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Abstract

A burgeoning literature recognizes that the efficacy of the state is crucial for economic
growth and citizen welfare. However, much of that literature abstracts away from the
institutional details underlying state capacity. We develop a theory that provides a
working definition of state capacity—the ability to handle administrative problems of
varying complexity, such as tax collection—and how it is provided and maintained. We
conceive of the state as a knowledge hierarchy, or an information-processing institution
that passes problems up a set of organizational layers until a layer with the required
expertise solves it. Knowledge hierarchies are costly to establish and operate, and
politicians differ in policy preferences and public goods valuations. We embed this
structure in a simple political economy framework, where politicians may idle parts of
the state depending on electoral prospects, thus reducing output. In conjunction with
high partisanship, this gives the state designer incentives to distort the state away from
efficient levels of capacity and specialization.

*Preliminary. We thank Dana Foarta and seminar audiences at Carlos III Madrid, CUNEF, Princeton,
Florida State, UCSD, Yale, the 2019 Berkeley Formal Theory and Comparative Politics, Nottingham Political
Economy, and Utah Orgs and PE Conferences for helpful comments.



1 Introduction

Intuitive notions of state capacity have been shown empirically to be important for de-
termining both political and economic outcomesE Rigorous theoretical underpinnings—
including a definition of state capacity which can encompass intuitive notions—have lagged
behind empirics. In particular, current state-of-the-art theory equates state capacity with
realized tax revenue, does not contemplate changes in state capacity over time, and at-
tributes the dynamics of state capacity to macro-level shocks to preferences—such as wars
and depressions—rather than political processes.

We propose a broader definition of state capacity—the problem-solving capacity of the
state—and, with tools from organizational economics, use it to address some of the lacuna
described above. In our model, problems are solved by a bureaucracy (based on the knowl-
edge hierarchy of Garicano, 2000), and the maintenance of that bureaucracy over time,
and hence its structure, is the result of political processes. This allows us to distinguish
state capacity—the number of problems that a state could solve—from output which may
be limited by political factors and imperfect state maintenance. We show that there is a
non-monotonic relationship between state maintenance and the political competitiveness
of a society, with state maintenance being highest in politically competitive societies when
there is general agreement over policy, and lowest in politically competitive societies in the
presence of disagreement. These patterns of maintenance will lead to political distortions
in state design; for example, if the state-designer is from a group that values public goods
more than society as a whole, it will create structures that insulate the state from political
interference to prevent the opposition from severely reducing output.

Our model sheds light on the capacity of contemporary states—from roughly 1945 on,
conflict has been less frequent, and consumed a smaller portion of state revenue than in
prior periods. Moreover, even in the late modern period the building of state capacity was
not a one-way process—it rose more or less continuously in the Britain, while alternatively
building and ebbing in France (Brewer 1988). Further, it ties together notions of state
capacity with the organizational structures that are the foundations of state capacity—the

bureaucracy. Finally, by introducing a more general notion of state capacity, it allows for

!See Johnson and Koyama (2017) for a review.



the possibility of conceptualizing states as something more than just their sheer ability to
raise revenue, but rather their ability to implement a census, prosecute crimes, or grapple
with the problems created by climate change or a global pandemic.

Three sets of facts motivate the main components of our work. First, shortfalls between
capacity and output are both common and deliberate. In many developing countries, tax
authorities struggle to reach potential revenues (Schreiber 2019), and politicians have acted
over time to diminish the revenue collecting capacity of the state. In the U.S., the Internal
Revenue Service lost about 25% of its enforcement staff and 15% of its real budget between
2010 and 2017. Unsurprisingly, the audit rate for individual taxpayers plummeted from
0.9% to 0.5%. These reductions did not affect taxpayers evenly. High-income filers saw
their audit rates fall in part due to the under-resourcing of auditing and investigative units,
while very low-income filers who could claim the Earned Income Tax Credit were audited
at higher rates. Thus, the Republican-controlled Congress managed to re-orient the IRS’s
enforcement resources to avoid one type of tax avoidance in favor of another (ProPublica
2018, 2020, US CBO 2020). This is inconsistent with the extant literature that views state
capacity as an investment in extractive capabilities that are never voluntarily relinquished
(Besley and Persson 2009, Acemoglu, Garcia-Jimeno, and Robinson 2015).

Second, accounts of state capacity focus on more than the ability to raise revenue, and
recognize that organizations—in the form of functioning, non-corrupt judicial and executive
institutions—are crucial for its realization. For example, the development literature has
recently begun to focus on the role of personnel in helping the state achieve its goals (Finan,
Olken, and Pande 2017). Historically, the development of a powerful, centralized Prussian
state was accompanied by extensive institutional reforms that could bring the human capital
of enlightenment-educated bureaucrats to handle increasingly complex problems (Johnson
1975). In the contemporary world, highly developed states are generally associated with
large bureaucracies. As an example, the share of European Union national workforces
employed in public service provision (possibly through private sector providers) in 2016
ranged from 20% in Romania to 40% in Denmark and Sweden (Thijs, Hammerschmid, and
Palaric 2017).

Third, even similar macro shocks to preferences do not necessarily lead to similar state



capacity outcomes. For example, Brewer (1988) traces the evolution of British and French
state capacity over the 18th century. During this time, both nations fought numerous
wars—often against each other—yet this led to a drastic increase in state capacity and
output for the British state, and the eventual bankrupting of the French state and ensuing
revolution. Why? Brewer traces the difference to two important factors. First, the British
were primarily a naval power, and the French primarily a land power. As navies required
persistent funding for maintenance and upkeep of expensive capital (ships), state output
was needed even during periods where Britain was not at war. Alternatively, armies could
be raised and de-mobilized relatively rapidly. This factor, coupled with a second—a relative
lack of internal rivalries within Britain—resulted in a professional and centralized tax bu-
reaucracy which could experiment with a wide array of taxation instruments. The French,
instead, relied on less efficient practices, such as tax farming, that would both reward local
aristocrats and could be revoked in between wars. Although the shocks to preferences were
similar, their translation into state capacity and output were affected by fine details that
limited, or allowed, policy persistence.

To incorporate these observations, this paper examines state capacity, and the evolu-
tion of state output, when politicians control some structural and operational parameters
of state institutions. We consider a society composed of two groups, each with homoge-
nous preferences, that are tied to a party that represents them in government. We will use
the terms group and party somewhat interchangeably. Importantly, groups, and the par-
ties or politicians that represent them, are internally homogenous, but have heterogeneous
preferences over state output, and have the institutional tools to hobble the state.

As a theoretical foundation, we turn to knowledge hierarchies, which offer a simple
way to model expertise and production in complex organizations (Garicano 2000, Garicano
and Rossi-Hansberg 2006). In the basic formulation, an organization such as a firm faces
problems with a difficulty level drawn from a known distribution on R. The organization
consists of a series of layers, each of which is endowed with the ability to solve a subset
of possible problems. All problems “enter” through the first layer, which solves those
within its knowledge set and sends the remainder on to the next layer at a cost. Each

successive layer behaves in a similar fashion, until no layers are left. The central trade-off



in designing knowledge hierarchies is between personnel and operational costs. Since the
workers in each layer must be capable of handling that layer’s most complex task, more
layers increase specialization and decrease personnel costs. But more layers also increase
the average number of times that problems are passed up, increasing operational costs.

Our game begins with a founding period, which represents an initial shock that enables
the creation of a new state function. In it, one group establishes the knowledge hierarchy.
This is the basic structure of the state, which determines both the extent of its possible
problem-solving ability, or its capacity, and its personnel costs. In every subsequent pe-
riod, each group attains political power with exogenous probability. While in power, the
incumbent group receives a signal about the likelihood of maintaining political power, and
then decides which layers of the knowledge hierarchy to activate or idle for the following
period. Activated layers can solve problems but impose operational costs. We use the sim-
plest possible structure in assuming that layers can be idled and re-activated at zero cost.
Personnel and operational costs are shared by both groups through a tax that falls evenly
on the members of both parties. Importantly, idle layers still impose personnel costs. This
reflects the idea that governmental leaders can temporarily subvert state offices more easily
than they can fire civil servants or neutralize public sector unions.

In each period, the problem-solving done by the set of active layers translates directly
into the realized production of a public good, or output. Parties differ in their valuations of
the public good, and also value the public good more highly when they are in power than
when they are not. We refer to the latter difference, resulting from differences in policy
preferences between the incumbent and opposition groups, as partisanship (Kasara and
Suryanarayan 2020). Thus, when deciding whether to diminish or enhance state capacity
the group in power faces a trade off. Enhancing state capacity will be beneficial if the
incumbent is returned to power, or if the incumbent’s partisanship is low. Instability of
policy, either through frequent transitions of power, or large differences between the parties
in their preferred policies will lead the incumbent to reduce output below the state’s capacity.

Our first results take a given state hierarchy and derives the strategies for activating
and idling layers. In equilibrium, each party opens more layers as its electoral prospects im-

prove. Because of their higher operational costs, the layers associated with the most difficult



problems are idled first, and thus are least likely to be active over time. High operational
costs, partisanship, and differences in public goods valuations all amplify the consequences
of elections and reduce the chances that a given layer will stay active. As mentioned ear-
lier, there is no general relationship between political competitiveness and a layer’s average
output, as balanced electorates can either maximize or minimize the probability of idling.

The activation and idling strategies shape the incentives of the party that establishes the
state hierarchy. Some of the implications are intuitive. Because of training costs, the state
designer constructs a knowledge hierarchy that solves the easiest problems and possibly
excludes the most difficult ones. High operational costs add layers and increase the state’s
specialization. Capacity increases when partisanship is low, and a specialized, high-capacity,
high-output state emerges when there is high consensus over the value of public goods.

