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Research question

Key questions:

� Do mutual fund managers have skills and outperform their benchmarks?

� If yes, can we predict which and when mutual fund managers have skills?

Challenges:

� Big Data: Information about mutual funds is high-dimensional.

� Non-parametric: Skill can depend in a complex way on the information set.

� Time variation: Skill can depend on time-varying economic conditions.

Our solution: A machine learning approach

� Machine learning methods are very flexible and deal with big data.

� We predict risk-adjusted fund performance with neural networks

� We use large set of fund and holding-based stock characteristics and

macroeconomic information

2



Literature (Partial List)

Machine learning in finance: Gu et al. (2020), Freyberger et al. (2020), Chen

et al. (2019), Bryzgalova et al. (2019).

ML for funds: Independent work included as subset of our analysis:

� Li and Rossi (2021): predict returns (orthogonal objective:we predict

abnormal returns), only stock characteristics (we find fund characteristics

important for identifying skill), no macro information as predictor (we

uncover interaction effects with sentiment)

� DeMiguel et al. (2022): abnormal returns, only fund charact., no macro

Fund return predictability: Gruber (1996), Zheng (1999), Sapp and Tiwari

(2004), Carhart (1997), Bollen and Jeffrey (2005), Kacperczyk et al. (2005)

Performance and macroeconomic conditions: Stambaugh et al. (2012),

Moskowitz (2000), Kosowski (2011), Kacperczyk et al. (2014, 2016)

Fund performance: Berk and Green (2004), Fama and French (2010).
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Skill of fund managers: Risk-adjusted returns

Object of interest: Abnormal returns:

Rabn
i,t = Ri,t − Ft β̂i,t−1,

Ri,t−36:t−1 = αi + Ft−36:t−1β̂i,t−1 + ηi,t−36:t−1

� Monthly abnormal returns measure the skill of fund managers

� Abnormal returns are return residuals after subtracting Carhart (1997)

4-factor exposures

� Results robust to addition of other risk factors.

� Rolling window regression to capture time-variation
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Information set

Actively managed equity mutual funds:

� 407,158 observations for 3,275 funds from 1980/01 to 2019/01.

Holding based stock characteristics

� 46 stock characteristics, weighted by mutual fund holdings.

� Six groups: Past returns, Investment, Profitability, Intangibles, Value, and

Trading Frictions.

13 Fund-specific characteristics

� Fund Residual Momentum: F ST Rev, F r2 1, F r12 2

� Fund Characteristics: age, tna, flow, exp ratio, turnover ratio

� Fund Family Characteristics: Family tna, fund no, Family r12 2,

Family age, Family flow

Macroeconomic state variables

� Investor sentiment as in Baker and Wurgler (2006)

� Chicago Fed National Activity Index (CFNAI) for real activity
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Machine Learning Solution

� Predict fund abnormal returns with a neural network of lagged predictors:

Rabn
i,t+1 = g(zi,t , zt) + ϵi,t+1

⇒ Estimate skill (abnormal return) conditional on fund specific information

zi,t and macro states zt

� Neural networks can reliably estimate a complex functional relationship

among a large set of variables.

� Illustration of Feedforward Network with Single Hidden Layer
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Time series of macroeconomic states

Sentiment

Problem: All economic conditions must be represented in all subsamples.

Our solution: Cross-out-of-sample evaluation

� Randomly split full sample into three periods. In each fold, use one period

for out-of-sample evaluation and combine data from the other two for

training and validation.

� Combine models estimated on each of the three folds.

⇒ Each and every data point is evaluated out-of-sample.

⇒ High and low macro states in all training and evaluation samples.
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Time series of macroeconomic states

Sentiment for cross-out-of-sample folds

Problem: All economic conditions must be represented in all subsamples.

Our solution: Cross-out-of-sample evaluation

� Randomly split full sample into three periods. In each fold, use one period

for out-of-sample evaluation and combine data from the other two for

training and validation.

� Combine models estimated on each of the three folds.

⇒ Each and every data point is evaluated out-of-sample.

