Discussion: "Reinforcing RCTs with Multiple Priors While Learning about External Validity"

by F. Finan & D. Pouzo

Toru Kitagawa (Brown/UCL)

This paper

Setting:

- PM wants to perform a policy choice for a certain population
- PM has access to prior evidence, but not sure if they are useful
- PM can implement the policy in a sequential and adaptive way

This paper

Setting:

- PM wants to perform a policy choice for a certain population
- PM has access to prior evidence, but not sure if they are useful
- PM can implement the policy in a sequential and adaptive way
- Question: How should PM make use of the prior evidence and adaptively implement the policy?
- Approach: Multiple priors + multi-arm bandit
- Analysis: Show statistical properties and performance guarantees
- Application: Charitable fundraising

Outline

- Flash review: Adaptive experimentation and (Bayesian) bandit
- Flash review: Multiple priors
- Overview of the contributions
- Comments and questions

Static treatment choice

- Using the data already collected, how to learn a policy rule δ that optimizes the population welfare (Manski 2004).
- Supervised learning problem.

Static treatment choice

- Using the data already collected, how to learn a policy rule δ that optimizes the population welfare (Manski 2004).
- Supervised learning problem.

Performance criteria

- Cumulative rewards (CR): $\sum_{s=1}^{t} Y_s(\delta_s)$
- Best-arm identification (BAI): $Pr(\delta_t \neq best-arm)$
- (Bayesian) Average reward (Bayes-AR): $\int_{\theta} E_{\theta}[\sum_{s=1}^{t} Y_{s}(\delta_{s})] d\mu_{0}(\theta)$

Methods	Criteria	Prior
ϵ -Greedy, UCB, etc.	CR & BAI	flat
Thompson sampling	CR & BAI	diffuse
DP (Gittins index)	Bayes-AR	arbitrary

Performance criteria

- Cumulative rewards (CR): $\sum_{s=1}^{t} Y_s(\delta_s)$
- Best-arm identification (BAI): $Pr(\delta_t \neq best-arm)$
- (Bayesian) Average reward (Bayes-AR): $\int_{\theta} E_{\theta}[\sum_{s=1}^{t} Y_{s}(\delta_{s})] d\mu_{0}(\theta)$

Methods	Criteria	Prior
ϵ -Greedy, UCB, etc.	CR & BAI	flat
Thompson sampling	CR & BAI	diffuse
DP (Gittins index)	Bayes-AR	arbitrary

- This paper considers informative priors and studies CR and BAI performances
- In the literature, influences of misspecified prior are not well studied

Multiple priors

Multiple priors, $\{\mu_0^0, \mu_0^1, \dots, \mu_0^L\}$: uncertainty over prior beliefs (Good 1965). In the current paper, each prior comes from existing evidence

- Hierarchical Bayes: Prior over priors and apply the Bayes rule. Bayesian model averaging is a special case
- Empirical Bayes: use data to select a prior and apply the Bayes rule
- Gamma minimax: apply the Bayes rule prior-by-prior and do minimax

Multiple priors

Multiple priors, $\{\mu_0^0, \mu_0^1, \dots, \mu_0^L\}$: uncertainty over prior beliefs (Good 1965). In the current paper, each prior comes from existing evidence

- Hierarchical Bayes: Prior over priors and apply the Bayes rule. Bayesian model averaging is a special case
- Empirical Bayes: use data to select a prior and apply the Bayes rule
- Gamma minimax: apply the Bayes rule prior-by-prior and do minimax
- Paper's proposal: Obtain the posterior for mean rewards in the hierarchical Bayesian way (Bayesian model averaging)

$$\mu_t^{\alpha}(\theta) = \sum_{o=0}^{L} \alpha_t^{o} \mu_t^{o}(\theta) \tag{1}$$

• Feed the posterior into some heuristic bandit algorithms ϵ -Greedy, Thompson sampling, etc, with a stopping option

Contributions

Conceptual

• Use available evidence as priors for bandit algorithms

Technical

- Model selection consistency: $\lim_{t\to\infty} \alpha_t^{o} = ?$
- ullet Concentration of the posterior means of μ_t^{lpha} around the truth
- Uniform convergence rates of cumulative rewards and BAI probability for a wide class of algorithms

Nontrivial, we have to handle dependence of observations over *t*!

The Hierarchical Bayes has desirable (frequenstist) performance and robustness with informative priors. How about empirical Bayes or Gamma minimax is used instead?

- The Hierarchical Bayes has desirable (frequenstist) performance and robustness with informative priors. How about empirical Bayes or Gamma minimax is used instead?
- Bayesian posterior + heuristic algorithms. Since the hierarchical prior input can be viewed as a single prior, might make sense to solve the pure Bayesian DP, i.e., Gittins index policy?

- The Hierarchical Bayes has desirable (frequenstist) performance and robustness with informative priors. How about empirical Bayes or Gamma minimax is used instead?
- Bayesian posterior + heuristic algorithms. Since the hierarchical prior input can be viewed as a single prior, might make sense to solve the pure Bayesian DP, i.e., Gittins index policy?
- Oompared with a flat prior (i.e., ignoring prior evidence), can we quantify performance gains or losses of introducing an informative prior?

- The Hierarchical Bayes has desirable (frequenstist) performance and robustness with informative priors. How about empirical Bayes or Gamma minimax is used instead?
- Bayesian posterior + heuristic algorithms. Since the hierarchical prior input can be viewed as a single prior, might make sense to solve the pure Bayesian DP, i.e., Gittins index policy?
- Oompared with a flat prior (i.e., ignoring prior evidence), can we quantify performance gains or losses of introducing an informative prior?
- For BAI, how much can we gain relative to the two-step sampling design of Hahn, Hirano, & Karlan (2011, JBES)?

- The Hierarchical Bayes has desirable (frequenstist) performance and robustness with informative priors. How about empirical Bayes or Gamma minimax is used instead?
- Bayesian posterior + heuristic algorithms. Since the hierarchical prior input can be viewed as a single prior, might make sense to solve the pure Bayesian DP, i.e., Gittins index policy?
- Oompared with a flat prior (i.e., ignoring prior evidence), can we quantify performance gains or losses of introducing an informative prior?
- For BAI, how much can we gain relative to the two-step sampling design of Hahn, Hirano, & Karlan (2011, JBES)?
- In many social programs, adaptive experimentation can be hindered by the time lag for observe welfare-relevant outcomes. Are surrogate outcomes useful?