Our main results show that the political process can distort the design of the state
in several ways, especially when the founding group’s opposition has low public goods
valuation. This breaks the link between capacity and specialization—most notably, the
founding group may create a large amount of state capacity, but reduce the number of
layers in order to limit opportunities for political interference and keep output high. To
understand why, suppose that the opposition dislikes public goods, but is willing to activate
the lowest layer of the state. When the founding group’s partisanship is low, it reallocates
capacity down to the first layer, in order to take advantage of the opposition’s willingness to
allow the most basic governmental functions. A less specialized, “bottom heavy” state that
insulates basic functions results. By contrast, when the founding group’s partisanship is
high, the founding party shifts capacity away from the first layer and increases specialization
instead. This produces a smaller but “top heavy” state that obstructs the opposition from
accomplishing too much.

Partisanship also plays a role in the relationship between capacity and the probability
of holding power. Holding power is especially important to the state-builder when partisan-
ship is high, and thus capacity is increasing in the probability they maintain power. This
relationship becomes weaker, and may even reverse, as partisanship declines. The inverse
relation between capacity and the founding party’s prospects for staying in power occurs as

it shifts capacity to lower layers that are more likely to be activated by the opposition.



Finally, we compare the state realized through political processes to one designed by a
social planner. The social planner would never idle a layer, and thus creates a state with
none of the preceding political distortions, and output equals capacity. This shows that
efficient states tend to be sub-optimally small, and larger states tend to be designed to be
less efficient due to political incentives.

This paper complements an extensive literature on state capacity in economics and
historical political economy (Tilly 1990, Besley and Persson 2011, Johnson and Koyama
2017, Berwick and Christia 2018). Much of this work focuses on the development of states
across broad swaths of time, and focus on war as a driver of capacity. Moreover, the
economic literature has focused on the raising of revenue as a measure of state capacity.
Both war and the raising of revenue are clearly of first-order importance. To this literature
we add the ability to examine the ebbs and flows of state capacity over relatively short time
periods, and in response to political factors. Moreover, we explicitly tie state capacity to
the instrument of its achievement, the bureaucracy.

The more limited theoretical literature on state and bureaucratic capacity has tended to
focus on the state as the product of investment in extractive ability. For example, in Besley
and Persson (2009), politicians invest in legal and taxation capabilities in anticipation of
future needs, while in Acemoglu, Garcia-Jimeno, and Robinson (2015), central and local
politicians jointly invest in extractive capabilities in an environment with local spillovers.
Gennaioli and Voth (2015) treat centralization as a main determinant of extraction, and
model a ruler’s decision over whether to overcome local resistance to centralization. Another
approach considers capacity as a parameter in agency problems involving the bureaucracy
(e.g., Huber and McCarty 2004, Ting 2011, Foarta 2021). To our knowledge, the existing
theoretical work does not explore the implications of internal organizational structure, or
the existence of political actors expressly interested in diminishing state capacity.

Our conception of state capacity as problem-solving ability helps to unify a range of
related policies or institutional features. In addition to revenue extraction, studies have
emphasized legal protections, fiscal centralization, personnel levels, personnel quality, and
general administrative resources (Derthick 1990, Besley and Persson 2009, Brown, Earle,
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and Katz 2014, Bolton, Potter, and Thrower 2016, Garfias 2018). By focusing on the role of
organizational structure, we also allow the possibility of integrating the insights of studies
that focus on the institutional details of tax collection (Almunia and Lopez-Rodriguez 2018,
Bachas, Jaef, and Jensen 2019, Cullen, Turner, and Washington 2021).

Our paper is also complimentary to the large literature on the bureaucracy in political
science, and to a more limited extent, economics. In the organizational economics liter-
ature, knowledge hierarchies explicitly sidestep the agency problems that are endemic to
firms (Garicano 2000). Thus, our paper sidesteps the agency problems that have received
frequent attention in the literature on bureaucracy and organization (e.g., Moe 1989, Gail-
mard and Patty 2012, Gibbons and Roberts 2014). While this naturally limits the range of
organizational problems that can be examined, the framework has the virtues of endogeniz-
ing internal organizational structure and allowing for a tractable characterization of output.
In fact, its central tension between specialization and generalization is reflected in historical
decisions about the design of government personnel systems (e.g., Silberman 1993). Our
paper also makes a limited contribution to the organizational economics literature as well:
aside from Garicano and Rossi-Hansberg (2012), ours is the only one we are aware of to
examine knowledge hierarchies across time. While their model is built on a competitive
equilibrium framework, ours is built on one with exogenous political frictions.

We organize the paper as follows. The next section introduces the basic model. Section
[3|takes the state structure as given and works through how parties activate and idle layers of
the knowledge hierarchy. Section [4] uses these results to derive the design of the knowledge
hierarchy. Next, Section [5|then examines comparative statics on state capacity, and Section
[6] illustrates counterfactuals. Section [7 concludes with a discussion of how our model can

be used to understand some of the examples provided above.

2 Problems and Knowledge Hierarchies

We develop a simple model of the establishment and evolution of state capacity over an
infinite horizon. State capacity is useful for addressing a range of policy problems depending

on how it is deployed by the government. A particularly salient class of policy problems is



the collection of tax revenue, which we use throughout as a running example.

The players are two infinitely-lived parties k € {1,2} that represent different groups in
society, each consisting of a share 75 of a unit measure of population. Throughout we will
use the terms party and group interchangeably. While we refer to these different groups as
parties, note that this does not necessarily imply that the society is a democracy: groups
may lose or come to power through different means, including, but not limited to, elections.
In each period ¢, party k is in power with probability r;. Nature begins each period by
revealing a realized probability that k will be in power the next period py+ € [y —e, 7% +€,
where € € (0,min[ry, 1 — 7]}, Elpg¢] = 7%, and py, is i.i.d. across periods according to
distribution Fj(-), which we assume to be uniform. The complementary probability that
k’s opposition is elected is p_j; € [1 — ry —e,1 — 11, + €. Both parties discount the payoff
in future periods by a factor ¢ € (0, 1).

To collect revenue in each period, the state has to solve a continuum of revenue col-
lection problem. Each problem has a difficulty level z € Z = [0, 1], with lower values of z
representing simpler problems. Problems are distributed according to a distribution G(z)
with corresponding density g(z) on Z. Throughout we assume G(z) ~ U|[0, 1], but maintain
the G(-) notation to clarify the role of the distribution of problems.

Revenue collection is performed by an organization, called a knowledge hierarchy, that
divides the bureaucrats that work for it into an integer number J > 0 of (possibly over-
lapping or disjoint) layers. Each layer j is associated with a set Z; = [z;,%Z;] € Z of
problems that it can solve. The measure of workers required to address layer j’s problems
is G(z;) — G(zj). We will refer to J as the knowledge hierarchy’s depth, and to Z; as layer
J’s knowledge set. Knowledge sets are ordered in increasing sequence according to z;.

A central feature of the model is the endogeneity of the state’s effective depth over time.
The depth J is established at the beginning of the game, but upon observing its probability
of staying in power in the next period, each incumbent may choose which layers will function
in the following period. A layer that is active can solve problems in its knowledge set, while
a layer that is idle cannot. Activating or idling layers is costless. Fach solved problem
results in an equal amount of tax revenue, which can be spent

A knowledge hierarchy solves problems by passing them up through the layers until it is



determined that the problem cannot be solved, or it is passed to a layer that can solve the
problem. To give a concrete example, suppose that all layers are active in a given period.
When a new problem is drawn with complexity z, it is initially processed by layer 1 of
the knowledge hierarchy. If z < z; or z > max{%;}, then the problem is dropped from
consideration. If z € Zy, then the problem is solved by layer 1 that period. Otherwise,
if z > Z1, then layer 1 passes the problem on to layer 2. Layer 2 drops the problem if
z < z2, addresses the problem if it is in Zs, or else passes it on to layer 3, and so on until
a problem is either solved if z belongs to some knowledge set, or dropped if it does not.
Observe that if z; 11 < Z;, then the bureaucrats in level j+ 1 will never process any problems
with 2 < Z;. Thus, we assume without loss of generality that z;11 > Z;. Let Z = U;Z;
represent the union of knowledge sets, which is equivalently the set of problems solvable by
the knowledge hierarchy. Bureaucrats within a layer cannot discriminate between problems.
Problems that do not belong to any knowledge set are ignored, and no problems are solved
when J = 0.

We define capacity as z;, the hardest problem that the state can possibly solve. In any
period, output is the measure of all problems that the active layers of the state can actually
solve, which may be less than capacity.

The expected utility of a member of party k from solving problems in layer j in period
t is:

[ kG =k, (635) - G- (1)

j
This benefit depends on the parameter wfgt, which is the marginal value of government
spending for party k in period ¢t when party [ is in power. Its possible values are:

1 if [ =1 is in power ; q(1 —mg) if [ =1 is in power
Wi = War =

) )

1—m if [ =2 isin power q if [ = 2 is in power

The parameter g > 0 represents the fact that different groups may differ in their valuation
of public goods or government policy. As it is possible for ¢ > 1, either party could value
policy more highly. Thus, it is without loss of generality to consider the case where Party

1 constructs the knowledge hierarchy, as we do in Section
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The parameters 7 € [0, 1] represent partisanship, or differences in preferences (or ide-
ologies) between the two groups. which we allow to be asymmetric (e.g., Mann and Ornstein
2012, Grossman and Hopkins 2016). If both values are high, this corresponds to an envi-
ronment in which parties are able to target resources to their supporters, for example when
groups are highly aligned with geographic or cultural cleavages. If both values are low,
this corresponds to a situation where both parties favor public goods that are (somewhat)
valuable to both groups. Finally, if one value is low, and the other is high, this corresponds
to an environment where one group favors universalistic programs, while the other prefers
to target its own supporters. We say that the groups are polarized if some 7y is high.

