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Abstract

This paper proposes a new empirical strategy to estimate the causal effects of 1930s federal
“redlining” – the mapping and grading of US neighborhoods by the Home Owners’ Loan
Corporation (HOLC). Our analysis exploits an exogenous population cutoff: only cities above
40,000 residents were mapped. We employ a difference-in-differences design, comparing areas
that received a particular grade with neighborhoods that would have received the same grade
if their city had been mapped. The control neighborhoods are defined using a machine learning
algorithm trained to draw HOLC-like maps using newly geocoded full-count census records.
For the year 1940, we find a substantial reduction in property values and homeownership
rates in areas with the lowest grade along with an increase in the share of African American
residents. We also find sizable house value reductions in the second-to-lowest grade areas.
Such negative effects on property values persisted until the early 1980s. Our results illustrate
that institutional practices can coordinate individual discriminatory choices and amplify their
consequences.
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1. Introduction

Discrimination in the housing market can take many forms. Racial covenants, restrictive

zoning and barriers to credit access are only a few examples. While developers, real estate

agents and bank executives have often been blamed for their exclusionary norms, public

institutions took the lead in shaping discriminatory practices in some cases. Between 1935 and

1940, a federal agency – the Home Owners’ Loan Corporation (HOLC) – created Residential

Security Maps for more than 200 US cities to summarize the financial risk of granting

loans in different neighborhoods. Color-coded maps assigned each neighborhood one of four

security grades, from A (green) to D (red).1 Standardized forms attached to the maps (Area

Descriptions) invariably described the presence of African Americans, Jews, and European

immigrants as detrimental to a neighborhood’s grade. In the late 1970s, urban historian

K. T. Jackson rediscovered the maps at the National Archives and proposed them as an

example of structural discrimination (Jackson, 1980). Since then, the view that the HOLC

maps were a source of residential redlining, the systematic denial of mortgages to residents of

a community, has steadily gained popularity (Rothstein, 2017; Coates, 2014). Nevertheless,

some historians have emphasized the program’s timing and confidentiality to raise doubts

about whether a federal data collection program could have strongly influenced the housing

market (Hillier, 2003, 2005; Fishback et al., 2021). Quantitative evidence supporting either

claim about the maps’ influence is scarce due to the lack of detailed and comprehensive

datasets and the non-random assignment of different grades. In this paper, we propose a

new strategy to measure the causal effects of a federal government initiative that has been

proposed as a symbol of structural discrimination by journalists, activists, academics and

presidential candidates.2

This paper estimates the short and long-term causal effects of the Home Owners’ Loan

Corporation maps using a new empirical strategy. Our approach exploits an exogenous

1. As an example, a scan of the HOLC map for New Haven, CT is available in Figure 1.
2. As an example, see Rothstein (2017) and Coates (2014). Historical government support of redlining
practices has been proposed by President J. Biden and Senator E. Warren as a motivation for their housing
plans.
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population threshold: only cities above 40,000 residents were mapped. We use a machine

learning classification algorithm to draw residential security maps in control cities with

a population below the 40,000-resident threshold.3 Using the grades predicted by the

classification model, we apply a grouped difference-in-differences design to measure the causal

effects of the HOLC maps. Our outcomes of interest are homeownership rates, property values,

rent prices and shares of African American residents in 1940. We also analyze the evolution

of these outcomes between 1960 and 2010. The estimated causal effects are identified by

the differences between neighborhoods in treated cities and neighborhoods that would have

received the same security grade if their city had been mapped.

The effects we find in red neighborhoods support the view that HOLC maps reduced access

to credit and led to urban disinvestment. In 1940, shortly after the introduction of the maps,

we find a sizable reduction in property prices and homeownership rates in D (red) areas,

along with an increase in the percentage of African Americans living in those neighborhoods.

Property value reductions are also detected in C (yellow) areas.4 The negative effects on

property prices in yellow and red areas persisted until the early 1980s, shortly after the

introduction of legislative measures meant to improve access to residential credit.5

The credibility of our approach relies on the performance of the machine learning clas-

sification model. To assess its precision, we build a test dataset randomly excluding 25%

of neighborhoods from the algorithm’s training procedure. We then compare observed and

predicted grades in the test dataset. Our trained random forest algorithm assigns the correct

grade to more than 90% of test neighborhoods, and its predicted maps are convincing replicas

of those made by HOLC. Even if the model is trained on the complete set of municipalities

surveyed by HOLC, including all American metropolises, its performance is robust in cities

close to our threshold of interest as well. When we restrict the test dataset to neighborhoods

3. Defining the control group with a machine learning algorithm is an alternative to synthetic control
methods. In our case, control units are actual observations grouped by a predictive model replicating an
observed classification mechanism.
4. This result is consistent with a finding in Aaronson et al. (2021b) labelled by the authors as “yellow-lining”.
5. The Equal Credit Opportunity Act (1974), the Home Mortgage Disclosure Act (1975) and the Community
Reinvestment Act (1977) had the common goal of increasing access to mortgages in neighborhoods previously
ignored by financial institutions.
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from cities with fewer than 50,000 residents, the overall precision is still above 90%.

Our empirical strategy is possible thanks to a spatial dataset we constructed using the

1910-1940 full-count census records (Ruggles et al., 2020), National Historical Geographic

Information System (NHGIS) information (Manson et al., 2021) and CoreLogic property

deeds. We clean and impute household addresses for each census decade following best

practices from the urban history literature (Logan and Zhang, 2018). Detailed geographic

coordinates are assigned to census observations using a state-of-the-art locator. Georeferenced

data allow us to match census records with digitized HOLC maps and alternative sources of

information to expand our dataset to the years beyond 1940. We include sociodemographic

information from the National Historical Geographic Information System (NHGIS) (Manson

et al., 2021) along with disaggregated property transaction prices from the CoreLogic deed

database to estimate the long-term causal effects of the maps. The resulting dataset covers

major US urban areas between 1910 and 2010.

Our paper contributes to a growing literature in economics studying the consequences of

HOLC policies. This paper is most closely related to the work of Aaronson, Hartley and

Mazumder (2021b), who use a border regression discontinuity design to measure the local

effects of lower grades in cities surveyed by HOLC. Unlike Aaronson et al. (2021b), our

estimation method compares similar neighborhoods in mapped and unmapped cities. In

particular, we avoid spatial discontinuity designs because of endogeneity concerns due to

differential pre-trends in socioeconomic variables on different sides of the borders traced by

the HOLC. Aaronson et al. (2021b) document the differential pre-trends, due to non-random

location of borders and non-random assignment of grades.6 They employ propensity scores

and a subset of idiosyncratic borders to address endogeneity concerns. Moreover, our empirical

approach measures a different type of effect. While the existing literature has focused on the

local effects of receiving a lower HOLC grade, we capture the global effects of the four HOLC

grades. In our case, the counterfactual is made of similar neighborhoods not mapped by

HOLC rather than nearby areas with a higher evaluation. With respect to Fishback, LaVoice,

Shertzer and Walsh (2020), who investigates whether HOLC grades were racially-biased, we

6. See also Fishback et al. (2020).
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study a different question: the effects of HOLC grades on property prices and demographic

characteristics. While there is a growing body of research on HOLC mapping,7 we are the

first to propose a predictive model replicating the HOLC maps and employing an exogenous

population threshold for estimating the effects of different grades.

Focusing on the effects of institutionalizing a set of exclusionary attitudes is an important

complement to existing research in the economics of discrimination. Economists have mainly

focused on individuals who discriminate based on their taste (Becker et al., 1971), because of

imperfect information8 or implicit bias (Bertrand et al., 2005; Bertrand and Duflo, 2017).

These different mechanisms originate from individual choices and cannot be readily applied

to settings where something other than an individual discriminate.9 This paper provides

an empirical analysis focused on institutional discrimination, revealing new evidence of an

overlooked source of socioeconomic inequality. The results capture the impact of institutional

assessment practices developed by a governmental organization and adopted in the real estate

market at large.

Another relevant dimension of the HOLC initiative was its technological content. The

agency undertook an unprecedented data collection effort,10 creating a data analytics tool at

the forefront of real estate appraisal techniques of the time. HOLC maps can be interpreted

as an innovation in statistical technology that led to increased automation in the processing

of mortgage applications. Today, concerns about algorithmic bias (Rambachan et al., 2020;

Ludwig and Mullainathan, 2021) and distributional impacts of statistical technology are

widespread (Fuster et al., 2021). Our results characterize the effects of a federal initiative

7. All the recent papers on this topic either focus on different questions or employ different empirical
approaches and datasets. In addition to Aaronson et al. (2021b) and Fishback et al. (2020), see Fishback
et al. (2011), Faber (2020), Aaronson et al. (2021a) and Fishback et al. (2021). There is also a number of
contemporaneous working papers on this topic using spatial regression discontinuities designs: see Anders
(2019), Appel and Nickerson (2016) and Krimmel (2018).
8. See Fang and Moro (2011) for a review of research on statistical discrimination originated by Phelps
(1972) and Arrow (1973).
9. See Small and Pager (2020) and Lang and Kahn-Lang Spitzer (2020) for a comparison of perspectives on
discrimination between Sociology and Economics. The sociological literature has focused more on institutional
sources of discrimination, if compared with economics.
10. See Michney (2021) for a description, based on HOLC staff correspondence, of how the maps were
developed.

5



that provided a powerful and practical tool to evaluate local housing market conditions.11

They also offer a cautionary tale of how institutional practices can coordinate individual

biases and amplify their consequences.

The paper also contributes to the literature investigating the causes of segregation and

urban inequality.12 As outlined in Boustan (2013), residential segregation can result from

individual choices by white households,13 Black self-segregation,14 or collective action.15 Our

findings give an example of the last of these causes since the federal agency’s practices had the

effect of reinforcing residential exclusion. In terms of methods, we contribute to a relatively

recent body of literature using machine learning algorithms to build control groups for causal

inference in observational studies.16

The paper proceeds as follows. Section 2 provides additional details about HOLC activities

and the circulation of its maps, while Section 3 contains a description of our novel dataset.

We outline our empirical strategy in Section 4, along with results about the performance of

our classification algorithm and an array of validity checks. The estimated effects of HOLC

maps can be found in Section 5. Section 6 concludes.

2. Historical Background

In the aftermath of the Great Depression, the Roosevelt Administration developed several

programs to tackle a mortgage crisis characterized by soaring default rates and falling property

11. In particular, we provide an empirical analysis of the consequences of a collection of federal maps. See
Nagaraj and Stern (2020) for a review of recent work about the Economics of maps.
12. See Glaeser and Vigdor (2012), Cutler et al. (1999) and Logan and Parman (2017) for an overview of
trends for different urban segregation measures.
13. The mechanism is often referred to as “white flight”. See Boustan (2010) and Boustan (2016).
14. This possible source of segregation does not find strong empirical support. See Krysan and Farley (2002)
and Ihlanfeldt and Scafidi (2002).
15. Collective action to induce segregation can take many forms. Some examples are racial covenants
(Jones-Correa, 2000; Sood et al., 2019), urban renewal programs (Collins and Shester, 2013) and public
housing programs (Chyn, 2018; Tach and Emory, 2017).
16. An example is Liberman et al. (2018). See Mullainathan and Spiess (2017) for a review of machine
learning algorithms within the econometric toolbox.
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values. The Home Owners’ Loan Corporation (HOLC) was created in 1933 to aid homeowners

“in hard straits largely through no fault of their own” (Federal Home Loan Bank Board,

1937). Under the direction of the Federal Home Loan Bank Board (FHLBB), the first task

of the HOLC was to refinance mortgages in distress with longer terms, lower interest rates

and higher loan-to-value ratios. In particular, the HOLC granted fully amortized loans with

15-year minimum terms at 5% interest rate, financing up to 80% of the property value.17 The

agency concluded its $3 billion lending effort in 1936 after refinancing over one million loans

and holding approximately 10% of US non-farm mortgages (Jackson, 1980).

As a consequence of their lending program, HOLC gained considerable exposure to the

housing market. Government officials believed that a healthier lending industry was necessary

to safeguard the value of federal real estate investments (Hillier, 2005). In particular, they

considered the standardization of appraisal techniques critical to achieving price stability.

For this reason, the FHLBB directed HOLC to develop a systematic evaluation process for

US neighborhoods, following a growing interest in ecological models across the real estate

industry.18 In 1936, HOLC started the City Surveys program, producing maps (Residential

Security Maps) and standardized forms (Area Descriptions) for 239 major U.S. cities. The

initiative was completed by 1940.