⇒ High and low macro states in all training and evaluation samples.
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Prediction-sorted portfolios

� Prediction sorted portfolios measure the predictability of skill:

Sort funds into deciles based on neural network prediction

� Equally-weighted portfolios only use the ranking of the prediction signal.

� Prediction-weighted portfolios use both the ranking and relative

magnitude.

(a) Prediction weights (b) Equal weights

Portfolio weights for top and bottom deciles
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All characteristics + sentiment

Equally-weighted deciles

Abnormal returns are predictable

� 10% best funds: cumulative abnormal return of 48% equally-weighted.

� 10% worst fund: cumulative abnormal return of -93% equally-weighted.

Prediction-weights better capture economic benefits:

� 10% best funds: cumulative abnormal return of 72% prediction-weighted

� 10% worst fund: cumulative abnormal return of -119% prediction-weighted

⇒ Avoiding the worst mutual funds more valuable than investing in the best.

⇒ After fees: Same spread, cumulative abnornal return of 37% for top 10%.
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All characteristics + sentiment

Prediction-weighted deciles

Abnormal returns are predictable

� 10% best funds: cumulative abnormal return of 48% equally-weighted.

� 10% worst fund: cumulative abnormal return of -93% equally-weighted.

Prediction-weights better capture economic benefits:

� 10% best funds: cumulative abnormal return of 72% prediction-weighted

� 10% worst fund: cumulative abnormal return of -119% prediction-weighted

⇒ Avoiding the worst mutual funds more valuable than investing in the best.

⇒ After fees: Same spread, cumulative abnornal return of 37% for top 10%. 9



Information set comparison

Stock-specific characteristics only

� Compare information sets for the same flexible machine learning method:

Stock-specific or fund-specific characteristics

⇒ Holding-based stock characteristics not predictive for abnormal returns

⇒ Fund-specific characteristics predict abnormal returns
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Information set comparison

Fund-specific characteristics

� Compare information sets for the same flexible machine learning method:

Stock-specific or fund-specific characteristics

⇒ Holding-based stock characteristics not predictive for abnormal returns

⇒ Fund-specific characteristics predict abnormal returns
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Information set comparison

Cumulative abnormal returns of long-short prediction decile portfolios

� Spread in skill: Long-short prediction portfolio of top and bottom deciles

� Economic measure of skill - not necessarily tradable investment strategy

� Stock characteristics are not predictive.

� Fund characteristics and sentiment are extremely useful for prediction.

11



Information set comparison: A refinement

Information set mean (%) t-stat SR R2
F (%)

Stock -0.02 -0.2 -0.01 -1.60

Stock+ sentiment 0.15 1.6 0.07 1.27

Stock+ fund 0.28 3.3*** 0.15 2.30

Stock+ fund+ sentiment 0.41 4.5*** 0.21 5.00

Fund 0.38 5.5*** 0.25 0.19

Fund+ sentiment 0.40 5.4*** 0.25 2.73

Fund momentum + Flow + sentiment 0.48 5.2*** 0.24 0.92

Statistics of long-short prediction decile portfolios

Rank vs level prediction:

� R2
F measures how well the realized long-short portfolio return is predicted.

⇒ Sentiment improves level prediction without changing relative ranking

Which information matters?

� Stock-specific information: Low Sharpe ratios and insignificant spread

� Fund-specific characteristics necessary for high Sharpe ratios and

significant spreads

� Fund momentum, flow + sentiment capture most of the relative ranking 12



Predicting returns vs. abnormal returns

Fund-specific characteristics + sentiment Stock-specific characteristics + sentiment

Return prediction different from abnormal return prediction

� Returns have a strong market component (level effect)

� Returns are predictable by stock and fund characteristics

⇒ Stock characteristics predict systematic factor component

Abnormal return prediction is relative objective and preferable:

� Higher Sharpe ratio and R2
F than for abnormal returns than for returns

� Return prediction: SR=0.14, R2
F=-26.54

� Abnormal return prediction SR=0.21, R2
F=5.00
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Holding Periods

Mean of abnormal returns of long-short portfolios for different holding periods

Longer holding periods:

� Investments held for longer periods (based on 1 month prediction)

� Same results for Sharpe ratios and t-statistics

⇒ Predictability lasts over long time horizons.

