative terms for high risk borrowers. We term the
first scenario “no response,” and we term the second “tightening.”

Results Table 3 presents our main aggregate results from simulations of this shock. The first
three columns summarize the impulse responses by presenting the percentage difference relative
to steady state for the indicated moment on impact of the shock.42 We treat the results in
column [1] as our benchmark, corresponding to the model with heterogeneous incidence and no
response of premia on impact. Column [2] corresponds to the HP model in which premia shift
up on impact, and column [3] corresponds to the FP model with no response.

Focusing first on commonalities across our simulations, the directional responses on impact
for most variables reported in Table 3 are the same in each variant: the debt to income ratio,
the bankruptcy rate, and average loan spreads all increase, while total debt and aggregate con-
sumption decrease. The exceptions are: (i) the average borrowing premium, which declines in
the benchmark model, increases in the version in which premia tighten, and remains flat (by
construction) in the fixed premium model; and (ii) the fraction of households in debt, which
increases in both HP models but decreases slightly in the FP model. In all cases, there is an
increase in demand for credit coming from a decline in real incomes (via the equilibrium wage)
and an increase in earnings risk. This increase in credit demand is offset somewhat by a surge in
bankruptcies, since those who file cannot take on debt by construction. Offsetting the demand

40Formally, we assume Y = zKαN1−α, with z = z = 1 in the steady state model. On impact of the shock,
we have z1 = 0.99, and then zt+1 = ρzzt + (1− ρz)z thereafter over the course of the recovery.

41We use the exact same estimation procedure for the shock impact schedule as for the steady state schedule;
polynomial estimates may be found in Table B.1, and a fit of the model to the empirical borrowing premium
schedule may be found in Figure B.1.

42Full paths for these variables are presented in Appendix Figure B.3.
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Incidence of premia Heterogeneous Fixed Heterog. Fixed
Response of premia on impact None Tighten None Tighten None
Moment % diff, impact v steady state pp diff, [j] − [1]
Column [1] [2] [3] [2] − [1] [3] − [1]

total debt -0.06 -0.30 -0.80 -0.24 -0.74
debt to income 0.77 0.54 0.15 -0.23 -0.63
fraction in debt 0.43 0.30 -0.05 -0.13 -0.47
bankruptcy rate 11.8 14.4 16.6 2.58 4.79
average loan rate spread 0.13 4.36 0.89 4.23 0.76
average borrowing premium -0.55 3.75 0.00 4.30 0.55
aggregate consumption -0.21 -0.22 -0.23 -0.01 -0.02

Table 3: IRF: peak responses across model variants
Notes: Columns [1] through [3] show the percentage difference in each row’s moment at impact of the shock to
the pre-shock steady state for the indicated model variant. The rightmost columns compare the indicated model
variant to the version with variable premia and no response of premia to the impact of the shock, showing the
percentage point difference in the max percentage difference moments from the leftmost columns. Full paths for
the variables in this table are depicted in Figure B.3.

side, though, increases in individual-level default probabilities limit credit supply, shifting up in-
terest rate schedules all else equal. Combining these forces, we see drops in both total debt and
total consumption on impact.

We next extend the analysis from Section 3.4, comparing how our baseline HP and FP
economies (columns [1] and [3]) differ in terms of aggregate dynamics. Outcomes are more severe
across the board in the FP model, with the shifts in aggregate moments looking qualitatively
similar to the case with tighter premia described below. As discussed above, a key difference
between the HP and FP models is that increases in default premia associated with riskier loans
are not offset by decreases in borrowing premia in the FP model. Therefore, marginal increases
in risk lead to steep increases in spreads, and so generally borrowers choose loans with only small
increases in risk relative to steady state.

How do these forces shape aggregate results? While the increase in loan spreads is only 0.76
pps larger in the FP model than in our benchmark, declines in credit quantities are much sharper:
the debt to income ratio rises by 0.63 pps less, the fraction in debt rises by 0.47 pps less (actually
declining relative to steady state), and total debt rises by 0.74 pps less (a drop over 10 times as
large as the benchmark). Facing worse credit prospects, households default more and consume
less: bankruptcies increase by nearly 5 pp more, and the drop in aggregate consumption is 9%
larger in the FP model.

Finally, we analyze how the upward shift in the schedule of borrowing premia shapes the
aggregate response of the credit market to the shock by comparing columns [1] and [2] in Table
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3. In the benchmark model, individuals – particularly those with higher risk – face better terms of
credit since borrowing premia do not increase; by adjusting their borrowing choices, they actually
pay 0.55 pp lower borrowing premia on average than in steady state, which leaves average
spreads virtually unchanged from their steady state level (+0.13 pps only) despite the increase
in individual-level risk outlined above. By contrast, the tightening of the schedule of borrowing
premia rules out such adjustments, and borrowing premia and spreads increase sharply on impact
(+3.75 and +4.36 pps, respectively). These fundamental pricing shifts are reflected in all key
credit market quantities. The average increase in borrower leverage and the share of debtors are
both 30% lower when premia increase, and as a result the drop in total debt on impact is five
times as large. Since tighter premia make future access to credit less valuable, we also observe
a 22% larger initial surge in bankruptcy filings. The drop in aggregate consumption is just over
2% larger with tightening.

5.2 Summary of business cycles

In this section, we explore aggregate dynamics further and include business cycle moments in
our empirical comparisons. Specifically, we augment our baseline model to consider stochastic
equilibria, featuring persistent shocks to aggregate TFP. We calibrate these shocks to match
the frequency and duration of recessions and the cyclical volatility of aggregate output, and link
both the riskiness of the persistent component of labor productivity (following Storesletten et al.
(2004)) and the schedule of borrowing premia (following the estimation described above) to the
level of TFP.43 Given our rich household heterogeneity and the endogenous aggregate evolution of
the distribution µ(x), we solve the model using the method of Krusell and Smith (1998). Details
of the extension, calibration, and computation of the model, as well as a full set of the results
referenced in this subsection, are available in Appendix B.4.

While all three variants of the model from Table 3 are broadly consistent with key business
cycle moments of the credit market, our heterogeneous premia models: (i) more closely match the
data than the FP version; and (ii) demonstrate that including the response of borrowing premia
in a downturn is crucial for matching the volatility of interest rate spreads. Along the former
dimension, the HP model performs particularly better than the FP model with regards to credit
quantity moments such as total debt, the average debt to income ratio, and bankruptcy filings.
In particular, total debt in the FP model overpredicts the countercyclicality we observe in the
data and underpredicts volatility. Our HP models correct this by more accurately capturing the
prices faced by the crucial high-risk segment of the credit market. Along the latter dimension, the

43Given that we only have reliable Y-14M data dating back to 2014, we are unable to measure borrowing premia
in historical recessions outside the current one, which limits our ability to perform a richer estimation of the b(·)
function over the cycle.
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HP model with borrowing premia that do not shift over the cycle yields implausibly low volatility
in average spreads. This suggests that movements in borrowing premia, rather than pure risk
premia, drive cyclical movements in unsecured credit prices.

6 Lending Standards and Borrowing Premia

Our focus so far has been on capturing the empirically accurate incidence and response of bor-
rowing premia to measure their cross-sectional and dynamic impacts on the unsecured credit
market. This analysis has been intentionally agnostic about the sources of borrowing premia.
While an exhaustive study of the drivers of these borrowing premia is out of scope for the present
paper, they are necessarily linked the commonly cited but less well-understood concept of lending
standards. These are related to such factors as the economic outlook, competitive landscape of
the credit market, banks’ risk tolerances, and many more. In this section we extend our model to
include a notion of lending standards and endogenize one likely driver: credit market tightness.

We preserve virtually all of the structure from our baseline model, but enrich it in one key
dimension: we allow the level of borrowing premia to be endogenous. This level effect is de-
termined by the endogenous aggregate demand for credit and supply of loanable funds in the
economy. Meanwhile, the incidence of borrowing premia – i.e. the shape of the schedule –
is exogenous. We argue that this exogenous component of borrowing premia offers a useful,
quantitative formalization of the portion of bank lending standards that is supply-driven. This
component is little understood but quantitatively significant, as documented in Bassett et al.
(2014) and ? for example. We proceed by first describing existing measurements of lending
standards and their shortcomings. We then present our extended model and conduct our main
quantitative experiment: an estimate of shifts in lending standards.

6.1 Overview of lending standards

Each quarter, the Senior Loan Officer Opinion Survey (SLOOS) conducted by the Federal Reserve
surveys a representative sample of U.S. banks about changes in their lending standards along
many dimensions (e.g. approvals, limits, spreads, etc.). Typically, these qualitative responses are
aggregated into diffusion indices intended to measure the extent to which lending standards have
tightened or eased in the aggregate. These indices show that standards tighten sharply during
recessions, ease gradually during recoveries, and remain largely unchanged during expansions.44

44See Appendix A.4 for additional details on the SLOOS and the corresponding construction of diffusion indices.
Broadly, this index takes the responses of banks on changes in lending standards and weights them by banks’
shares of total credit card lending. The patterns we document hold broadly for all categories of bank loans. See
Figure A.6a for trends in standards and terms diffusion indices for the U.S. credit card market.
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Notably, measures of lending standards constructed in this way necessarily describe quarterly
changes as opposed to levels, making comparisons across time difficult.45

While many theories use tightness in lending standards measured by these diffusion indices
as justification for modeling a restricted supply of credit, these papers do not readily point to
a common type of change in credit supply.46 Why do banks tighten standards, and how are
tightened standards reflected in interest rate spreads, credit limits, or other terms of credit? Our
goal in this section is to combine our model, our empirical estimates of borrowing premia, and
survey-based evidence to provide a more concrete understanding of lending standards.

It is worth noting that several existing empirical studies shed light on some of the nuances
of lending standards.47 In addition, certain editions of the SLOOS ask special questions about
these issues. For example, in the October 2019 SLOOS, banks cited as main reasons for reduced
willingness to approve credit card applications: (i) concerns related to borrowers’ ability to con-
sistently make payments; (ii) expected deterioration in portfolio quality; (iii) a less favorable or
more uncertain economic outlook; and (iv) a reduced tolerance for risk. These responses support
two key facets of the framework we now outline: that lending standards are closely related to
borrower risk, and that they respond to aggregate conditions.

6.2 Extending the model

Overview We augment our baseline model with a constraint on lenders’ loan supply which
dictates the maximum fraction of loanable funds (savings) in the current period that lenders can
allocate to credit provision (loans): that is, for a given standards weighting function λ(·),

total standards-weighted funds borrowed today ≤ total funds saved today (14)

Consistent with our empirical approach, we assume that the weight on a given loan varies with
both the riskiness of the loan and time (or the aggregate state). Equation (17) below adapts
(14) into model notation. While this specification is admittedly ad hoc, as demonstrated below it
has two features of first order importance to our exercise: (i) it allows borrowing premia to have
an endogenous component which depends on overall credit market tightness; and (ii) it preserves
the pricing functions from our baseline model.

