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Abstract

What factors explain global differences in economic prosperity? While many
theories have been advanced, little attention has been paid to one of the oldest
and most fundamental of human institutions: kin-based institutions—the set of so-
cial norms governing lineage, marriage, post-marital residence, family organization,
and an array of family obligations. We establish a robust and economically signifi-
cant negative empirical association between the tightness and breadth of kin-based
institutions—their kinship intensity—and economic development. To measure kin-
ship intensity and economic development, we combine quantified ethnographic ob-
servations on kinship and genotypic measures (from which we estimate inbreeding
levels as a proxy for kin marriage rates) with data on satellite nighttime luminosity
and regional GDP. Our results are robust to controlling for a suite of geographic
and cultural variables and hold across countries, within country at both the regional
and ethnolinguistic levels, and within country in a spatial regression discontinuity
analysis. We present evidence consistent with kinship intensity indirectly impacting
economic development via its effects on the division of labor, cultural psychology,
institutions, and innovation.
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1 Introduction

Understanding the origins of global and regional differences in economic prosperity is
among the oldest endeavors in economics, tracing back through Adam Smith (1776) to
the likes of Machiavelli (1531) and Ibn Kaldun (1377)[ In recent decades, the avail-
ability of new data sources and improved approaches to causal identification have shed
fresh light on the topic. Researchers have argued for the role of a suite of important
factors, including climate and geography (Diamond}, 1997; Hibbs and Olsson 2004; |Dell
et al., 2012), disease (Sarma et al., [2019)), political institutions (Acemoglu et al., 2002),
colonialism (Dell, 2010), human capital (Glaeser et all 2004)), the slave trade (Nunn,
2008)) and culture (Landes, [2000; Tabellini, 2010; |Alesina et al., 2013; |[Henrich, 2020)).
The emerging picture is one of a complex causal network in which aspects of climate,
geography, ecology and endemic disease (e.g., malaria) operate, at least partly, through
their impact on the cultural evolution of technologies (e.g., writing), institutions (Spo-
laore and Wacziarg), 2013; |[Rodrik et al., [2004)), social norms, preferences (e.g., fairness),
beliefs (e.g. in particular gods) and aspects of psychology like individualism, patience and
trust (e.g., Dohmen et al.[2015; Galor and Ozak 2016} Gorodnichenko and Roland|[2016
Henrich||2020; Spolaore and Wacziarg 2013). In this paper, we aim to establish a tight
empirical relationship between measures of economic prosperity, assessed using satellite
nighttime luminosity and regional GDP, and the intensity of traditional kin-based in-
stitutions, proxied using both ethnographic (Alesina and Giuliano, 2010; Alesina et al.|
2013; |Greif, |2006a; |(Ghosh et al., |2021) and genetic data.

Most economists are unfamiliar with the complexities of kin-based institutions, even
though they are among the oldest and most fundamental of human institutions. Kin-
based institutions are the diversity of ways in which societies around the world and back
into history have extended and re-enforced (or suppressed) blood and affinal ties through
social norms that regulate marriage, honor codes, obligations to kinfolk, post-marital
residence, inheritance, corporate ownership of land and much more (Murdock, |1949).
In most societies, these kin-based institutions operate over generations to continuously
weave the threads of each person’s most important social connections (Greif and Tabellini,
2010; [Henrich) 2020; |Alesina and Giuliano|, 2015; Bergeron, 2020)). Kin-based institutions
vary along several important dimensions, but anthropologists have long highlighted the
importance of kinship intensity (Walker et al. 2013): the degree to which individuals
are enmeshed in broad and tight kin networks that demand their loyalty and prescribe
much of their behavior. As we’ll illustrate below, societies dominated by small, monog-
amous nuclear families tend to have low levels of kinship intensity while polygynous
societies dominated by endogenous patrilineal clans tend to have rather high levels of
kinship intensity. Practices like cousin marriage (Bittles and Black, 2010; Leutenegger
et al., 2011)), customary inheritance (Bahrami-Rad et al., 2021} Bau, 2021)), post-marital
residence (Bau, 2021)) and polygamy (Fenske, 2015) remain important throughout the
world.

A growing body of work suggests that differences in kinship intensity may influence
economic growth through multiple causal pathways, through their influence on incentives,

1Scholars well back into Antiquity have also speculated on the question. In Islamic Spain for example,
during the first century of the second millennium, the scholar Said contrasted his own “civilized” society
to to the “black” and “white barbarians” to his south (Africans) and north (northern Europeans),
respectively (Lewis, 2001)). For the “white barbarians,” Said suggests that latitude and climate might
have left them a bit dull.



constraints, social networks and psychology. For instance, intensive kinship has already
been linked to lower levels of impersonal trust, individualism, public goods provision, and
effective democratic governance, as well as to higher levels of corruption, nepotism and
conformity (Moscona et al.; 2020; [Enke, 2019 Greif and Tabellini, [2010; [Schulz et al.l
2019; Henrich, [2020}; |Alesina and Giuliano, [2015],2011; |Acemoglu et al.|2002; Schulz et al.|
2018; Bahrami-Rad et al. 2021} [Edlund, 2018} Bergeron, |2020). Each of these patterns
has been argued to influence economic growth and/or innovation (Gorodnichenko and|
Roland, 2016; |Algan and Cahud}, [2013; |Acemoglu et al., 2019; Mauro, 1995)).

In this paper, we cut through such intricacies and focus on empirically establishing
a tight and robust reduced-form link between kinship intensity and economic prosperity.
We also explore and discuss potential mechanisms and present new evidence suggesting
that lower levels of kinship intensity may foster a broader division of labor and greater
occupational specialization.
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Figure 1: GDP per capita in 2000 vs. prevalence of marriage among kin (second cousins or closer)
across countries. The light gray dots denote oil-rich countries with oil output above 250 barrels per day
per capita in 2000. The GDP data comes from [Ashraf and Galor| (2013 and the cousin marriage data

comes from .

Motivating our investigation, Figure 1 shows the cross-country correlation between
national GDP per capita in 2000 and the prevalence of marriages among kin up to and
including second cousins, a simple proxy for kinship intensity. The cross-country Spear-
man’s correlation is negative and significant (p = —0.45, p < 0.001). Below, we present an
array of more detailed analyses that interrogate the relationship between kinship intensity
and economic prosperity.

To measure economic prosperity, we rely primarily on the logarithm of pixel-level
satellite nighttime luminosity data (Michalopoulos and Papaioannou, 2013; Donaldson)
and Storeygard, 2016)), but always hold constant the logarithm of populations density.
This allows us to interpret our estimated associations as being between kinship intensity




and nighttime luminosity per capita] As a supplemental measure of economic prosperity,
we also analyze regional measures of GDP per capita (Gennaioli et al., [2014).

To measure kinship intensity, we deploy an existing approach from our previous work
(Schulz et al., 2019) that combines data from the Ethnographic Atlas (EA), a compilation
of anthropological observations from before industrialization and European colonization
based on coding ethnographies from over 1,200 societies, and global language phyloge-
nies from over 5,000 ethno-linguistic groups (Schulz et al., 2019; [Enke} 2019; |Giuliano and
Nunn, 2018; Bahrami-Rad et al.| [2021; Kirby et al., 2016)). We construct a Kinship Inten-
sity Index (KII) that aggregates measures of societies” intensive kinship practices across
five dimensions that capture preferences for cousin marriage, norms regarding polygamy,
co-residence of extended families, lineage organization, and community organization.

As an alternative measure of kinship intensity, we use genetic data from the Human
Origins (HO) dataset (Reich Labj 2020) to estimate the average inbreeding coefficient for
a diverse swath of populations. As far as we know, both the HO dataset and our genetic-
data-based estimator of the inbreeding coefficient are novel in the economics literature.
The HO dataset contains genetic data from nearly 10,000 modern-day individuals from
across the world. The inbreeding coefficient is a fundamental variable in the field of
population genetics that measures the relatedness of one’s parents. We estimate it using
genetic data with an estimator, Frog, that captures the share of one’s genome that
is in runs of homozygosity (ROHs)—long genomic segments where the paternally and
maternally inherited DNA is identical’] One important advantage of this alternative
measure of kinship intensity is that it is measured precisely with 21st-century genetic
data and does not rely on ethnographic observations or self-reports.

We show that populations’ average From, which we denote Frop, robustly correlates
with cousin marriage practices across populations (consistent with previous work—e.g.,
Pemberton and Rosenberg|2014; |Sahoo et al|2021)) as well as with the KII and its other
component measures. These relationships not only confirm the ground truth of the KII,
but also imply that it captures enduring and important cultural practices—important
enough to be detectable in contemporary genetic data.

Across an array of analyses, we establish a statistically significant and economically
important negative association between kinship intensity and economic prosperity. We
begin by estimating OLS regressions to document associations between the KII and night-
time luminosity across geographic pixels and across ethnicities, and then between the
KII and regional GDP per capita across subnational regions. To test for the robustness
of these associations, we present an extensive battery of OLS regressions that include
country fixed effects and control for a rich range of geographic, cultural, and ecological
variables.

To address concerns that unobservable omitted factors that vary smoothly across
space may drive the association, we then conduct a spatial regression discontinuity (RD)
analysis at the boundaries between pairs of neighboring ethnicities from the same coun-
tries, with nighttime luminosity and the KII as the dependent and explanatory variables
and using geographic pixels as the units of observation. We adjust for the same suite
of control variables as in our earlier OLS regressions. To thoroughly account for any
factors that may vary smoothly across space, we estimate specifications that control for
each geographic pixels’ distance to the ethnic boundaries in a flexible way, allowing for

2In most specifications, we estimate the coefficient on log population density to be close to unity.
3As we explain below, though measured with genetic data, the inbreeding coefficient and Fron
capture cultural practices and are not genetically determined.



a different coefficient on the distance-to-the-boundary term for each ethnicity in each
ethnicity pair, or interacting latitude and longitude with each ethnicity pair. We esti-
mate the RD specification in a sample that also includes pairs of neighboring ethnicities
from different countries. We further verify the robustness of our spatial RD results to
using pixels within different ranges of distance to the ethnic boundary, thus allowing for
spillover effects of light and economic activity and for gradual changes in the faction of the
population that belongs to each neighboring ethnicity at the ethnic boundary. Lastly, we
estimate placebo spatial RD regressions, replacing nighttime luminosity as the dependent
variable with each of a series of geographic controls, and find no association between the
KII and these placebo dependent variables.

Across all of these analyses, the association between the KII and economic prosperity is
robust. Further, the estimated coefficient on the KII remains remarkably stable, implying
that a one-standard deviation increase in the KII is associated with a ~ 30—50% decrease
in per capita economic output across the globe and a ~ 7—11% decrease within country;
this holds both with nighttime luminosity and with regional GDP per capita as the
measure of economic output.

Next, we examine the association between Fropy estimated using genetic data from
HO and nighttime luminosity across geographic pixel, in a series of OLS regressions that
parallel those we ran earlier with the KII instead of Frog. Again, we document a robust
and economically significant association. Our estimates imply that nighttime luminosity
is ~ 30% lower for an ethnicity in which everyone is the offspring of second cousins vs.
an ethnicity in which everyone is the offspring of unrelated parents. (The difference in
Frog between two such ethnicities is slightly smaller than the standard deviation of Froy
across ethnicities.)

We then examine the causal pathways that may account for the link between kinship
intensity and economic prosperity. First, since we have previously argued that historical
exposure to the Western Church causally decreased kinship intensity in European ances-
try societies (Schulz et al., 2019)), we verify that neither historical exposure to Christian-
ity nor European ancestry fully drive our results. Second, we examine whether reverse
causality from economic development to kinship intensity could account for our results,
but conclude that this is unlikely to be the case. Third, gesturing to future work, we
examine possible mechanisms that could account for a causal effect of kinship intensity
on economic development. We discuss the existing literature and present new analyses
that provide preliminary support for pathways that involve the negative effects of kinship
intensity on the division of labor and trade; on cultural psychological variables such as
trust, impersonal cooperation, impartiality, and individualism; on the quality of formal
institutions; and on innovation.