Field agents drew HOLC maps based on published reports, public records, federal maps

and detailed surveys of local financial institutions (Michney, 2021). The availability of these

sources varied between cities, and HOLC agents relied on their networks in the real estate

community to supply any missing information. The result was meant to be “a composite

opinion of competent realtors engaged in residential brokerage, good mortgage lenders and

the HOLC appraisal staff.”19 HOLC agents traced boundaries to divide residential areas

into homogeneous neighborhoods. They then assigned a grade on a four-level scale meant to

17. These terms were much more convenient to homeowners than the 5-year interest-only loans, with interest
up to 7%, that were prevalent in the market up to that time. See Fishback et al. (2011).
18. See Jackson (1980) and Light (2010) for a discussion about how ecological models, newly-developed by
the Chicago School of Sociology, became an influential theory for real estate appraisal.
19. Corwin A. Fergus to T. L. Williamson, October 2, 1936, Roll 431, Home Owners Loan Corporation,
microfilm copies of General Administrative Correspondence 1933-36, National Archives II (College Park,
MD). As cited in Michney (2021).
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summarize the financial security of real estate investment in each zone.20 Areas colored in

green (grade A) were the first-tier neighborhoods, while blue neighborhoods (grade B) were

deemed still good. The color yellow (grade C) highlighted neighborhoods becoming obsolete or

at risk of “infiltration of a lower grade population” (Hillier, 2005). Red neighborhoods (grade

D) were considered “hazardous” (Hillier, 2003) for investment. The agency also produced

detailed Areas Descriptions for each neighborhood. In these forms, they described housing

conditions, local amenities and the area’s demographic composition.21 The presence of

African Americans, Jews and certain European immigrants was inevitably characterized as a

“detrimental influence” that “infiltrated” the American social fabric with fatal effects on local

housing markets (Jackson, 1980). While the inclusion of racial and ethnic hierarchies in real

estate appraisal was pervasive at that time, HOLC practices implemented these notions at an

unprecedented scale with the coordinated effort of more than 20,000 employees distributed

across more than 200 local offices, and the stamp of federal approval.

HOLC could not have used the results of the City Surveys in its lending decisions since the

maps were created after the agency completed its refinancing effort. Therefore, the economic

impact of the maps depends on how widely these documents circulated among other federal

agencies and private financial institutions. The literature offers diverging views on this topic.

Hillier (2003) reports that the FHLBB intended to restrict access to “agencies within the

FHLB” and “such government agencies having interests allied with those of the Board” while

no copies were granted to “private interests”. However, the author concedes that the maps

were in strong demand among the public and that local consultants employed by the HOLC

had access to these documents. An opposite stance, first proposed by Jackson (1980) and

more popular today, argues that HOLC’s findings were widely distributed and quickly became

a benchmark for real estate appraisal both in government agencies and the private sector.

Even if we lack definitive evidence about the circulation of City Surveys, there is proof

that another federal agency – the Federal Housing Administration (FHA) – received multiple

20. A scan of the HOLC map drawn in 1937 for New Haven, CT can be found in Figure 1.
21. As an example, a scan of the HOLC Area Description for New Haven D-4 neighborhood is available in
Figure 2.
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copies of HOLC maps. The FHA evaluated applications to its mortgage insurance program

with manuals that described the presence of “undesirable racial or nationality groups” in

a neighborhood as detrimental. Moreover, the FHA employed a collection of maps that

categorized neighborhoods on a four-level scale according to their financial security (Aaronson

et al., 2021b). Today, a systematic comparison between the HOLC security maps and those

of the FHA is impossible, but historical research provides evidence that the two collections

were often similar.22 If so, HOLC maps can be considered the best available proxy for FHA

standards of neighborhood appraisal.23 While the HOLC ceased its activities in 1951, the

FHA continued its operations in the following decades.24

The explicit inclusion of racial or ethnic criteria in real estate financing became illegal in

1968 with the introduction of the Fair Housing Act. A further series of federal laws enacted

in the 1970s addressed concerns about the lasting effects of financial exclusion. In particular,

the Equal Credit Opportunity Act (1974), the Home Mortgage Disclosure Act (1975) and

the Community Reinvestment Act (1977) were meant to counteract redlining by reinforcing

anti-discrimination legislation, introducing mortgage disclosure requirements and supervising

credit supply at the local level.

3. Data

We construct a new dataset drawing from three sources: digitized HOLC maps, census data

and CoreLogic deeds records. Our classification algorithm is trained on 1930 census data

merged with HOLC maps. The short-term effects of the HOLC maps are measured with

22. Nearly all FHA maps are missing. A limited comparison is possible thanks to a reproduction of the
FHA map of Chicago, IL (Light, 2010).
23. Fishback et al. (2021) study FHA-backed mortgages in three US cities between 1935 and 1940. The vast
majority of loans were granted in areas rated A or B by HOLC maps. However, the authors argue that FHA
exclusionary patterns were established before HOLC maps were drawn, and they did not change throughout
their study period.
24. There is no historical evidence of different FHA appraisal practices according to the 40,000 resident
threshold, or any other population threshold. Moreover, there is no evidence about how the FHA used HOLC
maps. We assume homogeneous FHA practices in treatment and control cities, except for the availability of
the HOLC maps.
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1930 and 1940 census data, while the long-term effects are estimated by combining full-count

census data with CoreLogic real property data and tract-level census data for the decades

between 1960 and 2010.25

We plan to extend the analysis to 1950 when the full-count census data for that decade

becomes available in April 2022. In the following sections, we provide additional details about

each data source.

3.1 HOLC Residential Security Maps

We incorporate HOLC grades in our project using the digitized maps provided by the Digital

Scholarship Lab at the University of Richmond (Nelson et al., 2021). The files contain maps

for 202 cities in 38 states. We convert neighborhood shapes originally traced by HOLC

into a regular grid of hexagons. Hexagons are our fundamental spatial unit of observation,

and their use simplifies the construction of HOLC maps in control cities.26 The area of one

hexagon approximates the typical size of a block in US grid plan cities such as New York

City and Chicago.27 We assign a grade to a hexagon if one color occupies at least 75% of its

surface.28 This spatial transformation has a negligible impact on the overall distribution of

the grades. Appendix Table A1 shows the proportions of each grade according to different

spatial definitions, while Figure 3 compares the digitized version of the HOLC map of New

Haven, Connecticut, with its hexagon-level counterpart. The percentage reductions for A

and B grades are due to the smaller average size of HOLC neighborhoods in these classes.

Furthermore, while our hexagons have a fixed area, the HOLC neighborhoods do not, which

explains the minor discrepancies in the shares for C and D grades.

25. Validity checks of the empirical strategy employ census data between 1910 and 1930, the pre-treatment
decades.
26. More details on why we choose to use a grid of hexagons can be found in Section 4.1.
27. The grid is made of regular hexagons with an area of 0.025 squared kilometers (7.3 acres) and a side of
approximately 100 meters (328 feet).
28. The results are robust to modest variations in the 75% threshold. Given the small dimension of each
spatial unit, the vast majority of hexagons (81.2%) contains only one grade. 7.5% of hexagons do not meet
the 75% threshold and have a missing grade.
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3.2 Census Data

3.2.1 Full-Count Census Data

We rely on full-count census records for data between 1910 and 1940. We geocode the

heads of household by taking advantage of the addresses available in the proprietary version

supplied by ancestry.com and IPUMS (Ruggles et al., 2020). Census addresses are cleaned

following best practices found in the spatial history literature (Logan and Zhang, 2018), and

geographic coordinates are assigned by a state-of-the-art locator (ESRI StreetMap Premium

2019) that combines parcel centroids and street locations.29 Detailed geographic coordinates

allow us to construct neighborhood-level averages by combining individual observations with

our graded hexagon grid. Population distributions according to the grades can be found in

Table 1. Yellow and red areas include 77.8% of the general population in our 1930 sample,

but contain 95.6% of African American respondents. Table 2 reports descriptive statistics

of the 1930 census according to the HOLC grades. Even before the agency’s intervention,

African Americans were concentrated mainly in red neighborhoods. Homeownership rates,

property values, and rent prices are all positively correlated with the HOLC scale.

3.2.2 NHGIS Data

Starting in 1950, we must rely on publicly available census data. We obtain tract-level data

for homeownership rates, property values, rent prices, and the shares of African Americans

between 1950 and 2010 from the National Historical Geographic Information System (NHGIS)

at IPUMS (Manson et al., 2021). We focus on census tracts since they are the smallest

geographical units identifiable between 1950 and 2010.30 Census tracts became available in

smaller cities only in later decades. Hence, this source does not provide full coverage of our

sample of interest until 1980.31 This is the best available nationwide source of harmonized

data for demographic characteristics and homeownership rates in the second half of the

29. The overall proportions of matched addresses for 1910,1920,1930 and 1940 are 60.5%, 65.4%, 76.1% and
73.5% respectively.
30. The median population of a census tract in our dataset is 231, while it is 68 for hexagons. The hexagon
area is constant while the one of the census tract is not. A census tract is always bigger than the hexagons
we defined in surface terms. The median census tract contains 34 hexagons in surface terms.
31. As mentioned in Section 4, we focus on cities with population between 30,000 and 50,000. Appendix
Table A2 reports rates of coverage of NHGIS data for our sample of interest.

11



twentieth century.

Geographical coordinates allow us to harmonize information from HOLC maps, 1910-1940

full count census data and 1960-2010 NHGIS data. We can use our composite dataset to

describe the socioeconomic evolution of US neighborhoods throughout the twentieth century

according to the grades assigned by HOLC in the late 1930s. Figure 4 contains trends for our

four outcomes of interest between 1910 and 2010, showing that the HOLC ranking in terms

of homeownership rates, property values and rent prices was stable during the last century.

D (red) neighborhoods were, and still are, the most likely residence for African Americans.

The percentage of Black American residents increased in A, B and C areas after World War

Two. In particular, C (yellow) neighborhoods reached a 10% share of African Americans in

1970, while B (blue) neighborhoods met the same threshold in 1990. A (green) neighborhood

did not attain the same level in 2010 yet.

3.3 CoreLogic Deeds Records

We supplement NHGIS tract-level data with sale records obtained from CoreLogic which

contains transaction data collected from county assessors and deed registries, including

information about sale prices, dates of sale and the geographic coordinates of the buildings.

In our dataset, transactions are binned into 5-year windows according to the sale year and

month. As expected, the number of sales recorded in the dataset is much higher in recent

years.32 The nature of CoreLogic data is different from data sources we have described so far.

They are administrative records of realized sales, while census property values are the results

of extensive surveys based on self-reports.

4. A Novel Estimation Strategy

We propose a new strategy to measure the short and long-term effects of the HOLC maps.

Our approach does not rely on border discontinuities designs, which have been prevalent

32. Additional details about CoreLogic’s coverage of our cities of interest can be found in Appendix Table
A2.
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in the literature on the topic.33 Instead, we exploit an exogenous population threshold:

HOLC staff focused on cities with a population of at least 40,000 residents. Accordingly,

we define cities with a population between 40,000 and 50,000 as the treated cities, while

the municipalities between 30,000 and 40,000 residents are included in the control group.

Figure 5 illustrates this threshold and highlights our definitions of treated cities in purple

and control cities in orange.34 However, a city-level analysis cannot measure grade-specific

effects. Moreover, ignoring the heterogeneous effect of the four different grades would lead to

empirical results that would mischaracterize the legacy of this federal intervention. Appendix

Table A3 shows the results we obtain when we apply a simple difference-in-difference design

to estimate the effect of HOLC mapping imposing homogenous effects for the four different

grades. We do not detect any significant effect on homeownership rates or African American

percentages, while we find weak evidence of a reduction in property values. To measure the

consequences of HOLC maps, we need an empirical approach to estimate the impacts of four

different interventions that share the same treatment assignment and timing.

We develop a strategy to compare areas with a given grade in treated cities with neighbor-

hoods that would have received the same grade if their city had been mapped. A machine

learning classification algorithm assigns grades to neighborhoods in control cities, replicating

HOLC assessment standards. The algorithm is trained to link observed grades from the whole

set of HOLC maps to 1930 census observables aggregated at the neighborhood (hexagon)

level. Using the predicted grades, we then apply a grouped difference-in-differences design

to measure the causal effects of the maps’ four different grades. To provide an intuition, let

us restrict the analysis to two cities: a treated city, Phoenix, Arizona, and a control city,

Raleigh, North Carolina. To estimate the effect of a D (red) grade, we compare the outcomes

for observations geocoded in Phoenix D areas with Raleigh observations in neighborhoods

33. The previous literature has mainly focused on the local effect of a lower HOLC grade using spatial
regression discontinuity designs. This approach suffers from endogeneity concerns due to the non-random
location of borders and non-random assignment of grades. Both Aaronson et al. (2021b) and Fishback et al.
(2020) document how locations on opposite sides of HOLC borders showed differential trends in a variety of
observables before the introduction of the maps. Aaronson et al. (2021b) employ propensity scores and a
subset of idiosyncratic borders to address this issue.
34. See Appendix A.4 for a list of cities.
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(hexagons) that the HOLC would have rated D if its agents had surveyed the area.

Building the control group with a machine learning model is a matching technique alternative

to synthetic control methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010). Instead

of estimating a complete set of weights so that control areas could mirror treated areas, we

classify neighborhoods by replicating HOLC standardized evaluations. In the same spirit

of synthetic controls, we do not use any post-treatment data when designing the control

group classes and the contribution of each observation to the counterfactual is explicit.35

Moreover, the “donor pool” for each class can be easily visualized on a map. Unlike the

synthetic control method, in our procedure control group units are never used in the training

procedure that determines the counterfactual composition. The resulting control group will

have to meet validity checks, such as the parallel trends assumption, that were not targeted

during its design.36 Hence, our approach reduces even more the possibility of manipulation

in developing a synthetic counterfactual. Harnessing an institutional feature of our research

setting, we defined control groups that, while being synthetic, are particularly plausible.