45While the July SLOOS inquires about the levels of standards relative to the midpoint of the range since 2005,
levels are still difficult to compare across time in general.

46See, for example, Dell’Ariccia and Marquez (2006), Darst et al. (2020), and Fishman et al. (2019). Most
related in spirit to our paper is ?, who build and estimate a DSGE model with credit fictions. The authors here
argue that a shock to credit supply accounts for a significant portion of cyclical changes in lending standards.
Shocks to credit supply in their framework originate from moral hazard; in our framework, there are no direct
shocks to credit supply, just shifts in the quantity of loanable funds relative to loan demand.

47See, for example, Bassett et al. (2014), Castro et al. (2020), and ?.
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Since households in the model behave competitively – taking the savings price q and loan
price schedules q(ℓ;x) as given –, this change in the lender problem has no direct impact on the
specification of the household block of the model. In particular, equations (5) through (12) are
unchanged. All the differences in this extended model come from how prices are determined on
the lender side, and so we turn our attention there.

Modified lender problem As in our baseline model, competitive lenders maximize expected
discounted flow profits, but now this profit maximization problem is subject to an additional
constraint of the form (14). Flow profits π for a lender are the sum of net capital returns and
repayments on old contracts, net of issuances for new contracts:

π(K ′,M′;K,M) = (1 + r − δ)K −K ′︸ ︷︷ ︸
net return on capital

+

∫
X×L

q(ℓ;x)ℓdm′(ℓ;x)︸ ︷︷ ︸
issuances, new contracts

−
∫
X−1,X ,L

(1− gBK(ℓ;x) + ξgBK(ℓ;x)) ℓdm(ℓ;x−1)dP(x|x−1)︸ ︷︷ ︸
repayments, last period contracts

(15)

The first term in this profit equation is the return on aggregate capital (rK), net of investment
(K ′ − (1 − δ)K). The second term reflects payments from households for contracts issued
today, M′ ≡ {m′(ℓ;x)}, at discount prices {q(ℓ;x)}. The third term reflects repayments from
households on last period’s contracts, M ≡ {m(ℓ;x)}. The gBK(·) term in this expression
accounts for bankruptcies declared on loans made in the previous period, while P(x|x−1) accounts
for exogenous transitions of individual states between periods. The ex ante repayment probability
for a loan of size ℓ to a borrower in state x, p(ℓ;x), is calculated exactly as in equation (12).
Therefore, the lender problem is

W (K,M) = max
K′,M′

π(K ′,M′;K,M) +
1

1 + i
E [W (K ′,M′)] (16)

subject to −
∫
X×L−

λ(p(ℓ;x))q(ℓ;x)ℓdm′(ℓ;x) ≤
∫
X×L+

q(ℓ;x)ℓdm′(ℓ;x) (17)

The objective function (16) is the recursive formulation of the discounted sum of the flow profits
defined in (15), with lenders discounting at the equilibrium interest rate. The expectation operator
in this expression accounts for all individual-level transitions. The key addition in our model is
constraint (17), which implements the generic version (14). The summation on both sides of
(17) is over all idiosyncratic states, but the summation on the left (right) side of the equation is
only over loans, L− = {ℓ|ℓ < 0} (savings, L+ = {ℓ|ℓ > 0}).

Analyzing this problem using standard techniques and placing a multiplier η ≥ 0 on constraint
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(17) delivers the following two pricing equations:48

q =
1

(1 + i)(1 + η)
(18)

q(ℓ;x) =
p(ℓ;x) + ξ(1− p(ℓ;x))

(1 + i) (1 + ηλ(p(ℓ;x)))
if ℓ < 0 (19)

Equation (18) defines the common price on all savings contracts. Since there is no default risk,
individual states x do not affect this price, but lending standards still have an indirect, general
equilibrium effect via the tightness of the loan supply constraint. If the constraint binds so that
η > 0, then q < (1 + i)−1, and savers earn a premium relative to our baseline model, easing the
constraint by promoting savings among households. Equation (19) is the price of a loan. The
numerator is the expected repayment per unit, and the denominator reflects that borrowers pay
an additional premium above and beyond the base cost of funds, both exactly as in the loan
pricing equation (13) from the baseline model.

The key difference between equations (13) and (19), then, is that the borrowing premium
now has an endogenous component (via η) in addition to the exogenous one (via λ(·)). Applying
the definition of the borrowing premium as in our empirical analysis, we obtain

b(p) = ηλ(p) (20)

When the supply of savings is low relative to the demand for credit, the multiplier η increases
to ease constraint (17) by raising loan and savings rates to discourage borrowing on the margin.
Importantly, this increase in borrowing costs is accomplished purely through borrowing premia
(separately from risk premia), and this effect is more pronounced for loans which have high λ-
weights in constraint (17). Note that the shape of the borrowing premium schedule with respect
to default probability is entirely determined by the exogenously specified λ(·) function, while its
level is endogenously determined via the equilibrium value of the multiplier η. This multiplier
summarizes the endogenous effect of credit market tightness, that is, the demand for debt relative
to the supply of savings.

6.3 Estimating lending standards

Approach Since lending standards are inherently dynamic, our approach to inferring them
combines the steady state of the extended model with the endogenous response to a negative
shock. The former element delivers a baseline lending standards function, λ0(p), and equilibrium
multiplier, η0, while the latter yields the shifted versions, λ1(p) and η1. Comparing these two λ(·)

48Details and derivations may be found in Appendix C. Note that q(ℓ;x) = q when ℓ ≥ 0.
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functions offers a well-defined notion of “tightening” or “easing” standards, both in the aggregate
(summing across all risk levels) and in the cross-section (considering each risk level). We require
that our endogenous borrowing premia schedules (20) match exactly those in the data, using
the FY2019 schedule as our baseline schedule, b0(p), and the March - June 2020 schedule as
our on-impact schedule, b1(p).49 In our modified environment, this implies that the parameters
of the lending standards function λt(·) are identical to those of the borrowing premia function
bt(·) from Table B.1, up to an endogenous level shift from the multiplier ηt. We use the same
parameterization as our baseline (heterogeneous premia) model from Table 2.50

In order to bring our model environment closer to the empirical setting of the Covid shock
observed in early 2020, we use a slightly different aggregate shock relative to the one from
Section 5.1, whose primary purpose was to illustrate aggregate dynamics with borrowing premia
in a general sense. We maintain the assumptions that the shock has an expected duration of 3
years and that earnings risk increases (consistent with Storesletten et al. (2004)) on impact, but
we assume a larger initial drop in TFP of 9.8%. This generates the drop in output observed in
the first quarter of the pandemic recession.51

From the perspective of our inference on lending standards, the impact of the shock has
two main consequences: (i) demand for credit increases, driving up η; and (ii) borrowing premia
shift out, changing b(p). Recall that our calibration ensures that ηtλt(p) = bt(p) for t = 0, 1.
The estimated proportional shift in lending standards, then, adjusts observed shifts in borrowing
premia for shifts in credit demand:

λ1(p)/λ0(p)︸ ︷︷ ︸
estimated shift in standards

= b1(p)/b0(p)︸ ︷︷ ︸
observed shift in premia

/
η1/η0︸ ︷︷ ︸

endogenous change in multiplier

(21)

Equation (21) offers a clean summation of how our approach links standards, credit demand, and
borrowing premia. Our estimated proportional shift in lending standards scales observed shifts in
borrowing premia at each level of risk by the endogenous response of aggregate credit demand,
summarized by the change in the multiplier on constraint (17). An important feature of equation
(21) is that while it holds p-by-p, the scale factor for aggregate demand is independent of p. As
a result, even if borrowing premia increase for all risk levels, our model reveals that this does not
automatically imply that lending standards increase for all risk levels.

49This is the extended model’s analog of the approach from the impulse response analysis in Section 5.1.
50The only differences between the steady states of our baseline and extended models come from the additional

return on savings associated with a positive η per equation (18). Since the value of η is small (it increases the
return on savings by less than 6 bps), the differences between these economies are negligible.

51With better earnings data from the Covid-19 crisis it could be possible to match this component of the
shock more closely to the empirical episode as well. Absent this data, though, and recognizing that other policy
interventions played a role in shaping the response to the crisis, we maintain our initial assumption for transparency.
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Figure 6: Estimated lending standards
Notes: This figure shows the inferred lending standards schedules for pre-Covid and Covid periods, respectively.
Percentage differences are computed with 2019 (“pre-Covid”) as the base year. The equilibrium values of the
loan constraint multiplier are η∗0 = 5.68e-4 in steady state and η∗1 = 6.08e-4 on impact of the shock. In panel
(c), the balance-weighted average lending standards is computed using the distribution of borrowing choices
within the period as in Figure 4.

Results Figure 6 presents the results of this analysis. Panel (a) plots the estimated standards
functions in steady state and on impact of the shock. By construction, the shapes of these
schedules and their corresponding borrowing premia schedules match exactly, but their levels vary
because the equilibrium value of the multiplier on impact, η∗1 = 6.08e-4, is 7.1% higher than
its steady state level, η∗0 = 5.68e-4. Panel (b) plots the percentage difference in the standards
function as in equation (21), as well as the observed shift in borrowing premia. The latter change
confirms that borrowing premia shifted up across all levels of risk, but particularly so for high risk
borrowers; for example, no borrower with a default probability lower than 10% saw an increase in
borrowing premium of more than 8.9%, while a borrower with a default probability of 15% saw
their borrowing premium increase by 23.0%.

The estimated shifts represented by the blue line in panel (b) imply that standards moved
against higher risk borrowers. In particular, we observe “tightening” – a positive shift in the λ(·)
function – for all default probabilities above 8.2%. Using our empirical mapping from default
probabilities to credit scores, this corresponds to borrowers with credit scores of approximately
670-690 or below. For very high risk borrowers – for example, those with default probability
in excess of 14.1% or a credit score lower than about 640 – the effect is especially stark, with
estimated λ(·)-weights increasing by more than 10%. By contrast, intermediate and low risk
borrowers faced little change in standards with estimated shifts in λ(·)-weights in the range of
-2.7% to -0.1%. The modest increases in borrowing premia these borrowers faced, then, were
entirely attributable to the general equilibrium effect of increased demand for credit.
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Validation: how do standards in our model compare to survey evidence? We now
compare our results to survey evidence from the Senior Loan Officer Opinion Survey (SLOOS).
As discussed above, it is difficult to incorporate qualitative survey data directly into a quantitative
model, and quantitative diffusion indices have no direct analog in the model. However, by delving
deeper into the details of these surveys we can gain insight into how the model’s interpretation
of standards compares to real world outcomes.