Better performance when directly predicting for longer horizons:

� Monthly rebalancing not crucial for high abnormal returns

� Annual rebalancing: Mean 0.31 and SR = 0.27 14



Which variables are important?

Top variable importance

Variable importance measure:

Sensitivity(zk ) =

√√√√ 1

T

T∑
t=1

1

Nt

Nt∑
i=1

( ∂R̂abn
i,t

∂zi,k,t

)2

� Generalizes slopes in linear regression models

⇒ Sentiment, fund momentum, turnover and flow most important

Formal statistical significance tests for neural networks:

⇒ Leading variables are statistically significant!
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Which variables are important?

Top variable group importance

Variable importance measure:

Sensitivity(zk ) =

√√√√ 1

T

T∑
t=1

1

Nt

Nt∑
i=1

( ∂R̂abn
i,t

∂zi,k,t

)2

� Generalizes slopes in linear regression models

⇒ Sentiment, fund momentum, turnover and flow most important

Formal statistical significance tests for neural networks:

⇒ Leading variables are statistically significant!
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Results in different sentiment terciles

TL TM TH

Portfolio SR mean t-stat R2
F SR mean t-stat R2

F SR mean t-stat R2
F

D10-D1 0.12 0.23 1.6 0.50 0.37 0.42 4.6*** 3.39 0.32 0.55 4.0*** 4.83

D1 -0.11 -0.18 -1.4 0.71 -0.25 -0.23 -3.1*** 3.65 -0.23 -0.29 -2.9*** 1.35

D10 0.05 0.04 0.6 -0.86 0.22 0.19 2.7*** 1.00 0.21 0.27 2.6** 2.68

Prediction deciles conditional on sentiment terciles

Conditional mean depends on sentiment:

� Highest Sharpe ratio earned in medium and high sentiment periods.

� During high sentiment state, long-short portfolio earns more than twice

the expected return compared to low sentiment state.

Predictability depends on sentiment:

� Abnormal returns most predictable in medium and high sentiment periods.

� Market timing strategy: Investing into top funds during high sentiment:

Earns an average monthly abnormal return of 0.27% .
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Interactions with sentiment

Conditional abnormal returns g(zi,t , zt)

� Conditional abnormal fund returns as function of momentum for different

sentiment quantiles

� 2-dimensional function by keeping other covariates at their mean.

⇒ Nonlinear interaction effects with sentiment.

⇒ Similar results for other fund characteristics.
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Interaction measure

New interaction measure:

� Differences in slopes for high and low macroeconomic states:

Interaction(z,macro) =
(
R̂abn(high z, high macro) − R̂abn(low z, high macro)

)
−

(
R̂abn(high z, low macro) − R̂abn(low z, low macro)

)
.

� Momentum, reversal, turnover and flow strongly interact with sentiment

� We show statistical significance for interaction effects with sentiment

� CFNAI does not interact with fund characteristics
18



Economic Mechanism

Flow predicts performance

� Investors detect skill and reallocate investment.

Fund momentum predicts performance

� Reallocation slower than in frictionless model Berk and Green (2004)

� Skill leaves trail through gradual flows

Interaction with sentiment:

� Funds attract flows through marketing

⇒ buying pressure for the stocks funds hold

� Downward-sloping demand curve

⇒ raises prices and lifts fund returns

� Creates more inflows next period

⇒ stronger in high sentiment periods.
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More results

Chronological cross-out-of-sample analysis: chronological

� Predictability and performance robust to sampling

� Economic model depends on which sentiment states are observed

Fund fees: fee

� Spread in abnormal returns not explained by fees

� Prediction results hold net-of-fees

Decomposition of abnormal returns: decomposition

� Decomposition of abnormal returns into between-disclosure (between

quarter) and within-disclosure component (within quarter)

� 50% comes from active trading within quarter, 50% with fixed holdings

Spanning tests: spanning

� Outperformance is not compensation for standard risk factors

� Important: Time-series regression ex post on prediction portfolios different

from ex ante local regressions to obtain abnormal returns

Robustness to fund size: size

� Results robust to excluding small funds or value-weighting

Tuning parameters: implementation

� Results are very robust to network structure and tuning parameters
20



Conclusion

Empirical results

1. Strong predictability: Predictability of fund performance (i.e., risk-adjusted

returns) is out-of-sample, long-lived and economically meaningful.