Related literature

This paper builds on, and contributes to, a number of interrelated lines of research
within economics. First, our demonstration of a robust link between kinship intensity and
economic prosperity contributes to the central questions in economic history related to the
origins of the industrial revolution and the “rise of the West” (Mokyr, 2016; Clark, 2007)).
Greif and Tabellini, along with many historians and anthropologists, have argued that the
transformation of European kinship into what has been dubbed the “European Marriage
Pattern” (Hajnal, [1982)), a virtually unique form of family organization built around
monogamous nuclear family households, was central to emergence of the political and
economic institutions that underpinned the European expansion after 1500 and eventually



the industrial revolution (Tabellini, 2010; |Greif, 2006b,a; Mitterauer, 2010; |Goodyl, |1983;
Henrich|, |2020). More recently, Ghosh et al.| (2021)) take advantage of the checkered
state-level imposition of laws prohibiting cousin marriage in the United States. Their
analysis shows that declines in cousin marriage precipitated by the new laws fostered
urbanization and economic growth in the 20th century. Our results extend these insights
into the contemporary era and around the globe.

Second, a closely related literature examines the factors that drive contemporary dif-
ferences in economic prosperity. By revealing a robust, and potentially causal, relation-
ship between kinship intensity and economic prosperity, we place kin-based institutions
into the cluster of other important institutions and cultural practices that have been
linked to economic growth (Alesina and Giuliano| 2015; |[Nunn, 2012). Our focus on kin-
based institutions can contribute to explaining the long-term persistence of economic
prosperity (Comin et al) [2010; Edlund, [2018), the influence of both early European
settlements (Easterly and Levine, [2016)) and Christian missions (Calvi and Mantovanelli,
2016, Bai and Kung}, 2015)), and the diffusion of innovations from the technological frontier
(Spolaore and Wacziarg, 2013)). Unlike the commonly used measures of formal institu-
tions such as constraints on the executive, kin-based institutions are generally vertically
culturally-transmitted at the group-level and strikingly persistent across time: analyses
from both economics and anthropology using diverse measures of kin-based institutions
demonstrate that these cultural traits are among the most persistent (Guglielmino et al.,
1995; Alesina and Giuliano|, 2014; [Bahrami-Rad et al., |2021)). The stickiness of these
institutions may contribute to the persistence of economic outcomes.

Finally, our analyses contribute to the growing literature on the role of social norms,
culture, historical legacies and economic development (for overviews, see |Spolaore and
Wacziarg, 2013; Nunn, 2010; Michalopoulos and Papaioannou), [2018)), which links kin
ties to (1) particular aspects of psychology, (2) the functioning of political institutions,
educational investments, (3) rates of intergroup violence, and (4) economic development
(Edlund, 2018; Fafchamps|, 2011; [Platteau, 2000; Hoff and Sen|, |2011; Henrich| [2020)
Pioneering this effort, Alesina et al.| (2013] |2015) have shown, using data from the World
Value Survey, that the importance of close ties within the nuclear families is associated to
female labor force participation, political attitudes, the importance of family businesses
and, ultimately, economics prosperity. Complementing this work, [Akbari et al. (2019)
provide evidence that higher cousin marriage rates are associated with higher frequency of
corruption across countries and also across European regions. In the Democratic Republic
of Congo, using the historical locations of Christian missions, Bergeron (2020]) shows that
city dwellers whose home villages were closer to historical missions revealed greater moral
universalism and reported social networks with more people outside their families and
ethno-linguistic groups. Using global data, both [Enke (2019) and Schulz et al. (2019)
demonstrate a robust correlation between kinship intensity and measures of impersonal
trust, moral universalism, conformity, analytical thinking, individualism and cooperation
with strangers.

Some work has also linked various aspects of kin-based institutions to important
outcomes which likely have direct or indirect links to economic prosperity. First, test-
ing venerable ideas from anthropology on the origins of honor cultures (Sahlins, |1961)),
Moscona et al. (2017, 2020) show that segmentary lineage organizations in Africa are
associated both to less trust in strangers and more intergroup violence. In Indonesia
and Ghana, Bau (2021)) shows that traditional norms about post-marital residence—
patrilocality or matrilocality—interact with the arrival of pension systems to influence



the education of either males or females. Bau’s investigation also shows how pension sys-
tems undercut one of the primary function of intensive kinship, resulting in the decline of
traditional kinship practices. Similarly, focusing also on the impact of different kin-based
institutions in the Democratic Republic of Congo, Lowes [2018 shows experimentally that
matrilineal wives are less cooperative with their spouses than patrilineal wives—as long
suggested by anthropologists—but they experience less domestic violence and their chil-
dren are healthier and better educated. Finally, looking both historically within Europe
and cross-nationally today, van Zanden et al| (2019), de Moor and van Zanden| (2010)),
and (Carmichael and Rijpmal (2017) investigate the effect of family systems on women’s
agency and labor market participation.

Paper structure

Our approach rolls out as follows. We begin, in Section 2, by introducing kin-based
institutions, discussing how we measure their kinship intensity using both the KII and
Fron, and illustrating how they operate on the ground via selected ethnographies. Next,
in Section 3, we describe the main data we use, emphasizing our measures of economic
performance and population density and our battery of control variables. In Section 4,
we proceed to our analyses, first linking the KII to nighttime luminosity across pixels
and across ethnicities, then linking the KII to regional GDP per capita, and finally again
linking the KII to luminosity, but across contiguous ethnicities in a spatial RD analysis.
In Section 5, to complement the KII analyses, we show Fgropy relates to the KII and
its subcomponents and then repeat the analysis linking the KII to nighttime luminosity,
swapping in Frog for the KII. In Section 6, we discuss possible causal pathways, including
confounding by Christianity or European ancestry, reverse causality, and mechanisms that
may account for a causal impact of kinship intensity on economic prosperity. Section 7
concludes.

2 Kin-based institutions

Representing perhaps the oldest and most fundamental of human institutions, kin-based
institutions are packages of social norms that govern marriage and regulate family re-
lationships. Well back into our evolutionary past, these institutions (Murdock, |1949;
Parkin|, |[1997) have played a central role in organizing economic production, distribution,
consumption, political decision-making and social insurance, particularly for the injured,
infirmed, aged, and orphaned. Kinship norms variously prescribe and prohibit partic-
ular inheritance customs (e.g., matrilineal descent of identity or land), polygamy (e.g.,
polygyny), cousin marriage, arranged marriage, clan membership, corporate ownership
of land, household organizations (e.g., extended households) and post-marital residence
(e.g., patrilocality, where the bride resides with the husband’s family). The durability
of kin-based institutions, along with their universality, likely arises from their anchor-
ing in several well-established aspects of human nature (Henrich|, [2016)),including our
inclinations for kin-based altruism, incest avoidance, and pair-bonding (Henrich, 2020)).

Nevertheless, despite many similarities, kin-based institutions vary considerably across
societies, having evolved culturally in response to diverse ecologies, novel technologies,
new religious beliefs, and state policies (Dalton and Leung, 2014; Daynes, [2001; Fenske,
2015} Henrichl, [2020; Schulz et al., 2019; Bau and Fernandez, [2021; Holden and Mace),
2003; Bahrami-Rad et al 2021; Tene, 2021). Today, for example, roughly 1.1 billion
people in Africa, the Middle East, and parts of Asia reside in regions in which between



20 to 60 percent of marriages are between second cousins or closer kin (Romeo and Bittles,
2014)), and cousin marriage rates are stable or increasing in some populations, including
in Pakistan (Bittles, 2022), Iran (Abbasi-shavazi and Mcdonald, [2008)), Oman (Islam,
2022) and Yemem (Jurdi and Saxena, 2003). Similarly, many populations still trace
descent primarily through either the male line or the female line (Moscona et al., |2020;
Lowes, [2018; [Tene| [2021)). This contrasts with Western societies, where social structure
is characterized by a strong emphasis on the monogamous nuclear family, kin marriages
are virtually absent, and descent is traced bilaterally through both the mother’s and the
father’s side (Greif, 2006a; (Goody, [1983; Mitterauer, [2010)). Interestingly, despite the
parallels with genetic inheritance, anthropological data suggest that fewer than half of
societies traced descent bilaterally (Henrich, [2020)).

In considering how kinship shapes people’s lives, minds and societies, anthropologists
have characterized cross-societal variation in kin-based institutions according to their
kinship intensity (Walker et al., 2013; Walker and Hill, [2014; Henrich [2020; Schulz et al.,
2019). Intensive kinship norms foster tight, dense and overlapping relationships, which
often create essentialized ‘corporate groups’ such as clans or lineages that are relation-
ally isolated from other such groups (Enke| (2019) calls this “kinship tightness”). Cousin
marriage, for example, weaves families together into dense kin-based networks, which
provide preferred and privileged partners for economic exchanges, mutual aid, insurance
and political alliances. Cousins, of course, are already kinfolk, but cousin marriage re-
enforces and tightens these bonds with additional ties and, perhaps more importantly,
helps guarantee that these relationships endure into later generations. Similarly, norms
that promote co-residence, where children grow up in extended families or clans living
in the same dwelling, strengthen the cohesion, interdependence and loyalty within such
groups. Further, norms that establish unilineal descent, prescribe post-marital residence,
favor arranged marriage, and encourage polgynyous arrangements all also intensify kin-
ship by building larger networks of dense, overlapping and enduring kin ties.

By contrast, extensive kinship systems, such as those found among mobile hunter-
gather populations, are characterized by marriage to non-kin (incest taboos often pro-
hibit cousin marriage), bilateral descent, limited polygyny and flexible residence norms.
Marrying and residing with non-kin creates large and more diverse kin networks, as does
bilateral descent, where people trace relatedness through both their mothers and fathers.
Such norms creates large, interconnected, and non-exclusive kin networks in which ev-
eryone except siblings has a unique combination of relatives.

From an economic perspective, kin-based institutions dramatically shape people’s so-
cial networks, relationships, loyalties, obligations, responsibilities, incentives, constraints
and, as we have argued elsewhere, their motivations and ways of thinking, feeling and
reasoning (Schulz et al.; [2019; Henrich, 2020)). As we examine in Section 6, these dif-
ferences may influence economic specialization, the division of labor, impersonal trust,
exchange, distribution, political behavior and innovation as well as, ultimately, economic
prosperity. Given the profound ways in which kinship intensity shapes people’s lives and
decisions, it is worth considering whether it can be robustly linked to economic growth.

Efforts to understand why populations vary in their kin-based institutions and the
cultural evolution of these institutions are just beginning. The most important deter-
minant of a population’s current kin-based institutions are the kin-based institutions of
their forebears—cultural persistence (Guglielmino et al.; [1995; Bahrami-Rad et al., [2021;
Alesina and Giuliano, 2014; |Jordan et al., 2009)—but several ecological, economic, epi-
demiological, legal and religious factors have been shown to shape kinship. First, the



spread of sedentary farming, with the consequent need to invest in and defend territory,
likely fostered an intensification of kinship (Henrich| 2020; |Jones, 2011; |Ember and Em-
ber}, |1971). Focusing on China, Noblit (2021) has recently shown that both a county’s
suitability for paddy rice agriculture and its susceptibility to rainfall shocks (associated
with typhoons) favored the gradual diffusion of lineage organizations over centuries after
the year 1000 CE. Focusing on matrilineal inheritance in Africa, Tene (2021)) points to
a role for ecological factors that favor hoe agriculture (done by women) and those that
inhibit large-animal pastoralism (done by men). Consistent with this, Holden and Mace
argue that the spread of cattle across Africa led to the decline of matrilineal descent
(Holden and Mace, 2003).

Considering a role for disease, Enke (2019) links kinship intensity to the ecological
potential for malaria and tsetse flies (which cause sleeping sickness and kill livestock).
Focusing on policy, Bahrami-Rad (2021)shows that laws in India that prohibited uni-
lineal inheritance (effectively allowing women to inherit equally) fostered more arranged
marriages to cousins (and reduced gender equality). Similarly, scholars have argued that
Islam’s prescriptions regarding inheritance by daughters (they get half of what sons get)
fostered more marriages of daughters to their brothers’ fathers’ sons (patrilateral parallel
cousin marriage)—a type of cousin marriage rarely observed outside of Islamic societies
(Korotayev, 2015)).

Finally, a number of economists, historians, and anthropologists have argued that the
branch of Christianity that evolved into the Roman Catholic Church has dramatically
transformed kinship around the world with its prohibitions and prescriptions regarding
polygyny, cousin marriage, bilateral inheritance and other practices related to marriage
and the family (Korotayev, |2003; (Goody, |1983; Henrich|, |2020; Mitterauer, 2010; |Greif,
2006a; [Schulz et al., 2019). For instance, Schulz et al. (2019) link historical exposure
to the Church to the rate of cousin marriage across European regions and to kinship
intensity across countries. Focusing on Africa, [Fenske| (2015) and Bergeron (2020) show
that distance from historical Christian missions predicts greater polygyny and stronger
kin ties, respectively.