4.1 A Classification Algorithm

The success of our strategy relies on convincingly replicating HOLC evaluations using 1930

census data. In particular, we are interested in recovering a function that can credibly predict

y, the HOLC grade, based on X, a set of neighborhood observables.

Since HOLC appraisers traced area boundaries and assigned grades simultaneously, our

classification algorithm should replicate both outcomes. We tackle these goals by classifying

a regular grid of hexagons into the four different grades.37 This approach imitates HOLC

35. Our approach can be thought of as a special case of the synthetic control method where weights are
assigned by a classification model. In particular, for treated observations with grade j we are building a
control group assigning weights with only two values, either 0 or 1. Let ĝ ∈ {A,B,C,D} be the grade
predicted by the classification model, we are assigning the 0 weight to all control observations such that
ĝ 6= j and a weight equal to 1 if ĝ = j. The resulting weighted mean will be rescaled by nĝ, the number of
observations with a predicted class ĝ.
36. The machine learning training dataset does not contain information about pre-treatment trends. It only
includes 1930 census information.
37. Hexagons, rather than triangles or squares, are well suited for our goals because they are the most
circular-shaped polygon that can generate a regular grid. In particular: they reduce sampling bias, capture
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methods and tackles the complex task of drawing grade borders in control cities. While

the hexagon grid is useful to imitate the original borders, 1930 census data are the best

nationwide data source to replicate HOLC surveys. Our dataset provides sufficient detail

about the sociodemographic composition of neighborhoods and housing prices. However,

we lack information about mortgages, defaults and interest rates that the agency regularly

collected surveying local financial institutions.

We implement a random forest algorithm (Breiman, 2001) to classify hexagons into one

of four HOLC grades. This machine learning method proves effective in dealing with the

class imbalance of our classification problem38 and outperformes other popular classification

algorithms.39 In short, the random forest is a nonparametric and nonlinear model based on

decision trees. A tree is a hierarchical series of splitting rules for covariates X. In practice,

the goal is to find the best binning structure of covariates X, together with the hierarchy of

these splits, to predict class y. Since random forests are widely employed in recent economics

literature, we will highlight only a few relevant features of the algorithm.40

A decision tree provides flexible binning of multiple covariates to maximize the predictive

power for the outcome class y. The definition of bins is entirely data-driven, and the process

flexibly takes into account interactions between covariates. The resulting bins define a link

between covariates X and the predicted class ŷ as a nonlinear multivariate function. This

approach usually returns a good in-sample fit, but it often suffers from poor out-of-sample

predictions due to overfitting. Bootstrapped aggregation (bagging) techniques offer a remedy.

The solution is to fit several trees on bootstrapped samples of the data, thus growing a

forest. Moreover, each split is determined only by m randomly selected covariates. These

steps reduce the correlation between the predictions of each tree, characterizing the forest as

“random” and providing reliable out-of-sample predictions. Once the algorithm is trained,

curved patterns more easily, reduce the projection distortion due to earth curvature and provide a better
definition of neighbors because of their centroid properties. For more details see Birch et al. (2007).
38. The minority class share (Grade A) is 7.8% while the maximum one (Grade C) is 42.1%. More details
can be found in Table A1.
39. More details about the performance of an ordered logit model in this setting can be found in section 4.2.
40. See Fuster et al. (2021) for a more detailed explanation of the random forest algorithm.
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the predicted class is the one most voted on by all the trees in the forest. The number of

variables to use at each split (m), and the fraction of observations to sample for each tree,

are parameters that need tuning.41

4.2 Classification Model Results

We train the random forest algorithm with a hexagon-level dataset containing all cities

mapped by the HOLC with a population below 3,000,000.42 The dataset includes 48 different

1930 census variables; some are included at different geographical levels, bringing the total

number of training variables to 163.43 The total number of neighborhoods in our dataset is

192,016.

We assess the performance of our classification model on a test set of spatial units (hexagons)

randomly drawn from the original dataset.44 These observations were excluded from the

random forest training procedure and represent an out-of-sample validation of the model

performance. Table 3 presents a matrix comparing the observed and predicted grades in

the test set (Confusion Matrix ). The probability of correctly classifying a neighborhood

(Accuracy) is 91.55%, while the probabilities of correct predictions conditional on observed

grades (Class-specific Sensitivities) are above 90% for B, C, and D classes. Comparing

the predicted grade distribution (Detection Prevalence) with the observed class frequencies

(Prevalence) shows that our model does not alter the overall distribution of HOLC grades.

Given that the identification strategy focuses on neighborhoods in cities between 30,000

and 50,000 residents, we are interested in the performance of our model in smaller cities.

Appendix Table A4 shows the results we obtain if we restrict our test set to cities with a

population below 50,000. Accuracy is still above 90% percent and performance metrics are

41. More details on tuning of our random forest can be found in Appendix section A.3.
42. The results in this section are robust to variations in the population threshold determining which cities
are included in the training procedure. The range of variation for this threshold is between 50,000 and
7,000,000 residents.
43. The complete list of variables is available in Appendix A.3.
44. The test dataset represents 25% of the original dataset, while 75% of the observations were used in
training the model. The random sampling was stratified according to HOLC grade and city population. The
results are robust to changes in the sampling procedure.
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similar overall.

It is worth comparing our machine learning procedure to classification models traditionally

used in the economics literature. Accuracy levels above 90% are a substantial performance

improvement compared to what we would obtain with an ordered logit. Appendix Table

A5 shows the performance of an ordered logit estimated on the same dataset used by the

random forest. Overall accuracy reaches only 64.35% and the predicted grades severely

overestimate the prevalence of C neighborhoods, while underestimating the presence of D

and A neighborhoods. It should be noted that a logit-type model is more transparent than a

random forest in characterizing the contribution of each variable to determine the probability

of a grade. However, the improvement in predictive accuracy offered by the latter is so

significant that it compensates for the loss in interpretability.

Prediction accuracy characterizes the model’s precision, but it does not provide any insight

into the spatial patterns of our predicted maps. In particular, the challenge is to obtain

graded areas with a sufficient degree of compactness to mirror the HOLC maps. A comparison

between the original HOLC map of Baltimore, Maryland, and our predicted map can be

found in Figure 6. In general, the predicted neighborhoods are not dissimilar from the

original neighborhoods in terms of shape.45 When the classification model disagrees with

HOLC evaluations, it tends to assign a different grade to whole clusters rather than to

single hexagons. Examples of this behavior can be found in downtown Baltimore where the

predicted grade is C (yellow) versus an original D (red), or in the northwest suburbs of the

city, where an area with a B (blue) grade from HOLC is classified as A (green) by the model.

The final goal of replicating HOLC grades is to draw “redlining” maps in cities between 30,000

and 40,000 people. Examples of predicted maps for control cities can be found in Figure 7.

The model identifies areas for all four grades, returning neighborhood shapes similar to the

ones observed in the original maps in larger cities.

The random forest algorithm we employ does not have any spatial constraint that would

45. The surface covered by our hexagon-level maps is slightly smaller than the area originally covered by
HOLC. This is because the federal agency mapped even scarcely populated areas, while our strategy focuses
on hexagons with at least 20 residents.
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guarantee an output visually similar to HOLC maps. The results rely on a training dataset

that includes several census observables at different levels of geographical definition. Figure

8 shows how the predicted map for New Haven, Connecticut changes when we train the

classification models with datasets including different geographical levels of aggregation. The

top left map is the output we obtain when each hexagon only includes information about its

area, while the top right map adds city and county-level information to the dataset. These

maps, while generally accurate, suffer from spatial noise and the resulting neighborhoods

cannot be easily encircled into a compact shape.46 The plausibility of the predicted maps

increases when we include information about the area surrounding each hexagon. In particular,

we construct averages of surrounding census observables using 500-meter and 1,000-meter radii

(0.31 miles and 0.62 miles, respectively) for each hexagon. With the addition of these local

averages, the classification algorithm returns predicted maps with compact neighborhoods,

as shown in panels (c) and (d) of Figure 8.47

4.3 Measuring the Effects of HOLC Maps

Our goal is to estimate the grade-specific causal effects of introducing HOLC maps, an

innovative information tool for neighborhood appraisal, in the real estate market. In the early

stages of the 20th century information revolution, the HOLC maps could act as a coordination

device providing practical area evaluations to local financial institutions. To estimate these

effects, we classify neighborhoods into four classes according to their predicted grades using

our trained random forest. Then, we apply a difference-in-differences design comparing

neighborhoods in treated cities, between 40,000 and 50,000 residents, with those in control

cities, between 30,000 and 40,000 residents, separately for each grade. Our pre-treatment

period is 1930, and 1940 is our first post-treatment period. If the empirical design assumptions

are deemed credible, the estimated coefficients will capture the global effects of each grade

46. The overall prediction accuracy of the random forest considering only neighborhood level data is 66.75%,
while it rises at 75.45% when including city and county level covariates.
47. A random forest trained on a dataset including neighborhoods and information about their surroundings
achieves a 89.58% accuracy. If we add city and county level variables to the former dataset, accuracy increases
to 91.55%.
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assigned by HOLC.

In the short run, our specification is:

Y ĝ
i,h,c,t = αĝDc + γ ĝPt + β ĝDcPt + δĝXi,h,c + εĝi,h,c,t (1)

In the equation, Y ĝ
i,h,c,t is the outcome for individual i, living in a neighborhood h with

grade ĝ, in city c, at time t. The term Dc is a treatment dummy and Pt is a post-treatment

indicator. Xi,h,c includes neighborhood observables and information about the surrounding

areas. Equation (1) will be estimated by group according to the grade ĝ assigned by the

trained random forest. The coefficients of interest are
{
βA, βB, βC , βD

}
. In section 5.1 we

provide results for different specifications of equation (1), replacing the treatment term αĝDc

with city fixed effects or neighborhood (hexagons) ones.

We can extend equation (1) to measure medium and long-term effects. In particular, we

estimate the following equation at the neighborhood level:48

Y ĝ
h,c,t = αĝDc + ΓĝP̄t +

∑
t∈T

β ĝ
tDcPt + δĝXh,c + εĝh,c,t (2)

where T = {1930, 1940, 1960, 1965, 1970, 1975, · · · , 2010}. The only new terms compared to

equation (1) are P̄t = (P1940, P1960, · · ·P2010) a vector of year dummies for all elements of

T (except 1930) and its corresponding vector of coefficients Γĝ. In this case, Xh,c includes

time-invariant geographic controls. Section 5.2 contains the results for different specifications

of (2) where we replace the treatment term αĝDc with city fixed effects.

The validity of this empirical framework relies on two main assumptions. First, the maps

did not affect dependent variables in control cities. Second, outcomes would have evolved in

parallel in the absence of the policy. We examine the validity of these assumptions in the

following section.

48. We switch to a neighborhood level regression to estimate the long-term effects of HOLC maps. While
CoreLogic data allow an individual level analysis with disaggregated deeds, NHGIS data do not. To ensure
comparability between the two sources of post-1940, data we will focus on neighborhood level results. The
long-term results obtained with the CoreLogic dataset are robust to using an individual-level specification.

19



A limitation of our analysis is related to external validity. Our effects are estimated

for cities with a population between 30,000 and 50,000 and might not be appropriate to

describe the effects of the maps in American metropolises.49 Another limitation is that our

estimates rely on a first-stage classification model. The prediction errors of the random forest

might attenuate, or inflate, the difference-in-differences estimates and affect their precision.50

Ultimately, the high prediction accuracy of our trained machine learning algorithm and the

soundness of the parallel trends assumption reassure us about the overall credibility of this

strategy.

Previous research on this topic has focused on estimating the local effects of a lower grade,

such as D, compared to a higher one, e.g. C, with border regression discontinuity techniques.

Such results characterize within-city local impacts, but it is not immediate to translate them

in an aggregate measure of HOLC maps’ effects. Instead, our approach returns the treatment

effects of the four HOLC grades providing a direct description of the global effects of HOLC

maps on US neighborhoods.

4.4 Validation of the Empirical Strategy

As noted in section 4.3, our difference-in-differences framework relies on the no-treatment-

spillover assumption and parallel pre-trends. In our context, the no-spillover assumption

means that control cities would not have been affected by the HOLC intervention because of

their geographic location. Figure 9 shows that control cities, in blue, are scattered throughout

the country, and they are not suburbs of treated cities, in red. To strengthen the assumption,

we include in our analysis only control cities with a distance of at least 50km (31mi) to

the nearest treated municipality.51 While it is safe to assume that HOLC mapping did not

directly affect control cities, it is harder to argue that the assignment of grade g in a certain

49. In Section 5.1 we show results when we expand the treatment group to include cities up to 60,000
inhabitants.
50. Our results are robust to substituting the predicted grades with the observed ones in treated cities.
Moreover, we propose additional checks of biases introduced by our classification exercise in section 4.4 to
mitigate these concerns.
51. The results are robust to variations in this threshold between 30km (18.6mi) and 70km (43.5mi). The
median distance between a control city and the closest mapped municipality is 144.7Km (89.9mi)
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area does not affect surrounding neighborhoods.52 If we are worried about the spillovers of

surrounding graded areas in treated cities, the coefficient βg will combine the effect of grade

g and the correlations with other local grades. In Table 4 we provide the grade composition

of neighborhood surroundings according to their own grade and treatment status. D grades

are surrounded, on average, by 62.8% red and 32.3% yellow neighborhoods. For all grades,

the majority neighborhood share corresponds to the same class: for example, 76.7% of C

neighbors belong to grade C. In section 5.1, we show that the results are robust when we

include information about the local grade composition as an additional control.