The state structure imposes two kinds of costs, which are born by the members of both
groups, whether or not they are in power. First, a problem of difficulty z must be handled
by a bureaucrat with labor cost cz each period, where ¢ > 0. As bureaucrats within a layer
cannot discriminate among received tasks, they must be able to solve any problem in their
knowledge set Z;, as well as all easier problems. To reflect the difficulty of firing government
personnel (whether due to unions, political opposition, civil service rules, or bureaucratic
inertia), this cost is fixed when the state is established and incurred for each layer in every
period, regardless of whether the layer is idleE| The total personnel cost of layer j over all

of time is thus

Zétcéj /zjdG(z) = %CEJ (G(z5) — G(25)) (3)
t=1 i

Specialization (in the sense of having multiple layers) therefore economizes on total training
costs, as fewer workers need to be trained to solve the most difficult problems.

Second, processing each problem imposes operational costs. We implement this in a
simple way by assuming a cost h > 0 whenever an active layer receives a problem to
process, regardless whether it is actually able to solve it. There is no cost for a layer to
“send” a problem on to the next layer. Thus, any problem solved by layer j ultimately
incurs a search cost of jh. Note that if jh > wfg, the marginal value of layer j for party k

may be negative. The design of the knowledge hierarchy balances the operation and training

2This is qualitatively equivalent to ¢ representing a one-time training cost. If labor costs are not incurred
when a layer is idled this will change the incentives somewhat for idling and activating layers, although a
suitably modified version of Proposition Elwill still hold. Other propositions will be qualitatively unaffected.
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costs: many layers saves on labor costs, but creates higher operational costs, whereas few

layers saves on operational costs, but at the expense of higher labor costs.

2.1 Timing

The party power in period ¢t = 0 can create the structure of the state Z that will operate for
the remainder of the game. The strategy space for Party 1 in period ¢ = 0 is the powerset
of all compact intervals of [0,1]. The timing of the rest of that stage, and the ones that

follow is:
1. pgz is realized.

2. The party in power determines which layers of the state will be idled or active in the

next period.

3. A power transition may occur, with the party in power determined according to

probability py ;.

4. The party in power in the next period raises revenue with the revenue collection

agency that they inherit, and allocates that revenue towards their policy aim(s).

The party k stationary strategy for activation and idling in each period is denoted

a; : [0,1] — {0,1}”.

3 State Maintenance

As our opening discussion illustrates, existing state structures are subject to political ma-
nipulation. We therefore begin by characterizing the stationary strategies for activating

and idling the layers of a given knowledge hierarchy Z.

3.1 Activating and Idling

Because idling and activating are costless, the current set of layers in either state is irrelevant
for future payoffs. As such, we derive a strategy that only depends on the characteristics of

the knowledge hierarchy (number of layers, and their boundaries), and the probability that
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party k is in power in the following period(s) px:. The next section uses these results to
solve for the optimal knowledge hierarchy designed at ¢t = 0, given these strategies.

The period ¢ + 1 expected value of an active jth layer Z; = [2;,%Z;] to an incumbent
party k is the measure of problems solved by that layer (G(Z;) — G(2;)), times the value to
individuals in that group—wﬁ€7 which will depend on who is in power in the next period—of

public goods paid for with the revenue generated from solving that measure of problems:
(prwpy + (1= pr)wy = jh)(G(Z)) — G(2)))-

As personnel costs (c) are effectively sunk, the marginal value of problems solved in a given
layer depend only on communication costs, which increase with a layer’s depth j. As such,
only the highest layers of any knowledge hierarchy will be idled.

Define pi as the realized value for party k of p; that makes it indifferent between
keeping either the lowest j — 1 or lowest j layers active. Denote by 7 and v, the ex ante
average payoff party k expects conditional upon winning and losing, respectively. Finally let
Ei and Qi denote the continuation value conditional upon winning and losing, respectively,
when the party in power in the current period inherits j active layers.

This produces a system of 2(2J — 1) linear equations. The expected value for each j
and k can be written ad]

J

v o= D (wf—ih)(G(z:) — G(2)) + 8(rTr + (1 — 3)y,)

=1
v = Y (wF —ih)(G(E) — Glz)) + 0(rivr + (1 = ri)vy,).-
=1

Next, the ex ante expected values are:

J-1

wo= > (A6l - R6)) 7
=1

v = 3 (P = Farwl ) ol

Jj=1

()

3Note that both expressions omit personnel costs ¢, as those are incurred whether a party wins or losses,
and hence are not important to the analysis of idling and activating.
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Under the assumption that realized election probabilities are distributed uniformly on [0, 1],
the parenthesized expressions in become p,i“ — pi: and pj_ 21 — pj_ 1> Tespectively.
For any j between 1 and J, pi—the probability of returning to office that makes k

indifferent between keeping 7 — 1 and j layers active—must satisfy:
i o _ o
p + (A =py = poy+ (L= py, (6)

Note that as pi is a stationary indifference condition, it is independent of the distribution
of election probabilities. As such, we can then define the expected probability—before pg
is realized—party k activates layer j as o(j) = 1 — Fk(p;c) Solving for pi; produces the

following interior probability cutoff:

1-— —jh
. fw for Party k =1,
w, " —jh m
W~ W L= m) =R vty k=9
qm2 ’

where @ follows from substituting in the value functions into @

Expression and the associated probabilities of activation oy (j) are essential for un-
derstanding both state maintenance in this section, and state design decisions in Section
[ First, these thresholds, and the associated probabilities of activation, are fixed across
periods, as expected in a stationary equilibria. Second, they are independent of the dis-
tribution of problems G(z). Perhaps more importantly, the thresholds for a given party
vary only in response to j—with higher j’s requiring a higher threshold, and thus having a
lower probability of opening. A third useful fact immediately apparent from @ is that if
jh > 1 —my, then Party 1 will never activate layer j along the equilibrium path. As Party
1 will not design a state to include a layer it never uses, we can use this fact to establish a
loose, but useful bound on J: J < (1 —71)/h (and hence jh < 1 — m for all j < J).

Note further that, for both parties, the denominator of is always negative. Thus,
if w,;k > jh, party k will always activate layer j. If, on the other hand, w;k < jh, then

the cutoff will be increasing, and probability of activation decreasing, in partisanship 7%E|

4This is true if 1 — jh > 0, which is implied by J < 1/h.
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Intuitively, partisanship makes state maintenance less attractive as spending when the other
party comes to power will be outweighed, to an even greater extent, by the cost of the state
maintenance. Finally, note that the largest difference between the two parties in their
thresholds comes from the asymmetry of valuation of public goods gq. The thresholds of
Party 2 are decreasing—and corresponding probabilities of activation o3(j) increasing—in
g. So when partisanship is symmetric (m; = m2), and Party 2 values public goods less than
Party 1 (¢ < 1), then Party 2 will be less inclined to maintain the state. On the other hand,
when ¢ > 1, Party 2 will be more inclined to maintain the state. We return to formalize
these intuitions, in Section after examining an example of how activating and idling

affects value functions in the next subsection.

3.2 Example of Value Function

The overall value of the activation/idling decision is convex, although the value of activating
or idling any one layer is linear. We illustrate why with a simple example, in Figure
This figure plots the EZ/, value functions as a function of realized probability of retaining
power (py) for a three-layer knowledge hierarchy with contiguous layers [0,0.2), [0.2,0.3),
and [0.3,0.35]. Election probabilities are symmetric with py; ~ U[0,1]. This figure sets

w1 = m = 0.1 and ¢ = 1, and thus payoffs and value functions for both parties are identical.
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Figure 1: Value Functions by Depth, J = 3. Each line plots continuation value for 0, 1, 2,
3 layers, given equilibrium future choices. Parameter values are h = 0.2, 7, = 0.5 (pg¢ ~
Ul[0,1]), ¢ = 1.0, m; = mo = 0.1, and the knowledge hierarchy layers are (0,0.2,0.3,0.35).

The pi cutoffs for choosing 1, 2, and 3 layers are 1/9, 3/9, and 5/9, respectively.

As previously discussed, the optimal way to maintain j layers in a depth-J knowledge
hierarchy is to activate the j lowest layers and idle the J — j highest ones. The figure
shows that for 57 > 0 each Ei is increasing in py: the value of an active layer is higher
when the politician expects re-election. Additionally, the slope of Ui is increasing in j,
which reflects the fact that payoffs are more volatile when more layers are active. Thus the
optimal number of active layers increases in pj . Upon learning py ¢, the incumbent party

simply selects the value of j that maximizes @i, as traced out by the black line in the figure.

3.3 Comparative Statics on Maintenance

We now examine how average activation probabilities change with respect to various param-
eters. These probabilities will affect the period 0 value of constructing a layer of given depth
and width—in addition to some parameters affecting this decision directly—as discussed in
the next two sections.

Along the equilibrium path, layer j’s expected output is its probability of activation, or:
> row(d) = 1= riFu(p]) = r2Fa(ph). (8)
k

That is, the average probability that a layer is active is simply the probability that Group
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1 has a realized probability of maintaining power high enough to warrant (re-)activation,
multiplied by the probability that the group is in power in the first place, plus the probability
that Group 2 has a realized probability of maintaining power high enough to (re-)activate
that layer, times the probability that they are in power.