2.1 Measuring kinship intensity

Our analyses rely on two main measures of kinship intensity. The first measure, which
we use in most of our analyses, is the Kinship Intensity Index (KII) from Schulz et. al.
(2019). The KII is an omnibus measure of the overall strength of kin-based institutions
constructed using anthropological data and available for nearly 1,000 societies in the
Ethnographic Atlas (EA) (as curated and expanded at D-Place (Kirby et al., [2016)). To
complement this ethnographic measure and verify the robustness of our main results to
using a contemporaneous, on-the-ground measure of kinship intensity, we used genetic
data from the Human Origins (HO) dataset (Reich Labj 2020) to compute the average
inbreeding coefficient for a few hundred populations.

The Kinship Intensity Index (KII)

The Kinship Intensity Index (KII), which we developed in previous work (Schulz
et al.l 2019), is calculated using quantified anthropological observations from over 1,200
populations from the Ethnographic Atlas and, for a version of our analyses, is extended to
populations around the world using language phylogenies[f] With the average observation

4We used the same approach to calculate the KII as Schulz et al. (2019), but used data from the



occurring around 1900 CE, the EA is based on ethnographies written by anthropologists
aiming to reconstruct people’s lifeways prior to European colonization, global market
integration and industrialization )| The KII is thus a “deep” historical measure that aims
to capture enduring norms and practices before modernization.

The KII aggregates five sub-indicators that capture key dimensions of kin-based or-
ganization:

1. Cousin marriage preference captures the intensity of the norms about marrying
cousins. Preference for cousin marriage inhibits the formation of extensive ties
among previously unconnected families or clans, encourages the creation of addi-
tional links among already related families and households, and increases the genetic
relatedness of family members.

2. Polygynous marriage norms permit men to marry multiple wives. This results in
larger and more extended households and introduces social and economic interde-
pendence among co-wives and half-siblings. At a societal level, polygynous marriage
norms result in fewer fathers, larger reproductive skew, and greater genetic relat-
edness.

3. Co-residence of extended families captures the degree to which several generations of
a family, each with their own spouses and children, co-reside. Such residential norms
create stronger emotional bonds and greater economic interdependence among the
co-residing individuals. This contrasts with the neolocal nuclear family, where only
the two spouses with their children live together, separate from other relatives.

4. Lineage organization captures the social norms governing descent and identity. In
societies with unilineal descent, people reckon descent and social identity primarily
or entirely through either their mother’s or father’s side. The exclusive member-
ship on one side determines social identity and increases cohesion and interdepen-
dence within the lineage. This contrasts with bilateral descent where membership is
non-exclusive and everyone except siblings have a unique combination of relatives,
resulting in more diverse and diffuse kin-networks and lower kinship intensity.

5. Community organization captures whether extended family and clan members re-
side within the same localized area of a settlement (e.g., a neighborhood), and
whether there is community-level endogamy (e.g., people can only marry co-villagers).
Localization decreases the interaction with outsiders while endogamous marriages
mean that communities form denser clusters (since no outsiders from different vil-
lages join the community through marriage), thereby increasing kinship intensity.

As we further describe in Section [3.3] we matched the EA data (including the KII
sub-indicators) to languages from the Ethnologue (Gordon, 2005; |Lewis|, |2009), a com-
prehensive map of the world’s languages (these languages are in turn associated with
“country—ethnicities”).E] To compute the KII for each Ethnologue language, we first stan-

latest versions of the EA (Kirby et all [2016), Ethnologue (Gordon, [2005; Lewis|, |2009) and Glottolog
(Hammarstrom et al., 2016]).

°8 of the 1,291 societies in the EA were coded based on pre-1500 CE historical observations, so we
excluded them from our analyses.

6We used two alternative matching methods: the direct matching method and the language-tree
matching method. When using the language-tree matching method, we imputed missing observations
for the cousin-marriage preference and co-residence-of-extended-families sub-indicators—see [Schulz et al.
(2019) for details.



dardized the five sub-indicators using their means and standard deviations across the EA
societies; then, we took the average of the language’s five matched sub-indicators and
standardized it using its mean and standard deviation computed across the EA societies.
The resulting KII is defined for the Ethnologue’s languages but is standardized based
on the EA societies[| Figure 2] shows the distribution of the KII across the ethnicities
around the world, and Appendix A.1 provides further details on the construction of the
five sub-indicators and of the KII.

s

Kinship intensity index

I High: [0.91, 2.10]
|

B Low: 251, -162)
I:l No data

Figure 2: Distribution of the KIT around the world, for the 2,352 ethnicities matched with the language-
tree matching method (described below).

Although |Schulz et al| (2019) selected the five sub-indicators on purely theoretical
grounds—aiming to operationalize the anthropologists’ concept of kinship intensity—
these measures turn out to be positively correlated across the EA societies with nonmiss-
ing data (see Appendix Table B.1.1), with the first principal component accounting for
35 percent of the variation.

The inbreeding coefficient (F’)

Our second measure of kinship intensity, the inbreeding coefficient (denoted F'), is a
key variable in the field of population genetics that can be estimated using genetic data.
F' is an individual-level measure of the relatedness of one’s parents, and so a society’s
average F' should in principle correlate with its kinship intensity and in particular with it
rate of endogamous marriage. As we describe in more detail in Section [f], we estimated F'
for contemporary individuals in the Human Origins (HO) dataset (Reich Labj, 2020)—a
dataset of genotyped individuals from populations around the world—and then estimated
the mean F' across the HO individuals matched to each national ethnicity from the
Ethnologue.

Because the KII ultimately derives from ethnographic observations, often made over
the course of a year or so of field research, one might worry that it represents merely
ideal behavior (vs. ground truth of how people live their lives), or a snapshot in time

of an otherwise unstable or rapidly changing pattern of kinship (Leach| [1964). Using F

"We standardized the sub-indicators and the KII based on their means and standard deviations
across the EA societies, rather than across the Ethnologue languages, because the different matching
methods we use lead to different sets of languages being matched to the EA, and some of these languages
correspond to very small groups; standardizing based on the EA societies allows to us to consistently
interpret the coefficients we estimate across our analyses.
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measured among contemporary individuals as our alternative measure of kinship intensity
allows us to verify that the KII captures stable cultural practices. As we report below
(see Table |§] and Appendix Tables B.5.2-5.3), F is positively associated with the KII and
particularly strongly associated with the cousin-marriage-preference sub-indicator, sup-
porting the view that the KII does indeed capture enduring cultural practices. Consistent
with this, Pemberton and Rosenberg| (2014) and Sahoo et al.| (2021) also report positive
associations between F' and cousin marriage preferences or practices.

We emphasize that, although we estimate it using genetics data, F'is not genetically
determined. Rather, F' provides us with a proxy that should track marriage practices—
cultural traits that contribute to kinship intensity. To the extent it captures the deep-
rooted cultural practices, however, F' should be rather stable through time.

2.2 Kinship intensity on the ground

To illustrate how kinship intensity shapes individual decision-making and societies, let’s
take a closer look at three populations with high, medium and low kinship intensity based
on both their KII and F' values.

2.2.1 The Marri Baluch (KII =2.10; F = 0.062)

Exemplifying a society with intensive kinship, the Marri Baluch are agro-pastoralists
in Pakistan who live enmeshed in a hierarchy of patrilineages in a mountainous region
lying about midway between Islamabad and Karachi (Pehrson, 1977)). Traditionally, the
nomadic Marri Baluch have relied primarily on herding sheep and goats, though some
households (particularly elites) maintain mud houses in villages and engage in cereal
farming, growing mostly wheat. The ownership of both land and animals is communal,
though animals can be individually owned, and both forms of wealth are transferred
corporately by the inheritance of a Marri identity from one’s father. All pasture land
is held in common (among Marris) but agricultural land is reapportioned every decade
or so among large patrilineal groups according to the number of Marri men in each.
Interestingly, although paternal kinship is the central factor in economic, political and
social life, getting “counted” for land apportionment depends also on not having a low-
caste or enslaved mother.

Marriages are typically arranged for adolescent girls, who are “sold” by their fathers
for a brideprice (e.g., 80 sheep) to other men. There are strong biases toward marriages
within the same small patrilineage (wari), a pattern reflected in the lower brideprices
associated with such marriages. In one survey, 30 percent of marriages were between
patrilateral parallel cousins—i.e., the children of two brothers—and another third were
among other patrilateral relatives. In total, 72 percent of marriages were among kin
and no marriages occurred outside of the Marri Baluch-none outside the ethnic group.
Compared to many societies with intensive kinship, incest taboo are not particularly
constraining on spousal choice: beyond primary female relatives, men are only tabooed
from having sex with the wives of their fathers, father’s brothers, brothers, sons and
brothers’ sons. Polygynous marriage is permitted up to four wives following Islamic law,
though the relative equality among most men means this is largely limited to political
elites (whose positions often depend on paternal succession).

Curiously, inherited political offices among the Marri have no customary power to
tax except for the purposes of paying brideprices for wives—thus, taxation facilitates
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elite polygyny, allowing such men to weave larger kin networks through marriage. In
one study, only 5 percent of Marri households were polygynous at any one time. Upon
marriage, new wives move to live with their husband’s family: post-martial residence was
strongly patrilocal. Women are essentially owned and controlled by either their fathers or
husbands. Economically, labor is primarily organized along kinship lines, with a division
of labor by age and sex. Locally, decision-making power is vested according to age, sex
and lineage position, so fathers dictate to sons, husband to wives, and elder brothers to
younger brothers and sisters. The ability of households to protect their domesticated
animals and women from theft and kidnapping depends on the honor and reputation
(for revenge) of the patrilineage. The honor and shame of men in the same patrileage is
intertwined, so a son who acts cowardly stains the honor of his father and brothers (and
other more distant paternal relatives to a diminishing degree).

This package of social norms creates substantial economic, social and political in-
terdependence among relatives, especially among close patrilineal men, but also creates
zero-sum competitions for farmland, pasture and mates. Several customs help bind to-
gether the small patrilineages that form the core of economic life. For example, the
extended incest taboos, by applying to precisely the women with whom a man might live
together with in a nomadic camp, reduce sexual competition and mitigate concerns that
men have about their wives engaging in adulterous affairs (which are rampant). Similarly,
unlike many societies with cousin marriage, the preference for endogenous unions within
the patrilineage effectively tightens the bonds within the wari, though at the same time it
forgoes an opportunity to forge marital alliances with other patrilineages or beyond. The
combination of incest taboos and patrilineal endogamous marriage further reduces sexual
competition within the wari and residential camps because it creates a situation in which
all women are tabooed for all men except for their wives. Such a situation is particularly
important in the nomadic herding context where men often leave their households for
weeks at a time for herding, trading, raiding and wage labor.

These kin-based institutions create a tight circle of trust and sense of obligation that
declines rapidly outside the wari and residential camp. Close matrilineal and affinal ties
are recognized, and do matter, but they carry none of the sense of closeness or “duty”
found in patrilineal relationships. The divisions created by kinship norms are reflected in
frequent contrasts between jind (“one’s own”), which refers to patrilineal relatives (wari),
Azziz, which captures “kinfolk” (including in-laws), and seyyal, referring to strangers of
equal status (e.g., the Pashtun or even unrelated Marri). To get a sense of how people
think about these different categories, consider the following comment from a Marri
regarding affines (from Pehrson| (1977)):

“When you become affinally related to someone, then it is God’s command
not to do badness or rottenness to them. If they are strangers (seyyal), then
there is no duty, it does not matter if you steal or fight. But when they
become affines, then there is law... There are really no definite duties. But
if you are going to do meritorious acts to someone, then you should do it to
your affines.”

Distrust of strangers pervades many economic interactions among the Marri Baluch.
For example, managing farming and herding in small camps inevitably creates labor
shortages. To hire a shepherd, a man first goes to his poorer patrilineal relatives, next to
the matrilineal relatives, and finally to his affines. If he exhausts these labor sources, he
reluctantly turns to strangers, but anticipates problems. As one man explained Pehrson
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(1977): “I usually give a shepherd three chances—on theft, lying, etc, and then send him
away. For adultery, however, he goes immediately.” Of 35 shepherds in 5 camps, only
3 were unrelated to the owners. Similarly, when conducting trading, Marri men rely on
a network of bradirs as they move among camps, villages and towns. Bradirs represent
an institutionalized friendship of sorts and provide primary trading partners, hosts and
sources of information. Crucially, bradirs are inherited from father to son. Men report
not trading in places where they lack bradirs—so trade hinges on a network of enduring
personal relationships.