2. Variable selection: Identify fund flow and fund residual momentum as key

predictors. Characteristics of stock holdings are not predictive.

3. Macro interaction: Fund flow and residual momentum matter more when

sentiment is high. No interaction effects with CFNAI.

Methodology Contributions

1. Prediction methods:

� Abnormal returns economically motivated and statistically better

target.

� Prediction-weights better reflect economic benefits.

2. Model evaluation:

� New method for out-of-sample evaluation with macroeconomic states.

� Novel measure for interaction, including statistical significance test.

3. Protocol: Vary information set to compare economic benefits.
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Appendix



Additional Results

� Chronological cross-out-of-sample analysis chronological

� Information set comparison set

� Predicting returns vs. abnormal returns return

� Statistical significance tests test

� After fee performance fee

� Longer holding periods holding

� Persistence of fund characteristics and classification persistence

� Separate results for deciles deciles

� Decomposition of abnormal returns decomposition

� Which macroeconomic variable? macro

� Spanning tests spanning

� Simplified model simple

� Robustness to fund size size

� Data and implementation summary

� Missing data missing
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Chronological cross-out-of-sample

� Split full sample into three periods, two for training and validation and

third for out-of-sample evaluation.

� Combine models estimated on each of the three folds.

⇒ Each and every data point is evaluated out-of-sample.

⇒ High and low sentiment periods are not represented in all folds.
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Chronological cross-out-of-sample: Prediction-sorted portfolios

(a) Prediction-weighted deciles (b) Long-short prediction decile

Sampling mean(%) t-stat SR R2
F (%)

Chronological folds 0.39 5.0*** 0.23 1.47

Random folds 0.40 5.4*** 0.25 2.73

� Fund-specific characteristics + sentiment as input.

⇒ Predictability and economic significance robust to sampling
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Chronological cross-out-of-sample: Variable importance

(a) Top variable importance. (b) Top variable group importance.

� High sentiment not present in the third fold

� As expected lower importance and interaction effects under chronological

sampling
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Information set comparison

Stock-specific characteristics only

� Compare 4 information sets for the same flexible machine learning method:

Stock-specific or fund-specific characteristics with/without sentiment

⇒ Holding-based stock characteristics not predictive for abnormal returns

⇒ Fund-specific characteristics and sentiment predict abnormal returns
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Information set comparison

Stocks-specific characteristics + sentiment

� Compare 4 information sets for the same flexible machine learning method:

Stock-specific or fund-specific characteristics with/without sentiment

⇒ Holding-based stock characteristics not predictive for abnormal returns

⇒ Fund-specific characteristics and sentiment predict abnormal returns
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Information set comparison

Fund-specific characteristics

� Compare 4 information sets for the same flexible machine learning method:

Stock-specific or fund-specific characteristics with/without sentiment

⇒ Holding-based stock characteristics not predictive for abnormal returns

⇒ Fund-specific characteristics and sentiment predict abnormal returns
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Information set comparison

Fund-specific characteristics + sentiment

� Compare 4 information sets for the same flexible machine learning method:

Stock-specific or fund-specific characteristics with/without sentiment

⇒ Holding-based stock characteristics not predictive for abnormal returns

⇒ Fund-specific characteristics and sentiment predict abnormal returns
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Predicting returns vs. abnormal returns

Data mean(%) t-stat SR R2
F (%)

Fund+ sentiment 0.49 3.0*** 0.14 0.97

Fund 0.53 3.5*** 0.16 0.97

Stock+ sentiment 0.44 3.1*** 0.14 -20.03

Stock 0.11 1.1 0.05 -53.21

Stock+ fund+ sentiment 0.45 3.1*** 0.14 -26.54

Statistics of long-short prediction decile portfolios based on returns

� Returns are predictable by stock and fund characteristics

� Stock characteristics predict returns but not abnormal returns.