Broadly, SLOOS data suggest that lending standards and key terms for credit card loans
are tighter in recessions than expansions.52 Banks start tightening standards in the lead-up to
downturns and subsequently ease gradually after recessions. Panel (c) of Figure 6 shows that our
model reflects this pattern. On impact of the shock, the balance-weighted average of lending
standards increases 1.57%. This is consistent with a modest tightening of standards on average.
Subsequently this average declines into negative (easing) territory, gradually returning to steady
state thereafter. This pattern is consistent with the dynamics of standards during the pandemic
presented in Appendix Figure A.6a. Why does our model deliver a short-lived tightening followed
by a persistent easing of standards, despite the fact that borrowing premia remain elevated over
the entire course of the recovery? The dynamics of the multiplier ηt in panel (c) highlight that
net demand for credit remains persistently elevated. This raises the endogenous component of
borrowing premia, and so inferred lending standards must ease to offset this effect.

What about borrower-specific factors? In our model, premia tighten for all borrowers in
response to the shock, but standards tighten only for high risk borrowers and loans. This suggests
that, in a sense, credit supply has shifted to the low risk segment of the market from the high
risk. We find evidence for this differential shift in the October 2019 SLOOS as well.53 Banks
reported that they were less likely to approve loans for borrowers with FICO scores of 620 in
comparison with the beginning of the year, while they were about as likely to approve such loans
for borrowers with FICO scores of 720 over this same period. While this partition of scores is
relatively coarse, the pattern is well within the ranges reported in Figure 6.

7 Conclusion

This paper uses administrative data from Y-14M and Equifax to document borrowing premia in
excess of default risk premia in the U.S. credit card market. These premia are large, varying
systematically and tending to decline with default probability. This pattern holds conditional on
borrower income and across time. Borrowing premia rise across the board in crises, but rise the

52See Figure A.6 for details.
53This vintage of the survey included a set of special questions asking banks to assess the likelihood of approving

credit card applications by borrower FICO score in comparison with the beginning of the year.
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most for high risk loans. Our findings reveal that borrower risk is a sufficient statistic for these
premia, while other borrower characteristics and bank-specific factors, are secondary.

Notably, these premia have been absent from standard unsecured credit models. This is a
crucial omission because these premia sharply alter the relationship between loan prices and loan
risk, implying a much flatter slope of interest rate spreads with respect to default probability than
in existing models. This flat schedule dampens households’ disincentives to take on riskier loans.
Therefore, embedding this simple feature changes the quantitative implications of standard credit
models in a first order way. In the cross-section, capturing the empirical incidence of borrowing
premia allows the model to match the joint distribution of debt and credit risk very closely, whereas
a model with a fixed premium independent of default risk cannot. Furthermore, empirically correct
borrowing premia play a crucial role in shaping aggregate credit market dynamics. In response to
a negative aggregate shock, the relatively low cost of high risk loans facilitates borrowing for very
constrained agents, though the tightening of borrowing premia dampens this effect. Extending our
model to endogenize borrowing premia allows us to relate them to lending standards, supporting
survey evidence that credit supply tightens only for the riskiest portion of the borrower population.

Our analysis presents three main limitations, which we view as avenues worth pursuing in
future research. First, we interpret additional costs of borrowing in excess of those implied by
measurable default risk as arising from supply frictions which we model exogenously. While
sufficient for the measurement purposes in this paper, this approach is silent about the origin
of these costs. Future research accounting for regulatory constraints, search frictions, or price
discrimination strategies, for example, would provide further insights on the mechanics underlying
lending policies.54 Second, non-price terms of credit, such as credit limits, are also an important
part of lending policies in the unsecured credit market. These terms also vary widely across
borrower risk, akin to what we emphasize for spreads.55 While our model can deliver some
measures of credit limits, it is mostly silent on non-price terms of credit. Third, the limited
time span of Y-14M hinders our ability to consider recession episodes before the 2020 recession,
constraining our business cycle analysis and estimation of standards. Related, the particularities
of the Covid crisis – government support via stimulus checks, expanded unemployment benefits,
specific income shocks, etc. – are likely to change households’ borrowing and saving behavior.
We hope to tackle these facets of our analysis as more data become available.

54In Castro et al. (2020), we empirically analyze these mechanics and drivers of changes in standards across
banks using matched survey data on banks’ lending policies with detailed data on banks’ loan portfolios.

55See Appendix Figure A.6. Furthermore, banks’ SLOOS responses suggest that non-price terms are a large
margin of adjustment over the cycle.
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FOR ONLINE PUBLICATION:
Appendix for “Borrowing Premia in Unsecured Credit

Markets”

A Data Appendix

A.1 Main data sources, sample construction, and additional facts
As described in Section 1, we combine two data sources to gain insights into credit terms and us-
age: (i) Y-14M, a detailed loan-level panel data set built from the portfolios of large bank holding
companies in the United States, collected by the Federal Reserve Board as part of the Compre-
hensive Capital Analysis and Review; and (ii) the FRBNY Consumer Credit Panel (Equifax), a
nationally representative five percent sample of all credit files for U.S. borrowers. This is feasible
given that the population of borrowers in the two data sets is the same. Given the dominance of
the largest banks in the credit card market, almost the entire universe of credit card loans and
borrowers (as represented by Equifax) is in Y-14M.

Equifax These data are a nationally representative anonymous random sample from Equifax
credit files. The data set is a quarterly panel, beginning in 1999, with snapshots of consumers’
credit profiles at the end of each quarter. Starting in January 2020, the data is available at a
monthly frequency. We drop observations missing either Risk Score or raw delinquency data.
Given the low frequency of transactions for the three lowest Risk Score bins, we trim these bins
from our sample.

For robustness, we compute three default measures for borrowers with credit cards as follows:
(i) baseline, which includes bankruptcy or severe derogatory; (ii) narrow, which includes only
bankruptcy; and (iii) broad, which includes bankruptcy, severe derogatory, or 120 days past due.
Equifax contains additional information for account payment or delinquency status including
(in increasing order of severity): 30 days past due (DPD); 60 DPD; 90 DPD; 120+ DPD; in
collections; severe derogatory; and bankruptcy. The patterns we find are the same with only
slight differences in levels.56

We use all four quarters in 2019 and compute the average probability of default for each
credit score bin for this period. The baseline and broad definitions are quite similar, while the
narrow measure preserves the pattern with a downward level shift (Figure A.1, right panel). When
recomputing data moments for the Covid period, we keep our measure of probability of default
unchanged since there is little difference in default probabilities across credit scores of borrowers
(Equifax Risk Score) between 2019 and March-June 2020 (Figure A.1, left panel) for all but the
three lowest Risk Score bins, which we drop as described above.

56In principle, one could construct the same exact narrow definition of default using the bankruptcy flag variable
in Y-14M data or the broader definition using information on DPD. However, severe derogatory is not reported
in Y-14M, and default information is generally unreliable in Y-14M.
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Figure A.1: Probability of default across periods and alternative measures
Notes: The left panel plots the probability of default by 5% credit score bin using our baseline (severe
derogatory plus bankruptcy) measure for 2019 and 2020. The right panel plots the three measures (baseline,
broad, and narrow) for the year 2019.

Y-14M We construct our sample as follows. First, we take a 5 percent sub-sample and restrict
attention to general purpose credit cards that are not securitized, secured or under promotion for
accounts that are open (active or inactive) in each month. We focus on consumer bank cards
which are general purpose credit cards, and we exclude non-consumer / business cards and private
label / propriety cards, since these can only be used in the stores of the retailer issuing the card.
We drop observations missing FICO score, APR, or end-of-cycle balance. Additionally, we drop
observations for which: (i) the Vantage score is reported; (ii) FICO scores are below 300 or over
850; (iii) APR is below 5 percent. All these are very rare. We use the most recently updated credit
score available for the primary account holder using a commercially available credit score unless
it is missing, in which case we replace this with the credit score at origination. About 10% of the
sample is replaced by the score at origination. Furthermore, we truncate the sample to eliminate
the highest risk borrowers in the three lowest FICO score vigintiles. This keeps consumers with
probabilities of default up to just under 20% on average in our sample, which we take as a high
upper bound for our measure of default and representative of the economic behavior our model
captures. This truncated sample still covers more than 90% of credit card balances.

Using this data set we compute for the 17 groups of borrowers: (i) average interest rates
(unconditional on debt and conditional on the population-wide median level of debt, which we
proxy by the middle quintile); (ii) share of total debt by income level and default risk; (iii) average
debt (unconditional and conditional on having a balance); and (iv) debt to income. Again, we
average over all 12 months of 2019. We compute the share of debt held by each bin as the ratio
of the total balances in that bin to the total balances across all accounts. The construction of
model moments is described in Section A.5. For robustness, we also compute these moments by
income quartiles. Lastly, we recompute these objects for the March-June 2020 period.

For interest rates, we use the purchase APR for accounts that are not in default / workout,
for which the default / workout APR is used. To average, we weight this APR by the total
outstanding balance for the account at the end of each month’s cycle. We also recompute this
average interest rate conditional on observations with balances near the median level of debt
(40th to 60th percentile). For robustness, we compute interest rates controlling for smaller debt
levels with more borrowing: patterns look similar. Aggregation is over FICO score bins and then
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Figure A.2: Interest rates by FICO scores
Notes: This figure shows the interest rate schedule across bins. Note that figures here are reported in raw
percentage points, not spreads as in the main text.

over time. Figure A.2 shows the interest rate schedule across bins. Note that figures here are
reported in raw percentage points, not spreads as in the main text.

Borrower credit risk We use as the common identifier borrower’s credit risk type, as measured
by the jth vigintile (5% bin) of credit scores, j = 1, ...20. For our analysis, we use the proprietary
credit score developed by Equifax (“Risk Score”) and the FICO score available in Y-14M. The
Risk Score has been used extensively in household finance research by academics and policymakers
given its inclusion in the Equifax data set. The FICO score is the most commonly used credit
score by lenders when providing and setting terms of credit. We map each vigintile of Risk Score
in Equifax into its corresponding vigintile of FICO score in Y-14M. As argued in Section 1, this is
reasonable because the two measures are equivalent in assessing likelihood of default. We provide
further details on this here.