The soundness of the difference-in-differences framework hinges on the similar evolution

of socioeconomic characteristics between treatment and control cities prior to the HOLC

intervention. We graphically investigate the soundness of the parallel trends assumption in

Figure 10 using data between 1910 and 1930, the decades before the HOLC intervention.

The trends for African American percentage and homeownership rate evolved in parallel in C

(yellow) and D (red) areas. The same is true for grade B, as can be seen in Appendix Figure

A1. The assumption appears less valid for A (green) areas, and the results for this class,

which represents approximately 3% of the sample, should be interpreted with caution.

This validity check cannot be completed for property values, one of our outcomes of interest,

because the census started to record this variable only in 1930. As a partial remedy, we can

investigate the trajectory of alternative socioeconomic variables. The bottom panels of Figure

10 compare trends for the imputed income score we built based on 1940 census information.53

Given its definition, this variable can be interpreted as an index of socioeconomic status. The

observed trends support our research designs. Additional plots investigating the trends for

population density, number of children and percentage of first-generation migrants can be

found in Appendix Figure A2. Table 5 contains the results for an analytical check of the

52. This challenging problem is similar to estimating the effects of an exogenous shock when dealing with
non-random exposure, as described by Borusyak and Hull (2020). In our setting, even if it is credible
to characterize treatment assignment as random, we might think that neighborhood location will lead to
non-random exposure to different grades from the surrounding areas.
53. The Census did not record income before 1940. We impute an income score for wage-employed men
aged 25-55 between 1910 and 1930 using income measures from 1940. More details can be found in Appendix
section A.2.
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parallel trends assumption. There are no substantial differences between treated and control

cities in the evolution of demographic and economic variables between 1930 and 1920 in B,

C, and D areas. These results are confirmed in Table A7 for changes between 1920 and 1910.

The classification algorithm we employ to replicate HOLC grades returns predicted maps

that we can compare with the original ones in terms of socioeconomic characteristics. Table

6 compares averages according to observed and predicted grades, showing that the predicted

maps do not alter the original socioeconomic composition of C and D neighborhoods. Moreover,

we might be worried about the type of bias introduced in the analysis by spatial units receiving

a “wrong” grade.54 The averages in Appendix Table A6 show that even when the model

assigns a neighborhood to the wrong class, we are not introducing significant sources of bias.

Another assumption implicit in our empirical approach is that HOLC practices did not

change between different cities. In particular, a predictive model trained with US metropolises

might not accurately replicate HOLC grades in smaller cities, the ultimate goal of our

prediction exercise. Appendix Figure A3 shows that the accuracy level of our random forest

algorithm is robust to different training datasets according to the population of cities included

in the training set. When we restrict our attention to predicting grades for neighborhoods in

cities below 50,000 residents, overall accuracy is still above 90%. We interpret these results

as evidence of the high degree of standardization of HOLC grading procedures, making our

predictive model a reliable source for HOLC evaluations in the smaller control cities.

5. The Effects of HOLC Maps

5.1 Short Term Results

We start by estimating equation (1) separately for each grade. The coefficients of interest

reported in the tables of this section are
{
βA, βB, βC , βD

}
. The dataset includes individual-

level observations from 1930, the pre-intervention period, and 1940, the post-intervention

54. Spatial units with different observed and predicted grades represent approximately 12% of our sample in
treated cities.
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one. Standard errors are clustered at the city-year level.55

Table 7 reports the results for local homeownership rates. The results from a simple

difference-in-differences design are reported in column (1). Replacing the treatment indicator

with a city fixed effect does not substantially alter the coefficients but considerably increases

the estimates’ precision. Instead, we do not gain additional precision if we substitute a

city-level fixed effect with a neighborhood (hexagon) fixed effect as in column (3). The

last column reports our preferred specification where we combine a city fixed effect with

neighborhood level sociodemographic controls. We find a 2.4 percentage points decrease in

the percentage of homeowners in D (red) zones in 1940, shortly after the introduction of the

maps. A weaker effect can be detected in C (yellow) areas, while we find no effects in B (blue)

neighborhoods. On the contrary, we find a 4.5 percentage point increase in the best-rated

areas (A, green), but the caveats we mentioned in section 4.4 apply in this case.

In terms of African American percentage, we find a 1.8 percentage point increase in the

lowest-rated areas (D, red) a 9.4% increase with respect to the baseline period, as reported in

Table 8. We do not find any other effect of this policy in other areas, given the near absence

of Black Americans in A, B and C neighborhoods. The results for the full set of specifications

for this outcome can be found in Appendix Table A8. Table 8 also shows the estimated

coefficients for property values. The assignment of C (yellow) and D (red) grades caused

sizable reductions in property prices. While the reduction in property prices in red areas

confirms the popular narrative for “redlining”, the negative effect for C neighborhoods is more

surprising, and it was first documented in Aaronson et al. (2021b). Our empirical design

does not find any significant effect in B areas.56 Appendix Table A10 confirms the negative

55. In our research design, the treatment is assigned at the city level. Since in our data different periods
are separated by 10-year gaps, we do not allow for within city serial correlation of standard errors. This
clustering choice does not address unobserved, within-city, serially correlated shocks over a ten-year time
span. One more threat is that hexagon-specific error components could be serially correlated across decades.
Note that our results are robust to the inclusion of city fixed effects, which will absorb constant city-level
error components, or neighborhood (hexagon) fixed effects. We report results with standard errors clustered
at the city level, our most conservative option, in Appendix Table A15. The median ratio between city-year
clustered standard errors and city clustered standard errors is 0.702, the average one is 0.782.
56. The results for the full set of specifications for property values can be found in Appendix Table A9. We
are hesitant in interpreting the estimated coefficient βA as the causal effect of grade A. The significantly
smaller sample size, paired with weak evidence of parallel pre-trend for this class, invite caution when
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effects in C and D areas when we apply a log transformation to property values, although the

estimates are less precise. The discrepancy between the linear and logarithmic specifications

suggests the presence of heterogenous effects across the property value distribution. Since the

logarithmic form reduces the contribution of higher prices, it seems that HOLC maps in 1940

had a stronger impact on more expensive houses in C and D areas relatively to lower-value

ones. The patterns we find for property values do not translate to rent prices. The last

column of Table 8 shows that the HOLC maps did not affect rental prices in 1940 for our

cities of interest.

5.1.1 Robustness

All the short-term results are confirmed if we replicate our estimates using a neighborhood

(hexagon) level dataset instead of an individual one. The coefficients and their standard

errors can be found in Tables A11 to A14. These alternative specifications are estimated on

a two-period panel of neighborhoods in our cities of interests. The stability of the results

across the individual and the neighborhood levels datasets mitigates the concern that the

short-term results might be driven by strong changes in cohort composition between 1930

and 1940.

In the results we discussed so far, observations were grouped according to the grade

predicted by the random forest algorithm. In Table A16 we show that the results are robust

when we replace predicted grades with observed HOLC classes for treated observations.

Another robustness check is presented in Table A17 where we confirm that the estimated

coefficients do not change if we extend the treatment group to cities up to 60,000 residents

according to the 1930 census.57

Our strategy might be capturing structural differences in the evolution of smaller versus

bigger cities between 1930 and 1940. Table A18 shows that we do not find meaningful effects

if we focus on placebo outcomes such as female percentage, number of children or male

unemployment rate. As an additional check, we replicate our procedure with a placebo

considering the results for this grade.
57. Similar results can be obtained by changing the treatment-group population limit to 70,000, 80,000 and
100,000.
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population threshold set at 60,000 people. This new threshold defines a new treatment group

(cities between 60,000 and 70,000 residents) and a new control group (cities between 50,000

and 60,000 residents). Our research design should not replicate our main results with the new

thresholds since HOLC practices did not differ between these two new sets of cities. Table

A19 contains the results of this exercise. We do not find any relevant and significant effect

for homeownership rates, African American percentage, and property values.58

In section 4.4 we discussed how treatment spillovers from surrounding areas could be a

threat to the validity of our analysis. As a first step to address this concern, Table A20 shows

that our results are robust when we control for local grade composition. In particular, we

include the prevalence of the four grades in a 1000mt (0.63miles) radius.

5.2 Long Term Results

At the time of writing, full individual census data are not available starting in 1950. To

investigate the effects of HOLC maps in the second half of the twentieth century, we must

employ alternative data sources. As mentioned in section 3.2.2, we use tract-level NHGIS

data between 1960 and 2010. Unfortunately, this data source does not provide sufficient

coverage for our cities of interest in 1950, so we drop this decade in the analysis.59 We

estimate the model described in equation (2) separately for each grade with neighborhoods

(hexagons) as the unit of observations. Standard errors are clustered at the city-year level.

Since census tracts are always bigger than hexagon neighborhoods in our cities of interest,

the geographical variation underlying these estimates is much smaller than the variation we

exploited in previous estimates.

Figure 11 shows the estimated DiD coefficients for homeownership rates and African

American shares in C and D areas. We find reductions in homeownership rates between 4.4

and 5.6 percentage points in D (red) neighborhoods, while no statistically significant effects

58. The positive effect on property values in D areas has the opposite sign of what we find in our main
results.
59. We plan to extend the current analysis to 1950 when full-count Census data for that year becomes
available in April 2022.
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can be found in C (yellow) ones. The increase in the local shares of Black Americans in D

(red) areas we found in 1940 is confirmed in later years, as depicted in Figure 11. We also

detect similar significant increases in C (yellow) zones. While the estimated effects in red

areas are coherent with the short term results, the ones in yellow areas are more surprising.

They show an increase between 5.9 and 7.9 percentage points in the percentage of African

Americans in C areas starting in 1980. The complete results for these two outcomes can be

found in Table 9. Because of their high level of geographical aggregation, NHGIS data do not

provide enough information to characterize the long term effects of HOLC maps on property

values. To make up for the lack of precision in these estimates, we include an additional data

source in our long-term analysis of property values.

We turn to an alternative, more granular, source of information: the CoreLogic deeds. This

additional dataset allows us to assess the impact of HOLC maps on real estate transactions

between 1965 and 2005.60 We estimate equation (2) with neighborhood level observations

grouped in time bins with a 5-year frequency, so that the results are directly comparable with

estimates obtained with NHGIS data. Each individual transaction is assigned a neighborhood,

and hence a HOLC grade, using their geographic coordinates, available in CoreLogic. As

in previous specifications, standard errors are clustered at the city-year level. Figure 12

shows the resulting coefficients and 95% confidence intervals. We find negative causal effects

of HOLC maps on house values between 1965 and 1980 in D (red) and C (yellow) areas.

The results for D neighborhoods describe a somewhat steady convergence of property values

between treated and control cities in neighborhoods classified as D by the random forest

algorithm. Statistically significant effects cannot be detected starting in mid 1980s. Table 10

shows the results for the four different HOLC grades.61 As we mentioned in section 2, between

1974 and 1977, three critical legislative measures were introduced with the primary goal

of counteracting redlining in the mortgage market. Our results suggest that the combined

60. The choice of this time span is based on the coverage of CoreLogic deeds for our cities of interest.
In particular, the dataset does not provide enough transactions to obtain reliable estimates prior to 1965.
Additional details about CoreLogic’s coverage of our cities of interest can be found in Appendix Table A2.
We stop the analysis in 2005 to avoid including the effects of the subprime mortgage crisis of the early 2000s.
61. The results are robust to a log-transformation of the outcome, as it is shown in Appendix Table A21
and Appendix Figure A6.
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effects of the Equal Credit Opportunity Act, the Home Mortgage Disclosure Act and the

Community Reinvestment Act might have been sufficient to offset persistent effects of HOLC

maps on property prices.

6. Conclusion

In the second half of the 1930s, a federal agency undertook an unprecedented survey of the

demographic and housing conditions of US neighborhoods in more than 200 cities. Its goal

was to provide unified standards to assess real estate properties and stabilize a market that

had just begun to recover from the Great Depression. The initiative was a data-driven effort

based on the most advanced theories of urban development of the time, and its resulting

maps were a data analytics tool in high demand among real estate professionals. Less than a

hundred years later, the Home Owners’ Loan Corporation maps have become a symbol of

structural racism in the popular press and the political debate. Today’s negative judgments

of HOLC practices are based on non-discrimination principles that have guided US public

institutions since the civil rights movement. Such condemnations are backed by historical

evidence and are valid independent of quantitative estimates of causal effects. At the same

time, measuring the consequences of the HOLC maps is an interesting exercise to understand

the role of public institutions in coordinating and standardizing individual discriminatory

behaviors.

The main challenge in estimating the causal effects of different HOLC grades is that the

agency’s personnel traced neighborhood borders and assigned evaluations with precision.