� Sharpe ratio of abnormal return long-short portfolio is higher

� The level of fund returns hard to predict

⇒ Abnormal return prediction is relative objective and preferable:

higher Sharpe ratio and R2
F than for returns
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Significance tests

Fund char Sensitivity Interaction w. sentiment

sentiment 0.14***

F r12 2 0.08*** 0.09***

turnover 0.05*** 0.06***

F ST Rev 0.04*** 0.04***

F r2 1 0.04*** -0.03***

flow 0.03*** 0.03***

ages 0.02*** 0.02***

fund no 0.02*** -0.01**

tna 0.02*** 0.01**

Family r12 2 0.02*** 0.01

Family flow 0.02** 0.01***

Family TNA 0.02** 0.00

Family age 0.02* -0.01

exp ratio 0.01 0.01

Formal statistical significance tests for neural networks:

� Apply and extend the significance tests of Horel and Giesecke (2020).

� Most important fund characteristics and sentiment interactions are

statistically significant. 28



After fee performance

� Best 10% (predicted and realized) funds charge higher fees

� But so do the 10% worst funds; both 50% cumulative expense ratio
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After fee performance

⇒ Spread the same after fees.
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After fee performance

Predicted After-fee abnormal returns

� We directly predict after-fee returns

� Results in 207% cumulative return spread (vs. 191% baseline)

� Cumulative abnormal after-fee return of 37% for top 10%.
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Holding Periods

Sharpe ratio over long holding horizons

� Investments held for longer periods

⇒ Predictability lasts over long time horizons.
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Prediction of one-year abnormal returns

Cumulative predictions deciles Cumulative long-short portfolio

Information set SR mean(%) t-stat

Fund+ sentiment 0.27 0.31 6.6***

� Cumulative abnormal returns with annual abnormal return prediction

� Information set: fund-specific characteristics and sentiment

⇒ Predictability lasts over long time horizons.
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Prediction of one-year abnormal returns: Variable importance

Top variable importance. Top variable group importance.

Top variable importance for explaining annual overlapping abnormal returns.

� Variable importance shifts to more persistent variables
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Persistence of fund characteristics

Autocorelation of fund characteristics

� Many fund characteristics are persistent

⇒ Predictability over longer time horizons
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Persistence of classification

Transition between prediction deciles

� Extreme deciles are persistent

⇒ Predictability over longer time horizons
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Results for top deciles

Information set mean(%) t-stat SR R2
F (%)

Stock+ fund 0.10 1.7* 0.08 -0.52

Stock+ fund+ sentiment 0.15 2.9*** 0.13 1.87

Stock -0.02 -0.4 -0.02 -2.52

Stock+ sentiment 0.06 1.2 0.06 0.61

Fund 0.16 3.7*** 0.17 -1.20

Fund+ sentiment 0.17 3.5*** 0.16 1.46

Flow+ fund momentum+ sentiment 0.19 3.2*** 0.15 -0.15

Fund exclude momentum and flow -0.01 -0.2 -0.01 -0.17

F r12 2+ sentiment 0.12 2.0** 0.09 -0.58
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Results for bottom deciles

Information set mean(%) t-stat SR R2
F (%)

Stock+ fund -0.19 -2.6*** -0.15 1.33

Stock+ fund+ sentiment -0.25 -3.5*** -0.22 1.99

Stock -0.00 -0.0 -0.00 -0.82

Stock+ sentiment -0.09 -1.2 -0.08 -0.03

Fund -0.22 -3.7*** -0.23 0.74

Fund+ sentiment -0.23 -3.8*** -0.23 1.38

Flow+ fund momentum+ sentiment -0.29 -4.2*** -0.23 1.05

Fund exclude momentum and flow -0.07 -1.8* -0.09 -0.32

F r12 2+ sentiment -0.23 -3.8*** -0.18 0.88
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Inspecting the mechanism

� Is the abnormal return mostly trading within disclosure dates or trading

within a disclosure period?