Both credit ratings integrate several common sources of information about consumers into
a single score. Debt payment history is the most important determinant of one’s credit score,
but other factors matter as well: levels of indebtedness, length of credit history, and credit limit
utilization, among others. This information is collected by Credit Reporting Agencies (CRA) such
as TransUnion, Experian, and Equifax in order to create detailed credit reports. Second, while
numerous credit scoring models have been constructed in the past decades, they all use the CRA
data to generate credit scores that can be queried by lenders and borrowers. Previous research has
documented that these different credit scoring models provide largely similar information about the
creditworthiness of consumers. For example, as the 2012 Consumer Financial Protection Bureau
(CFPB) report shows, correlations across different credit scores are high (over 0.9), especially for
consumers with lower credit scores.
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Figure A.3: Interest rates conditional on income

Moments conditional on income Additionally, we recompute interest rates across credit
scores also controlling for income and report findings in Figure A.3. The patterns in Figure A.2
are preserved when controlling for income. While borrowers with higher earnings generally face
lower rates, the differences across income groups are small. Unlike credit variables, income is
self-reported. Y-14M includes both income at origination and updated income at the end of the
cycle for each month. While the latter variable is more desirable to use all else equal, it is not
well populated and so we use the former. We restrict attention to accounts originated after 2005
to keep a reasonable level of informational value for borrowers’ reported income. This trims only
7% of the sample and covers 90% percent of balances. We winsorize the income variable at 2%
at the bottom and 1% at the top, and use CPI to convert income into 2019 dollars. For the
remaining variables used for model validation, we proceed in the same way. Lastly, we turn to the
Covid crisis and recompute patterns using March-June 2020 in Y14M. Figure A.3b reports the
schedules of interest rates and credit limits in the crisis period conditional on income. In general,
interest rate schedules shifts upward and credit limit schedule downward across credit score and
income groups, albeit by small margins.

A.2 Alternative regression specifications
We run three alternative sets of regressions to complement Section 1.3. First, we run the specifi-
cation of column [1] from Table 1 using income as the only independent variable to drive home the
point that income itself has little explanatory power; the R2 of this regression is 0.007. Adding
FICO to this specification returns us to the specification in column [2] in Table 1.57 Second,
in Panel A of Table A.1, we run a specification in which we include a quadratic FICO term to
capture the curvature in the borrowing premium schedule in Figure 2. While this increases the
explanatory power by 14.6% (R2 increases from 60.7% to 69.6% in our baseline specification
from column [1]), the key findings from the main text are unchanged.

57Full results for this specification are available upon request; we omit them here for brevity.
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Panel A: dependent variable: borrowing premium (quadratic)
[1] [2] [3] [4] [5] [6]

FICO score 0.642 0.645 0.629 0.632 0.632 0.634
(2e-4) (2e-4) (2e-4) (2e-4) (2e-4) (2e-4)

FICO2 -5.2e-6 -5.2e-6 -5.3e-6 -05.2e-6 -5.2e-6 -5.2e-6
(2e-9) (2e-9) (2e-9) (2e-9) (2e-9) (2e-9)

income -0.002 -0.003 -0.003 -0.004
(2e-5) (3e-5) (3e-5) (3e-5)

revolver X X X X
multiple relationships X X X X
new account X X X X
quarter FE X X
bank FE X

R2 0.696 0.697 0.699 0.699 0.699 0.710

Panel B: dependent variable: interest rate

FICO score -0.141 -0.139 -0.145 -0.143 -0.143 -0.137
(1e-4) (1e-4) (1e-4) (1e-4) (1e-4) (1e-4)

income -0.001 -0.002 -0.002 -0.003
(2e-5) (2e-5) (2e-5) (2e-5)

revolver X X X X
multiple relationships X X X X
new account X X X X
quarter FE X X
bank FE X

R2 0.146 0.147 0.168 0.170 0.170 0.283

Table A.1: Additional regression specifications
Notes: Number of observations is 14,426,760. Results are significant at 1 percent level. All specifications are
variations on estimating equation (4). Column [1] imposes β2 = γ1 = γ2 = γ3 = 0; [2] imposes
γ1 = γ2 = γ3 = 0; [3] imposes β2 = γ2 = γ3 = 0; [4] imposes γ2 = γ3 = 0; and [5] estimates all coefficients.
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Figure A.4: Recovery and charge-off rates across banks
Notes: This figure plots recovery rates against charge-off rates for the 25 banks comprising our sample from the
Call Reports which we use to estimate recovery rates.

Third, in Panel B of Table A.1 we repeat our analysis replacing the borrowing premium bit
with the interest rate Rit in our regression equation (4) to provide a more comprehensive view
of evidence regarding credit card pricing. Our primary takeaways go through in this modified
analysis with three caveats. First, overall explanatory power is much lower, with R2 declining by
about 75% overall relative to the analogous specifications in Table 1. Second, adding borrower
and account controls has a slightly larger contribution to overall explanatory power, increasing
the R2 by over 2 pp as opposed to under 0.1 pp. Third, bank fixed effects explain a lot of the
residual variation in interest rates unexplained by the other variables of interest.

A.3 Recovery rates
Empirical measure and data We compute recovery rates for each bank-quarter pair for the
top 25 banks by assets (98 percent of credit card assets in 2019) as the ratio of total recoveries
to gross charge-offs using Call Report data. We then weight across banks using the bank’s share
of credit card assets in the quarter, and then average across all quarters in the sample. Since
recoveries may lag charge-offs, we also compute the recovery rate in two additional ways for
robustness. First, we use an annual rather than quarterly basis, comparing the sum of recoveries
to the sum of charge-offs for each year. Second, we use a 3 period right-aligned rolling quarterly
sum for recoveries and a 3 period left-aligned rolling sum for charge offs. In all these exercises
we find values ranging from 15.7% to 16.3%, and our chosen ξ parameter is the midpoint of this
range.

Our borrowing premia calculations assume that the recovery rate does not vary with borrower
risk. While borrower-level recovery rate data is not available, we use the Call Reports to document
that there is no correlation between recovery and charge-off rates at the bank level (see Figure
A.4). This lack of correlation suggests that banks that might have credit card portfolios with
systematically different risk levels do not experience systematically different levels of recoveries,
which is consistent with our (stronger) borrower- or bin-level assumption.

Could different recovery rates deliver a fixed borrowing premium? Our measurement
approach in Section 1.1 assumes a fixed recovery rate across all loans, and as a result we obtain
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Figure A.5: Recovery rates and borrowing premia
Notes: This figure is constructed according to the analyses described in Appendix A.3.

the heterogeneous schedule of borrowing premia depicted in Figure 2. While we have argued
using data available to us that the assumption of a fixed recovery rate is a reasonable one, we
would like to examine the question further given its centrality to our paper. To this end, in this
section we present two analyses which help address this question.

Our first analysis asks: are our borrowing premia results explainable by omitted differences
in recovery rates across credit score bins? We can formalize this question in a slightly different
way by asking if there is a set of recovery rates (ξi for all bins i) for which our measurements
would imply a fixed borrowing premium (bi = b for all bins i). For completeness, we require that
this borrowing premium match the balance-weighted average we obtain in the data, b =

∑
i sibi,

where si is bin i’s share of total credit balances. Using equations (2) and (3), we can summarize
these restrictions by the system of linear equations

bi = Ri [pi + (1− pi)ξi]− 1 for all i
b =

∑
i

sibi

bi = b for all i =⇒ 0 =
∑
i

(1− si)Ri [pi + (1− pi)ξi] for all i

where N is the number of bins. This is a system of N equations in N unknowns, {ξi}Ni=1 which
eliminates bi. Therefore, we can use data on interest rates, repayment probabilities, and shares
{Ri, pi, si}Ni=1 to solve this system. The results of this exercise are plotted in the left panel of
Figure A.5. Immediately, we see that the implied recovery rates are completely implausible, far
exceeding the natural upper bound of 1 for all but the highest risk loans. We can further test
this possibility by comparing the balance-weighted average borrowing premium implied by this
inferred set of recovery rates to its empirical counterpart; the former is 416%, while the latter
is 11.3%. Both findings lead us to reject the possibility that all variation in borrowing premia is
explainable by recovery rates.

Second, we can ask a more specific question targeting the especially puzzling portion of our
borrowing premium schedule: does there exist a schedule of recovery rates that explains the low
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borrowing premia for high risk borrowers? To address this question, we can consider the following
exercise. First, assume the borrowing premium for the lowest risk bin is effectively independent of
the recovery rate, since pi ≈ 1 for this group. To be as conservative as possible in this exercise,
assume further that these agents have full recovery in default so that their loans are riskless.
Then, their borrowing premium is b ≡ Ri − 1 by equation (3), since R̃(pi) = 1 for them by
equation (2). Second, we can ask what ξi would rationalize bi = b for each bin i? Rearranging
equation (3), it must be

ξi =
1 + b−Ripi
Ri(1− pi)

The results of this analysis are presented in the right panel of Figure A.5. Since the first portion
of this algorithm is in principle optional, we report a baseline set of estimates corresponding to
the empirical b = 11.4%, and two additional sets corresponding to lower alternatives, b = 10%
and b = 5%. For default probabilities below 5%, the implied recovery rate would have to be
negative to rationalize observed borrowing premia. Furthermore, for higher risk loans, we’d need
implausibly high recovery rates, on the order of 30-50%, which our Call Report analysis rules
out. For these reasons, we also reject that recovery rates can explain our estimates of borrowing
premia.

A.4 Senior Loan Officer Opinion Survey (SLOOS)
A.4.1 Construction of diffusion indices

To construct an index for changes in standards and terms of credit we follow the methodology in
Bassett et al. (2014) and use questions that ask participating banks to report whether they have
changed their standards, or changed terms during the survey period.58 Specifically, questions
about changes in standards follow the general pattern of “Over the past three months, how have
your bank’s credit standards for approving credit card loans changed?” The possible answers, on a
1-5 scale, are: (i) eased considerably; (ii) eased somewhat; (iii) about unchanged; (iv) tightened
somewhat; and (v) tightened considerably.

Similar questions are asked for credit terms (interest rate spreads, credit limits), and the
approach we describe below can be replicated for these specific terms as opposed to standards
more broadly. Historically, SLOOS respondents rarely characterize their standards as having
changed “considerably.” Therefore, we collapse the scale as follows: Si

t = −1 , if bank i reported
easing standards in quarter t, Si

t = 0, if bank i left standards unchanged in quarter t, and Si
t = +1

if bank i reported tightening standards in quarter t.
58In constructing our indexes, we revisit the method used in Bassett et al. (2014) in two directions: first, we

use more granular data by loan types when we compute the share for each loan category on banks balance sheet;
second, when computing weights associated with each type of loan, we expand the universe of banks beyond
respondents in the SLOOS in line with the Call Reports data.
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(a) Lending standards

(b) Terms (limits and spreads)

Figure A.6: Diffusion indices for credit card loans

We weight a bank’s responses by that bank’s share of total consumer loans in the previous pe-
riod (wi,t−1) to obtain the aggregate measure of changes in lending standards, ∆St =

∑
i wi,t−1S

i
t .