Different HOLC grades within a city closely mirror socioeconomic trends we can observe in

the census data. Instead of relying on spatial discontinuity designs, we take advantage of an

exogenous threshold determining which cities the agency surveyed. Since we are interested in

estimating the effects of different grades, we compare neighborhoods evaluated by HOLC

with analogous neighborhoods in control cities. To classify neighborhoods in control cities,

we train a random forest algorithm to replicate HOLC grades. Our spatial classification

model has an out-of-sample accuracy of more than 90% and returns predicted maps that are
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credible replicas of HOLC maps. Using the predicted grades, we then estimate the HOLC

grades’ short- and long-term effects with a grouped difference-in-differences design.

We find that this government intervention had adverse effects in areas that received the

lowest grade. In the short-term, we find a 2.4 percentage points reduction in homeownership

rates, a sizable reduction in property prices, together with a 1.8 percentage points increase in

the percentage of African American residents. No effects on rent prices is found. We also

find a 9.5% decrease in property values in C neighborhoods compared to the 1930 values.

This consequence of “yellow-lining” is rarely discussed and was first highlighted by Aaronson

et al. (2021b).

We have evidence that the negative effects of D grades in terms of homeownership rates

and percentages of African American residents have persisted until the present, but we

sometimes lack precision since the data are available only at the census tract level. For

property prices, we exploit a more granular data source – CoreLogic deeds – to estimate the

long-term evolution of the causal effects. We find significant negative effects on property

prices in C and D neighborhoods until the early 1980s. This result differs from that of

Aaronson et al. (2021b), who find significant effects on property prices up until 2010, using

a different set of cities and an alternative identification strategy. In our case, the effects of

the maps can no longer be detected in the decades following the introduction of legislation

targeting residential redlining.

We have analyzed a government policy that institutionalized discrimination by standard-

izing appraisal standards. Given that discriminatory practices in the housing market were

widespread at the time, it is not obvious that a graphical representation of mortgage risk

could have affected homeownership rates or property prices. Our results show that an

organization’s acceptance and reproduction of discriminatory practices can have an economic

effect. The HOLC maps could have influenced discrimination in the housing market via at

least two mechanisms that are not mutually exclusive: first, replacing heterogenous individual

biases with one homogeneous set of biases; and second, solving an information asymmetry by

circulating an information tool useful to discriminate between different neighborhoods. While

our empirical strategy cannot differentiate between these two mechanisms, future research
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could attempt to disentangle the roles of bias standardization and information provision to

provide a more nuanced understanding of the consequences of institutional discrimination.
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Table 1—1930 Population Distribution According to HOLC Grades

Population Shares

N A B C D

General Population 30,945,584 3.9% 18.3% 41.7% 36.1%
By Race
White 28,801,136 4.1% 19.4% 43.9% 32.6%
Black 2,094,493 0.9% 3.1% 12.0% 83.6%
Notes: The sample includes 1930 Census individuals with a valid geocode in neighborhoods with a digitized
HOLC map.

Table 2—1930 Descriptive Statistics According to HOLC Grades

Grade

A B C D

Black 0.01 0.01 0.02 0.17
(0.09) (0.085) (0.11) (0.32)

Home Owner 0.76 0.66 0.56 0.43
(0.28) (0.27) (0.27) (0.28)

House Value 12,938 8,805 6,638 5,038
(7,013) (5,134) (3,967) (3,648)

Rent 143 73 51 42
(352) (174) (120) (112)

Income Score 7.30 7.23 7.12 6.931
(0.26) (0.22) (0.21) (0.30)

First Gen Immigrant 0.14 0.16 0.22 0.23
(0.17) (0.17) (0.20) (0.24)

Unemployed, Men 0.04 0.06 0.10 0.13
(0.11) (0.11) (0.13) (0.14)

Owns a Radio 0.76 0.69 0.58 0.38
(0.27) (0.26) (0.27) (0.27)

Notes: The sample includes 1930 census individuals with a valid geocode in neighborhoods with a digitized
HOLC map. See Appendix Section A.2 for definitions of Census variables in our dataset.
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Table 3—Random Forest Performance, Confusion Matrix

Data
D C B A

D 12940 668 62 3

C 927 18771 827 74
Prediction

B 93 792 9939 462

A 7 36 153 2792
Accuracy 91.55%

Class Sensitivity 92.65 92.62 90.51 83.82
Prevalence 28.77 41.75 22.62 6.86

Detection Prevalence 28.17 42.43 23.25 6.15

Notes: The matrix compares the observed and the predicted grades for a test set of observations excluded
from the training procedure. The test set is a 25% random subsample of the original dataset selected with
stratified sampling according to city population and HOLC grade. The level of observation is a neighborhood
(hexagon). See Section 3.1 for details about the hexagon definition. The sample includes every hexagon in
a mapped city with a 1930 population below 3,000,000 and containing at least 20 residents in 1930. The
results are robust to different sample definitions in terms of population cutoffs. A predicted grade is the class
predicted by the trained random forest algorithm. See Section 4.1 and Appendix Section A.3 for details about
the Random Forest training procedure. Overall Accuracy is the percentage of hexagons whose predicted
grades correspond to observed ones. Class sensitivity for a grade j is the proportion of correctly predicted
hexagons among the spatial units with grade j. Prevalence reports the share of each observed grade in the
test set, while detection prevalence shows the distribution of predicted grades.

Table 4—Shares of Local Grades, by Grade and Treatment Status

A B C D

Share A 50.2% 4.9% 0.5% 0.3%

Share B 38.9% 64.0% 11.3% 4.6%

Share C 9.3% 27.4% 76.7% 32.3%

Share D 1.6% 3.6% 11.5% 62.8%
Notes: The Table reports average shares of surrounding grades according to neighborhoods grades and
treatment status. Neighborhood surroundings are defined with a 1000mt. radius (0.63 miles). The sample
includes neighborhoods with at least 20 residents in 1930 in cities with a population between 30,000 and
50,000. See Appendix Section A.4 for a list of cities.
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Table 5—Testing Differences in 1930-1920 Trends by Treatment Status

Testing 1930-1920 Trends By Treatment Status

Dependent Variable A B C D

Black 0.008 0.001 -0.001 -0.003
(0.006) (0.002) (0.003) (0.010)

Home Owner -0.080∗∗ -0.017 -0.006 -0.021
(0.034) (0.019) (0.015) (0.014)

Income Score -0.023 -0.019 -0.006 0.021∗
(0.026) (0.012) (0.008) (0.012)

Education Score -2.055 -0.478 0.173 0.074
(1.413) (0.554) (0.259) (0.289)

First Gen. Immigrant 0.018 0.004 0.014∗∗ -0.012
(0.016) (0.007) (0.007) (0.012)

Number of Children 0.014 0.004 0.011 0.001
(0.021) (0.011) (0.008) (0.010)

Notes: The Table reports the coefficients from a set of regressions where the dependent variable is the
1930-1920 change in the variable reported in the left column, and the independent variable is an indicator for
treatment status. See Appendix Section A.2 for definitions of Census variables in our dataset. The level of
observation is a neighborhood (hexagon). The sample includes every hexagon in cities with a 1930 population
between 30,000 and 50,000 and at least 20 residents in 1930. See Appendix Section A.4 for a list of cities.
Standard errors, in parentheses, are clustered at the city-year level. Significance: * 0.10 ** 0.05 *** 0.01
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Table 6—1930 Descriptive Statistics According to HOLC and Predicted Grades

Grade
C D

HOLC Predicted HOLC Predicted
Black 0.02 0.02 0.17 0.21

(0.10) (0.08) (0.31) (0.33)
Home Owner 0.53 0.52 0.41 0.40

(0.23) (0.23) (0.24) (0.23)
Property Value 6,843 6,869 5,253 4,729

(3,841) (3,861) (3,632) (3,267)
Rent 52 54 42 39

(112) (116) (98) (97)
Income Score 7.13 7.13 6.91 6.86

(0.18) (0.17) (0.28) (0.28)
First Gen Immigrant 0.22 0.23 0.24 0.23

(0.17) (0.18) (0.22) (0.23)
Unemployed, Men 0.10 0.10 0.13 0.13

(0.09) (0.08) (0.10) (0.10)
Owns a Radio 0.58 0.58 0.38 0.33

(0.22) (0.21) (0.23) (0.21)

Notes: The Table reports averages of 1930 census variables according to different classifications. The first
two columns compare means between hexagons classified as C by the HOLC with those classified as C by our
random forest algorithm. The third and fourth columns do the same for grade D. The level of observation is
a neighborhood (hexagon). The sample includes all the hexagons intersecting a HOLC neighborhood digitized
by Nelson et al. (2021) in 202 maps. Standard deviations are reported in parentheses.
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Table 7—Short-Term Difference-in-Differences Results, by Grade

Dependent variable: Homeownership Rates

(1) (2) (3) (4)

DiDA 0.032 0.047∗∗∗ 0.031∗∗ 0.045∗∗∗

Ȳ A = 0.61 (0.093) (0.016) (0.014) (0.015)

DiDB 0.002 0.003 0.007 -0.002
Ȳ B = 0.62 (0.027) (0.009) (0.009) (0.009)

DiDC -0.010 -0.012 -0.009 -0.017∗∗

Ȳ C = 0.49 (0.031) (0.007) (0.007) (0.007)

DiDD -0.022 -0.017∗∗ -0.015∗∗ -0.024∗∗∗

Ȳ D = 0.39 (0.044) (0.008) (0.008) (0.009)

City Fixed. Eff. X X
Hexagon Fixed Eff. X
Hexagon Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade.
Each row contains the DiD coefficients for a given grade. Ȳ J is the average for the outcome of interest,
homeownership rates, in the pre-treatment period (1930) for grade J . The first column report the DiD
coefficients resulting from a simple DiD framework. The second one replaces the indicator for treatment, which
is assigned at the city level, with a city fixed effect, while the third replaces it with a neighborhood (hexagon)
fixed effect. Column 4 reports the DiD coefficients when we add geographic and demographic controls at the
hexagon level to the specification from the second column. The list of controls includes geographic coordinates,
a scaled measure of distance from the city center, spatial unit’s population density, imputed income score and
family size. The regressions are estimated with individual-level observations. The sample includes individuals
with valid geocodes in cities with a 1930 population between 30,000 and 50,000, living in hexagons with at
least 20 residents in 1930. See Appendix Section A.3 for a list of cities. The number of observations according
to each grade, NJ , are: NA = 137, 144, NB = 979, 145, NC = 3, 116, 521, ND = 1, 195, 213. Standard errors,
in parentheses, are clustered at the city-year level. Significance: * 0.10 ** 0.05 *** 0.01
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Table 8—Short-Term Difference-in-Differences Results, by Grade

Dependent Variables

African American
Percentage

Property Values Rent Prices

DiDA -0.005 1,046∗∗∗ 39.3∗∗∗
(0.006) (378) (12.0)

DiDB 0.006∗ -106 8.8
(0.004) (170) (12.1)

DiDC 0.001 -502∗∗∗ 5.9
(0.001) (149) (9.6)

DiDD 0.018∗∗∗ -302∗∗ 3.1
(0.004) (153) (8.1)

Ȳ A 0.008 9,305 107.4

Ȳ B 0.011 6,836 57.0

Ȳ C 0.020 5,274 43.4

Ȳ D 0.190 3,500 29.0

Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade for
three different outcomes. Each row contains the DiD coefficients for a given grade. Ȳ J is the average for the
outcome of interest in the pre-treatment period (1930) for grade J . The Table shows the DiD coefficients
resulting from a DiD framework with a city fixed effect and geographic and demographic controls at the
hexagon level. The regression specification is analogous to the one in column (4) of Table 7. The list of
controls includes geographic coordinates, a scaled measure of distance from the city center, spatial unit’s
population density, imputed income score and family size. The regressions are estimated with individual-level
observations. The sample includes individuals with valid geocodes in cities with a 1930 population between
30,000 and 50,000, living in hexagons with at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. Standard errors, in parentheses, are clustered at the city-year level. Significance: * 0.10 ** 0.05 ***
0.01
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Table 9—Long-Term Difference-in-Differences Results, by Grade. Census Data

Dependent variable:

Homeownership Rates African American Percentage

C D C D
DiD60 -0.003 -0.045∗∗ 0.015 0.080∗∗∗

(0.015) (0.019) (0.017) (0.027)
DiD70 -0.019 -0.047∗∗ 0.036∗∗ 0.077∗∗∗

(0.014) (0.019) (0.015) (0.023)
DiD80 -0.015 -0.046∗∗ 0.059∗∗∗ 0.098∗∗∗

(0.014) (0.020) (0.014) (0.025)
DiD90 -0.010 -0.056∗∗∗ 0.072∗∗∗ 0.089∗∗∗

(0.013) (0.018) (0.016) (0.024)
DiD00 -0.020 -0.054∗∗∗ 0.079∗∗∗ 0.082∗∗∗

(0.012) (0.017) (0.016) (0.025)
DiD10 -0.026∗∗ -0.044∗∗ 0.078∗∗∗ 0.068∗∗∗

(0.013) (0.019) (0.017) (0.025)