2.2.2 The Kurukh (KII = —0.18; F =0.016)

Moving to a society with intermediate levels of kinship intensity, the Kurukh or Oraon
communities (Roy, 1915)) of the Nagpur Plateau (northeastern India) have kin-based
institutions that are similar to the Marri Baluch’s in important ways, but that have
over time been weakened or replaced by non-kin-based institutions. Like Marri Baluch,
the Kurukh are patrilineal and patrilocal (brides move to live with their husbands),
marriages are arranged, and men maintain patriarchal authority over their wives and
children. Traditionally, the Kurukh were organized in patri-clans, but since moving from
nomadic pastoralism into settled agriculture, including sustained contact with Hindu
communities, Kurukh clans began to operate primarily as exogamous marriage units,
considering it incest to marry someone from the same clan. Notably, such clan exogamy
is the opposite of the tight clan endogamy preferred by the Marri Baluch. In addition to
clan exogamy, the Kurukh also taboo sex or marriage among couples known to be related
within three generations—so, anyone who shares a great grandparent is forbidden (thus,
second cousins are taboo, but third cousins are not). However, ethnographic data suggest
that families possess rather short genealogical memories so some second cousin marriages
do occur. Similarly, both polygynous marriage and communal property were probably
important among the herding and hunting ancestors of the Kurukh, but monogamous
marriage and privately owned land became universal when they became agriculturalists.

Kurukh also possess institutions and public rituals for establishing formal, life-long,
friendships. Like the Marri Baluch, new wives arrive from other communities and move
into their husband’s villages. Usually, these young women do not know anyone in their
new home since wives arrive from many villages. However, unlike the Marri Baluch,
the Kurukh have rituals that nurture a set of kin-like relationships among women. For
example, approximately every three, the word goes out from the female elders that every
woman must select a sahia or special village friend, from among the other married women
in the village. Women may renew a prior sahia or add to their social network. At a
communal ceremony, the ritual friends publicly greet each other, and begin a series of
ritualized and reciprocal exchanges of gifts, food, conversation and fellowship, including
a visit to the goddess Devi. Their sacred friendship establishes life-long bonds that link
not just the two wives, but also their entire (often unrelated) families.

Further, the Kurukh share their villages with other ethnic groups, including Hindus.
Economically, the Kurukh depend on village norms that govern their interactions with
other ethnic groups (castes), who engage in a variety of occupations that support the
Kurukh’s farming efforts. Disagreements among households are adjudicated and villages
policies set by a pluralistic and largely democratic council of elders, which include mem-
bers from across the village. There is also a higher council, with representatives from
many villages, that addresses inter-village issues. These councils appear to be a retrofit
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version of the supra-clan institution that once organized the Kurukh’s ancestors, modified
to draw representatives from either diverse ethnic/caste groups or different communities
(instead of different clans).

Kin-based institutions play important roles for both the Marri Baluch and the Kurukh,
but among the Marri Baluch kinship norms weave political, social and economic inter-
dependence around a tightly bound patrilineage. Meanwhile, though the Kurukh have
clans and authoritarian fathers, their incest taboos compel marriages to socially distant
Kurukh families, and other non-kin-based social norms govern economic and political in-
teractions with both other Kurukh and non-Kurukh villagers. Obviously, neither our KII
or I measures directly tap all of these complexities—such as the ritualized friendships
among Kurukh wives—but when non-kin-based institutions exist to support interaction,
they often replace or supplant elements or reproductive events that are captured by our
measures. Kinship norms that encourage, for example, economic interdependence or
physical security among kinfolk tend to foster kin-based community organizations, al-
liances fashioned by cousin marriage, or extended families in co-residence. When other
non-kin-based institutions take up these functions, these kin-based practices generally
deteriorate.

2.2.3 The English (KII = —2.14; F = 0.007)

The Marri Baluch’s and the Kurukh’s more intensive kin-based institutions contrast with
those found in European and European-descent societies, such as the English, who are
characterized by love-based marriages (but often with taboos on cousins) that form small,
monogamous nuclear families in which new couples reside neither with the bride’s or the
groom’s families but establish a new residence. Descent is not a source of identity and
is traced roughly equally through both mothers and fathers. With such tiny, ephemeral
families, individuals must necessarily build their own network of friends and partners
and seek out voluntary groups for economic production, religious devotion, and political
activity. By the High Middle Ages in parts of Europe, researchers have argued that the
appearance of these forms of low intensity kinship fostered the proliferation of charter
towns, guilds, universities and monastic orders as well as the expansion of impersonal
trade and commerce (Henrich| 2020; Greif, 2006a.b; (Greif and Tabellini, 2010, |2017)).

3 Data

This section describes the data (other than our measures of kinship intensity) we used in
our main analyses, including our measures of economic performance and our control vari-
ables. It also outlines how we matched data from various sources. Appendix provides
a more detailed description of all the variables and data sources, and Appendix Tables
B.2.1, B.3.1, B.4.1, B.5.1, and B.6.1 provide summary statistics for all the variables.

3.1 Measuring economic performance

In most of our analyses, we rely on nighttime luminosity data from satellites to measure
economic prosperity at the micro-level (pixels). Because we are interested in per capita
levels of economic development, we control for log population density in these analysesﬁ

8Specifically, we regress the logarithm of nighttime luminosity on the KII (or average F') and log
population density (and other controls). If the coefficient on log population density were unity, this
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To verify the validity of our results with the luminosity data, in some analyses we use
regional GDP per capita as an alternative measure of economic performance.

3.1.1 Satellite nighttime luminosity data

Now commonly used in the literature, satellite nighttime luminosity data (also often
referred to as light density data) has been shown to be a good proxy for economic de-
velopment (Michalopoulos and Papaioannou, 2018; Donaldson and Storeygard, 2016)).
Importantly for our purposes, nighttime luminosity data is available at fine scales, which
allows us to aggregate and match it to the geographic areas peopled by different ethno-
linguistic groups for whom kinship intensity data is available.

Following |[Henderson et al.| (2018)), we use the 2010 Global Radiance Calibrated Night-
time Lights dataf| The raw luminosity data is presented as a grid of pixels with dimen-
sions of 30 arc-seconds (% of a degree) by 30 arc-seconds, or approximately one square
kilometer at the Equator{"”] We aggregate the original pixels (which we will henceforth
refer to as “subpixels”) to larger pixels of size 0.125 (3) degrees x 0.125 degrees (~ 191
square kilometers at the Equator) by taking the mean of the nighttime luminosity across
the 225 original subpixels. This aggregation mitigates the problem of overglow of light
in a pixel due to light emanated from nearby pixels and helps mitigate concerns about
spatial correlation at finer scales. This gives us a sample of 926,864 pixels around the
globe.

Next, we apply several filters to prepare the luminosity data for our analyses. First,
we drop all pixels that do not cover land within the borders of a country, and thus all
pixels in large bodies of water. Some of the remaining pixels after that step are partially
covered by water or permanent ice. Luminosity is recorded as zero for subpixels that fall
on water or permanent ice, so we normalize the pixels’ mean luminosity by dividing it by
the fraction of their component subpixels that are covered by land.[f]

Second, and relatedly, night lights may appear brighter than they are over water or
ice-covered areas. We largely avoid this blurring issue by dropping the pixels for which
more than 25 percent of the area is covered by water or permanent ice (~ 2.5% of the
remaining pixels at this stage). We also drop pixels through which a coastline passes
(~ 3.5% of the remaining pixels).

Third, around 70% of the remaining pixels emit too little light and are coded as
zero. Following Henderson et al.| (2018), we consider this a censoring problem since the
lowest nonzero values are considered noise and generally recoded to zero in the initial
data processing. Assuming that all pixels emit some positive amount of light, we assign

would be equivalent to regressing log nighttime luminosity per capita on the KII (and other controls).
In fact, in nearly all the regressions we report below with luminosity as the dependent variable, the
estimated coefficient on log population density is close to unity. We further discuss this below in Section

9These data are available online at https://ngdc.noaa.gov/eog/dmsp.html. Other, uncalibrated
versions of the data use a strong amplification to detect low levels of light, which can saturate measure-
ment in the most brightly lit pixels such as those in large cities, leading to top coding of those pixels.
The radiance-calibrated data we use combines a high-amplification regime for low-light pixels and a
low-amplification regime for more brightly lit pixels, thus removing all top coding (Henderson et al.
2018).

WThere are 3,600 arc-seconds in a degree. Pixel size varies with latitude: the higher the latitude, the
larger the pixel. This will not be an issue in our analyses since the luminosity data measure the density
of light (i.e., the light emitted from a pixel divided by the pixel’s area).

"This is similar to the approach used by |[Henderson et al.| (2018).
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the lowest nonzero value (0.013) from across all the pixels to the pixels that are coded
as zero. Since we will take the logarithm of nighttime luminosity, this step allows us to
include these recoded pixels in our analyses.

Fourth, we drop pixels with zero population density (~ 9.7% of the remaining pixels)
and pixels where one or more of the geographic control variables (which we include in
our main specifications) are missing (~ 0.5%).

Light density
_ High - 7.27

L Low i -4.36

Figure 3: Distribution of log nighttime luminosity across the world. Unpopulated regions are in gray.
In some areas or countries, such as Egypt, population data is available at a fine scale and unpopulated
areas (like deserts) are coded as such; in other areas, population data is more heavily smoothed.

Applying these filters leaves 783,525 pixels in our sample. Figure |3 displays the
variation in log nighttime luminosity across these pixels around the world. Appendix
Figure B.1.1 shows histograms of nighttime luminosity, but without the pixels that were
recoded with the lowest nonzero value (~ 0.013). As can be seen, the log transforma-
tion reduces skewness. Therefore, and following the literature (Michalopoulos and Pa-|
paioannoul, 2018)), in the rest of the paper we will use the natural logarithm of nighttime
luminosity.

3.1.2 Population data

We use fine-grained population density data for the year 2010 from the Gridded Pop-
ulation of the World (GPW), adjusted to the 2015 Revision of the United Nation’s
World Population Prospects (Center for International Earth Science Information Network|
((CIESIN) at Columbia University}, |2016). The GPW assumes uniform population density
within statistical units. Therefore, population estimates are more heavily smoothed in
countries with lower statistical capacity and in more sparsely populated regions. The
GPW population density data is reported at a 30 arc-second resolution. We aggregate
the data to 0.125-degree pixels by taking the mean across component subpixels, and then
take the natural logarithm of population density for each pixel.

Although population density is itself often used as a proxy for economic development,
our primary analyses all focus on the relationship between kinship intensity and nighttime
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luminosity while holding population density constant. As illustrated in Appendix Figure
B.1.2, log population density has a convex relationship with log nighttime luminosity. The
relationship is flat when population density is lower than 1 person per square kilometer
(i.e., log(population density) < 0), but increasing and approximately linear at higher
levels of population density. To avoid large variation in log(population density) driven by
minor differences in population density across low-population-density pixels, we recoded
to 1 the population density of all pixels whose original population density was less than
1 person per square kilometer.@

3.1.3 Regional GDP per capita data

To verify that our analyses of the association between kinship intensity and nighttime
luminosity are robust to using a more direct measure of economic development, we also
analyze data from [Gennaioli et al| (2014) on regional per capita GDP (in Section [4.2)).
The data includes GDP per capita (in constant 2005 PPP dollars) for 1,528 regions in 83
countries between 1950 and 2010. We drop regions that are too small (consisting of less
than five pixels) and end up with the sample of 1,452 regions. Appendix Figure B.3.1
shows the variation in per capita GDP across these regions.

3.1.4 Nighttime luminosity, population density, and regional GDP per capita

We conducted a simple exercise, following Henderson et al.| (2018)), to verify that global
variation in nighttime luminosity reflects not just variation in population density, but
also differences in income per capita. We aggregated our luminosity and population data
to the level of subnational regions and, using Gennaioli et al’s regional GDP per capita
data for the year 2010 (the latest year available), regressed log nighttime luminosity on
log population density and then log regional GDP per capita. Without country fixed
effects, the R?’s from regressing log luminosity on log population density, then on GDP
per capita alone, and finally on both, are 0.530, 0.338 and 0.839, respectively. When the
data are demeaned by country, the corresponding R?’s are 0.819, 0.112, 0.856. These
results highlight that much of the variation in nighttime luminosity across world regions
is predicted by both population density and GDP per capita; within countries, much of
the variation in luminosity is predicted by variation in population density, though some
residual variation is also predicted by GDP per capita.