Our first result uses this expression to establish some basic comparative statics on the

probability of activating some layer j for a given state structure.

Proposition 1 [Activating and Idling.] For a state represented by knowledge hierarchy Z,
the probability that layer j is active is:
(i) Weakly decreasing in h and i, and weakly increasing in q,

(ii) O for an interval of m only if ¢ < m+7r2((1_jj};31_7r1(1_25)). This interval is internal to

(0,1) only if jh < q(1 + emq).

Jjhm
7T1+7T2((1—jh)—7r1(1+26)) :

(0,1) only if jh > max[l — 71 (1 +¢€),q(1 — ma(1 +¢))].

This interval is internal to

(iii) 1 for an interval of r1 only if ¢ >

A number of parameters have straight-forward and intuitive effects on state maintenance,
as described in part (i) of the proposition. With high partisanship (), and low public goods
valuations (g), the prospect of an opposition-run state can be unappealing an incumbent
parties. An incumbent that will likely lose power will thus be inclined to idle the highest
layers of the state. High operational costs (h) reduce the value of active layers further and
therefore have an effect similar to increasing partisanship.

On the other hand, state maintenance is always non-monotonic in the probability that
one party or the other (1) remains in power, although moderate values of those parameters
may either minimize or maximize realized output. In particular, parts (ii) and (iii) show
that moderate values of rj, can be associated with a layer being always idled (o4 (j) = 0) or
always activated (o;(j) = 1). These occur when ry 4+ & < p,i orrp—e > pi, respectively.
Parts (ii) and (iii) then follow from finding conditions under which the ranges of 7 overlap,
but do not contain the entire (0, 1) interval.

To understand why moderate values of r; can be associated with a layer being either
always idled or always activated, we focus on the public-goods valuation (q) of Party 2, and

illustrate its workings in Figure 2 When Party 2 does not value public goods highly (g low)
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Figure 2: Maintenance may be highest or lowest in societies with a high-probability of power
transitions, depending on q.
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then it will only activate layers when it is relatively sure of re-election. At the same time,
if 7y is high, Party 1 will only activate the layer if it is relatively sure to stay in power.
This implies that a given level of the knowledge hierarchy may cease function when ry is
moderate, as shown in Panel A. In other words, a dominant party or group is needed to
maintain a highly-functional state. On the other hand, when Party 2 values public goods at
a relatively equal level to Party 1, it will become willing to keep all layers active, even when
its chances of staying in power are modest, making moderate values of r; best for state
maintenance, as shown in Panel C. In between these two extremes, moderate probabilities
of maintaining power lead to moderate levels of state maintenance, as shown in Panel B.

Election probabilities also interact with the other parameters. High communication
costs (h) and high partisanship (7) make parties less willing to keep layers activated unless
they are relatively sure of holding onto power, creating scenarios where a dominant party or
group is needed for state maintenance, as in Panel A. On the other hand, if communication
costs are low, and /or the public goods valuations are high, then maintenance will be highest
when both parties have a moderate chance of being in power, as in Panel C.

The election-induced incentives to maintain the state have clear implications for realized
output and hence state design. The following remark shows that Party 1’s partisanship can
drive a wedge between capacity and output in any state that it would create, as it would
dislike layers that Party 2 would activate. The bound follows simply from manipulating
r101(j)(1 — jh) 4+ r202(j)(1 — m1 — jh), or Party 1’s ex ante expected value of problems

solved in layer J, and thus we state the result without proof.

Remark 1 [Output and Capacity.] If m1 > 1 — jh, then for any layer j designed by Party

1:
o)A = jh)
ro(1 —m — jh)’

02(j) <

Party 1 takes these relationships into account when designing the state. In particular,
when its partisanship is high, it may shrink layers that Party 2 will activate and expand
those that it will idle. Likewise, lower partisanship will give it an incentive to increase
the size of layers that Party 2 is likely to activate. The subsequent sections examine the

implications of these incentives for the capacity and specialization of the state.
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4 State Design

We proceed in two steps to solve for the optimal knowledge hierarchy / knowledge sets
Z, given the opening and closing strategies described above. First, Section establishes
some simple results useful for both characterizing the optimal hierarchy, and for providing
an intuition for its structure. In particular, the optimal knowledge hierarchy will have no
“gaps” (that is Z; = z;41), that the lowest knowledge set will contain 0 (that is, z; = 0),
and that knowledge sets will be decreasing in length. Thus, to build the optimal knowledge
hierarchy one can anchor it at zero, and then stack layers on top of it until an optimal next
layer would have negative length (that is, ;41 < Zs). At that point, J, the last layer that
the state designer wishes to assign positive length, is the top layer of the optimal hierarchy.

Second, Section [4.2] uses these results to explicitly define the optimal structure.

4.1 Basic Results

The initial design of the knowledge hierarchy depends Party 1’s anticipation of which layers
will stay active over time. As established above, parties determine which layers to activate
or idle for the following period based on their realized probability of holding onto power.
Only the lowest layers are activated, and the reelection probability cutoff pi for activating
layer j is given by .

We next establish the optimal state structure from the perspective of the Party 1 in
the initial period (¢ = 0). Our first result greatly simplifies the analysis by pinning down
the possible types of solutions. In an optimal knowledge hierarchy, knowledge sets are
“stacked,” or arranged sequentially with no overlaps and no gaps in between. These stacks
are “anchored” at 0 to emphasize the easiest (low z) problems. (The proof of this and all

other results can be found in the Appendix.)

Lemma 1 [Stacking and Anchoring Knowledge Sets.] In an optimal depth-J knowledge

hierarchy, zj = zj41 for j=1,...,J —1 and z1 = 0.

Lemma [I] simplifies the derivation of optimal knowledge hierarchies by allowing us to

restrict attention to stacked and anchored knowledge sets. Accordingly, we adopt the no-
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tation that each Z; takes the form [z;_1,%;| for each layer j. These knowledge sets form a
partition of [0,Z ], where Z; is the capacity of the state.

The party in power in period ¢ = 0 thus has the following maximization problem:

] 2
max Ul(Z) = Z(St Z ZTkUk(])(wlf — ]h) — ij (G(E]) — G(Ejfl)), (9)

J,Z050-52 7

Note that in @D, or(+) depends only on j.

It will be useful to focus initially on the construction of optimal knowledge hierarchies
for a given J. While the objective @D is concave in each z;, the constraints generally ensure
that it is not possible to have a solution where all z; € (0,1). The next result shows that
anchoring at zg = 0 has the fortunate consequence making the objective function globally

concave for all remaining z; terms.

Lemma 2 Concavity of Depth-J Knowledge Hierarchies. Fizing J and zo = 0, the party’s

objective @ s concave over knowledge sets satisfying Zo <z1 < --- < Zj.

Due to the concavity of U;(Z), we can solve for the optimal knowledge hierarchy, up to
the constraints in @D by using the first order conditions. For layers j = 1,...,J — 1, and
making use of the fact that G(z) ~ U|[0, 1] these can be written as:

Zi1+7 1 &
_ i—1 j+1 . . . .
z = T+ N "n [(Tk(])(wlf — jh) = or(j+1)(wi — (j + 1)h)

2 2c
k=1

_ 2
z; = Z“’2*1 + inkak(J)(w’f — Jh).
k=1
The quantity (w’f — jh) is simply Party 1’s marginal value of an active layer j when party
k is in power. This must be sufficiently positive, in expectation, for Party 1 to create a jth
layer.
The expressions in convey a simple intuition for the effect of costs and election

probabilities. Since the probability oy (j) of activating layers does not depend on personnel

21



costs (c), increasing these costs will shift the layer j bound Z; downwards toward the
midpoint between Z;_; and Z;y;. Increasing communication costs (h) and partisanship
(mx) have the opposite effect, as these increase threat of idling the j 4+ 1-th layer and thus
give the institution designer an incentive to increase the size of the jth layer.

Solving the system in terms of Z; produces a unique interior layer boundary for

each knowledge set:

. 2 J J
5= L+ -Sn (Jzam)(wf—ih)—jzaku)(wf—ih)). (11)
k=1 =1 =1

We can further solve for zj, producing the following expression for capacity, which will be

correct when Z; < 1:

2

= MZrkZak(i)(w’f —ih). (12)

k=1 i=1

Thus far, we have not addressed the possibility of corner solutions, where z; = 2j41.
Optimal knowledge hierarchies with degenerate layers are possible, in part because the state
designer may want to prevent (through high operational costs) her opponent from activating
layers when she is out of power. Such designs are both relatively rare and cumbersome to
characterize, so the subsequent analysis focuses on interior solutions to the state designer’s

problem.

4.2 Full Characterization

To complete the derivation of the optimal knowledge hierarchy, we determine the optimal
depth J*. The main challenge of this exercise is that J* can change with the parameters
of the model. We thus introduce a general property of optimal layer arrangements that is
useful for developing an intuition for the maximum possible depth.