N 104,887 41,328 104,899 41,332
R2 0.225 0.376 0.491 0.580
Notes: The Table reports Difference-in-Differences coefficients obtained estimating equation (2) by grade.
Each row contains the DiD coefficients for a given grade in the corresponding year. In the reported specification,
we replace the indicator for treatment, which is assigned at the city level, with a city fixed effect. The list of
controls includes geographic coordinates and their squares together with state-specific linear time trends.
The regressions are estimated with neighborhood (hexagon) level observations. Observations are weighted by
log-transformed 1930 neighborhood population. The sample includes neighborhoods in cities with a 1930
population between 30,000 and 50,000, with at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. The data source for post-1940 outcomes is NHGIS; see Section 3.2.2 for details. Standard errors, in
parentheses, are clustered at the city-year level. Significance:* 0.10 ** 0.05 *** 0.01
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Table 10—Long-Term Difference-in-Differences Results, by Grade. CoreLogic

Dependent variable: Property Values

Grade

A B C D
DiD65 . 292 -12,360∗∗∗ -13,669∗∗∗

(.) (3,781) (2,689) (1,976)
DiD70 -10,514 -373 -16,607∗∗∗ -17,601∗∗∗

(8,839) (4,510) (3,547) (2,790)
DiD75 -7,939 -1,259 -13,155∗∗∗ -14,949∗∗∗

(8,669) (4,449) (3,087) (2,804)
DiD80 -8,876 -6,208 -21,296∗∗∗ -11,320∗∗

(9,052) (5,168) (6,009) (4,708)
DiD85 18,516∗∗ 12,686 6,112 -6,907

(9,435) (10,943) (11,426) (7,885)
DiD90 15,363 9,267 2,030 -5,321

(10,427) (7,779) (8,101) (8,057)
DiD95 -1,621 -904 -7,065 -9,326∗

(11,155) (6,663) (5,933) (4,928)
DiD00 6,795 3,297 2,978 -3,095

(14,086) (11,277) (9,409) (7,059)
DiD05 20,774 -5,353 5,457 -342

(17,199) (12,564) (11,622) (9,584)

N 5,399 40,267 97,015 28,421
R2 0.150 0.132 0.169 0.266
Notes: The Table reports Difference-in-Differences coefficients obtained estimating equation (2) by grade.
Each row contains the DiD coefficients for a given grade in the corresponding year. The regressions are
estimated with neighborhood-level observations. The sample includes neighborhoods with at least 20 residents
in 1930 in cities with a population between 30,000 and 50,000. See Appendix Section A.4 for a list of cities.
The data source for post-1940 outcomes is CoreLogic, see Section 3.3 for details. The outcome variable
is adjusted with CPI to 1980 dollars. Standard errors, in parentheses, are clustered at the city-year level.
Significance: * 0.10 ** 0.05 *** 0.01
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HOLC Residential Security Map of New Haven, CT

Figure 1—The scan of the original Residential Security Map of New Haven, CT has been provided by
Mapping Inequality (Nelson et al., 2021).
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HOLC Area Description, Neighborhood D-4, New Haven, CT

Figure 2—The scan of the original Area Description for neighborhood D-4 of New Haven,CT has been
provided by Mapping Inequality (Nelson et al., 2021).
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Comparison of HOLC Digitized Map and its Hexagon Version

Figure 3—The digitized version of the Residential Security Map of New Haven, CT, shown in the left
panel, has been provided by Mapping Inequality (Nelson et al., 2021). Details about the definition of the
hexagon grid can be found in Section 3.1. The right panel shows our hexagon-level replica of the original
HOLC map. All the maps are north-oriented.

Long Term Trends by HOLC Grade

Figure 4—The sample includes neighborhoods located within a digitized HOLC map. See Appendix
Section A.2 for definitions of Census variables in our dataset. The data sources are US full count census for
1910-1940 and NHGIS for 1960-2010.
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Figure 5—The graph shows the treatment status of US cities according to their 1930 population. The
vertical line highlights the 40,000 people threshold. Orange points identify cities in the control group, while
the color purple highlights treated cities.
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Comparison of HOLC and Predicted Maps for Baltimore, MD

(a) HOLC Map (Nelson et al., 2021)

(b) Predicted Map, Random Forest Algorithm

Figure 6—The Figure compares the digitized version of the HOLC maps for Baltimore, MD (Nelson et al.,
2021) with the hexagon-level map we predict with the trained random forest algorithm. The correspondence
between colors and grades is: Green=A, Blue= B, Yellow=C, Red=D. Grey hexagons have less than 20
residents in 1930 and are excluded from the prediction exercise. All the maps are north-oriented.
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Predicted Maps in Control Cities

(a) Quincy, IL

(b) Colorado Springs, CO

Figure 7—The Figure compares the hexagon-level maps predicted with the trained random forest algorithm
for Quincy, IL and Colorado Springs, CO. The correspondence between colors and grades is: Green=A,
Blue= B, Yellow=C, Red=D. Grey hexagons have less than 20 residents in 1930 and are excluded from the
prediction exercise. All the maps are north-oriented.
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Comparison of Predicted Maps with Different Training Datasets

(a) Hexagon-Level (b) Hexagon-Level, City-Level

(c) Hexagon-Level and Local Level (d) Hexagon-Level, Local-Level, City-Level

Figure 8—The maps show neighborhoods (hexagons) for New Haven, CT. The colors represent the grade
predicted by the random forest algorithm. The correspondence between colors and grades is: Green=A,
Blue= B, Yellow=C, Red=D. Grey hexagons have less than 20 residents in 1930 and are excluded from the
prediction exercise. Different panels show predicted grades for random forests trained on four different sets of
variables. The training datasets differ in terms of their levels of geographical aggregation, but not because
of the variables included. The top-left panel shows predicted grades when only hexagon-level variables are
included. The top-right panel adds city-level variables. The bottom-left panel replaces city-level variables
with local-level information about the surrounding area. The surrounding area includes any hexagon whose
centroids is within a 500mt. or 1000mt. radius. The bottom-right panel shows the predicted grades when we
include all the previously mentioned variables. See Section 4.1 for details about the training of our random
forest algorithm. All the maps are north-oriented.
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Locations of Treatment and Control Cities

Figure 9—The Figure shows the location of cities contained in the control and treatment groups. Control
group cities are labeled in blue, while red pins are used for treatment group cities.
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Observable Pre-Trends, Grades C and D

Figure 10—The Figure shows pre-trends for selected variables for C and D grades. The point estimates
are averages of hexagon-level observations. The bars show the respective standard errors of each mean.
The sample includes hexagons in cities with a 1930 population between 30,000 and 50,000, with at least 20
residents in 1930. The vertical line highlights 1930, the last pre-treatment decade. See Appendix Section A.2
for definitions of census variables in our dataset.
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Long-Term Difference-in-Differences Results, C and D Grades. Census Data

Figure 11—The Figure shows the estimated coefficients for regression (2) and their 95% confidence
intervals for homeownership rates and African American percentage. The Figure includes the results for
grades C and D. The coefficients and standard errors are the ones reported in Table 9. See the Notes of Table
9 for estimation details.
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Long-Term Difference-in-Differences Results, C and D Grades. CoreLogic Data

Figure 12—The Figure shows the estimated coefficients for regression (2) and their 95% confidence
intervals for property values. The Figure includes the results for grades C and D. The coefficients and
standard errors are the ones reported in Table 10. See the Notes of Table 10 for estimation details.
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A. Appendix

A.1 Geocoding Procedure

A.1.1 Address Cleaning

We clean addresses in decades between 1910 and 1940 following the procedure outlined in

Logan and Zhang (2018). In particular:

• We cleaned street names. Names containing geographic indicators were removed, if they

were not street names, and dummy variables were created for group quarters (hotels,

apartments, convents, hospitals, group homes). House number information was extracted

from street names.

• We cleaned house numbers. If the number found in the house number variable conflicted

with the house number extracted from the street variable and the home was rented, the

house number variable was interpreted to represent an apartment number.

• We interpolated missing street names and house numbers, conservatively. For observations

on the same census page and within 6 house numbers from one another, missing streets

were given the street name of the prior observation. For rented homes, missing house

numbers were given the house number of the prior observation. For owned homes, if the

street name was the same as the prior observation, missing house numbers were assigned

a value equal to the house number of the prior observation plus two.

A.1.2 Geocoding

We geocoded the head of each household using ESRI Streetmap Premium 2019. These

new-generation locator combines street addresses routing coordinates and parcel centroids

databases to improve the number and the quality of the matches. Each address-coordinate

match is assigned a 0-100 score by ESRI algorithm. We include in our analysis only matches

with a score of at least 85. This choice is rather conservative and reduces measurement errors

due to wrong locations of census households.
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A.2 Census Variables Definitions

The following definitions are based on information provided by IPUMS.com documentation.

Census Variable Definitions
Homeownership Indicates whether the housing unit was owned, rather than

rented, by its inhabitants.
African American Based on census race variable. Prior to 1960, the census

enumerator was responsible for categorizing persons and was

not specifically instructed to ask the individual his or her race.
Property Values For 1930 and 1940, enumerators consulted with the owners to

estimate the sale value of the housing unit.
Rent Prices Amount of the household’s monthly contract rent payment.
First-Generation-Migrant Whether an individual was foreign born. Based on the census

variable nativity.
Unemployed, Men Indicator defined accordind to census variable empstat for men

between 18 and 65 years of age.
Radio Ownership Whether any member of a family or housing unit owns a radio

set.
Education Score Census-built percentage of people in the respondent’s occu-

pational category who had completed one or more years of

college
Number of Children The number of own children residing with each individual.
Population Density For any neighborhood the ratio between the area population

and surface. Hexagon surface is fixed at 0.025km2.

A.2.1 Income Score Imputation

We estimate a log-wage regression on 1940 census data focusing on men aged 25-55 living in

urban areas who were employed for wages. We regress self-reported wage income on a second

degree polynomial in age, dummies indicating black, hispanic and immigration status, 3-digit

occupation and state of residence indicators. Moreover, we include interactions between

each of black, hispanic and immigration status with the age polynomial and interactions

between each of the demographic variables with 1-digit occupations and state of residence.
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The inputed income score in decades 1930, 1920, 1910 is the prediction based on the resulting

estimates for men aged 25-55 who are employed for wages in those years.

A.3 Random Forest Training Procedure

We train the random forest algorithm with a hexagon-level dataset (N = 192, 016) containing

all cities mapped by the HOLC with a population up to 3,000,000. The dataset includes 48

different 1930 census variables. The variables are included at different geographical levels,

bringing the total number of training variables to 163. The geographical levels employed in

the training procedure are: hexagon, hexagon surroundings (500mt and 1000mt), city, county.

In particular the variables are:

Random Forest Training Variables

• Share of African Americans

• Share of Women

• Share of Home-Owners

• Share of Population Not Speaking English

• Share Married

• Share of families owning a Radio

• Family Size

• Number of Children

• Age at First Marriage

• House Values

• Rent Prices

• Imputed Income

• Earning Scores

• Educational Scores

• House Distance from City Center

• Neighborhood Population Density

• Labor Force Participation, by gender

• Unemployment Rates, by gender

• Self-Employed and waged employees

• Share of First Generation Immigrants

• Share of Second Generation Immigrants

• Domestic Migrants from the South

• Domestic Migrants from the Mid West

• Detailed Job Categories shares

• Detailed Country of Birth shares
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Before starting the training model, we follow a standard pre-processing machine learning

procedure: we impute missing values with the corresponding median values, and we standard-

ize all our predictors. The random forest is trained on a 75% random sample of the original

dataset selected with stratified sampling according to HOLC grades and city population. We

set the parameter m = 41, which determines the number of variables randomly selected at

each split, following the results of an automated tuning procedure employing model-based

optimization (MBO) (Probst et al., 2018). The fraction of observations randomly sampled for

each tree is grade-specific to counteract the class imbalance of HOLC grades. Hence, the less

frequent class (A) has the highest sampling fraction (92%), while the most frequent classes

(C and D) have lower fractions (63% and 70%). The results are robust to using a unique

sample fraction. In particular the one suggested by the automated MBO procedure of Probst

et al. (2018) is 0.89.

A.4 List of Cities

The difference-in-differences results are based on the definition of control and treatment group

outlined in Section 4. As a reminder, treated cities are municipalities surveyed by the HOLC

with a population between 40,000 and 50,000. The control group includes cities between

30,000 and 40,000 residents that had a distance of least 50km (31mi) from the nearest mapped

city.