3.2 Control variables

Throughout our analyses, we include specifications with controls for geographic, ecological
and cultural variables, most of which derive from a battery of potentially relevant factors
based on prior research. Our baseline set of “geographic controls” includes temperature,
precipitation, agricultural suitability, absolute latitude, elevation, ruggedness, distance
to coast, and distance to the nearest river or lake. These variables are important for
agriculture and trade and are associated with worldwide and within country variations in
economic development and nighttime luminosity Henderson et al.| (2018]). The raw data
for these variables come from various sources and are reported at different scales ranging

12For comparison: Mongolia is the least densely populated country in the world, with 2.1 people per
square km.
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from ﬁlo— to 0.5-degree pixels (see Appendix Table for details). For the variables that
are defined at a smaller scale than 0.125 degrees, we convert the data to 0.125-degree
pixels by taking the mean across component subpixels. For variables that are defined
at a larger scale than 0.125 degree, all 0.125-degree pixels that fall inside a larger pixel
receive the same value.

We also verify the robustness of our results to controlling for a pixel-level measure of
ecological suitability for malaria (Kiszewski et al., 2004)). Malaria prevalence positively
correlates with kinship intensity (p = 0.406, p < 0.001, n = 713 country-ethnicities), and
may foster the cultural evolution of higher levels of kinship intensity (Enke, |2019).

Culturally, we verify the robustness of our results by controlling for each ethnicity’s
subsistence activities and political hierarchy. To control for subsistence economic activi-
ties, we include a set of variables from the EA that measure the fraction of each ethnicity’s
economy that depends on gathering, hunting, fishing, animal husbandry, and agriculture
(see Appendix A.1 for details). The EA includes five variables—one for each mode of
subsistence—and we adjusted these so that they sum to 1 for each ethnicity and omitted
the variable for gathering from the regressions. As discussed above, a population’s mode
of subsistence likely influences its KII. For instance, anthropologists have long argued that
mobile hunter-gatherers culturally evolved extensive kinship as a mean of social insurance
against environmental shocks with low spatial autocorrelation. “Political hierarchies” is
a cultural variable from the EA that measures the number of levels of jurisdictional hier-
archy for each ethnicity (Michalopoulos and Papaioannou, 2013). This variable correlates
negatively with the KII (p = —0.190, p < 0.001, n = 678 ethnicities) and has previously
been linked to nighttime luminosity, so it could confound our results.

3.3 Matching data

To combine the various datasets whose data we analyzed, we first matched ethnographic
variables from the EA (including the KII) and genetic variables from the HO dataset
(including the inbreeding coefficient) to languages from the 23rd edition of the Ethnologue
(Gordon, 2005}, Lewis, 2009). We then matched the Ethnologue languages to geographic
pixels and, for the analyses at the country-ethnicity (defined below), region, or country
level, we then matched the pixels to the country-ethnicities, regions, or countries.

To match the EA variables, we followed the method developed by |Giuliano and Nunn
(2018) and matched the language spoken by each EA society to languages in the Ethno-
logue (each EA society is associated with a single language). The Ethnologue maps the
geographic boundaries within which each contemporary language from around the world
is spoken. We refer to the (ethnolinguistic) group that speaks a given language within
a given country as an “country-ethnicity” and to the area where the country-ethnicity
lives as its “country-homeland”. (Thus, in our terminology, a language that is spoken
in multiple countries is associated with multiple country-ethnicities.) The homelands
of separate country-ethnicities often overlap, but we exclude overlapping areas from our
analyses.

We employed two different matching methods. With the direct matching method,
we matched the language spoken by each EA society to the exact same Ethnologue
language (and dropped unmatched languages). With the language-tree matching method,
we followed Bahrami-Rad et al| (2021) and, for each EA variable, we matched each
Ethnologue language to the linguistically closest EA society that speaks a language within
the same language family and with nonmissing data for the variable. (If no such society
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exists, that variable was coded as missing for that language.) We report the analyses
using the direct matching method in the main text and those using the language-tree
matching method in the Appendix.

For the analyses using the inbreeding coefficients (F'), we matched each population
from the Human Origins (HO) dataset to a single Ethnologue language (and to the
single or multiple country-ethnicities associated with that language). This is similar to
the direct-matching method described above for the EA data, but details of the two
procedures differ because the HO data typically does not indicate the language spoken
by each population. Appendix C.2 provides more details.

Next, we used a shapefile provided by the World Language Mapping System (World
GeoDatasets)H to match pixels to Ethnologue country-ethnicities. We dropped pixels
that were (1) matched to more than one country-ethnicity, (2) fell on the boundaries of
a country-homeland, or (3) matched to a country-ethnicity with a very small country-
homeland comprising less than five pixels. Appendix Tables B.2.1 and B.6.1 show sum-
mary statistics for the resulting samples of pixels.

Finally, to match pixel-level data to subnational regions or countries, we computed
the population-weighted mean of each ethnographic variable as well as the simple mean
of each geographic control across the pixels in each region or country. We then dropped
regions or countries for which the pixels with nonmissing KII data accounted for less than
75% of the population. For the analyses at the country-ethnicity level, each country-
ethnicity was assigned its matched EA variables and we took the simple mean of each
geographic control across the pixels in each country-homeland.

Appendix A.2 provides additional details on the matching process.

4 Kinship intensity and economic development

We now examine the association between our primary measure of kinship intensity, the
KII, and economic development. In Section , we first estimate a battery of OLS model
specifications by regressing nighttime luminosity on the KII. In Section , we perform
a parallel set of analyses by replacing our luminosity measure with regional GDP per
capita measures. In Section , we then conduct a spatial regression discontinuity (RD)
analysis of the association between luminosity and the KII.

4.1 Kinship intensity and nighttime luminosity

We begin by examining the relationship between nighttime luminosity and the KII, focus-
ing on the sample that includes the country-ethnicities matched with the direct matching
method. Figure [4] shows a negative relationship between the KII and the logarithm of
mean nighttime luminosity (calculated across each country-ethnicity’s pixels) after par-
tialling out log population density (p = —0.202, p < 0.001, n = 2, 352).

To more thoroughly examine the association between luminosity and the KII, we
adopted the following baseline specification, with geographic pixels as the unit of obser-
vation:

Li,e,c =a+ 5[([]6 + ) log(Pi,e,c) + 7Xi,e,c + /\c + 9‘/(1'),6 + €ic) (1)

13The shapefile is available at worldgeodatasets.com/language
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Figure 4: Log nighttime luminosity vs. the KII across country-ethnicities, both residualized on log
population density.

where L; .. is the natural logarithm of the nighttime luminosity of pixel ¢ in ethnicity
e’s homeland in country c¢. K11, is the KII of country-ethnicity e, which takes the same
value for all the pixels in e’s homeland; P, .. is the pixel’s population density; X, .. is
the vector of geographic variables that includes temperature, precipitation, agricultural
suitability, absolute latitude, elevation, ruggedness, distance to coast, and the distance
to nearest river or lake; A\. denotes continent or country fixed effects; and, V{;) . includes
additional controls (defined at the pixel or ethnicity level, in some specifications).

As mentioned earlier, we control for log population density because we are interested
in per capita levels of economic development. If we subtract log(P,..) from both sides
of equation and let § = 1, the left-hand-side becomes the logarithm of luminosity per
capita. We estimate § as a free parameter to allow the luminosity-population elasticity to
differ from unity (Michalopoulos and Papaioannou, 2018).E| As it happens, our estimates
of ¢ are close to 1 in nearly all our regressions with luminosity as the dependent variable
(including those in other sections reporting other types of analyses), and so we can
interpret the 3 coefficient on the KII in equation (1| as capturing the association between
the KII and the logarithm of luminosity per capita.

Throughout, we account for spatial correlation in the data by clustering standard
errors at the country level in most specifications. We also verify the robustness of our
results to clustering at the level of the language families (based Ethnologue) and at both
the country and language family level using two-way clustering (Cameron and Miller,
2015).

Table (I reports the results of specifications that include various subsets of the co-
variates in equation . Column 1 reports a regression of log luminosity on the KII
and log population density only. The KII's estimated coefficient, B, is —0.512, indi-
cating that a one-standard deviation increase in the KII is associated with a ~ 40%
(= (1 — e 9512) . 100%) decrease in luminosity, as well as in luminosity per capita. (In
all columns of the table, the estimated coefficient on log population density is close to
and not statistically different from unity.) In column 2, when we add the geographic

Even if the true luminosity-population elasticity were unity, the population density data is noisy, so
the elasticity of luminosity with measured population density may be lower than unity.
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Table 1: The KII and nighttime luminosity: OLS estimates

Log nighttime luminosity

@) ©) €) (4) ®) (6) (™) ®) )

KIT S0.512%F% 0.420%%% 0.136%F% 0.110%%*  -0.066 -0.085%* -0.101%** -0.110%** -0.110%**
(0.143)  (0.129)  (0.046)  (0.024)  (0.045) (0.041)  (0.025)  (0.024)  (0.024)
Log population density 0.985%%% 0.992%%% 1.084%%% 1.067%%* 1.066*** 1.066%%* 1.063%%* 1.067+%* 1.067+*
(0.064)  (0.051)  (0.071)  (0.061)  (0.063) (0.063) (0.061)  (0.104)  (0.106)

Subsistence variables yes

Political hierarchies yes

Malaria index yes

Log population density yes yes yes yes yes yes yes yes yes
Geographic controls yes yes yes yes yes yes yes yes
Continent FE yes

Country FE yes yes yes yes yes yes
Observations 377,656 377,666 377,656 377,656 377,656 373,070 377,656 377,656 377,656
R-squared 0.488 0.537 0.582 0.660 0.660 0.661 0.660 0.660 0.660
Number of clusters 138 138 138 138 138 138 138 62 96 & 162

Notes: Each observation is a pixel in the homeland of an ethnicity matched with the direct matching
method. The geographic controls include temperature, precipitation, agricultural suitability, absolute
latitude, elevation, ruggedness, distance to coast, and distance to nearest river or lake. The subsistence
variables measure the fraction of an ethnicity’s subsistence economy that depends on hunting, fishing,
animal husbandry, and agriculture (with gathering as the omitted category). Standard errors in paren-
theses are clustered at the country level in all regressions, except in column 8, where they are clustered
at the language-family level, and in column 9, where they are clustered two-way at both the country and
language-family levels. *** p < 0.01, ** p < 0.05, * p < 0.1

controls, 5 decreases in magnitude to —0.42. Adding continent and country fixed effects,
in columns 3 and 4, reduces the magnitude of the estimates to —0.136 and —0.110, but
also decreases the standard errors, so the estimates of § remain significant. These esti-
mates imply that a one-standard-deviation increase in the KII is associated with a ~ 12%
decrease in luminosity.

In columns 5 to 9, we control for potentially endogenous correlates of the KII that may
confound its association with luminosity. In columns 5 and 6, respectively, we control
for each ethnicity’s subsistence economic activities and their degree of political hierarchy;
and in column 7, we control for the pixel-level malaria index. Finally, in column 8, we
cluster standard errors at the language-family level, and in column 9, we use two-way
clustering at both the country and language-family levels. Our results are robust to these
alternative specifications.

To confirm that these results do not hinge on our use of the direct matching method,
we re-ran the analyses reported in Table [1| using only matches from the language-tree
matching method. Appendix Table B.2.2 shows similar, if somewhat smaller (in magni-
tude), estimates for (.

We also examined the robustness of these results to analyzing the data at the country-
ethnicity level instead of at the pixel level. Appendix Table B.2.3 reports the results of
regressions that parallel those reported in Table 1 and Appendix Table B.2.2. With the
direct-matching method, the estimates of S are consistent throughout and similar (but
somewhat larger in magnitude). Using the matches from the language-tree method, the
results are only significant without continent or country fixed effects.

To examine whether these strong and consistent associations between luminosity and
the KII are driven by one or a subset of the five KII sub-indicators, we estimated the
specification in columns 2 (with the geographic controls) and 4 (with country fixed effects
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as well) of Table 1 again, but separately for each of the five sub-indicators instead of the
KII as the explanatory variable. Panel B of Appendix Table B.2.4 shows the results
obtained with the direct matching method. The associations between luminosity and the
sub-indicators are all negative (except that in column 2, which is nearly 0), and most
are significant at the 5% level. The results with the language-tree matching method (in
Panel A) are similar. Thus, most of the five dimensions of kinship intensity measured by
our sub-indicators are associated with lower levels of economic development, and none
is associated with higher levels. This gives us confidence in the theoretical soundness of
our KII construct and in the appropriateness of aggregating the five sub-indicators into
the KII to study its association with economic development.