Party 1 prefers J over J —1 layers when it is willing to allocate layers of positive measure
to layer J. Since it could feasibly add a degenerate Jth layer to an optimal depth-J — 1
knowledge hierarchy without incurring additional personnel or operational costs, adding

any nondegenerate layer must be strictly beneficial. To see when the Jth layer has positive
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Figure 3: Layers, Capacity, and Expected Utility. Here, h = 0.2, ¢ = 1.0, § = 0.75,
w1 = 0.5, mg = 0.75, ¢ = 0.25, r; = 0.5, and election probabilities are distributed according
to U0, 1]. The gray curve is the expected utility of a knowledge hierarchy as a function of
capacity when J and all internal layers are chosen optimally. Two layers become optimal
at zy = 0.42; the optimal knowledge hierarchy is J = 2 and z2 = 0.74.

size, we solve Z; —Zj_1 > 0 in terms of z; using expressions ([L1]) and (12)). This produces

the minimum capacity for a knowledge hierarchy that sustains J layers:

2 J—1
2= éZm (Z o) (wh — ih) — (J = Dop(J)(wh - Jh)) : (13)

k=1 =1

For a state of depth J, a capacity of at least z; is obviously necessary for an interior solution
to the state designer’s problem.

It is straightforward to show that higher-depth states require larger capacity, and so
2y is increasing in J. Once capacity exceeds z;, the optimal depth becomes at least J.
Thus the optimal depth is J when Z; lies in the interval [z, 2;,,). The weakly monotonic
relationship between the optimal depth and problem-solving ability effectively reduces the
politician’s problem to maximizing over capacity. This fixes the maximum number of non-
empty layers for an optimal stacked and anchored knowledge hierarchies, with internal
boundaries uniquely characterized by equation (11)).

To put this another way, for any capacity level Z;, there is an optimal number and
arrangement of the layers that uniquely minimize costs, given the concavity of the cost

function. This arrangement maximizes Party 1’s utility, as its benefits are fixed for a given
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Zj. This is illustrated in Figure |3] where one layer minimizes costs for Z; less than 0.42
and two layers minimize costs above 0.42. The overall expected utility function, consisting
of the curve for J =1 for Z; < 0.42 and the curve for J = 2 for Z; > 0.42, is smooth and
concave.

The final result in our characterization shows the concavity of Party 1’s objective even
when J is allowed to be chosen optimally, and provides a unique solution that is often

straightforward to derive.

Proposition 2 [Optimal Capacity and Depth.] There is a unique optimal knowledge hier-

archy for the Party 1 politician. At an interior solution,
1 2 J*
- . k .
Zjx = m kg Tk o~ o (i) (wy — ih), (14)

=1

in which J* is the depth such that Zj« € [z, 25+,1), or equivalently the value of J such

that:

- Son_ 1k S o3(i) (wh — ik

2 2
> rpop(J)(wh — Jh) ) S > ror(J + D (wh — (J + 1)h).
k=1

J+1 —
If, instead
1 2 J*
. k-
c < T ;rk;ak(z)(wl —ih). (15)

then the solution will not be interior: an optimal depth-J knowledge hierarchy has zg = 0

and Zj« = 1.

The condition is associated with a “complete” bureaucracy, in the sense of being
capable of solving the entire range of problems. Completeness occurs when training and
communication costs are low, partisanship is low, and Party 2’s value of public goods is

high.

5 State Capacity and Specialization

This section provides comparative statics results on state capacity and specialization as a

function of the political environment. To begin, Figure {4| illustrates how state structures
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Figure 4: Optimal Knowledge Hierarchies and Output. Panels plot layers of optimal knowl-
edge hierarchy established by Party 1, as a function of ¢, h, and 7. Default parameters
are c= 0.7, h =0.15, 11 = 0.5, m13 = 0.75, ¢ = 0.5, § = 0.5, r, = 0.5, and ¢ = 0.25. Dashed
lines indicate layer boundaries, and gray solid lines indicate average output over time.

vary with some parameters of the model. It plots both Party 1’s optimal knowledge sets, as
well as average output after accounting for idling induced by realized election probabilities.
An immediate observation in each example is that layers are occasionally idled, and thus
output often falls short of capacity.

The figure shows that costs and partisanship have intuitive effects on the state’s potential
and realized problem-solving ability. In particular, higher costs and partisanship generally
reduce capacity. The following comparative statics on z ;- follow directly from expression

, and so we state them without proof.

Remark 2 [Partisanship, Personnel Costs, and Capacity.] At the optimal depth J*, Z ;= is

decreasing in m, ¢, and h.

Figure 4] shows both the patterns in Remark |2 and that capacity and specialization are
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Figure 5: Insulation of state capacity from idling. Parameters are 711 = 0, ¢ = 0.8, h = 0.15,
mo = 0.75, 1, = 0.5, 6 = 0.5, and € = 0.25.

not necessarily correlated. In particular, the cost parameters ¢ and h have different im-
plications for specialization. Along with reducing capacity, higher personnel costs generate
greater depth. This contrasts with the effect of increasing operational /communication costs
(h), which reduces both depth and capacity. High personnel costs increase the gains from
specialization, while high operational costs reduce them.

Comparative statics with respect to g and r are less straight-forward, but show a number
of interesting responses to partisanship. We illustrate this with a single example in Figure
before turning to a more complete exploration in the next two subsections. When the
opponent’s public good valuation ¢ is very low, they receive little benefit from the state
whether they are in or out of power—so they will always idle the entire state when they
get the chance. As such, the state designer chooses an optimally specialized arrangement
of layers for a low level of capacity, as shown in the left-hand side of the figure. As g
increases the opponent is willing to keep a single layer open (sometimes), and the state
designer capitalizes on this by expanding the state, while reducing the number of layers, so
that more capacity will be “insulated” from politics. That is, by bundling together enough
problems, the state designer ensures greater, although less efficient, state output. As ¢

continues to increase, the opponent becomes willing to keep more layers open, and so the
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state designer increases both the size and complexity of the state. Finally, as ¢ approaches
one, both groups are willing to keep the same number of layers open, and so state capacity
and output stabilize at a high level (indeed, higher than the opponent would like, as we

show in Section @

5.1 Public Goods Valuation

Both capacity and specialization may be increasing or decreasing in ¢, as shown in Figure [6]
They coincide when both parties share a consensus on the value of government production
(g close to 1), but otherwise the prospect of idling creates a complex set of tradeoffs for the
institution designer. Figure [6] strongly suggests that the effect of ¢ on capacity depends on
Party 1’s partisanship (7). When m; is low, Party 1 loses little from being out of power.
An opposition with a high public goods valuation will tend to activate layers and thereby
induce the creation of a larger state. When 7 is high, Party 1 does not benefit from the
opposition’s operation of the state, and compensates in part by reducing training costs.
(Figure |§| also shows that this may entail reducing the state’s depth.) Thus, higher values
of ¢ can reduce capacity.

Proposition [3| formalizes the relationship between ¢, 7, and state capacity by showing
that Zj+ (given by expression decreases in ¢ under high partisanship, and increases
otherwise. The result makes use of the fact that J is integer-valued, and thus the optimal

depth of the state is locally constant with respect to q.

Proposition 3 [Opposition Characteristics and Capacity.] At the optimal depth J*, there

exists 1 such that Zj« is weakly decreasing (increasing) in q if 1 > (<) 7.

The most interesting feature of Figure [0] is the non-monotonic relationship between
capacity and the underlying number and arrangement of layers. Specialization can both
increase and decrease with the state’s potential problem-solving ability. These patterns are
due to politics, as Party 1’s design anticipates idling. As an example, consider the case
where Party 1’s partisanship is very low. At the lowest values of ¢, Party 2 idles all layers
with certainty, and Party 1 designs a small state that is optimally specialized for a world

in which only it participates in governance. As ¢ increases and Party 2 becomes willing to
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Figure 6: Optimal Knowledge Hierarchies as a Function of ¢ and ;. Figure plots layers of
optimal knowledge hierarchy established by Party 1 at different values of my. Parameters
are ¢ = 0.8, h =0.15, mo = 0.75, § = 0.5, rp, = 0.5, and € = 0.25.

activate the less expensive lower layers, Party 1 dispenses with upper layers that Party 2 is
more likely to idle, thus reducing specialization in favor of greater capacity. Finally, when ¢
is high enough so that Party 2 usually activates all layers, a specialized, high capacity state
emerges.

Propositions [4] and [5| address Party 1’s incentive to expand or contract layers as a func-
tion of its own partisanship and the opposition’s public goods valuation. These parameters
are central to the result because they determine the expected value of additional layers.
Formally, the result examines the behavior of overall capacity Zj«, in relation to the mini-
mum capacity levels that sustain J* and J* +1 layers (respectively z ;. and z ., as given
by expressions and ) If Zj« — 2y« is increasing and 2., — Z+ is decreasing in
¢, then the knowledge hierarchy moves closer to admitting a J* + 1th layer. In this case,
we say that the knowledge hierarchy is ezpanding. Similarly, if Zj« — 2z ;. is decreasing and
Zj+y1 — Zj* is increasing in ¢, then the knowledge hierarchy moves closer to losing its J*th

layer. In this case, we say that the knowledge hierarchy is contracting.

Proposition 4 [Specialization and Capacity (low q).] (i) If ¢ < %, then Z j«, 2 -,
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and Zjx41 are constant in q.

(ii) If g € <1_7r2?r1_€), 1_@”7;1_8) , then there exists w, such that the knowledge hierarchy
18:
contracting, with Z;+ increasing in ¢ if m < m;

expanding, with Zj« decreasing in ¢ if m > m;.

Proposition [4 shows that when ¢ is such that Party 2 never activates the top layer of
the knowledge hierarchy, specialization and capacity are inversely related. When Party 1
is not very partisan it uses low specialization to take advantage of Party 2’s willingness to
activate the lowest layers. Thus, a large but “bottom heavy” state that insulates basic tasks
from politics emerges. The inefficiently large lower layer(s) contract the upper layers and
may eventually lead to their elimination, as Figure [5| showed.