� A decomposition:

Rabn
i,t = R̃i,t − ft β̃i︸ ︷︷ ︸

Between disclosure abnormal return

+Ri,t − ftβi − (R̃i,t − ft β̃i )︸ ︷︷ ︸
Within disclosure abnormal return

(1)

= R̃i,t − ft β̃i︸ ︷︷ ︸
Between disclosure abnormal return

+Ri,t − R̃i,t︸ ︷︷ ︸
Return gap

+ ft(β̃i − βi )︸ ︷︷ ︸
Risk exposure difference

(2)
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Inspecting the mechanism: machine learning

Total Between-disclosure Within-disclosure Risk difference Return gap

SR mean SR mean SR mean SR mean SR mean

Stock+ fund 0.15 0.28*** 0.05 0.13 0.14 0.15*** 0.06 0.06 0.11 0.09***

Stock+ fund+ sentiment 0.21 0.41*** 0.10 0.28** 0.13 0.13*** 0.07 0.06 0.09 0.06**

Stock -0.01 -0.02 -0.01 -0.03 0.01 0.01 -0.01 -0.01 0.03 0.02

Stock+ sentiment 0.07 0.15 0.04 0.12 0.02 0.02 0.00 0.00 0.02 0.02

Fund 0.25 0.38*** 0.15 0.20*** 0.17 0.18*** 0.15 0.12*** 0.08 0.06**

Fund+ sentiment 0.25 0.40*** 0.15 0.24*** 0.16 0.16*** 0.16 0.13*** 0.03 0.03

Decomposition of deep learning prediction long-short deciles
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Which macroeconomic variable?

Information set mean (%) t-stat SR R2
F (%)

Fund+sentiment 0.40 5.4*** 0.25 2.73

Fund+CFNAI 0.39 6.0*** 0.28 0.72

Fund+sentiment+CFNAI 0.42 6.3*** 0.29 2.48

Fund+sentiment orth 0.43 6.4*** 0.29 1.22

Fund+CFNAI orth 0.38 5.4*** 0.25 0.92

Fund 0.38 5.5*** 0.25 0.19

� Models with sentiment predict the abnormal return factor better.

� Macro variables affect the mean of long-short portfolio:

Up to 0.05% increase

� Largest effect of macroeconomic variables in the level
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Spanning of ML long-short portfolios with different factor models.

FF 4 factors FF 5 factors FF 6 factors FF 8 factors

α R2 α R2 α R2 α R2 mean µ

Stock+ fund 0.07 0.14 0.08* 0.13 0.06 0.15 0.04 0.19 0.04

(0.05) (0.05) (0.05) (0.05) (0.05)

Stock+ fund+ sentiment 0.13*** 0.29 0.10** 0.33 0.08** 0.36 0.07* 0.37 0.13***

(0.04) (0.04) (0.04) (0.04) (0.05)

Stock 0.05 0.15 0.04 0.16 0.03 0.17 0.01 0.22 0.01

(0.04) (0.04) (0.04) (0.04) (0.05)

Stock+ sentiment 0.09** 0.31 0.04 0.39 0.03 0.40 0.02 0.41 0.08*

(0.04) (0.04) (0.04) (0.04) (0.05)

Fund 0.14*** 0.17 0.20*** 0.04 0.16*** 0.18 0.16*** 0.18 0.18***

(0.05) (0.05) (0.05) (0.05) (0.05)

Fund+ sentiment 0.17*** 0.16 0.22*** 0.04 0.18*** 0.16 0.19*** 0.18 0.20***

(0.05) (0.05) (0.05) (0.05) (0.05)

Flow+ fund momentum+ sentiment 0.11*** 0.28 0.22*** 0.13 0.16*** 0.33 0.18*** 0.37 0.15***

(0.04) (0.04) (0.04) (0.04) (0.05)

F r12 2+ sentiment 0.13*** 0.30 0.25*** 0.11 0.19*** 0.34 0.19*** 0.34 0.19***

(0.04) (0.04) (0.04) (0.04) (0.05)

Machine learning prediction long-short portfolios

� Time-series regressions of long-short portfolios on factors: Fama-French 5,

momentum, long-term and short-term reversal factors

� Long-short portfolio returns are not compensation for risk. outline
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Spanning of univariate sorted portfolios with different factor models.