4.2 Kinship intensity and regional GDP per capita

We now verify that the association between kinship intensity and economic development
is robust to using a more direct, but less fine-grained, measure of economic development:
log regional GDP per capita (mapped in Appendix Figure B.3.1). To remain consistent
with the above analyses of the KII and nighttime luminosity, we estimated similar spec-
ifications, except that we included year, year-continent, or year-country fixed effects in
the regressions (because of the panel nature of the data), and did not include population
density (since the dependent variable is in per capita terms). As above, we clustered stan-
dard errors at the country level. We used the same set of control variables, constructed
from the same data sources, and estimated one additional specification that also controls
for a dummy equal to 1 if the national capital is located in the region as well as for each
region’s cumulative oil, gas, and liquid natural gas production from the time production
began to 2000.

Table 2: The KII and regional GDP per capita: OLS estimates

Log regional GDP per capita
@ (@) 3 (€] ) ©) ™ ®

KII -0.445%*%*  .0.459%*F*% _0.455%** -0.085** -0.168%** -0.129%** _0.081** -0.081**
(0.105) (0.092) (0.094)  (0.034) (0.039) (0.046)  (0.034) (0.038)

Subsistence variables yes

Political hierarchies yes

Malaria index yes

Oil and Gas production yes

Capital is in Region yes

Geographic controls yes yes yes yes yes yes yes

Year FE yes yes

Year x Continent FE yes

Year x Country FE yes yes yes yes yes

Observations 5,514 5,514 5,514 5,514 5,514 5,514 5,514 5,514

R-squared 0.313 0.511 0.610 0.889 0.890 0.889 0.890 0.902

Number of clusters 61 61 61 61 61 61 61 61

Notes: FEach observation is a region-year in the analysis sample obtained with the direct matching
method. The geographic controls include temperature, precipitation, agricultural suitability, absolute
latitude, elevation, ruggedness, distance to coast, and distance to nearest river or lake. The subsistence
variables measure the weighted fraction of a region’s ethnicities’ subsistence economies that depend on
hunting, fishing, animal husbandry, and agriculture (with gathering as the omitted category). Standard
errors in parentheses are clustered at the country level. *** p < 0.01, ** p < 0.05, * p < 0.1

Table [2| reports the results for the sample obtained with the direct matching method.
In column 1, we only control for year fixed effects. The estimated coefficient on the
KII is —0.445, implying that a one-standard-deviation increase in the KII is associated
with a ~ 36% decrease in GDP per capita. Adding the geographical controls (in column
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2) and year-continent (in column 3) or year-country (in column 4) fixed effects reduces
the magnitude of the estimated coefficient on the KII, but also increases precision; as a
result, the coefficient remains significant at the 1% or 5% level. The estimated coefficient
in column 4, with country-year fixed effects, is —0.085, implying that a one-standard-
deviation increase in the KII is associated with a ~ 8% decrease in GDP per capita
within country. These estimate are strikingly similar to those in Table [, which imply
that a one-standard deviation increase in the KII is associated a ~ 40% decrease in
luminosity per capita, and a ~ 10% decrease within countries.

Columns 5 to 7 parallel the specifications in Table [1| with additional controls for the
subsistence variables, political hierarchy, and the malaria index. In column 8, we control
for cumulative oil and gas production and for the dummy indicating whether the national
capital is located in the region. Appendix Table B.3.2 shows the results for the sample
obtained with the language-tree matching method. The results remain robust across all
of these alternative specifications.

4.3 Spatial regression discontinuity analysis

Our estimates of the association between the KII and economic development are robust
to the inclusion of a rich set of control variables, including geographic, ecological and
cultural variables as well as country fixed effects. Despite this, it is possible that unob-
servable factors may confound our results. These unobservable factors could include, for
example, geographic characteristics such as suitability for certain subsistence practices
that co-determine kinship intensity and economic prosperity. They could also include con-
temporary unobservable factors associated with remoteness such as the limited reach of
central governments or a lack of infrastructure that may simultaneously increase kinship
intensity while hampering economic activity.

To address these concerns, we conducted a spatial regression discontinuity (RD) anal-
ysis following [Michalopoulos and Papaioannoul (2013) and Moscona et al.| (2020). We
compared the luminosity of pixels that are geographically close to one another but belong
to the homelands of neighboring country-ethnicities that vary in their kinship intensity.
This estimation strategy helps account for unobservable factors—including those tied to
geography, history, or infrastructure—that vary smoothly across space.

For our baseline RD analysis, we restrict the sample to pixels that belong to pairs of
contiguous country-ethnicities and that are within 200 km of the ethnic boundary that
separates the two groups. To address concerns that country-level unobservables such as
national institutions may bias the estimates, we further restrict the sample to pairs of
ethnicities located in the same country. Below, we report results based on the sample
obtained with the direct matching method (see Section [3.3)), but we verified that the
results are robust to using the language-tree matching method (Appendix Table B.4.2).

Figure [5|illustrates this setup for a pair of contiguous country-ethnicities in Zimbabwe:
the Ndebele and the Venda. All pixels within 200 km of the boundary are included, with
the exception of pixels that fall directly onto an ethnic boundary or a country border
(since those pixels cannot readily be attributed to only one ethnicity or country). The
Venda, whose KII is 1.948, have higher kinship intensity than the Ndebele, whose KII is
—0.159.

We begin by graphically examining the relationship between luminosity and the dis-
tance to the boundary separating the ethnicities in the pairs, for the set of pixels used in
our baseline analysis. Figure [6] shows a binned scatterplot of log luminosity residualized
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Figure 5: The map shows the nighttime luminosity of the pixels (marked by green squares) for a pair
of contiguous ethnicities in Zimbabwe which are included in our analysis: the Ndebele (to the North)
and the Venga (to the South). The red line is the ethnic boundary that separates the two ethnicities,
and the blue line is located 200 km away from it. We drop pixels whose centroid is not located within
200 km of the ethnic boundary. The whole territory of Venda is within 200 km of the ethnic boundary,
therefore, is included in the analysis. Our analysis only includes pixels that are not crossed by any other
ethnic boundaries (the red line) or national borders (Gray borders). The Venda have a higher kinship
intensity than the Ndebele.

on log population density (on the y-axis) vs. distance to the ethnic boundary (on the
x-axis). Distance to the boundary is negative for pixels in the homeland of an ethnicity
that has the lower KII in a pair, and positive for the ethnicity with the higher KII. The
figure clearly reveals the discontinuity at the boundary. While luminosity is rather uni-
formly distributed to the left and to the right of the boundary, it sharply drops at the
ethnic boundary as we move from the relatively low to the relatively high KII ethnicities.

Next, to implement our formal spatial RD analysis, we adopt the following baseline
specification:

Li,e(e’),c = BK]]e + 0 10g<-Pi,e,c) + /yXi,e,c + 0‘/(1')76 + )\ee’,c + f(Di,e(e/),c) + €ie(e’),c (2)

The dependent variable L; . (.) . is the natural logarithm of the nighttime luminosity of
pixel i in the homeland of ethnicity e that is adjacent to the homeland of ethnicity e’, with
both e and €’ in the same country C.E] We include ethnicity-pair fixed effects (Aeer o), which
account for all (unobserved) factors unique to each ethnicity-pair. Following Moscona
et al. (2020) and |Gelman and Imbens (2019), we also include a local linear polynomial in
the geodesic distance of each pixel’s centroid from the boundary between the two adjacent

15Note that a pixel can enter the regression multiple times as separate observations if the country-
ethnicity in whose homeland it falls is in pairs with multiple contiguous other country-ethnicities.
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Figure 6: Binned scatterplot of the relationship between distance to the boundary and luminosity,
across pixels located in the homelands of pairs of adjacent ethnicities in the same country. The y-
axis shows log luminosity residualized on log population density. The x-axis shows the distance to the
boundary in kilometers, with negative distances for pixels associated with the ethnicity with the lower
KII in a pair, and positive distances for the ethnicity with the higher KII. The average KII across the
pixels that belong to ethnicities with the relatively low KII is —1.54; for the ethnicities with the relatively
high KII, it is 0.09. (We created 16 bins according to the distance to the border (25km each); this implies
that bins vary in the number of the underlying data points.)

ethnicities, f(D;e(er)), with different coefficients on the distance term for the relatively
high and the relatively low KII ethnicities in the pairs. As in equation , K11, is the
KII for ethnicity e, P; . is the pixel’s population density, X . . is the vector of geographic
controls, and V(;) . denotes the additional controls used in some specifications.

Table |3| reports the results for this baseline specification. In column 1, without the
geographic controls, the estimated coefficient on the KII is B = —0.06, which implies
that a one-standard deviation increase in the KII is associated with a ~ 6% decrease in
luminosity. Adding the baseline geographic controls in column 2 increases  only slightly
in magnitude, to —0.072.

In columns 3-5, B remains fairly stable when we add controls for the subsistence
variables, political hierarchy, and the malaria index. Similarly, clustering at the language-
family level or two-way clustering at both the country and language-family levels (columns
6 & 7) does not appreciably impact the standard errors. As can be seen in Appendix Table
B.4.2, these results also hold in the sample obtained using the language-tree-matching
method, though estimates of 5 become slightly smaller in magnitude.

Table 4| shows the results of several robustness checks. In columns 1 and 2, we exclude
ethnicity-pairs for which the difference in KII is less than 0.1 or 1 standard deviations,
respectively. In column 3, to address concerns that some pixels that are part of a large
number of ethnicity-pairs receive too much weight in the regressions, we drop pixels that
are part of more than 20 different ethnicity pairs. In column 4, we include pairs of
neighboring ethnicities that are located in different countries and include country fixed
effects in the regression. Finally, in columns 5 and 6, we use alternative approaches
to control for the pixels’ distances to the ethnic boundaries. Column 5 interacts the
distance-to-the-boundary polynomial with ethnicity-pair fixed effects, and so includes a
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Table 3: The KII and nighttime luminosity: spatial RD analysis

Log nighttime Tuminosity

(@) (€) €) 4) ®) (6) M

KII -0.060%** -0.072%** -0.085** -0.078%* -0.071*** -0.072*** -0.072***
(0.019) (0.017) (0.039) (0.038) (0.017) (0.018) (0.018)

Log population density 1.088%** 1.059%** 1.056%** 1.061*** 1.056*** 1.059*** 1.059***
(0.084) (0.077) (0.079) (0.076) (0.077) (0.112) (0.115)

Subsistence variables yes

Political hierarchies yes

Malaria index yes

Log population density yes yes yes yes yes yes yes

Geographic controls yes yes yes yes yes yes

Distance-to-the-boundary polynomial  yes yes yes yes yes yes yes

Ethnicity pair FE yes yes yes yes yes yes yes

Observations 290,669 290,669 290,669 289,740 290,669 290,669 290,669

R-squared 0.600 0.613 0.613 0.614 0.614 0.613 0.613

Number of clusters 70 70 70 70 70 58 58 & 70

Notes: Each observation is a pixel that belongs to an ethnicity in a pair of contiguous ethnicities in the
same country, and that falls within 200 km of the boundary between the two ethnicities. The geographic
controls include temperature, precipitation, agricultural suitability, absolute latitude, elevation, rugged-
ness, distance to coast, and distance to nearest river or lake. “Distance-to-the-boundary polynomial” is
the geodesic distance of each pixel’s centroid from the boundary between the two adjacent ethnicities; we
allow the coefficient on the distance term to differ between the relatively high and the relatively low KII
ethnicities in the pairs. The subsistence variables measure the fraction of an ethnicity’s subsistence econ-
omy that depends on hunting, fishing, animal husbandry, and agriculture (with gathering as the omitted
category). Political hierarchy measures the number of levels of jurisdictional hierarchy for an ethnicity,
while the Malaria Index captures the ecological suitability for malaria. Standard errors in parentheses
are clustered at the country level (in columns 1-5), language family (in column 6), and two-way clustered
at both the country and language-family levels (in column 7). *** p < 0.01, ** p < 0.05, * p < 0.1

different coefficient on the distance term for each ethnicity in each of 572 ethnicity pairs.
This is a demanding specification, but it allows us to control for distance patterns specific
to each ethnicity in each pair. In column 6, rather than controlling for the distance to the
boundary, we interact the longitude and latitude of each pixel with ethnicity-pair fixed
effects; this specification controls more directly for features that vary in two-dimensional
space in the homelands of each ethnicity pair. The results are robust to these alternative
specifications.