Under high partisanship, the reverse occurs: Party 1 shifts tasks to upper layers that
Party 2 is less likely to activate. It also shrinks capacity to offset the increased costs. Instead
of insulating tasks from politics, the knowledge hierarchy makes tasks inaccessible to the
opposition with a “top heavy” state with more capacity in the upper layers. Large and
costly upper layers increase the need for specialization, and thus depth may increase even
as overall capacity declines. Figure [7] depicts the transition from contraction to expansion
as partisanship increases.

Proposition [5| next shows that the results for state are almost reversed when ¢ is high

enough to induce Party 2 to activate all layers with positive probability.

Jh Jh
1—mo (7‘1 78) ’ 177r2(7'1+€)

Proposition 5 [Specialization and Capacity (high ¢).] (i) If ¢ € (

then there exist 71, T, where 71 > 7, such that the knowledge hierarchy is:

expanding, with Zj« increasing in ¢ if m < @y

contracting if m > 7.

(i) If ¢ > #};ﬁ-a)’ then Zj=, zj«, and Z =41 are constant in q.

Coupled with low partisanship by the state designer, higher values of ¢ imply greater

political consensus. This produces an environment where greater capacity complements
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Figure 7: Expansion, Contraction, and Partisanship. Figure plots layers of optimal knowl-
edge hierarchy established by Party 1, as a function of ¢q. Parameters are ¢ = 0.6, h = 0.1,
me = 0.75, 6 = 0.5, r, = 0.5, and € = 0.25. Values of m; are 0.6 (in red), 0.9 (equal to 71,
in gray), and 0.98 (in blue).

greater specialization, and the state is an efficient problem—solverﬁ High partisanship now
leads to contraction, though the effects on capacity are ambiguous. Finally, at the highest
values of ¢, Party 2 activates layer J* with certainty and all layers are constant in ¢ until

it becomes willing to activate a possible layer J* + 1.

5.2 Transitions of Power

One sensible conjecture is that the ability to hold power will increase Party 1’s return from
state-building (e.g., Besley and Persson 2009). This logic implies that state capacity should
increase in r1. Our model produces this effect as well, but the possibility of idling sometimes
changes this finding.

The prospects for holding power matter for the state designer when the stakes of losing
power are high. Therefore, a highly partisan Party 1 invests in greater capacity as r;
increases. Party 1 also creates greater capacity if Party 2 never activates any layers due to
its own partisanship or low public goods valuation, or high operational costs. However, as

partisanship declines and Party 2 becomes willing to activate layers, Party 1 benefits from

High Party 2 partisanship (m2) can undermine this, but not as easily as low public goods valuation.
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Figure 8: Optimal Knowledge Hierarchies as a Function of r; and 7;. Figure plots layers
of optimal knowledge hierarchy established by party 1 at different values of 1. Parameters
are c= 0.8, h =0.15, mo = 0.75, ¢ = 0.5, 6 = 0.5, and € = 0.25.

the state even when out of power. This reduces the importance of holding power and and
thus also its effect on capacity-building.

The next proposition establishes this relationship. A subtlety of the derivation is the fact
that r1 enters Party 1’s objective through both directly through its probability of holding
power and indirectly through each layer’s long run probability of activation. For reduced
partisanship to attenuate the relationship between r; and capacity, decreasing partisanship
must also not encourage Party 1 to activate layers more often, which would amplify the
effect of 1. This condition holds when conditions permit Party 1 to activate the top layer

with certainty.

Proposition 6 [Elections and Capacity.] If 11 > 1 —h or h > q(1 — wa(r1 — €)), then at

the optimal depth Z j+ is weakly increasing in ri. If m < (1 —=hJ*)/(1— (r1 —¢€)), then 8;‘71*

1s weakly increasing in 1.

Figure [8] shows how reducing Party 1’s partisanship generally increases state capacity

and flattens the effect of r1. Interestingly, it shows that the relationship between capacity
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and the probability of holding power not only weakens but reverses as partisanship decreases.
To understand why this reversal can occur, it is again important to take Party 2’s idling
incentives into account. Under the parameters assumed in the figure, Party 2 activates
layer 1 with probability 2.37 — 2r; and layer 2 with probability 1.57 — 2r;. Thus as Party
1 increasingly values public goods when Party 2 is in power, it shifts more problem-solving
capacity to the first layer, which is less likely to be idled. A low-capacity state — driven
by the a shrinkage of the second layer—compensates for the high personnel costs incurred

by a very large first layer.

6 Counterfactuals

The political process often produces a state that looks substantially different from one
that is designed to maximize some notion of welfare. Imperfect state maintenance reduces
welfare in and of itself, but also can produce incentives to create states that are of sub-
optimal size—either too large or too small, and complexity—too complex, or too simple.
In this section, we characterize some of these distortions and show that whether a state is
sub-optimally large or small depends crucially on ¢, the public goods valuation of group 2.

In order to focus on the distortions due to sub-optimal state capacity and imperfect
state maintenance, we specify welfare maximization in a particular way that ignores the
effects of sub-optimal spending decisions. There are effectively three ways in which the
political process distorts outcomes away from the welfare maximizing outcome: imperfect
state maintenance, sub-optimal state design, and sub-optimal spending decisions. The last
option, in particular has two facets. First, welfare might be maximized by choosing to spend
state revenues on things other what either party might spend it on. We have ruled out this
possibility in the model up until this point, and we continue to rule it out now. Even so, one
of those spending choices will create higher welfare than the other. For example, if r{—the
size of group 1, and its probability of being in power—is close to 1, then it will maximize
welfare to always spend money on the same thing group 1 would, if it were in power.

We ignore the political distortions to welfare due to sub-optimal policy choice by con-

sidering a social planner (SP) that will spend money on the priorities of each group with
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the same probability as the political process would generate. In particular, the SP will
spend state revenues in the same way as as party k with probability r;. Thus, the expected

welfare from state spending in a given period is

2 2
— k
wsp = Tk Tiw;
k=1 =1

In this formulation, r; reflects the proportion of the population in each group. The SP will
also take into account the costs of generating state revenue. Finally, we assume the SP
must always run the state at full capacity so that they do not, for example, idle the entire
state when ry is close to 1, and it looks likely that in the next period the SP will have to
spend money in the same way as group 2.

The social planner will usually produce different state structures—in particular capacity
and structure—than Party 1 does in the political process. We illustrate this by varying ¢ in
Figure [9] using many of the same parameters as in Figure [6] focusing on the cross-sections
when m; = 0 (on the left-hand side) and m; = 1 (on the right-hand side). In the first of
these cross sections, under the political process state capacity and output are increasing
in ¢, although the complexity of the state is non-monotonic, as predicted by Propositions
[ and In the latter cross-section, capacity and complexity are decreasing, although
output is non-monotonic. The optimal structure under the social planner is much more
straight-forward: in both cross-sections capacity, complexity, and output are monotonically
increasing. These latter relationships make sense: in both panels, wgp is strictly increasing
in ¢, which increases the value of state capacity. Without distortions introduced by imperfect
state maintenance, this increasing value translates into increasing capacity, with increasing
complexity reducing the aggregate cost of output.

An obvious pattern emerges by comparing the patterns of state capacity and output in
Panel C of Figure @: when the party that values public goods more designs the state (¢ < 1)
it tends to be sub-optimally large, whereas when the party that values public goods less
(¢ > 1) designs the state, it will tend to be sub-optimally small. However, the distortions
in state maintenance, and therefore complexity, will tend to only occur when the party

designing the state values public goods more, as can be seen from comparing the red to
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Figure 9: Optimal Knowledge Hierarchies for Political Process and Social Planner. In
bottom panels, red lines are state capacity and output under political processes, blue is
without the possibility of idling layers, and green is the social planner. Default parameters
are ¢ = 0.8, h = 0.15, my = 0.75, rp, = 0.5, § = 0.5, and € = 0.25. Left-hand panels have
w1 = 0, right-hand panels 7 = 1.
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green lines in Panel CH This makes intuitive sense: when the party designing the state
values public goods less, the other party will tend to be more interested in keeping layers
active. With no distortions in state maintenance, political distortions to complexity are

unnecessary. We can formalize this pattern and intuition.

1—rom
1—rimo

Proposition 7 If, in the neighborhood of ¢ = , J* is the same under both the social

planner’s and political problem, and o (j) = 1 for j < J, then the state will be sub-optimally
1—rom;

large under the political problem if and only if ¢ > 7—2=L

1—rima”

An obvious case to examine is when r; = 1/2 and partisanship is symmetric (m = m3).
In this case, state capacity will be sub-optimally large if and only if ¢ < 1, and sub-optimally

small otherwise.

7 Discussion

Despite a recent surge in scholarly interest in the topic, theoretical accounts of state capacity
have taken little notice of several key aspects of governmental functions and organizations.
In addition to revenue collection, modern governance requires the skilled performance of
a wide range of activities, each of which presents distributions of sub-problems of varying
levels of difficulty. Modern states are also typically subject to regular political processes.
Politicians with heterogeneous preferences may interfere with its functioning, and recent
decades have seen the emergence of numerous political movements that are expressly inter-
ested in reducing the power of the state. Everyday state maintenance is therefore important
even after the critical moment of state foundation.

Our theory of state capacity posits the bureaucracy as the primary link between politi-
cians and the solution of social problems. Knowledge hierarchies provide a flexible and
tractable way to model the throughput of such complex organizations. Existing applica-
tions focus on the structure of firms, but its natural trade-offs between specialization and
coordination pervades public sector organizations as well. By placing knowledge hierarchies
in a simple dynamics political economy setting, our model provides a novel application for

the framework.