Treated Cities

• Amarillo, TX

• Aurora, IL

• Chelsea, MA

• Chicopee, MA

• Columbus, GA

• Council Bluffs, IA

• Dubuque, IA

• Elmira, NY

• Haverhill, MA

• Jackson, MS

• Joliet, IL

• Lexington, KY

• Lima, OH

• Lorain, OH

• Lynchburg, VA

• Muncie, IN

• Oshkosh, WI

• Phoenix, AZ

• Portsmouth, OH

• Poughkeepsie, NY

• Salem, MA

• S. Petersburg, FL

• Stamford, CT

• Stockton, CA
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• Waterloo, IA

• Jackson, MS

• Woonsocket, RI

• Pueblo, CO

• Waltham, MA

• Warren, OH

• Ogden, UT

• Everett, MA

Control Cities

• Baton Rouge, LA

• Bellingham, WA

• Butte, MT

• Colorado Springs

• Fort Smith, AR

• Hagerstown, MD

• Joplin, MO

• La Crosse, WI

• Laredo, TX

• Lewiston, ME

• Mansfield, OH

• Meridian, MS

• Moline, IL

• Muskogee, OK

• Norwood, OH

• Paducah, KY

• Pensacola, FL

• Quincy, IL

• Rock Island, IL

• San Bernardino

• Santa Barbara

• Alton, IL

• Amsterdam, NY

• Auburn, NY

• Bloomington, IL

• Cumberland, MD

• Danville, IL

• Elkhart, IN

• Everett, WA

• Hazleton, PA

• High Point, NC

• Marion, OH

• Newark, OK

• Port Huron, MI

• Raleigh, NC

• Rome, NY

• Sheboygan, WI

• Steubenville, OH

• Kokomo, IN

• Meriden, CT

• Green Bay, WI

• Easton, PA

• Santa Ana, CA

• Richmond, IN

• Sioux Falls, SD

• Tucson, AZ

• Watertown, NY

• Wilmington, NC

• Zanesville, OH
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Table A1—Neighborhood Distribution according to HOLC Grades

Proportions

Spatial Unit N A B C D

HOLC Neighborhoods 8872 11.7% 26.3% 38.1% 23.9%
Hexagons 278066 7.8% 22.0% 42.1% 28.0%
Notes: The sample of HOLC neighborhoods includes all the shapes digitized by Nelson et al. (2021) for 202
cities. We obtain the sample of hexagons overlaying a regular grid of hexagons with an area of 0.025 km2

and a side of approximately 100 mt. over the digitized HOLC shapes. The grade of a hexagon is the one
occupying the majority of its area. We keep only hexagons whose area is occupied by a single grade for at
least 75%.

Table A2—Census and CoreLogic coverage of Neighborhoods and Cities.

Share of Coverage
Census Data CoreLogic Deeds

Decade Neighborhood City Year Neighborhood City

1910 45.6% 98.8%
1920 56.9% 100.0%
1930 84.5% 100.0%
1940 96.6% 100.0%
1950 5.2% 14.8%
1960 54.4% 51.9%

1965 3.4% 35.21%
1970 83.5% 80.2% 1970 5.6% 38.0%

1975 8.6% 50.7%
1980 87.4% 93.8% 1980 11.4% 57.7%

1985 21.1% 76.0%
1990 99.4% 100.0% 1990 35.8% 84.5%

1995 52.7% 88.7%
2000 100.0% 100.0% 2000 64.4% 91.5%

2005 76.0% 94.4%
2010 100.0% 100.0% 2010 77.9% 94.4%

Notes: The Table reports the percentages of coverage for neighborhoods and cities of interest. The sample
includes every hexagon in cities with a 1930 population between 30,000 and 50,000 and at least 20 residents
in 1930. CoreLogic deeds are binned in 5-year time periods according to their sale year and month.
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Table A3—Short-term Diff-in-Diff Results. No Grade Heterogeneity

Dependent variables:

Homeownership
Rates

African
American
Percentage

Property Values Rent Prices

DiD -0.006 0.002 -254∗ 6.3
(0.007) (0.002) (132) (8.1)

Ȳ 0.49 0.06 5439 42.6
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade.
The regressions are estimated with individual-level observations. The sample includes individuals with valid
geocodes in cities with a 1930 population between 30,000 and 50,000, living in hexagons with at least 20
residents in 1930. See Appendix Section A.4 for a list of cities. Standard errors, in parentheses, are clustered
at the city-year level. See the Notes of Table 7 for additional estimation details.
Significance: * 0.10 ** 0.05 *** 0.01

Table A4—Random Forest Performance, Confusion Matrix, Restricted Test Set

Data
D C B A

D 2139 117 12 0

C 233 4435 219 18
Prediction

B 36 214 2647 153

A 3 18 45 866
Accuracy 90.43%

Class Sensitivity 88.72 92.70 90.56 83.51
Prevalence 21.61 42.89 26.20 9.30

Detection Prevalence 20.33 43.97 27.34 8.35

Notes: The matrix compares the observed and the predicted grades for a test set of observations excluded
from the training procedure. The test set is a 25% random subsample of the original dataset selected with
stratified sampling according to city population and HOLC grade. In this case, the test set is restricted to
include only hexagons in cities with a population below 50,000. For other details, see the notes of Table 3,
which contains the predicted grades for the complete test set.
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Table A5—Logit Performance, Confusion Matrix

Data
D C B A

D 8732 2101 118 12

C 5076 15338 4215 379
Prediction

B 158 2801 6225 1998

A 1 27 423 942
Accuracy 64.35%

Class Sensitivity 62.52 75.68 56.69 28.20
Prevalence 28.77 41.75 22.62 6.86

Detection Prevalence 22.58 51.51 23.03 2.86

Notes: The matrix compares the observed and the predicted grades for a test set of observations excluded
from the training procedure of a logit model. The test set is a 25% random subsample of the original dataset
selected with stratified sampling according to city population and HOLC grade. The logit model is estimated
with the same estimation steps of the random forest. For other details, see the notes of Table 3, which
contains the predicted grades for a random forest algorithm.
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Table A6—1930 Descriptive Statistics According to Predicted Grades

Predicted Grade
C D

Correct Wrong Correct Wrong
Panel A: 1930 Levels
Black 0.02 0.02 0.22 0.12

(0.08) (0.08) (0.34) (0.26)
Home Owner 0.53 0.49 0.39 0.43

(0.22) (0.24) (0.23) (0.21)

Income Score 7.13 7.13 6.85 6.92
(0.17) (0.16) (0.28) (0.24)

First Gen Immigrant 0.22 0.26 0.23 0.23
(0.17) (0.18) (0.23) (0.21)

Panel B: 1930-1920 Trends
Black -0.005 -0.001 0.03 0.01

(0.07) (0.07) (0.16) (0.19)
Home Owner -0.01 0.03 -0.02 -0.03

(0.24) (0.23 ) (0.25) (0.25)
Income Score 0.01 0.03 -0.02 -0.04

(0.18) (0.19 ) (0.22) (0.25)
First Gen Immigrant -0.02 -0.03 -0.05 -0.03

(0.14) (0.15) (0.17) ( 0.14)

Notes: The Table reports averages of 1930 Census variables according to different classifications. The first
two columns compare means between hexagons classified as C by our classification model. The first columns
reports averages for hexagons whose observed grade is C, while the second refers to neighborhoods with a
HOLC grade other than C. The third and fourth columns do the same for grade D. The level of observation
is a neighborhood (hexagon). The sample includes all the hexagons intersecting a HOLC neighborhood
digitized by Nelson et al. (2021) in 202 maps. Standard deviations are reported in parentheses.
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Table A7—Testing Differences in 1920-1910 Trends by Treatment Status

A B C D
Black 0.00002 0.008 0.007 0.011

(0.004) (0.006) (0.005) (0.014)
Home Owner 0.026 0.009 0.015 0.037∗

(0.036) (0.023) (0.010) (0.020)
Income Score 0.017 -0.008 -0.003 -0.002

(0.046) (0.014) (0.007) (0.013)
Education Score 2.501 -0.548 0.013 0.235

(2.569) (0.528) (0.226) (0.318)
First Gen Immigrant -0.025 -0.010 0.013 -0.014

(0.023) (0.008) (0.008) (0.011)
Number of Children -0.015 0.009 0.009 0.008

(0.028) (0.012) (0.008) (0.014)
Notes: The Table reports the coefficients from a set of regressions where the dependent variable is the
1920-1910 change in the variable reported in the left column, and the independent variable is an indicator
for the treatment status. See Appendix Section A.2 for definitions of Census variables in our dataset. The
level of observation is a spatial unit (hexagon). The sample includes every hexagon in cities with a 1930
population between 30,000 and 50,000 and at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. Standard errors, in parentheses, are clustered at the city level. Significance: * 0.10 ** 0.05 *** 0.01
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Table A8—Short-term Difference-in-Differences Results, by Grade

Dependent variable: African American Percentage

(1) (2) (3) (4) (5)

DiDA -0.003 -0.006 -0.004 -0.005 -0.005
Ȳ A = 0.008 (0.014) (0.007) (0.006) (0.006) (0.006)

DiDB 0.009 0.006∗ 0.004 0.006∗ 0.006∗

Ȳ B = 0.01 (0.012) (0.003) (0.003) (0.004) (0.004)

DiDC 0.004 0.002 0.001 0.001 0.001
Ȳ C = 0.02 (0.009) (0.002) (0.001) (0.002) (0.001)

DiDD 0.012 0.010∗∗∗ 0.014∗∗∗ 0.016∗∗∗ 0.018∗∗∗

Ȳ D = 0.19 (0.096) (0.003) (0.004) (0.004) (0.004)

City Fixed. Eff. X X X
Spatial Unit Fixed Eff. X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade.
Each row contains the DiD coefficients for a given grade. The regressions are estimated with individual-level
observations. The sample includes individuals with valid geocodes in cities with a 1930 population between
30,000 and 50,000, living in hexagons with at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. Standard errors, in parentheses, are clustered at the city-year level. The table structure is analogous
to Table 7. See the Notes of Table 7 for additional estimation details. Significance: * 0.10 ** 0.05 *** 0.01
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Table A9—Short-term Difference-in-Differences Results, by Grade

Dependent variable: Property Values

(1) (2) (3) (4) (5)

DiDA 946 1,219∗∗∗ 1,142∗∗∗ 1,239∗∗∗ 1,046∗∗∗

Ȳ A = 22, 907 (1,742) (435) (378) (403) (378)

DiDB -178 -147 -34 -106 -105
Ȳ B = 16, 828 (604) (173) (171) (178) (170)

DiDC -510 -493∗∗∗ -487∗∗∗ -468∗∗∗ -502∗∗∗

Ȳ C = 12, 983 (383) (144) (150) (148) (148)

DiDD -319 -284∗ -301∗ -251 -302∗∗

Ȳ D = 8, 615 (432) (156) (157) (155) (153)

City Fixed. Eff. X X X
Spatial Unit Fixed Eff. X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade.
Each row contains the DiD coefficients for a given grade. The regressions are estimated with individual-level
observations. The sample includes individuals with valid geocodes in cities with a 1930 population between
30,000 and 50,000, living in hexagons with at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. Standard errors, in parentheses, are clustered at the city-year level. The table structure is analogous
to Table 7. See the Notes of Table 7 for additional estimation details. Significance: * 0.10 ** 0.05 *** 0.01
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Table A10—Short-term Difference-in-Differences Results, by Grade

Dependent variable: Property Values (logs)

(1) (2) (3) (4) (5)

DiDA 0.135 0.168∗∗∗ 0.152∗∗∗ 0.168∗∗∗ 0.156∗∗∗

Ȳ A = 9.82 (0.244) (0.027) (0.022) (0.026) (0.025)

DiDB -0.057 -0.048∗ -0.035 -0.040 -0.038
Ȳ B = 9.52 (0.123) (0.028) (0.028) (0.028) (0.028)

DiDC -0.052 -0.048∗ -0.049∗ -0.043 -0.049∗

Ȳ C = 9.20 (0.095) (0.027) (0.028) (0.028) (0.028)

DiDD -0.006 -0.011 -0.018 -0.005 -0.022
Ȳ D = 8.66 (0.190) (0.045) (0.043) (0.044) (0.042)

City Fixed. Eff. X X X
Spatial Unit Fixed Eff. X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade.
Each row contains the DiD coefficients for a given grade. The regressions are estimated with individual-level
observations. The sample includes individuals with valid geocodes in cities with a 1930 population between
30,000 and 50,000, living in hexagons with at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. Standard errors, in parentheses, are clustered at the city-year level. The table structure is analogous
to Table 7. See the Notes of Table 7 for additional estimation details. Significance: * 0.10 ** 0.05 *** 0.01
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Table A11—Short-term Difference-in-Differences Results. Neighborhood Level

Dependent variable: Home-Ownership Rates

(1) (2) (3) (4)

DiDA 0.034 0.041∗∗ 0.037∗∗ 0.037∗∗

Ȳ A = 0.71 (0.128) (0.017) (0.017) (0.016)

DiDB 0.0002 -0.0001 -0.008 -0.003
Ȳ B = 0.65 (0.023) (0.009) (0.009) (0.009)

DiDC -0.014 -0.015 -0.019∗∗ -0.014
Ȳ C = 0.53 (0.029) (0.010) (0.010) (0.009)

DiDD -0.023 -0.019∗∗ -0.027∗∗∗ -0.020∗∗

Ȳ D = 0.43 (0.046) (0.009) (0.010) (0.009)

City Fixed. Eff. X X X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade. Each
row contains the DiD coefficients for a given grade. The regressions are estimated with neighborhood-level
observations. The sample includes neighborhoods with at least 20 residents in 1930 in cities with a population
between 30,000 and 50,000. See Appendix Section A.4 for a list of cities. Standard errors, in parentheses, are
clustered at the city-year level. Significance: * 0.10 ** 0.05 *** 0.01

Table A12—Short-term Difference-in-Differences Results. Neighborhood Level

Dependent variable: African American Percentage

(1) (2) (3) (4)

DiDA 0.005 0.003 0.004 0.004
Ȳ A = 0.009 (0.016) (0.006) (0.005) (0.005)

DiDB 0.002 0.001 0.002 0.002
Ȳ B = 0.01 (0.010) (0.003) (0.003) (0.003)

DiDC 0.002 0.001 0.0003 0.0005
Ȳ C = 0.02 (0.009) (0.001) (0.001) (0.001)