For several reasons, our analysis so far may underestimate the true magnitude of f.
First, our estimates may capture the spillover effects of light across ethnic boundaries—
i.e., some pixels may appear brighter than they actually are due to overglow from bright
nearby pixels in the neighboring ethnicity’s homeland. Second, there may be spillovers in
economic activity across the boundaries. And third, the fraction of the population belong-
ing to each ethnicity may not change discontinuously at the ethnic boundary, for instance
due to intermarriage, trade, or the presence of multi-ethnic urban agglomerations.

To address these concerns, table [5| presents specifications using subsets of pixels that
fall within different ranges of distances to the ethnic boundary. In columns 1 to 3, we
still start at the boundary, but reduce the maximal distance to the boundary from 200
km (our baseline specification, also reported in column 2 of Table |3 to 150 km and then
100 km. In columns 4-6 and 7-9, to mitigate potential bias due to light and economic
spillovers and the smooth variation in population composition across boundaries, we drop
pixels that are within 25 km and 50 km of the boundary, respectively.

The estimates are remarkably robust to using these alternative subsets of pixels. Con-
sistent with our intuition that light and economic spillovers and the smooth variation in
population composition at the boundary may bias our estimates downward, the esti-
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Table 4: Spatial RD analysis: additional robustness checks

Log nighttime Tuminosity
@) (2) (3) @) (5) (6)
KII diff. KII diff. Only in Cross-country
> 0.1 > 1 <20 pairs sample

KII -0.069%** -0.037* -0.072%¥**  -0.070***  -0.057** -0.051%**
(0.018) (0.022) (0.017) (0.017) (0.024) (0.012)
Log population density yes yes yes yes yes yes
Ethnicity pair FE yes yes yes yes yes yes
Log population density yes yes yes yes yes yes
Geographic controls yes yes yes yes yes yes yes
Country FE yes
Distance-to-the-boundary polynomial yes yes yes yes
Dist. to the boundary poly. X ethnicity pair yes
Latitude & longitude X ethnicity pair yes
Observations 277,946 164,191 287,624 370,771 290,669 290,669
R-squared 0.609 0.578 0.614 0.637 0.633 0.646
Number of clusters 70 46 70 104 70 70

Notes: Each observation is a pixel that belongs to an ethnicity in a pair of contiguous ethnicities in the
same country (except in column 4), and within 200 km of the boundary between the two ethnicities.
The geographic controls include temperature, precipitation, agricultural suitability, absolute latitude,
elevation, ruggedness, distance to coast, and distance to nearest river or lake. In columns 14, “Distance-
to-the-boundary polynomial” is the geodesic distance of each pixel’s centroid from the boundary between
the two adjacent ethnicities; we allow the coefficient on the distance term to differ between the relatively
high and the relatively low KII ethnicities in the pairs. In columns 1 and 2, we drop ethnicity pairs whose
KII differences is less than 0.1 and 1 standard deviations, respectively. In column 3, we drop pixels that
appear in more than 20 ethnicity pairs. In column 4, we also include in the analysis ethnicity pairs with
ethnicities in different countries, and include country fixed effects in the regression. Column 5 interacts
the distance-to-the-boundary polynomial with ethnicity pair fixed effects, and column 6 interacts instead
each pixel’s latitude and longitude with ethnicity-pair fixed effects. Standard errors in parentheses are
clustered at the country level. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 5: Spatial RD analysis with pixels at various distances from the ethnic boundaries

Log nighttime Tuminosity

) ) ®) €Y ) (6) (1) ®) )

Distance to border (in km) 0-200 0-150 0-100 25-200 25-150 25-100 50-200 50-150 50-100
KII -0.072%%* -0.065%** -0.046* -0.096*** -0.093%** -0.079** -0.118*** _0.121*** -0.115**
(0.017)  (0.021) (0.028) (0.022) (0.025) (0.034) (0.028) (0.030) (0.045)
Log population density yes yes yes yes yes yes yes yes yes
Geographic controls yes yes yes yes yes yes yes yes yes
Distance-to-the-boundary polynomial  yes yes yes yes yes yes yes yes yes
Ethnicity pair FE yes yes yes yes yes yes yes yes yes
Observations 290,669 219,874 146,438 268,628 197,833 124,397 227,620 156,825 83,389
R-squared 0.613 0.619 0.623  0.615 0.621 0.626 0.616 0.624 0.630
Number of clusters 70 70 70 70 70 70 70 70 70

Notes: Each observation is a pixel that belongs to an ethnicity in a pair of contiguous ethnicities
in the same country. The various specifications are identical, but the analysis samples include pixels
located at different ranges of distances from the boundary separating the two ethnicities in a pair.
The geographic controls include temperature, precipitation, agricultural suitability, absolute latitude,
elevation, ruggedness, distance to coast, and distance to nearest river or lake. “Distance-to-the-boundary
polynomial” is the geodesic distance of each pixel’s centroid from the boundary between the two adjacent
ethnicities; we allow the coefficient on the distance term to differ between the relatively high and the
relatively low KII ethnicities in the pairs. Standard errors in parentheses are clustered at the country
level. *** p < 0.01, ** p < 0.05, * p < 0.1

mates become larger in magnitude as we drop pixels that are within 25 and then 50 km
of the ethnic boundary. When the pixels within 50 km of the boundary are dropped, our
estimates imply that a one-standard-deviation increase in the KII is associated with a
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decrease of ~ 11% (= (1 — e %1?) - 100%) in luminosity.

Since all the ethnicity pairs in our baseline RD analysis sample are in the same country,
we can compare our RD estimates to those of the earlier OLS regressions with country
fixed effects. With log luminosity and log regional GDP per capita as the dependent
variables, the earlier corresponding estimates, reported in column 4 of Table[I]and of Table
[2, were —0.110 and —0.085, similar to our spatial RD estimates when pixels within 25 or
50 km from the ethnic boundaries are dropped. This reveals a noteworthy consistency
across the results of the three main empirical approaches presented thus far.

Our spatial RD analysis helps accounts for potential bias from unobservables that
vary smoothly across ethnic boundaries. While it is not possible to test whether there
are unobservables that vary discontinuously at the boundary, we can conduct a “placebo”
RD analysis and examine whether observable variables show any signs of discontinuities at
the boundaries. To do so, we estimated equation again in our baseline analysis sample
of pixels, but dropped the geographic controls and swapped the dependent variable, log
luminosity, for each of our geographic controls in turn. The results, reported in Appendix
Table B.4.3, show that the estimated coefficients on the KII are not significant at the 5%
level for any of the geographic controls['f Overall, we find no evidence that discontinuities
in observable geographic characteristics are present at ethnic boundaries.

5 The inbreeding coefficient, kinship intensity, and
economic development

To address potential shortcomings of using the KII as a measure of kinship intensity,
we used genetic data to compute the inbreeding coefficient for individuals in the Human
Origins (HO) dataset (Reich Lab, 2020). The inbreeding coefficient, denoted F, is a
core variable in population genetics that measures the relatedness of ones’ parents. HO
contains genetic data on 9,460 present-day individuals and 3,723 ancient individuals E]
from populations around the world, compiled from previously published genetics studies
(including Jeong et al., 2019; Lazaridis et al., [2014} 2016} Lipson et al., [2018; Nakatsuka
et al., 2017, and Pickrell et al.; 2012). We matched the present-day HO individuals to
Ethnologue ethnicities and used the ethnicities’ average inbreeding coefficients as our
alternative measure of kinship intensity.

We begin this section by briefly describing the inbreeding coefficient as well as the
methodology we used to estimate it, and by defining several additional variables we
computed with the HO genetics data. Appendix C provides further detail. Next, we
examine the inbreeding coefficient’s associations with kinship intensity, and then with
economic development.

5.1 The inbreeding coefficient and other genetic variables

Inbreeding occurs when two related individuals mate and produce offspring. Related
individuals share DNA from one or more common ancestors, and thus inbreeding increases
the probability that at a given location on a chromosome, their offspring inherits identical
DNA segments on the maternal and paternal copies of the chromosome (Ceballos et al.|

16The estimated coefficient is significant at the 10% level when “distance to coast” is the dependent
variable, but this may be a false positive due to multiple hypothesis testing.
1"The ancient individuals lived between ~ 88,000 BCE and ~ 1900 CE; we did not analyze their data.
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2018). (Recall that humans have 23 pairs of chromosomes: they inherit one of the
chromosomes in each pair from their mother and the other from their father.) First
cousins, for instance, share both a grandmother and a grandfather, so some DNA segments
they inherited from their shared grandparents will be identical across their two genomes.
As a result, if two first cousins mate and produce a child, that child will have locations in
their genome where they will have inherited identical DNA segments from their two cousin
parents, coming originally from the same grandmother or grandfather. The maternal and
paternal variants at such genomic location are said to be homozygous—since they are
identical—and identical-by-descent (IBD)—since they can also be traced back to one
common ancestor.

A common measure of the intensity of inbreeding is called the coefficient of inbreeding,
denoted F'. F measures the probability that the maternal and paternal variants at a
location in the genome are IBD, and this is also equal to the expected fraction of the
genome that is IBD for a given individual. An individual’s F' coefficient is typically equal
to the coefficient of kinship, or one-half the coefficient of relationship, between their
two parents (Cavalli-Sforza and Bodmer} [1999; Falconer and Mackay, [1996). The latter
is a measure of the relatedness between the two parents; for example, the expected F
coefficient of the offspring of two second-degree cousins is 0.015625 (= % . 6—12), whereas it is
0.0625 (= 5 - £) for the offspring of first-degree cousins and 0.25 (= 1 - ) for the offspring
of two siblings. Thus, F' measures the degree to which an individuals’ two parents are
related, and a population’s average F' should in principle correlate positively with its KII,
and with its rate of cousin marriage in particular.

Various methods have been developed to estimate F' using an individual’s genetic
data. Our main measure of F', denoted Frop, is the fraction of an individual’s autosomal
genome that contains runs of homozygosity (ROHs) of at least 1.5 Mb in length. The
autosomal genome comprises the 22 pairs of chromosomes other than the sex (X and
Y) chromosomes, and ROHs are continuous segments of homozygous variants. Because
the length of the autosomal genome is estimated at 3,000 MH™| (Clark et al 2019), an
individual’s Frog can be calculated as

li
FROH = Z 3 000’ (3)

%

where the sum is over the individual’s ROHs that are at least 1.5 Mb in length and [; is
the length of ROH ¢ in Mb.

Longer ROHs (e.g., ROHs at least 1.5 Mb in length) typically result from inbreeding
(Ceballos et al., |2018) and have been shown to correlate positively with pedigree-based
estimates of inbreeding (Kang et al., 2017; [McQuillan et al., 2008 |Pemberton and Rosen-
berg), |2014) and with population-level cousin marriage preferences (Sahoo et al., |2021)).
Below in Section [5.2] we too find that Froy (or, equivalently, longer ROHs) correlates
positively with cousin marriage preferences; we also find that Froy correlates positively
with the KII.

We estimated Froy for 4,756 present-day individuals in the Human Origins (HO)
data set whose genetic data were collected using the Affymetrix Human Origin genotyp-
ing array and who passed a number of quality control filters. As we describe in more
detail in Appendix C, we used the ROHgen2 software pipeline developed by the ROHgen

18 A megabase (Mb) is a unit of physical distance in the genome
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consortium (Clark et al. 2019)@ to estimate Frop, and conducted diagnostic checks to
verify the reliability of our Froy estimates. We then matched the HO individuals to
551 Ethologue ethnicities using a procedure that resembles the direct matching method
described in Section that we used to match the EA data. We computed the average
From, which we denote Frop, across the HO individuals matched to each ethnicity. We
dropped ethnicities with fewer than eight individuals, leaving 416 ethnicities in the sam-
ple. For our main analysis with Frop—of its relationship with luminosity at the pixel
level—we further dropped pixels that did not pass the filters described in Sections |3.1
and [3.3 thus leaving 281,177 pixels that fall in the country-homelands of 245 country-
ethnicities.

We note that while F' is the fraction of the genome that is IBD, Fropy is the fraction
that is in ROHs longer than 1.5 Mb. Because some ROHs that are shorter than 1.5
Mb are IBD and some longer ROHs are not IBD, Frog is not a perfect measure of F'.
ROHs can arise in individuals for a variety of reasons unrelated to marital practices and
kinship systems. Using only ROHs that are at least 1.5 Mb long to compute Froy helps
mitigate, but does not eliminate, concerns that Froy may capture influences other than
consanguineous marriage practices and intensive kinship.