5Which is why we have focused on ¢ < 1 up until this section.
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The ability of politicians to idle parts of the state allows the model to distinguish
meaningfully between output and capacity. Incumbent politicians idle layers of the state
according to projected election outcomes and policy preferences, and political competitive-
ness does not minimize the risk of idling. These idling strategies in turn produce distortions
in the capacity and specialization dimensions of state design. Most notably, high capacity
and specialization coincide only when social groups are not polarized and agree on the value
of policy. When the founding party or group faces an opposition that cares less about the
policy in question, this relationship is broken: higher capacity and less specialization, or
lower capacity and greater specialization can result, depending on the founder’s partisan-
ship. Partisanship also affects the relationship between capacity and electoral prospects.
An electorally advantaged founding group maximizes capacity under high partisanship, but
low partisanship it is an electorally disadvantaged group that may do so.

Our framework presents numerous directions for additional work. In addition to provid-
ing results on state structure, the model should provide observable implications on realized
output. There is also room for exploring robustness with respect to policy or organizational
technologies. For example, groups may have different valuations over specific problems,
as opposed to over policy production in general. As the IRS example in the introduction
illustrates, liberal and conservative groups might prefer to idle different parts of the state
because of their activities affect core constituents. Alternatively, some organizations may
feature top-to-bottom propagation of problems, rather than bottom-to-top. It is finally
worth considering in general how the technology of knowledge hierarchies can fit into other

political or institutional contexts.
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8 Appendix

Proof of Proposition (1} The ex ante probability that layer j is active in any given period
is Y . rrok(j). Ignoring corner solutions, for parties 1 and 2, the conditional probability

op(j)=1- Fk(pi) of keeping a layer active is:

L1 jhfw% B (ri+e)m — (jh — (1 —m))

o14) = 2e [rl e 2e(w] —w})| 2em;

. _ 1 jh—wy 1 _ (=71 +e)gme — (jh —q(1 — 7))
o2()) = 2e [T2 e 2e(w3 — w%)] B 2eqmy '

Noting that 7 = 1 — ro, each 1,6 (j) is convex in 1. Moreover, it is apparent that for
r1 € [0,1], 61(j) > 0 only if r; is sufficiently high, and 62(j) > 0 only if 7 is sufficiently
low. Let zi denote the value of 1 such that o;(j) = 0, and ?i, denote the value of r; such

that o (j) = 1, if such values exist. Then we have the following:

0 if 7 < 1] 1 if 1 <7
o1(j) =9 61(j) if r e (], 7) o2(j) = 69(j) if r1 € (1), 7) (16)
1 if r > ?{ 0 if r > [%.

We now establish (i). First, 61(j) and d2(j) are both weakly decreasing in h, thus,
> Tkok(j) is also weakly decreasing in h. Second, G2(j) is weakly increasing in ¢, and
G1(j) is constant in ¢, thus, Y, 7,0k (j) is weakly increasing in ¢. Third, taking derivatives

with respect to m; produces:

d1(G) _ 1—jh  doa() _ q—jh
dm; 2em? dwo 2eqm3’
This implies that the 61(j) are monotonic in 7 on [0, 1]. Further, if %(lj) > 0, then jh > 1.

As 61(j) is maximized when r +¢ = 1, dz;(lj) > 0 = 01(j) <0, and thus o1(j) =0 (a

similar argument works for o2(j)). Thus, 6;(j) must be weakly decreasing in 7, which
implies that ), 7,04(j) is also weakly decreasing in my.
(ii) > mkok(j) = 0 iff the interval [r},17]] is non-empty. Solving for the value of r; such

1—jh
1

that 61(j) = 0 produces z{ =1- — e. Similarly, solving for the value of 1 such that
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d2(7) = 0 produces f% = q;Tth +e. As g% is increasing in ¢, the interval is nonempty if
q < m+ﬂ2((1jj%1m(1725)). For this interval to be internal both [{ < 1land z% > 0. The fact

that the first holds is implied by the layer’s existence. The second holds if jh < g(1 + ema).

(ili) >, rwok(y) = 1 iff the interval [F{,?g] is non-empty. Solving for the value of 1 such

1—jh
1

that 61(j) = 1 produces F{ =1- + €. Similarly, solving for the value of r; such that

62(j) = 1 produces 7 = qq_TJQh — e. Since 7 is increasing in ¢, the interval is nonempty if

q> 7T1+7T2((1_jj};;)”_7r1(1+25)). For this interval to be internal both 71 > 0 and 7o < 1. The first

will hold if jA > 1 — m(1 4 €), and the second if jh > ¢(1 — m2(1 4 €)), so both will hold

when jh > max[l — 7 (1 +¢),q(1 — m2(1 +¢))]. [ |

Proof of Lemma We prove the result by evaluating the ex-ante expected payoff to a
member of Party 1 from the knowledge hierarchy.

Note that if [z;,Z;] N [2j:,Z;] # 0, for some layer j and j'—that is, two layers overlap—
then the party could do strictly better by eliminating all workers in the intersection in either
layer j or j'. Thus an optimal knowledge hierarchy must have non-overlapping layers.

Recall that Party 1 designs the knowledge hierarchy in period 0. Consider two successive
layers with a gap between them, that is, Z; = [Zj_1 + 1, %], for some n € (0,Z; — Z;_1).

The ex-ante expected value of a given layer j is:
[e§) 2
D0 ok (W = jh) — ¢z; | (G(Z5) — G(Zj1 +m)) >0
t=1 k=1

which is positive for any layer that is created in equilibrium. Denoting the term in square
braces by ¢;, we have ¢; > 0 in equilibrium as z; > Z;_1 + 7. The derivative of the
above expression with respect to 7 is then —g(Z;_1 +1)¢;, which is negative as g(-) has full
support. Thus, Party 1 will want to set n = 0, leading to no gaps. The fact that z; =0

follows from the same argument applied to z; = 7. |

Proof of Lemma There are two cases. In the first, zg = 0 and Z; < 1. The Hessian of

@ with respect to z1,...,2z; is % times the matrix

Z1 zZ9 Z3 e ZJ-1 zZJ
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Z1 —2c c 0 0 0 0
Z9 c —2c c 0 0 0
Z3 0 c —2c 0 0
0 0 0
Zj—1 0 0 0 —2c c
zZJ 0 0 0 0 c —2c
Thus, the Hessian is negative definite for any ¢ > 0. |

Proof of Proposition |2, Let Uy (2®) be the Party 1 politician’s utility over such knowledge
hierarchies at the optimal depth for a given capacity z°. Our first objective is to show that
U;(2°) is concave and differentiable. We construct U;(z®) piecewise by determining the
expected value of an optimal knowledge hierarchy at the optimal depth J* for each possible
capacity level z°. As argued in the text, the optimal depth is the maximum number of
layers such that each has non-negative length.

Let Uj(Zs,J) denote the politician’s objective for given values of Z; and J, where all
layer boundaries below J are arranged optimally. By Lemma [l Z; is also the capacity of

the knowledge hierarchy. We can then rewrite the objective @D in terms of z; as follows:

J 2
./ d . . e
Uiz, ) = 75 O | 2o mon(i)(wh = jh) — &z, | (55 = %),

Uj(Zs,J) is weakly increasing in J, since a politician can do as well as a depth-J knowledge
hierarchy with a depth-J + 1 knowledge hierarchy with a degenerate J + 1th knowledge set
of length 0.

To complete the expression of Uj(Zy,J) we write each Z; in terms of 2y and Z;. To

reiterate from , each Z; can be written as follows:

: 2 i J
Z, = %E] + % > (JZUk(i)(w’f —ih) =Y on(i)(wf — ih)) :
=1 i=1

k=1
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It will be convenient to denote the last part of the preceding expression as follows:

2 i J
o= L3 (Jzakww'f =33 o)k~ m>) ..
i=1 =1

k=1

Observe that ;s is independent of all Z;, and kg j = k7 = 0.
As noted in the text, expression gives z 7, which is the minimum capacity necessary
to sustain J layers of non-negative length. As defined, U{(z;,J) = U (z;,J—1). We can

therefore construct Uf(z*) as a continuous function as follows:
Ui (2°) = Uf(z4,J) for 2° € [z5,2541)-

We now show that Uj(z®) is differentiable and concave using first- and second-order
conditions. Omitting terms that are independent of Z; and using the fact that zg = 0, the

politician’s objective for a given J simplifies to:
5 & iz z
. J J
Ui (zs,J) —1_5 ; [Z (rkak () (wy—jh) — ¢ <J + “jJ)) <J+"5j,J—"¢j—1,J>] :

Differentiating with respect to z; produces the following expression, which we designate

by parts:

2 .
dU;t TR0 —jh 2¢jZ c . .
dlzz (Z ko] / >>— e (RSN T ) | L

1 SN——
:4, B C
in which part ‘C’ equals zero:
T ¢ c
> S (G +Drsg = jrj10) = 5 (J + Dkgg + ko,1) = 0. (18)

J=1

‘We now show that:
dU{(z;,J—1) dU{(z;,J)
dzj N dz j '

To show this, we compare differences between the values of each part at J and J — 1 layers.
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For part ‘A’ of we have for J — 1 and J, respectively:

! 22: rkak wl —jh) _ ! 22: rkak wl —jh)J
j=1 k=1 -1 Jj=1k=1 -1

J 2 ‘ . J 2 . . J 2 ) .
3 reok(f) (Wi —jh) 3 reo(f) (wh — jh)J B reon(j) (Wi — jh)
. J J(J—1) JU-1
J=1 k=1 j=1 k=1 j=1 k=1

Taking the difference between the right-hand side terms produces:

i JZ rkok(G) (wh — jh)  reon(I)(wh = Jh)(J — 1)

J(J—1) J

J-1 2 J-1
(J-1)2 & ¢ (Z ow (i) (wf = ih) = (J = Dop(J)(wf — Jh)) =

J 2 J—1
ST (Z ok (i) (wy = ih) = (J = Dow(J)(wy - Jh))

J 2¢cj 2 kr:;: J_IZ:1
PSP (Z ok (i) (1§ = ih) — (] = Don( ) (w} - Jh)) -
j=1 k=1 i=1
2 J—1
(J—; 1) Zrk < gk(i)(w’f —ih) —(J — l)ak(J)(w’f - Jh)) .
k=1 i=1

2
> o) (wh — ih) — (J = Drgop(J)(wf — Jh) =

5 (“ ron(i)(wf —ih) (] = Dryon(J) (wf - Jh)) |
J(J-1) J
Thus, the costs and benefits in ‘A’ and ‘B’ cancel. Thus U;(Z,,J) and Uy (Zs,J—1) are
tangent at z;, and so Uf(z*) is differentiable at 2° = z ;.