These weights are computed using the Call Reports. These indices reflect the net percent of con-
sumer loans subject to tightened standards: positive (negative) values indicate eased (tightened)
standards. We normalize these aggregate measures by their historical average to create an overall
lending standards index, ISt , which measures standard deviations in each quarter t from its his-
torical average. Figure A.6a in the main text shows the index for lending standards for consumer
loans, and Figure A.6b shows the indices for spreads and limits as well. The changes in standards
for consumer loans and for credit card loans are quite similar, since credit card loans represent
the largest category of loans included.
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A.5 Moment definitions
In this section, we define key moments and metrics used throughout the paper, mainly model
moments used in our model versus data comparison, that are not described in the main text. To
ease notation, we express the individual state vector as x and describe a specific element of the
state vector as a function of x. Except where necessary, we suppress explicit dependence on the
time period t or the aggregate state s.

Macro moments The macro moments we use throughout the paper are standard. For business
cycle moments, we take logs of the data and apply the HP filter with an annual smoothing
parameter of 6.25. We use Equifax for all credit quantities for which we present cyclical properties,
except for debt to income for which we use Y-14M. For interest rates on all credit card loans we
use schedule G19 from the Flow of Funds and for interest rates on risk free loans we use Y-14M.
We use 1999-2019 for series constructed from Equifax and G19, given that 1999 is the first year
available in Equifax, whereas for series constructed from the Y14M data, we start only in 2014,
the first year available.

Fraction in debt, volume of debt, and share of total debt The total volume of debt is:
−
∑

x µ(x)ga(x)(1 − gd(x))1[ga(x) < 0]. The share of total debt accounted for by a subgroup
applies the above metric to the subgroup, then weights by the total. In the data, we define credit
as the total credit card debt balances in Equifax, excluding bankruptcy, the exact counterpart of
our model. Recall that in the event of a bankruptcy, the household cannot borrow or save in the
current period.59 We define the fraction of agents in debt to be the fraction of agents choosing
debt, a′ < 0. For a given period t, this fraction is

∑
x µ(x)(1− gd(x))1[ga(x) < 0]. In the data,

we compute this fraction in Equifax as the fraction of consumers that hold positive credit card
debt.

Debt to income ratio We compute the debt to income ratio conditional on borrowing: the
ratio of an agent’s total debt (−ga(x)1[ga(x) < 0]) divided by total labor income (wϵ1ϵ2ϵ3). We
normalize by the fraction in debt, defined above. In the data, we use Y-14M at the account
level on credit card debt outstanding at the end of balance and income at origination (recall that
income at the end of balance is an optional reporting variable in the data and quite sparse and so
we are limited to using income at origination). Although imperfect, given that income is highly
persistent we believe that the properties of this series represent a reasonable proxy for current
debt to income measure.

59Alternatively, one can use Total Real Revolving Consumer Credit Outstanding from the Flow of Funds/G.19
data, Federal Reserve Board (FRB)), case in which credit cannot be adjusted for bankruptcy at the individual
level as Equifax data allow us to do. If the stock of revolving credit is adjusted using the credit card bankruptcy
or charge-off rate, the correlation with GDP is negative, otherwise it is positive. Furthermore, while the large
volatility is robust relative to the time periods used, this is not the case for the correlation. For instance, in the
subperiod 1980-2018 the correlation is 0.33 as noted by Nakajima and Ríos-Rull (2019). Fieldhouse et al. (2016)
point out that over the 1993-2006 period, such correlation was negative. In line with our paper, they also point
out that this correlation is even more negative when adjusted for charge-offs.
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Bankruptcy and charge-off rates The bankruptcy rate is
∑

x gd(x)µ(x); the charge-off rate
is

∑
x −agd(x)µ(x), normalized by the total debt in the economy. To compute a conditional

metric (either on being in debt or by income group), we normalize the distribution by the desired
population. In the data, we use the exact same definition of default rate from Equifax used
for default probability in the model as described in Section 1 (bankruptcy and severe deroga-
tory) as well as using only the bankruptcy flag in these data to compute cyclical properties
for default and bankruptcy rates in Section 6. Constructed variables in this way are based on
the universe of consumers modeled in our paper.60 The share of suboptimal bankruptcy is the
total mass of bankruptcy coming from agents for whom bankruptcy is not the modal action,∑

x gd(x)µ(x)1[gd(x) < 0.5], divided by the total bankruptcy rate.

Average interest rate and borrowing premium We compute the loan-weighted average
interest rate spread conditional on borrowing as∑

x ga(x)(1− gd(x))1[ga(x) < 0]
(

q
q(ga(x);x)

− 1
)
µ(x)∑

x ga(x)(1− gd(x))1[ga(x) < 0]µ(x)

In steady state, the denominator is equal to the (constant) total debt, but this is not in general
true when aggregate shocks are present in the environment. For business cycle calculations, we
use G19 data from FRB for interest rates of all credit card accounts which we adjust for the
federal funds rate. As in the case of the interest rate on all loans, we adjust for the prime rate.
The loan-weighted average borrowing premium is computed exactly as in the expression above,
with the spread term q/q(ga(x);x) replaced by the borrowing premium b(p(ga(x);x)).

B Quantitative Appendix

B.1 Estimating the schedules of borrowing premia
Figure B.1 depicts the fit of our model borrowing premia to the data for our baseline steady
state model (data corresponding to FY 2019) and for our dynamic analysis (impact of shock
corresponding to 2020 March to June). As described in the main text, the fit is nearly exact for
both schedules for a 20th order polynomial. We choose 20th order because lower orders struggle
to match the curvature for very low levels of default risk, and higher orders do not increase the
fit by much. The polynomial specification for N = 20 is

b(p) =

{∑N
n=0 xn

(
p−m0

m1

)n

if p ≥ p

0 if p < p
(B.1)

The coefficients xi (as well as normalization constants m0 and m1 and the threshold p) for these
polynomials are presented in Table B.1. The truncation at p accounts for scarcity of data at high

60Alternatively, one can use the number of bankruptcies (obtained from U.S. Courts) normalized by the number
of households (from the Census), as in Nakajima and Ríos-Rull (2019), with properties of these objects presenting
similar patterns. In particular, bankruptcy filings are also highly volatile and countercyclical. Specifically, they
find that for all bankruptcies relative volatility is 8.5 and correlation with GDP is -0.47.
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Figure B.1: Model fit to observed borrowing premia schedules

coef. 20 19 18 17 16 15 14 13 12 11
FY2019 -0.002 -0.002 0.030 0.028 -0.176 -0.153 0.565 0.459 -1.088 -0.811
2020Q2 -0.003 -0.002 0.035 0.023 -0.204 -0.126 0.653 0.375 -1.251 -0.657

coef. 10 9 8 7 6 5 4 3 2 1
FY2019 1.279 0.855 -0.895 -0.517 0.346 0.160 -0.063 -0.019 0.002 0.048
2020Q2 1.464 0.686 -1.022 -0.408 0.395 0.121 -0.072 -0.013 0.002 0.047

coef. intcpt. m0 m1 p

FY2019 0.083 0.907 0.053 0.815
2020Q2 0.089 0.907 0.053 0.815

Table B.1: Polynomial fits to borrowing premia data
Notes: The polynomial specification is given by equation (B.1).

levels of default risk. The m coefficients allow for higher precision in the polynomial fitting by
rescaling the probabilities of default, which cluster near 0. As described in the main text, the
fixed premium is chosen to be equal to the balance-weighted average from the variable premium
model, which is 12.3% for the steady state and 12.9% on impact of the shock.

B.2 Sensitivity and Jacobian Analysis
This subsection complements Section 3.3 by providing quantitative results in Table B.2 and
a fuller discussion of the mappings: (i) from model parameters to model moments (Jacobian
analysis); and (ii) from empirical moments to estimated parameters (sensitivity analysis). We
conduct these analyses for both the baseline (HP) and fixed premium (FP) economies, focusing
on the former and highlighting key differences of the latter with respect to the former. We begin
with the Jacobian analysis and then move to sensitivity.
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B.2.1 Jacobian analysis

Overview Each column of panels A.2 and B.2 shows the elasticity of the indicated model
moment (column) with respect to the indicated model parameter (row), computed as the ratio
of log differences between moment and parameter. Each elasticity is computed by perturbing the
indicated model moment by 0.1% from its estimated value in Table 2.

By column: which model parameters affect each model moment? First, consider panel
A.2 of Table B.2 column-by-column to assess which model moments are most affected by which
parameters in the baseline model. The bankruptcy rate (BKR) is most sensitive to the average
discount factor: a 1% increase in β yields nearly a 7.5% lower bankruptcy rate. The default
preference parameters χ and ζ and the share of high beta types µβH

also impact this moment.
The fraction in debt (FID) is sensitive to parameters describing the extent of differences between
types and the switching process between them, with the largest elasticities being with respect to
µβH

and the low-to-high transition or “churn” parameter, Γβ
LH′ . This follows from the GE nature

of the model as described in the main text. A bigger gap between the types increase FID, while
a lower share of βH or more churn in types decreases it. The debt to income ratio (DTI) is quite
sensitive to β (more patience means borrowers can credibly take on more leverage with similar
repayment probabilities) and Γβ

LH′ (more churn means current type is a worse signal of future
type, leading to rationing). Average spreads depend negatively on β since less default implies
lower rates and positively on µβH

since more high types means more borrowing is accounted
for by low types. The capital-output ratio is driven largely by β process in intuitive ways. The
charge-off rate (COR) responds negatively to increases in overall type quality (β and µβH

) and
the default preference parameters; an increase in the utility cost of default χ lowers COR by
limiting filings on the margin, while an increase in the extreme value scale parameter ζ increases
COR by increasing the likelihood that agents with relatively low values attached to default will
choose to do so anyway. The share of suboptimal bankruptcies (SoBKR) responds in the same
way to χ and ζ, while increases in the average level of β strongly increase the SoBKR. This last
effect arises because it increases the weight on continuation values in individual value functions,
which are in general the part of V BK

0 (·) that depresses V BK
0 (·) relative to the repayment value

V R
0 (·).