DiDD 0.022 0.015∗∗ 0.018∗∗∗ 0.018∗∗∗

Ȳ D = 0.22 (0.090) (0.006) (0.006) (0.006)

City Fixed. Eff. X X X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade. Each
row contains the DiD coefficients for a given grade. The regressions are estimated with neighborhood-level
observations. See the Notes of Appendix Table A11 for additional details. Significance: * 0.10 ** 0.05 ***
0.01
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Table A13—Short-term Difference-in-Differences Results. Neighborhood Level

Dependent variable: Property Values

(1) (2) (3) (4)

DiDA 629 831 849 747
Ȳ A = 25, 162 (1,931) (378) (354) (350)

DiDB -124 -144 -149 -163
Ȳ B = 17, 371 (735) (188) (189) (173)

DiDC -394 -397∗∗∗ -348∗∗∗ -369∗∗∗

Ȳ C = 12, 727 (434) (126) (129) (131)

DiDD -548∗∗ -523∗∗∗ -462∗∗∗ -510∗∗∗

Ȳ D = 7, 923 (374) (143) (144) (146)

City Fixed. Eff. X X X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation 1 by grade. Each
row contains the DiD coefficients for a given grade. The regressions are estimated with neighborhood-level
observations. See the Notes of Appendix Table A11 for additional details. Significance: * 0.10 ** 0.05 ***
0.01

Table A14—Short-term Difference-in-Differences Results. Neighborhood Level

Dependent variable: Rent Prices

(1) (2) (3) (4)

DiDA 60.0 68.8∗∗∗ 66.2∗∗∗ 64.7∗∗∗

Ȳ A = 562.20 (37.4) (25.2) (25.0) (24.8)

DiDB 18.3 17.6 18.3 18.2
Ȳ B = 342.76 (19.4) (13.3) (12.6) (12.5)

DiDC 22.6 22.3∗∗ 21.4∗∗ 21.6∗∗

Ȳ C = 241.72 (15.5) (10.4) (10.3) (10.3)

DiDD 6.9 7.5 8.5 7.6
Ȳ D = 172.63 (11.5) (7.5) (7.5) (7.5)

City Fixed. Eff. X X X
Spatial Unit Controls X X
Local Area Controls X
Notes: The Table reports difference-in-differences coefficients obtained estimating equation 1 by grade. Each
row contains the DiD coefficients for a given grade. The regressions are estimated with neighborhood-level
observations. See the Notes of Appendix Table A11 for additional details. Significance: * 0.10 ** 0.05 ***
0.01
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Table A15—Short-term Diff-in-Diff by Grade. City Level S.E. Clustering

Dependent Variables

Homeownership
Rates

African American
Percentage

Property Values Rent Prices

DiDA 0.045∗∗ -0.005 1,046∗∗ 39.3∗∗∗
(0.021) (0.009) (538) (16.3)

DiDB -0.002 0.006∗ -106 8.8
(0.013) (0.005) (248) (17.0)

DiDC -0.017 0.001 -502∗∗ 5.9
(0.011) (0.002) (212) (13.3)

DiDD -0.024∗ 0.018∗∗∗ -302 ∗∗ 3.1
(0.013) (0.006) (218) (11.4)

Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade for
four different outcomes. Each row contains the DiD coefficients for a given grade. The Table shows the DiD
coefficients resulting from a DiD framework with a city fixed effect and geographic and demographic controls
at the hexagon level. The regression specification is analogous to the one in column (4) of Table 7. The list
of controls includes geographic coordinates, a scaled measure of distance from the city center, spatial unit’s
population density, imputed income score and family size. The regressions are estimated with individual-level
observations. The sample includes individuals with valid geocodes in cities with a 1930 population between
30,000 and 50,000, living in hexagons with at least 20 residents in 1930. See Appendix Section A.4 for a list
of cities. Standard errors, in parentheses, are clustered at the city level. Significance: * 0.10 ** 0.05 *** 0.01

Table A16—Short-term Diff-in-Diff. Grouping with Observed Grades

Dependent Variables

Homeownership Rates African American
Percentage

Property Values

DiDA 0.034∗∗ -0.004 1,253∗∗∗
(0.015) (0.004) (360)

DiDB 0.004 0.006∗ -171
(0.008) (0.003) (187)

DiDC -0.010 0.002 -407∗∗∗
(0.007) (0.002) (144)

DiDD -0.018∗ 0.018∗∗∗ -405 ∗∗
(0.008) (0.004) (167)

Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade for
three different outcomes. Each row contains the DiD coefficients for a given grade. Differently from the
other results, we group observations in treated cities according to their observed HOLC grade, rather than
the predicted one. See the Notes of Table A15 for estimation details. Standard errors, in parentheses, are
clustered at the city-year level. Significance: * 0.10 ** 0.05 *** 0.01
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Table A17—Short-term Diff-in-Diff. Extended Treatment Group

Dependent Variables

Homeownership Rates African American
Percentage

Property Values

DiDA 0.027 0.008∗∗ 1,657∗∗
(0.019) (0.004) (835)

DiDB 0.001 0.001 -766∗∗∗
(0.008) (0.002) (255)

DiDC -0.017∗∗ 0.0002 -578∗∗∗
(0.007) (0.001) (130)

DiDD -0.024∗∗∗ 0.019∗∗∗ -855 ∗∗∗
(0.008) (0.006) (192)

Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) at the
neighborhood level, by grade, for three different outcomes. Each row contains the DiD coefficients for a given
grade. Differently from the other results, we extend the treatmet group to include cities between 40,000 and
60,000 residents in the 1930 census. See the Notes of Table A15 for estimation details. Standard errors, in
parentheses, are clustered at the city-year level. Significance: * 0.10 ** 0.05 *** 0.01
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Table A18—Short-term Diff-in-Diff. Placebo Outcomes

Dependent Variables

Female Percentage Number of Children Unemployment Rate, Men

DiDA 0.004 0.019 -0.045∗∗∗
(0.002) (0.013) (0.008)

DiDB 0.005∗∗∗ 0.004 0.011∗∗
(0.002) (0.002) (0.005)

DiDC -0.001 -0.006 -0.003
(0.001) (0.005) (0.007)

DiDD 0.002 0.022∗∗∗ 0.012
(0.002) (0.006) (0.013)

Ȳ A 0.523 0.824 0.070

Ȳ B 0.527 0.744 0.059

Ȳ C 0.509 0.778 0.099

Ȳ D 0.495 0.821 0.136

Notes:The Table reports difference-in-differences coefficients obtained estimating equation (1) by grade for
three different outcomes. Each row contains the DiD coefficients for a given grade. See the Notes of Table
A15 for estimation details. Standard errors, in parentheses, are clustered at the city-year level. Significance:
* 0.10 ** 0.05 *** 0.01
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Table A19—Short-term Diff-in-Diff. Placebo Population Threshold

Dependent Variables

Homeownership Rates African American
Percentage

Property Values

DiDA 0.016 0.004 -1,999
(0.026) (0.004) (1,498)

DiDB -0.015 -0.003∗ 717
(0.014) (0.002) (492)

DiDC -0.008 0.001 53
(0.010) (0.002) (301)

DiDD 0.004 0.009 970∗∗∗
(0.008) (0.006) (324)

Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) at the
neighborhood level, by grade, for three different outcomes. Each row contains the DiD coefficients for a given
grade. Differently from the other results, we set a placebo population threshold at 60,000. Accordingly, we
define neighborhoods in cities between 60,000 and 70,000 residents as treated, while areas in cities between
50,000 and 60,000 are included in the control group. See the Notes of Table A15 for estimation details.
Standard errors, in parentheses, are clustered at the city-year level. Significance: * 0.10 ** 0.05 *** 0.01

Table A20—Short-term Diff-in-Diff. Neighborhood Grade Index.

Dependent Variables

Homeownership Rates African American
Percentage

Property Values

DiDA 0.042∗∗∗ -0.005 1,223∗∗∗
(0.015) (0.006) (398)

DiDB -0.002 0.006∗ -106
(0.009) (0.004) (177)

DiDC -0.017∗∗ 0.001 -472∗∗∗
(0.007) (0.002) (147)

DiDD -0.022∗∗ 0.015∗∗∗ -274∗
(0.009) (0.004) (155)

Notes: The Table reports difference-in-differences coefficients obtained estimating equation (1) at the
neighborhood level, by grade, for three different outcomes. Each row contains the DiD coefficients for a given
grade. Differently from the other results, we include the grade composition of the surrounding neighborhoods
as control. The surrounding neighborhoods are defined with a 1000mt radius (0.63 miles). See the Notes
of Table A15 for estimation details. Standard errors, in parentheses, are clustered at the city-year level.
Significance: * 0.10 ** 0.05 *** 0.01
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Table A21—Long-Term Difference-in-Differences Results, by Grade. CoreLogic

Dependent variable: Property Values (logs)

Grade

A B C D
DiD65 . 0.05 -0.52∗∗∗ -0.95∗∗∗

(.) (0.10) (0.09) (0.13)
DiD70 -0.24 0.025 -0.68∗∗∗ -1.05∗∗∗

(0.17) (0.121) (0.12) (0.14)
DiD75 -0.15 -0.010 -0.53∗∗∗ -0.94∗∗∗

(0.17) (0.113) (0.10) (0.15)
DiD80 -0.17 -0.11 -0.77∗∗ -0.70∗∗∗

(0.17) (0.12) (0.19) (0.22)
DiD85 0.18 0.19 -0.09 -0.51∗∗

(0.23) (0.18) (0.22) (0.25)
DiD90 0.29 0.23∗ -0.06 -0.40

(0.19) (0.18) (0.18) (0.249)
DiD95 -0.02 0.02 -0.28∗ -0.55∗∗∗

(0.21) (0.16) (0.15) (0.19)
DiD00 0.07 0.06 -0.14 -0.39∗∗

(0.23) (0.16) (0.18) (0.19)
DiD05 0.21 -0.06 -0.13 -0.35

(0.25) (0.19) (0.19) (0.21)

Notes: The Table reports Difference-in-Differences coefficients obtained estimating equation (2) by grade.
Each row contains the DiD coefficients for a given grade in the corresponding year. The regressions are
estimated with neighborhood-level observations. The sample includes neighborhoods with at least 20 residents
in 1930 in cities with a population between 30,000 and 50,000. See Appendix Section A.4 for a list of cities.
The data source for post-1940 outcomes is CoreLogic, see Section 3.3 for details. The outcome variable
is adjusted with CPI to 1980 dollars. Standard errors, in parentheses, are clustered at the city-year level.
Significance: * 0.10 ** 0.05 *** 0.01
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Observable Pre-Trends, Grades A and B

Figure A1—The Figure shows pre-trends for selected variables for A and B grades. The point estimates
are averages of hexagon-level observations. The bars show the respective standard errors of each mean. The
sample includes neighborhoods in cities with a 1930 population between 30,000 and 50,000, with at least 20
residents in 1930. The vertical line highlights 1930, the last pre-treatment decade. See Appendix Section A.2
for definitions of Census variables in our dataset.
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Observable Pre-Trends, Additional Variables

Figure A2—The Figure shows pre-trends for selected variables according to their predicted grade. The
point estimates are averages of hexagon-level observations. The bars show the respective standard errors of
each mean. The sample includes hexagons in cities with a 1930 population between 30,000 and 50,000, with
at least 20 residents in 1930. The vertical line highlights 1930, the last pre-treatment decade. See Appendix
Section A.2 for definitions of Census variables in our dataset.
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Accuracy Levels according to Dataset Definition

Figure A3—The Figure shows the accuracy level we obtain when we train the random forest classification
algorithms with different datasets according to the size of cities we include. The purple line plots the Accuracy
obtained with a test set defined as a 25% random subsample of the original dataset, selected with stratified
sampling according to city population and HOLC grade. The brown line shows Accuracy levels when we
restrict the test set to cities with at most 50,000 residents. The level of observation is a neighborhood
(hexagon). See Section 3.1 for details about the hexagon definition. The complete dataset includes every
hexagon in a mapped city containing at least 20 residents in 1930. Overall Accuracy is the percentage of
hexagons whose predicted grades correspond to observed ones. A predicted grade is the class predicted by the
trained random forest algorithm. See Section 4.1 and Appendix Section A.3 for details about the Random
Forest training procedure.

Long-Term Difference-in-Differences Results, A and B Grades. Census Data

Figure A4—The Figure shows the estimated coefficients for regression (2) and their 95% confidence
intervals for grades A and B. The coefficients and standard errors are analogous to the ones reported in Table
9, but focus on different grades. See the Notes of Table 9 for estimation details.
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Long-Term Difference-in-Differences Results, A and B Grades. CoreLogic Data

Figure A5—The Figure shows the estimated coefficients for regression (2) and their 95% confidence
intervals for property values. The Figure includes the results for grades C and D. The coefficients and
standard errors are the ones reported in Table 10. See the Notes of Table 10 for estimation details.

Long-Term Difference-in-Differences Results, by Grade. CoreLogic Data

Figure A6—The Figure shows the estimated coefficients for regression (2) and their 95% confidence
intervals for property values. The coefficients and standard errors are analogous to the ones reported in Table
10, but the outcome is a log-transformation. See the Notes of Table A21 for estimation details.
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