We next show that each U;(Z s, J) is concave in Z ;. The second derivative of Uy (Z s, J)
with respect to z; is —2(J+1)c/J, which is clearly negative. Thus U; (z®) inherits concavity

from the constituent U (Z s, J) functions.
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What remains is characterizing the optimal capacity and depth. For any given J, the
unique interior solution is derived by straightforward differentiation to produce expressions
and . Since Uy (2®) is concave, at an interior solution the maximizer Z ;- must
coincide with the unique value of J such that Z;« € [z;,2;7,1). Otherwise, the optimal
dauy (0) auy (1)

<0 then Zj« = 0 and no state is optimal. And if >0

then z% = 1 and the state solves all problems. Condition is obtained by solving

state is at a corner. If

for ¢ at depth J*.

To characterize J* and obtain the expression in the statement of the result, observe
that the optimal position of the last layer boundary, z; (as given by ) must satisfy (i)
Zj— 2y > 0;and (i) z;,; —Zy > 0. Substituting, conditions (i) and (ii) can be rewritten

respectively as:

2 1. |( 4+ D(wf = Th)on()) = T (wh — i) ()|
(J+1)e

k=1
2 | S (wh = ih)on (i) — (J + 1) (wh — (J + Dh)or(J
S i [Zl_l( k_ ih)ow(i) (((]:12( F— (J+ 1)h)ox( +1>} >0 @)

k=1

Each of these expressions respectively hold iff:

2

> (I + Dop(J)(wf — Jh) > ro (1) (wh — ih) (21)

« T
M-

k=1 1=1

2 J
> el + Dog(J + D(wf = (J +1)h) < > o (i) (wh — ih) (22)

k=1 k=1 :1=1

Since both (i) and wf — ih are non-increasing in 14, it is clear that each increment in
J adds at most >, rroy(J)(wf — Jh) and 3, rrok(J + 1) (wk — (J +1)dh) to the left-hand
sides of (21)) and , respectively. It adds exactly >, rrop(J )(w¥ — Jh) to their right-hand
sides. Thus holds only for J sufficiently small, and holds only for J sufficiently

large. J* is the unique value of J satisfying both. |

Proof of Proposition Differentiating the expression for Z s« with respect to ¢

produces:
0% 9 & . Ooa(i)
= 1 — — . 2
dg  c(J + 1) ;( m =i =5, (23)
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For a fixed J*, this derivative will be positive iff Z;]:l(l —m - ih)&%q(i) > 0.

Observe that &%q(i) > 0 at an interior solution, 8%2(1(1) = 0 at a corner solution, and &%q(i)

is independent of 1. Thus for any J*, agg* > (=)(<) 0if:

302
h 21 1t aq
ZJ* do2 (1)
i=1 09q

(24)

The value of 7; is clearly contained within (1 — Jh,1). Note finally that in the special case
where o2(1),...,02(j") € (0,1), this threshold simplifies to 1 — h(25' + 1)/3. [ ]

Proof of Proposition 4. We prove the result by examining the behavior of Z; in relation
to the minimum thresholds for J and J + 1 layers. Define z_ = zZ; — z; for a given J.

By the argument in the proof of Proposition [2| an optimal non-empty J—layer knowledge

hierarchy is feasible if z_ > 0. A necessary condition for depth to decrease i

Using expressions and , z_ evaluates to:

Differentiating z_ with respect to ¢ produces:

9z Jrs doa(J) = amo) | (26)

90 = 1D (J(l—Trl—Jh) 30 —Y (1 —m —ih) 5

=1

Now define 2z, = 2;,1 —Z, again using and . A necessary condition for depth

to increase is 8{% <0.

2 J 2
2y = J Y (Z Tk Z(wlf —ih)og(i) — (J+1) Zrk (J + 1)h)ak(J—|-1)> . (27)
k=1 =1

=1

Differentiating z; with respect to ¢ produces:

o2 - J’I’Q J 80'2( ) aUQ(J)
Ba = D) (;( "Mt T ~ A m = (A DR T ) )

Next, note that under the assumption of uniformly distribution re-election probabilities

43



we have at an interior solution:

1 | T24m2 — jh+q(1 —m2)

o2(t) = =
2(7) 2 2eqma
Observe that 8%2(1(@') > 0 at an interior solution, 805;” = 0 at a corner solution, and o3() is

decreasing in .
There are two cases, depending on the values of o3 (7).

(1) When o9(i) = 0 for all i (for which o9(1) = 0, or equivalently ¢ < ——2— is

1—ma(r1—e)?
sufficient), 65—(; and 85—; are obviously zero. Thus there will be no changes in J* until ¢
802( )

increases enough such that > 0.
(ii) Suppose o2(J) = 0 but 02( ) > 0 for some i, or equivalently ¢ € (1_@61_6), I_MJ&_&)]
Then %= > 0 iff:
- th 1 802
Likewise, = > 0 iff:
+ h EZ 1! 6(:92;1

m<m =1~

Sl 2%

Since o2(J) = 0, we then have 7] = 7 = m;. Furthermore, m; = 71, where 7; is the
threshold value of 7; for capacity growth in the proof of Proposition [3] We conclude that
for m > m, 24 is decreasing, z_ is increasing, and z;- is decreasing in ¢. And for m < 7y,

z4 is increasing, z_ is decreasing, and zj« is increasing in q. |

Proof of Proposition We prove the result using 2 =%; — z; and 2y = 25,1 — Z,
as defined in expressions and in the proof of Proposition . There are two cases,
depending on the values of o9(i).

(i) Suppose o2(J) € (0,1) (which implies o9(i) > 0 for ¢ < J), or equivalently ¢ €
(=2 ). Then %= > 0 i

1—ma(ri—e)’ 1—ma(r1+e)

do J—1 .0oo (1
h [ 12 2; ) E i1 Z Qq( )]
doa(J J— do

m<7T =1-

if the denominator in the preceding expression is positive. To see why the denominator

44



is positive, observe that Z;];ll &gq(i) is maximized when all o9(i) are interior. Thus the

denominator is at least:
hJ?>  hJ(J —1)
2eq?my deq?my

which is clearly positive. By a similar argument, the numerator is positive as well. It is
straightforward to verify that m; <1 — Jh.

Likewise, = > 0 iff:

. 002 (1 o
PSSl 9% - (g +1)225]
Sy 9220 (g4 1) 222l

7T1>f1’—51—

It is straightforward to verify that 7} < 1 — (J + 1)h.

We conclude that for m; < #; = min{7], 7] }, 24+ is decreasing and z_ is increasing in
q. Since ff,ff <l—(J+1hand 73 >1—Jh , zj+ is increasing in ¢ in this case.
And for 7 > 71 = max{7,, 7] }, z4+ is increasing and z_ is decreasing in q.

(ii) When o2(i) = 1 for all 7 (for which o2(J) = 1, or equivalently g > %, is

sufficient), ag—[; = 0. Thus there can be no changes in J* until ¢ increases enough such that
doa(J+1)
> 0. u

Proof of Proposition @. Differentiating the expression for Z j« with respect to rq

produces:
0z 1 & 91 (4) & 9o (i)
J* . 1 . . 2
= — 1—1ih 1—m —dh)((1—
e = e |0 (nG ) e - (-
First, we provide sufficient conditions for 8;{; > 0. Observe that 8‘5;?) > 0 and
agﬁgi) < 0 at an interior solution, and agigi) = 0 at a corner solution. Furthermore, in

equilibrium 1 — J*h > 0, and therefore (1 — ih)(m&%r?) + 01(7)) > 0 for all ¢. Thus,

o9(1) = 0 for all ¢ is sufficient for the result. Since oy(i) is weakly decreasing in i, this

condition reduces to o2(1) = 0. Solving for h then produces h > q(1 — ma(r1 — €)).

Next, observe that (1 — rl)&%gi) —o2(i) <0 for all i. Thus if 1 —m; < h then we also

have 65;1 = > 0. Combining the conditions on h yields this part of the result.

Second, to show that 857{1* is increasing in w1 when o1 (i) = 1 for all i, we take the partial
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derivative with respect to my:

0%% - 301 Z day(i) .
orom, J*—I—l ; 87“ —Z<(1—T1)8T1 —02(1)) . (29)

=1

If 01(i) = 1 for all 4, then 8%(11‘) = 0 and by the preceding argument the bracketed term in

(29) is positive. Since oy(i) is weakly decreasing in ¢, this condition reduces to o1(J*) =1

1-hJ* |

or, solving for my, m < 1= GEDE
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