By row: which model moments are most affected by each model parameter? Next,
consider panel A.2 once more, this time looking row-by-row to highlight which moments are most
affected by a given parameter. The average discount factor plays a central role in determining
nearly every model moment. Beyond that, µβH

and the gap between types ∆β have big impacts
on all three default moments and the capital-output ratio. The churn parameter Γβ

LH′ has the
biggest impacts on the credit quantity moments FID and DTI. The stigma and extreme value
scale, unsurprisingly, exert their largest influences on all three default moments.
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Moment BKR FID DTI IRS K/Y COR SoBKR

Panel A: Heterogeneous Premia (Baseline, HP) Model

A.1: Sensitivity Matrix (AGS 2017)
avg discount factor β -0.00 -0.03 0.02 0.09 -0.02 -0.02 -0.01
diff in disc. factor ∆β -0.01 1.91 -1.33 -0.40 0.44 0.83 0.09
high β share µβH

0.02 -1.88 1.20 -0.20 -0.31 -0.52 -0.17
low to high β prob Γβ

LH′ 0.01 1.54 -0.05 0.19 0.36 0.78 0.08
utility cost of def. χ -0.03 2.77 -1.79 -0.09 0.05 0.05 0.17
EV scale ζ -0.05 2.47 -1.76 -0.51 -0.48 -1.31 -0.02

A.2: Jacobian Matrix
avg discount factor β -7.42 -0.02 4.13 -7.16 9.43 -7.42 37.8
diff in disc. factor ∆β -0.72 0.11 0.64 0.36 -0.88 -0.80 5.40
high β share µβH

-2.29 -0.35 -0.20 0.61 -1.26 -2.50 3.97
low to high β prob Γβ

LH′ -0.34 -0.70 -1.06 0.08 0.00 0.27 0.53
utility cost of def. χ -0.99 -0.09 0.24 -0.12 -0.06 -2.61 -2.17
EV scale ζ 1.04 -0.21 -0.23 0.18 -0.05 1.41 1.36

Panel B: Fixed Premium (FP) Model

B.1: Sensitivity Matrix (AGS 2017)
avg discount factor β -0.03 0.14 -0.06 0.29 0.10 -0.05 -0.01
diff in disc. factor ∆β -0.27 0.97 -0.33 -1.61 -1.31 0.02 0.37
high β share µβH

-0.09 0.30 0.09 -0.50 -0.38 0.13 0.08
low to high β prob Γβ

LH′ -0.46 -1.01 1.53 -2.25 -2.05 0.82 0.21
utility cost of def. χ 0.60 -0.26 -1.05 2.69 2.82 -0.18 -0.53
EV scale ζ 0.66 -0.07 -1.14 3.22 3.00 -0.67 -0.57

B.2: Jacobian Matrix
avg discount factor β -14.8 -0.53 5.29 -6.02 8.46 -4.43 18.3
diff in disc. factor ∆β 20.0 0.32 4.34 -0.39 1.03 0.75 17.1
high β share µβ

H -4.08 -3.70 -5.03 2.35 -3.61 0.16 -0.25
low to high β prob Γβ

LH′ 19.3 0.06 3.06 -0.42 0.98 0.63 18.5
utility cost of def. χ -1.86 0.47 0.87 -0.51 -0.03 -2.55 -4.03
EV scale ζ 21.1 -0.70 2.27 0.54 0.26 3.24 22.7

Table B.2: Sensitivity and Jacobian for Baseline and Fixed Premium Estimations
Notes: Notation: BKR = bankruptcy rate; FID = fraction in debt; DTI = debt to income ratio; IRS = average interest rate spread;
K
Y

= capital-output ratio; COR = charge-off rate; and SoBKR = share of suboptimal bankruptcy. The sensitivity measure is a
transformation of the Λ matrix from Andrews et al. (2017). All figures are numerical elasticities, d log x/d log y. For panels A.1 and
B.1, each cell is the elasticity of the estimated parameter (row) with respect to a 1% increase in the indicated empirical moment
(column), filtered through the Λ matrix. For panels A.2 and B.2, each cell is the elasticity of the indicated model moment (column)
with respect to the indicated parameter (row).
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Comparing the FP model to the HP model Finally, compare panel A.2 (for the HP model)
to panel B.2 (for the FP model). For this analysis, it is useful to recall that the HP and FP
calibrations differ in important ways described in Section 3.3. The average discount factor plays
the same centrally important role in both models. Furthermore, the two default preference
parameters and the share of high β types affect model moments in much the same way across
the two models. There are, however, two important differences. First, all default moments in
the model are far more sensitive to the scale parameter ζ in the HP model than the FP model
because (i) the scale parameter is already 15% lower in the FP model, so a 0.1% increase in ζ
is a larger increase in actual “noisiness” and (ii) the types are worse in the FP model, leading
them to downweight continuation values relative to the baseline model and therefore be more
“susceptible” to noise from the extreme value shocks. Second, the gap between types, share of
high types, and low-to-high transition probability have slightly different and generally much larger
affects on model moments in the FP model than the baseline. For example, while the elasticity
of DTI and FID with respect to ∆β is positive in both models, the analogous elasticities of IRS
are positive for the HP model and negative for the HP model. This is because predominant effect
of making low types worse in the baseline model is that the pay higher spreads in equilibrium,
while in the FP model the predominant effect is that these types are priced out on the margin,
improving the pool of borrowers.

B.2.2 Sensitivity analysis

Overview Given a J-vector of target moments m and a P -vector of parameters θ to estimate,
Andrews et al. (2017) show that: (i) the P × J sensitivity matrix Λ = −(G′WG)−1G′W may
be computed using only the J × P Jacobian matrix G and the J × J weighting matrix W from
the initial estimation; (ii) given Λ and a J × J empirical variance-covariance matrix Ω, one may
compute standard errors as the diagonals of the P ×P matrix V = ΛΩΛ′; and (iii) for a J-vector
of constants c corresponding to possible “mismeasurements” in m, the first-order asymptotic bias
in the estimator of θ is B(c,Λ) = Λc. For a given Ω, then, small values of Λ correspond to more
precise parameter estimates. A small value of Λij indicates that even if empirical moment j (mj)
were quite different, the model’s estimate of parameter i (θi) would change little. Therefore, if
the (appropriately-weighted, squared) sum across all mj of Λij for θi is small, then θi is precisely
estimated given the set of targets {mj}. By contrast, a large value of Λij suggests that the
estimate of θi is quite sensitive to a change in mj. This implies that: (i) variation in mj is critical
for determining the value of θi; and (ii) the empirical variance of mj and its covariances with
other moments must be relatively low in order for θi to be estimated precisely.

Panels A.1 and B.1 of Table B.2 present a transformation of the Λ matrix described above
for the baseline and FP models, respectively. Specifically, we posit a 1% mismeasurement in each
empirical moment (i.e. c = 0.01×m). Then, using the Jacobian matrix G (whose computation is
described above), we compute the bias matrix B(c,Λ). Then for each moment mj and parameter
θi, we compute the numerical elasticity [log(θ̂i +Bij)− log θ̂i]/[log(1.01mj)− log(mj)].

By column: how do parameter estimates change with each empirical moment? First,
consider panel A.1 column-by-column. For this analysis, it is useful to consider all parameter
changes induced by the change in measured empirical moment simultaneously. For example, a
1% increase in interest rate spreads would lead us to estimate a slightly higher β, which is perhaps
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counterintuitive since households are on average more patient. Tracing through the calculations,
though, this would be achieved by modestly lowering both βL and βH (βL more so than βH)
while increasing the share of βH types, the persistence of the βL type, and the likelihood of
transition from βH to βL. This last effect is quite large and makes high types fundamentally
riskier, increasing the spreads they pay when they borrow. Importantly, this analysis reflects
how parameters would adjust to the mismeasurement in spreads while still matching the other
moments at their targeted levels.

All bankruptcy rate elasticities are 5 bps or below, with the largest magnitudes unsurprisingly
for the default preference parameters χ and ζ. Increasing FID would suggest a wider gap between
the types and also a lower share of high types, as well as revising up both default parameters.
Increasing DTI would have the exact opposite directional effects, suggesting that targeting both
moments is useful in pinning down this set of parameters. One of the most important things
learned comes from comparing the effects of changes in the charge-off and suboptimal bankruptcy
rates on χ and ζ; an increase in COR has a large downward effect on the EV scale parameter
and little effect on stigma, while and increase in SoBKR has a large positive effect on stigma and
little effect on ζ. These competing forces underscore how these moments combine to separately
pin down these two crucial parameters.

By row: which empirical moments drive the largest parameter changes? The average
discount factor is not very sensitive to small perturbations of any model moment. Most parameters
that we calibrate are more sensitive to the fraction in debt and the debt to income ratio than any
other model moments. This is consistent with how these moments pin down the balance between
borrowers and savers in our general equilibrium context. Notably, while all our parameters are not
very sensitive to the bankruptcy rate – a frequency measure of default –, many are sensitive to
the charge-off rate – a dollar-weighted measure. This suggests that there is important additional
information from the set of loans on which borrowers default above and beyond the raw share.

Comparing the FP model to the HP model We now compare panels A.1 and B.1, the
sensitivity matrices for the baseline and FP models, respectively. While some of the same principles
apply (e.g. the average level of β is the least sensitive parameter to virtually all moments), we
see considerable differences across these matrices owing to the different parameter estimates and
the different economic mechanisms at play in the two models. For example, an increase in FID in
the baseline model leads to: a lower share of high β types, more frequent βL to βH transitions,
and higher stigma and EV scale parameters. By contrast, in the FP model an analogous increase
leads to an increase in the high β share, less frequent transitions, and modestly lower stigma and
scale parameters. While the FID moment offers a particularly stark example, there are other,
smaller differences across the models as well.

B.3 Additional quantitative results
Equilibrium distributions of wealth and income We compare our models’ distributions
of wealth (panel (a)) and labor income (panel (b)) to those in the data (Survey of Consumer
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Figure B.2: Distribution of wealth and labor earnings
Notes: This figure reports the steady distributions of wealth and labor income in the baseline (HP) and fixed
premium (FP) models and in the data (2019 SCF). We also report the empirical distribution from Y-14M in
2019 for labor earnings. Since labor productivity is exogenous in the model and the HP and FP model have the
same equilibrium wage by construction, the distribution of labor earnings in these economies is identical. The
SSE of the HP (FP) model relative to the data for the wealth moments shown in panel (a) is 0.155 (0.208).
The wealth Gini coefficient for the HP (FP) model is 0.655 (0.616). The SSE of the model relative to the
Y-14M (SCF) data for the labor earnings moments shown in panel (b) is 0.002 (0.018).