For these reasons, we also used the HO genetic data to compute the following “genetic
controls” that may correlate with Froy but are unrelated to kinship intensity and con-
sanguineous marriage practices, and included them in our empirical analyses as controls:

o FExpected heterozygosity: Expected heterozygosity is a measure of genetic diversity
in a population and is defined as the probability that two randomly selected in-
dividuals from a population have different genetic variants at a randomly selected
location on one chromosome in the genome. FExpected heterozygosity has been
shown to correlate negatively across populations with mean F' estimated with ge-
netics data (Pemberton and Rosenberg, [2014)) and to correlate nonlinearly across
countries with economic development (Ashraf and Galor, |2013). Expected het-
erozygosity decreases with migratory distance from East Africa, consistent with a
migration model that predicts increased genetic drift and decreased heterozygosity
with increased distance from Africa (Ramachandran et al., 2005). We also include
migratory distance from East Africa among our “genetic controls”.

e The top 20 principal components of the genotypic data: We computed the top 20
principal components (PCs) of the genotypic data for each individual and took
the average value of each PC in each ethnicity. It has been shown that the top
PCs are good proxies for individuals’ geographic origins and that including them
as controls in regressions helps mitigate bias related to population stratification
(Novembre et al., 2008; [Price et al. 2006). (Population stratification refers to
systematic differences in genetic variants’ frequencies that correlate with cultural
or environmental differences (Hamer| 2000).)

e Mean regional pairwise Fgp: Both F and Frog tend to be inflated in populations
that are genetically isolated (due to geographical or cultural distance or taboos
prohibiting mating with individuals from other populations—see Pemberton and
Rosenberg (2014))). In such populations, reduced mate choice can lead to increased
cryptic inbreeding, in which two parents may have a recent common ancestor by

19The ROHgen consortium is a large consortium of research groups that seeks to estimate the effect
of inbreeding on various traits (Clark et al., 2019} |Joshi et al.| [2015)).
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chance and not due to a deliberate cultural practice of mating with relatives. Fol-
lowing [Pemberton and Rosenberg| (2014)), we estimate the degree of genetic isolation
of a population using the average pairwise genetic distance “Fg7” between that pop-
ulation and other populations in the same geographic world region with sufficient
sample sizes.

Appendix C provides additional details on these genetic controls and Appendix Table
B.5.1 shows summary statistics for Froy and these genetic controls (except the PCs,
whose scale is arbitrary). Across 416 Ethnologue ethnicities, Froy ranges from 0.003 to
0.146, with a mean of 0.020 and a standard deviation of 0.018. To put these figures in
perspectives, two populations in which everyone were the offspring of second-cousin and
uncle-niece unions would have mean F' of 0.015625 and 0.125, respectively, close to the
mean and maximum Froy in our sample. We estimated the mean Frop’s of the English,
Kurukh, and Marri Baloch (the three societies described in Section to be 0.0065,
0.0157, and 0.0617, respectively.

5.2 The inbreeding coefficient and kinship intensity

As mentioned above, Frog has been shown to correlate with inbreeding and both con-
sanguineous marriage preferences and practices (Ceballos et al., [2018; Kang et al., 2017}
McQuillan et al., 2008 Pemberton and Rosenberg, 2014} Sahoo et al., 2021). In theory,
endogamy and polygyny should also increase inbreeding, and so our community orga-
nization and polygamy KII sub-indicators should be positively associated with Fropy.
Norms favoring endogamy mean that people marry and mate within a relatively small
population, thus increasing the likelihood of consanguineous unions (without explicit pre-
scribing them). The role of polygyny can be more difficult to understand. Polygyny, all
else being equal, increases inbreeding in a population by decreasing the total number of
fathers who provide genes each generation—meaning more people share the same fathers,
grandfathers and great grandfathers, and are thus effectively paternal cousins.

To further validate our estimates of Frog as a proxy for kinship intensity, we exam-
ined its association with the cousin-marriage-preference KII sub-indicator, with the KII
itself, as well as with the four other KII sub-indicators. Across the 398 ethnicities with
non-missing data, the correlation between Frog and the cousin-marriage-preference sub-
indicator is 0.28; after partialling out the effects of the genetic controls from Frog, the
correlation increases to 0.32. Unsurprisingly, given that the cousin-marriage-preference
sub-indicator is one of the five components of the KII and that some other dimensions of
the KII can impact consanguinity, Froy also correlates with the KII (7 = 0.26), though
the correlation is lower if Froy is first residualized on the genetic controls (7 = 0.14).

Table [6] shows regression results of the cousin-marriage-preference sub-indicator and
of the KII on Frpp. In all specifications, the coefficient on Frop is highly statistically
significant and large in magnitude. For instance, in the regressions in columns 2 and 6
with the genetic controls, the coefficient estimates of 45.744 and 13.185 imply that the
cousin-marriage preferences and KII of an ethnicity in which everyone is the offspring of
second cousins (Frog = 6—14 = 0.015625, assuming no influences other than inbreeding),
are ~ 0.7 and ~ 0.2 standard deviations higher than those of an ethnicity in which
everyone is the offspring of unrelated parents (Froxy = 0; by comparison, as shown
in Appendix Table B.5.1, the standard deviation of Fropy across country-ethnicities is
0.018). Further, Froy accounts for a nontrivial share of the variation in cousin marriage
preferences: its incremental R?, defined as the difference in R? between the regression

31



on Frog and the controls and the same regression but on the controls only, is 0.095. As
shown in Appendix Table B.5.2, these results are robust to alternative specifications.

Table 6: The inbreeding coefficient and kinship intensity

Cousin marriage preference KII
(1) [€) 3) “) () (6) () (8

Fromn 18.491%%* 45.744*** 44 566*** 37.557*** 11.641%%* 13.185%** 13.319*** 14.549%**

(5.346)  (5.653)  (5.772)  (8.379) (3.067) (2.714) (2.761)  (4.033)
Genetic controls yes yes yes yes yes yes
Continent FE yes yes
Country FE yes yes
Observations 398 397 397 397 396 395 395 395
R-squared 0.077 0.433 0.453 0.683 0.066 0.717 0.720 0.843
AR%2(Fromn) 0.0775 0.0951 0.115 0.0419 0.0665 0.0171 0.0200  0.0136
Number of clusters 127 127 127 127 127 127 127 127

Notes: Each observation is a country-ethnicity from the Ethnologue. The genetic controls include
expected heterozygosity, migratory distance from East Africa, the top 20 PCs, and mean regional pairwise
Fsr. AR?>(Frop) is the incremental R? of Frop, defined as the difference in R? between the regression
on Fropy and the controls and the regression on the controls only. Standard errors, clustered at the
country-level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Appendix Table B.5.3 shows the results of regressions of the four other KII sub-
indicators on Frog. As expected, the polygamy, community organization, and lineage
organization sub-indicators are positively associated with Fropy. Interestingly, the co-
residence sub-indicator is negatively associated with Frog. This may be due to a natural
incest aversion that reduces sexual attraction between individuals who grow up in the
same household.

5.3 The inbreeding coefficient and nighttime luminosity

Table reports the results of regressions of luminosity on Frop across pixels. The analysis
mirrors that of the association between luminosity and the KII in Section [4.1, but with
Frop substituted for the KII as the explanatory variable of interest and with the genetic
controls also included in the regressions (except in column 1).

Consistent with our estimates of a negative relationship between luminosity and the
KII, the association between luminosity and Fropy is consistently negative and accurately
estimated in all specification (p < 0.5). When population density along with both the
genetic and geographic controls are included (in column 3), the coefficient estimate of
—25.841 implies that log luminosity is 0.40 units lower (= 25.841g;), and luminosity

~ 33% lower (= (1—e(~2%4151)).100%), for an ethnicity in which everyone is the offspring
of second cousins compared to an ethnicity in which everyone is the offspring of unrelated
parents. These results are robust to controlling for continent and country fixed effects
(columns 4 and 5); for the subsistence variables, political hierarchy, and the malaria index
(columns 6-8); as well as to clustering standard errors at the language-family level and
two-way at both the country and language-family levels (columns 9-10).

Appendix Table B.6.2 reports additional regressions we conducted to further assess the
robustness of the results. Column 1 shows that our results hold when the genetic controls
are dropped from the regression. As mentioned above, for our baseline analyses, we
dropped ethnicities to which fewer than 8 HO individuals could be matched, so columns
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Table 7: The inbreeding coefficient and nighttime luminosity

Log nighttime luminosity

) 2 3) (4) ®) (6) ™) ®) ©) (10)

Fron -41.297%%-27.265%*-25.841%*-27.094**-21.026***-18.235%*-15.943**-20.923***_21.026***-21.026***
(18.654) (11.294) (11.267) (12.315) (7.633) (8.357) (6.766) (7.460) (5.584) (7.995)

Subsistence variables yes

Political hierarchies yes

Malaria index yes

Log population density  yes yes yes yes yes yes yes yes yes yes

Genetic controls yes yes yes yes yes yes yes yes yes

Geographic controls yes yes yes yes yes yes yes yes

Continent FE yes

Country FE yes yes yes yes yes yes

Observations 281,177 281,177 281,177 281,177 281,177 281,177 281,100 281,177 281,177 281,177

R-squared 0.503 0.633 0.652 0.652 0.674 0.674 0.674 0.674 0.674 0.674

Number of clusters 98 98 98 98 98 98 98 98 30 95 & 157

Notes: Each observation is a pixel. The genetic controls include expected heterozygosity, migratory
distance from East Africa, the top 20 PCs, and mean regional pairwise Fsr. The geographic controls
include temperature, precipitation, agricultural suitability, absolute latitude, elevation, ruggedness, dis-
tance to coast, and distance to nearest river or lake. The subsistence variables measure the fraction of
an ethnicity’s subsistence economy that depends on hunting, fishing, animal husbandry, and agriculture
(with gathering as the omitted category). Standard errors in parentheses are clustered at the country
level in all regressions, except in column 9, where they are clustered at the language-family level, and
in column 10, where they are clustered two-way at both the country and language-family levels. ***
p < 0.01, ** p < 0.05, * p<0.1

2—-4 explore the sensitivity of the results to using alternative cutoffs of 5, 10, and 15
individuals. The association between luminosity and Froy is robust to using a cutoff of 5
individuals; however, with larger cutoffs of 10 and 15 individuals, the estimated coefficient
on Frog shrinks slightly in magnitude (but remains negative) while the standard error
increases, resulting in uncertainty that exceeds conventional cutoffs (p > 0.05). Given
that relatively few individuals were sampled for each ethnicity (see Appendix Table B.5.1)
and that they were sampled by different teams of researchers with different protocols, this
lack of robustness is not particularly surprising.

6 Causal pathways

Now that we have empirically established a robust and economically relevant negative
association between kinship intensity and economic development, we turn our attention
to the causal pathways that may account for that association.

We begin, in Section by verifying that the association between kinship inten-
sity and economic development is robust to accounting for two important potential con-
founders: Christianity and European ancestry. We find that, while the association is
generally less significant and robust when adjusting for these factors, it cannot be en-
tirely driven by these factors. Next, in Section [6.2] we discuss the potential role of reverse
causality—i.e., the potential causal impact of economic development on kinship intensity.
We conclude that, while economic development likely does erode kin-based institutions, it
is unlikely to account for much of the kinship intensity-economic development association
we document.

We thus interpret our findings as pointing to a likely negative causal effect of kinship
intensity on economic development. In Section we discuss mechanisms that may ac-
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count for such a negative causal effect. To do so, we briefly review the relevant literature
and supplement that review with our own exploratory analyses. We consider the poten-
tial roles of (1) the division of labor and comparative advantage; (2) cultural psychology,
including impersonal trust, impersonal cooperation, impartiality, and individualism, and
conformity; (3) institutions; (4) innovation; and (5) inbreeding depression. We find sup-
portive evidence for a role for the first four channels, but argue that inbreeding depression
is unlikely to play an important role.

6.1 The Church, European ancestry, kinship intensity, and eco-
nomic development

In Schulz et al.| (2019), we argued that the Western Church—the branch of Christianity
that evolved into the Roman Catholic Church—had a profound impact on European kin-
based institutions during the Middle Ages through its “Marriage and Family Program”,
which involved a set of policies that forbade cousin marriage and promoted neolocal
residence and weak family ties. Relatedly, Christian missions often explicitly preached
against polygyny, cousin marriage, arranged marriages and other elements of intensive
kinship (Fenske, [2015; Bergeron, |2020) while actively working to spread Christian super-
natural beliefs. The Western Church, or Christianity, may also have directly impacted
economic prosperity by encouraging schooling and literacy, as h