Finances (SCF) 2019 for wealth and income and Y-14M for income) in Figure B.2.61 While broadly
replicating the shapes of these distributions, our model does not capture the extreme skewness
or concentration at the top of the distribution in either metric, particularly wealth. Notably,
the model-implied distribution of income – which is identical across the HP and FP models by
construction – matches quite closely with that implied by Y-14M data, which is less skewed than
the SCF, with a sum of squared errors for the depicted moments of 0.002. Furthermore, the
distribution of wealth in our baseline model matches the distribution of wealth from the SCF
more closely than the FP model (SSE 0.155 vs 0.208), another set of untargeted moments in
favor of the baseline model to complement those presented in Section 3.4.

Additional cross-sectional moments and the “naive” FP model Table B.3 presents ad-
ditional cross-sectional results to augment the analysis in Section 4. In particular, we report our
empirical target moments not only for the HP and FP models considered in the main text, but
also for the FP model evaluated under the parameters of the HP model. This exercise highlights
how the aggregate credit market changes under a different incidence of borrowing premia without
re-estimating the parameters of the model. To complement Figure 4, we also provide in Panel
B a selection of moments describing the cumulative share of total debt balances with respect to
default risk.

The differences between the “naive” FP economy and the HP and FP economies in the
61SCF wealth and earnings calculations come from Moritz Kuhn and José-Víctor Ríos-Rull,

https://sites.google.com/site/kuhnecon/home/us-inequality?authuser=0.
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Incidence of premia Heterog. Fixed
Parameterization HP FP HP FP HP
Moment level % diff, [j] − [1]
Column [1] [2] [3] [2] − [1] [3] − [1]

Panel A: empirical targets (pp)
bankruptcy rate 0.374 0.390 0.213 +4.53 -43.0
fraction in debt 12.3 12.2 12.1 -1.36 -1.73
debt to income 4.34 4.32 1.87 -0.52 -57.0
average loan rate spread 21.1 21.1 19.1 +0.01 -9.25
capital-output ratio 3.09 3.09 3.09 -0.10 +0.01
charge-off rate 3.79 3.69 1.90 -2.69 -50.0
suboptimal bankrupt share 45.5 45.7 53.1 +0.37 +16.8

Panel B: other moments (pp)
average borrowing premium 12.2 12.2 12.2 0.00 0.00
cumulative share of total debt, def. prob ≤

1% 54.8 37.1 66.4 -32.4 +21.2
2% 64.4 53.0 76.9 -17.7 +19.5
5% 81.2 80.8 91.4 -0.45 +12.6
10% 90.5 92.9 97.4 +2.59 +7.61
15% 96.9 99.5 99.8 +2.68 +2.97

Table B.3: Additional cross-sectional moments
Notes: The entries in columns [1] and [2] of Panel A correspond exactly to Panel C of Table 2. Column [3]
reports moments for the FP model solved for the parameters of the HP model. The two rightmost columns
present the percentage difference for each version of the FP model relative to the baseline HP model.

aggregate are quite stark. Agents in this economy self-ration their borrowing choices sharply
along the intensive margin: the average debt to income ratio is 57% lower than in our baseline
economy. Notably, the extensive margin is largely unchanged, with the share of debtors declining
less than 2%. This result is intuitive: the cost of a riskless loan is quite similar in all these
economies, but the FP economies feature a sharp increase in spreads for high levels of default
risk. Without adjusting the parameters of the model as described in Section 3.4, agents shy
away from these riskier loans and borrow only small amounts when they borrow. As a result, the
bankruptcy and charge-off rates decline by 43% and 50%, respectively, relatively to the baseline
economy, and the level of spreads declines.

Full paths for IRF analysis Figure B.3 presents the full paths from impact of the shock to
recovery from the shock for the variables included in Table 3. This analysis places the “on-impact”
results in context of the full recovery from the shock.

There are two striking points beyond those observable in Table 3. First, panel (a) shows
that while total debt drops slightly on impact in our baseline model, it actually remains elevated
relative to steady state for 5 periods, before dipping down again and gradually returning to steady
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Figure B.3: Full IRF paths for simulations and variables in Table 3
Notes: This figure reports the full impulse response path to the shock described in Section 5.1 for the variables
highlighted in Table 3.

state. This makes the implied cyclicality of debt in this model ambiguous ex ante. This is not
the case for either alternative model, for which the level of debt remains below its steady state
level for the entirety of the recovery. Second, panels (b), (c), and (e) show that the rates of
recovery in debt to income, fraction in debt, and the average loan spread differ sharply across our
model economies. For example, while the debt to income ratio increases on impact in all three
economies, it remains elevated for 8 periods in our baseline, 4 in the case when premia tighten,
and only 1 in the FP case. A similar pattern holds for the fraction of households in debt. For loan
spreads, average spreads return to their steady state levels in no more than 3 periods in either our
baseline, no tightening economy or the FP economy. By contrast, spreads remain above steady
state levels for at least 6 periods in the case with tightening borrowing premia.

B.4 Business cycle model
Extending the model We make three main assumptions. First, the production function now
has an aggregate TFP term, z, which follows an AR(1) process; that is, Y = zKαN1−α, with z
following a transition process Γz. TFP is the fundamental exogenous shock to the economy which
drives aggregate dynamics. Second, consistent with empirical evidence on the cyclical properties
of earnings risk, we assume that the transition matrix which governs the persistent component
of individuals’ labor productivity varies with aggregate TFP; that is, Γϵ is now Γϵ(z′). Third, the
schedule of borrowing premia may be linked to the level of TFP; that is, b(p) is now b(p; z).

We summarize the aggregate state of the economy by s = (z, µ), which includes the exoge-
nous level of TFP and the endogenous distribution of households over idiosyncratic states. All
equilibrium value functions, decision rules, and pricing functions, now depend not only individ-
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ual states x but also the aggregate state s. Furthermore, the equilibrium distribution µ(x) is
no longer stationary, but evolves in the aggregate in a manner still consistent with households’
decision rules. Aside from these changes, everything else from our baseline model is unchanged.

Computation The distribution µ(x) has a very high dimensionality, which makes solving the
model using finite state space approximation difficult. We tackle this issue using the well-known
approach of ?. Specifically, competitive households must be able to correctly forecast future
aggregate equilibrium prices – r′, w′, and i′ – state-by-state given currently available information.
Given the pricing equations implied by firm optimality and the aggregate resource constraint,
households need only know aggregate capital, K ′, and aggregate labor productivity in each
possible future state N ′(z′).

The results of these forecasts for the calibrated model are presented in Table B.4. Panel A
is for our baseline model with heterogeneous incidence of borrowing premia and no tightening
of borrowing premia in recessions; Panel B is for the version with heterogeneous premia and
tightening in recessions; and Panel C is for the fixed premium model. The results in Table
B.4 show that households are able to (almost) perfectly forecast the parts of the approximate
aggregate state required to compute equilibrium prices at each date and in each state. The
overall standard errors of each forecasting regression are vanishingly small, and the (adjusted) R2

of each regression exceeds 0.999.

Calibration The TFP process is discretized into two states: zE (expansion) and zR (recession),
with transition matrix Γz. We set zR = 0.99 so that recessions in the full business cycle model
are of a similar magnitude (-1%) as our impulse response experiment from Section 5.1. We
parameterize Γz by setting the share of recession periods, µzR , equal to 0.211, the share of years
with a recession in the postwar U.S. The probability of exiting a recession, Γz

RE′ , is set to 2/3
to match an average duration of a recession of 1.5 years. We then calibrate the expansion TFP
level, zE, to match the standard deviation of (logged, HP-filtered) aggregate output in U.S.
data, 1.20%. Under our assumption that average TFP is equal to one (z = µz

EzE + µz
RzR =

1), maintained for comparability with our steady state model, this pins down the last remaining
parameter, the probability of entering a recession, Γz

ER′ . This is achieved with zE = 1.0027,
which implies Γz

ER′ = 0.178.
Given the TFP process, we link the labor productivity and borrowing premia processes as

follows. For labor productivity, we assume that the transition matrix for the persistent component,
ϵ2, has standard deviation σE

ϵ2
= 0.094 in expansions and σR

ϵ2
= 0.163 in recessions, taking

estimates directly from Storesletten et al. (2004). The persistence of ϵ2 and the other parameters
of the ϵ process are unchanged relative to the baseline. For borrowing premia, given data scarcity
considerations described in the main text, we assume that the schedule of borrowing premia
for expansions is the same as our baseline (2019) schedule, and that the analogous schedule in
recessions is the same as our shock impact (2020) schedule. Estimates of these processes are
discussed in Section B.1.

Results Table B.5 presents our business cycle results for the data (cols. [1] and [2]) and the
three model variants (baseline: cols. [3] and [4]; HP with tightening: [5] and [6]; and FP: [7]
and [8]) presented in the IRF analysis in Section 5.1.
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agg. TFP
forecast var. z z′ intercept logK logN adj. R2 s.e. N

Panel A: Heterogeneous premia (HP) without tightening (Benchmark)
logK ′ zH - 0.204 0.895 0.000 0.999 1.9E-04 1564
logK ′ zL - 0.090 0.939 0.125 1.000 1.8E-05 436
logN ′ zH zH 0.039 - 0.783 1.000 2.0E-05 1280
logN ′ zL zH 0.040 - 0.776 1.000 7.4E-06 284
logN ′ zH zL 0.074 - 0.610 1.000 2.3E-05 284
logN ′ zL zL 0.076 - 0.602 1.000 8.2E-06 152

Panel B: Heterogeneous premia (HP) with tightening
logK ′ zH - 0.205 0.895 0.000 0.999 2.0E-04 1564
logK ′ zL - 0.088 0.940 0.127 1.000 1.8E-05 436
logN ′ zH zH 0.039 - 0.783 1.000 2.0E-05 1280
logN ′ zL zH 0.040 - 0.776 1.000 7.4E-06 284
logN ′ zH zL 0.074 - 0.610 1.000 2.3E-05 284
logN ′ zL zL 0.076 - 0.602 1.000 8.2E-06 152

Panel C: Fixed premium (FP)
logK ′ zH - 0.185 0.905 0.000 0.999 1.9E-04 1564
logK ′ zL - 0.079 0.946 0.118 1.000 2.2E-05 436
logN ′ zH zH 0.039 - 0.783 1.000 2.0E-05 1280
logN ′ zL zH 0.040 - 0.776 1.000 7.4E-06 284
logN ′ zH zL 0.074 - 0.610 1.000 2.3E-05 284
logN ′ zL zL 0.076 - 0.602 1.000 8.2E-06 152

Table B.4: Forecasting rules for model with aggregate uncertainty
Notes: This table reports estimates and regression statistics for the forecasting equations for the business cycle
model, logK ′ = α0(z) + α1(z) logK + α2(z) logN and logN ′ = β0(z, z

′) + β1(z, z
′) logN . “s.e.” denotes the

standard error of the regression. The last column presents the number of observations for each subsample of the
total simulation of T = T1 + T0 − T0 = 2500− 500 = 2000 sample periods.

Panel A highlights two key macro aggregates: output and consumption. By construction,
the standard deviation of output is identical across all three model economies and matches the
data exactly. In all cases of the model and in the data, consumption is highly procyclical and
less volatile than output. One of the shortcomings of our model is that the relative volatility of
consumption in our model is only about 1/6 of what it is in the data. Comparing across model
variants, though, we find corroboration for the aggregate consumption results in our IRF analysis:
the relative volatility is lowest in our baseline model, followed by the HP model with tightening
of premia in recessions, followed last by the fixed premium model. Our (steady state) calibration
insures that agents’ ability to smooth consumption on average (or, in the cross-section) across
all model variants is the same, and so these results pick up purely cyclical differences.

Panel B presents key credit quantity moments. Perhaps surprisingly given our IRF analysis
in Section 5.1, we find that total debt is countercyclical across all our models and in the data,
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Premia Incidence [Data] Heterogeneous Fixed
Tighten in Rec.? N Y -
Moment σX/σY ρXY σX/σY ρXY σX/σY ρXY σX/σY ρXY

Column [1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Macro aggregates
output 1.20% 1.00 1.20% 1.00 1.20% 1.00 1.20% 1.00
consumption 0.81 0.92 0.14 0.78 0.15 0.79 0.16 0.81

Panel B: Credit quantities
total debt 3.20 -0.29 0.83 -0.78 0.82 -0.80 0.34 -0.92
bankruptcy filings 17.9 -0.11 1.51 -0.94 1.52 -0.95 1.14 -0.99
debt to income 5.23 -0.27 8.51 -0.99 8.85 -1.00 10.7 -1.00
fraction in debt 6.62 0.48 0.94 -0.94 0.96 -0.94 0.15 -0.82

Panel C: Interest rates
avg IR, all loans 0.90 -0.88 0.10 -0.98 1.18 -1.00 0.55 -1.00
avg BP, all loans 0.19 -0.56 0.29 0.98 0.90 -1.00 0.00 0.00

Table B.5: Business cycles: data, baseline, HP with tightening, and FP economies
Notes: Business cycle moments are computed using the cyclical component of Hodrick-Prescott filtered logs of
the data, with annual smoothing parameter of 6.25. σX/σY is the standard deviation of variable X normalized
by the standard deviation of GDP, and ρXY is the correlation of X with GDP. Data are for 1999-2019 except for
risk free loan rate and debt to income for which we use Y-14M data. Details of data sources are provided in the
Appendix. For the measure of default used in Section 1, the relative volatility and cyclicality are 5.11 and -0.29.

though the magnitude of this effect is larger in our model than the data (about -0.8 vs. -0.3).
This “flip” comes from the larger assumed swing in the earnings risk in our business cycle model.62

Total debt is significantly less volatile in our models than the data (about 3.2 vs. 0.8 / 0.3 HP
/ FP). Importantly, the variable premia case brings both the relative volatility and cyclicality of
total more in line with their empirical values. Similarly, all our models capture that bankruptcies
and the debt to income ratio are more volatile than output and countercyclical as in the data, and
our baseline model outperforms the FP case across the board. All our models fail to capture the
procyclicality and excess volatility of the fraction of households in debt, the former effect likely
driving the gaps between models and data for total debt.

Finally, panel C presents two key credit pricing metrics: the average interest rate spread and
average borrowing premium on all loans. Of course, the FP model (with no tightening) has no
volatility or cyclicality in borrowing premia. All models capture the strong countercyclicality of
loan spreads that we observe in the data. Notably, the HP model with tightening in recessions
comes closest to matching the relative volatility of spreads we observe in the data, suggesting
that the cyclical response of borrowing premia is important for matching this moment.

62Specifically, our IRFs assume that on impact σϵ2 goes from 0.129 to 0.163, while our business cycle model
assumes that this same variable goes from 0.094 in expansions to 0.163 in recessions. The reduction in risk in
expansions dampens credit demand in expansions, driving the countercyclicality we observe here.
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C Details of the Extended Model with Lending Standards

C.1 Theory
Pricing conditions The first order conditions of maximizing the bank objective (16) subject
to (17) are

1 =
1

1 + i
E [WK(K

′,M′)] (C.1)

q(ℓ;x)ℓ (1 + η1[ℓ > 0] + ηλ(p(ℓ;x))1[ℓ < 0]) =
1

1 + i
E
[
Wm(ℓ;x)(K

′,M′)
]

(C.2)

and the corresponding envelope conditions are

WK(K,M) = 1 + r − δ (C.3)

Wm(ℓ;x−1)(K,M) = −
∫
B×E

(1− gBK(ℓ; dx) + ξgBK(ℓ; dx)) ℓP(dx|x−1). (C.4)

Combining expressions (C.1) and (C.3) yields i = r − δ as in the baseline model. Applying the
definition of expected repayment probability from equation (12) and combining equations (C.2)
and (C.4) delivers equations (18) and (19) from the main text.

Modified equilibrium definition Most of the equilibrium definition in Section 2.4 for the
baseline model with exogenous borrowing premia extends to the model with endogenous borrowing
premia. In particular, household optimization (i), firm optimization (ii), distribution consistency
(iv), and the market clearing conditions (v) remain the same. However, the lender optimality
condition (iii) is subject to three changes. First, the loan price schedule must be given by (19)
rather than (13). Second, the savings price must be given by (18) rather than (1 + i)−1. Third,
the multiplier η must be consistent with the aggregate loan supply constraint (17); that is, if
η = 0, then the right hand side of this constraint must be strictly greater than the left hand side,
and if η > 0, then the right and left hand sides of the constraint must be exactly equal.

C.2 Computation
The algorithm for solving the baseline model with exogenous borrowing premia is completely
standard, and so we do not include it here. The same applies to the impulse response and
business cycle analyses for this version of the model. The former is solved using a perfect
foresight transition, back-solving the household decision problem given a vector of equilibrium
prices, then forward-solving the sequence of endogenous distributions over idiosyncratic states,
then updating the equilibrium price vector until convergence. The latter is solved as described in
Appendix B.4.

The version of the model with endogenous premia in Section 6, though, requires modifications
to this algorithm, and so we describe our computational method here. The key insight of our
algorithm is that we require the converged equilibrium to match a given schedule of borrowing
premia, and so we do not need to assume a particular λ(·) in our solution; rather, we can solve
the model until the value of the multiplier η has converged, then infer λ(·) from the borrowing
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premia schedule. We go through the details for the steady state, then describe the adaptation to
solving an impulse response to an aggregate shock.

1. Make a guess of the equilibrium capital stock K0 and the multiplier on the loan supply
constraint η0.

2. Compute the implied set of factor prices r(K0) and w(K0), interest rate i(K0), and return
on savings q(K0, η0) = [(1 + i(K0))(1 + η0)]

−1.

3. Make a guess of the bankruptcy decision rule, gBK(x), for all x. Use this to define the
repayment probability function p0(ℓ;x,K0, η0) according to (12).

4. Impose the desired borrowing premium schedule on the loan price schedule. That is, given
an empirical schedule b̂(p), specify the loan price schedule

q(ℓ;x, p0, K0, η0) =
p0(ℓ;x,K0, η0) + ξ (1− p0(ℓ;x,K0, η0))

(1 + i(K0))
(
1 + b̂(p0(ℓ;x,K0, η0))

) (C.5)

Note that the lending standards function λ(·) does not appear in equation (C.5).

5. Solve for household decision rules ga(x; p0, K0, η0) and gBK(x; p0, K0, η0) given the equi-
librium prices assumed in the preceding steps.

6. Use equation (12) and the new bankruptcy decision rule to compute an updated guess of
the repayment probability, p1(ℓ;x,K0, η0). If maxℓ,x |p1(ℓ;x,K0, η0) − p0(ℓ;x,K0, η0)| <
εp, where εp is a tolerance level, proceed to step 7. Otherwise, set p0(ℓ;x,K0, η0) =
χpp1(ℓ;x,K0, η0) + (1 − χp)p0(ℓ;x,K0, η0), where χp ∈ (0, 1] is a relaxation parameter,
and return to step 4.

7. Assess aggregate market clearing.

(a) Using pricing conditions (18), (19), and (20), rewrite constraint (17) as

−
∫
X×L−

b(p(ℓ;x))
p(ℓ;x) + ξ(1− p(ℓ;x))

1 + b(p(ℓ;x))
ℓdm(ℓ;x)︸ ︷︷ ︸

≡A−

≤ η

1 + η

∫
X×L+

ℓdm(ℓ;x)︸ ︷︷ ︸
≡A+

(C.6)
Use equation (C.6) to compute A−(K0, η0) and A+(K0, η0).

(b) Compute the implied aggregate capital K1(K0, η0) =
∫
X adµ(x).

(c) Define the following convergence metrics for η and K:

∆η =
∣∣∣ η0
1 + η0

A+(K0, η0)− A−(K0, η0)
∣∣∣

∆K =
∣∣∣K1(K0, η0)−K1

∣∣∣

xxiv



(d) If ∆ ≡ max{∆η,∆K} < ε, where ε is a tolerance parameter, proceed to step 8.
Otherwise, define

η1(K0, η0) =
A−(K0, η0)

A+(K0, η0)− A−(K0, η0)
,

update η0 = χηη1(K0, η0)+(1−χη)η0 and K0 = χKK1(K0, η0)+(1−χK)K0, where
χη ∈ (0, 1] and χK ∈ (0, 1] are relaxation parameters, and return to step 2.

8. Use equation (20) to back out an implied lending standards function, λ̂(p) = b̂(p)/η0.

Solving for impulse responses simply adapts this algorithm to a perfect foresight transition path.
The main departure is that rather than assuming a single empirical borrowing premia target b̂(p)
as in the steady state, we must assume a series of targets, {b̂t(p)}Tt=1, where T is the terminal
date at which we assume the economy has returned to steady state. Given a steady state schedule
b̂0(p) and an impact schedule b̂1(p), we define this sequence recursively via

b̂t+1(p) = ρz b̂t(p) + (1− ρz)b̂0(p) for all t = 1, ..., T − 1 and all p

Given this, we can nest the algorithm above neatly into a standard structure in which the deci-
sion rules are back-solved, distributions are forward-solved, and equilibrium price sequences are
gradually updated to convergence.
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