FF 4 factors FF 5 factors FF 6 factors FF 8 factors

α R2 α R2 α R2 α R2 mean µ

F ST Rev 0.18*** 0.04 0.19*** 0.02 0.18*** 0.04 0.23*** 0.31 0.20***

(0.04) (0.04) (0.04) (0.04) (0.05)

F r2 1 0.01 0.11 0.03 0.03 -0.01 0.12 0.01 0.17 0.08

(0.05) (0.05) (0.05) (0.05) (0.05)

F r12 2 0.17*** 0.23 0.22*** 0.06 0.16*** 0.23 0.16*** 0.23 0.28***

(0.04) (0.04) (0.04) (0.04) (0.05)

flow 0.10** 0.02 0.08 0.03 0.08 0.03 0.07 0.03 0.12**

(0.05) (0.05) (0.05) (0.05) (0.05)

turnover 0.02 0.01 -0.05 0.08 -0.05 0.08 -0.07 0.12 0.03

(0.05) (0.05) (0.05) (0.05) (0.05)

fund no 0.09* 0.03 0.12** 0.03 0.11** 0.04 0.13*** 0.07 0.13***

(0.05) (0.05) (0.05) (0.05) (0.05)

Family r12 2 0.14*** 0.04 0.17*** 0.01 0.15*** 0.05 0.14*** 0.05 0.19***

(0.05) (0.05) (0.05) (0.05) (0.05)

Univariate long-short portfolios

� Time-series regressions of univariate long-short portfolios on asset pricing

factors: Fama-French 5, momentum, long-term and short-term reversal

factors

� Results for seven most important fund-specific characteristics.

� All R2s are small and alphas are highly significant. 41



Spanning of univariate sorted portfolios with Carhart four factor model.

Mkr SMB HML Mom α Factor mean R2

F r12 2 0.29*** 0.04 0.11** 0.44*** 0.17*** 0.28*** 0.23

(0.04) (0.04) (0.04) (0.04) (0.04) (0.05)

flow 0.12** -0.10** 0.03 0.03 0.10** 0.12** 0.02

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

F ST Rev -0.09* 0.07 0.08* 0.13*** 0.18*** 0.20*** 0.04

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

F r2 1 0.10** -0.05 0.05 0.34*** 0.01 0.08 0.11

(0.05) (0.04) (0.05) (0.05) (0.05) (0.05)

turnover -0.00 0.04 0.03 0.06 0.02 0.03 0.01

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

fund no 0.17*** 0.02 0.03 0.08 0.09* 0.13*** 0.03

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family r12 2 0.10* 0.04 0.10** 0.21*** 0.14*** 0.19*** 0.04

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Univariate long-short portfolios

� Time-series regressions on 4 Fama-French-Carhart factors.

Results for seven most important fund-specific characteristics.

� All R2s are small and alphas are highly significant.

The mean return and mean intercept are similar in magnitude. outline
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Simplified Model: Only flow, momentum, sentiment

Conditional abnormal return for flow, momentum and sentiment

Decile mean(%) t-stat SR R2
F (%)

Long-short 0.40 5.4*** 0.25 0.70

Long 0.17 3.4*** 0.16 -0.73

Short -0.23 -3.6*** -0.21 0.82

� Large performance with only three variables

� Visualization of complete function possible

⇒ Strong interaction effects
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Removing small funds

Cumulative predictions deciles Cumulative long-short portfolio

Decile mean(%) t-stat SR R2
F (%)

Long-short 0.40 6.5*** 0.30 4.07

Long 0.17 3.9*** 0.18 2.03

Short -0.23 -4.5*** -0.23 2.05

� Exclude mutual funds smaller than 15 millions AUM

⇒ Results are robust to excluding small funds

� Further robustness results for value-weighted funds 44



Summary statistics

Table 1: Summary statistics of the fund characteristics data

Statistic N Mean St. Dev. Median

turnover 358,303 0.826 1.015 0.620

ages 407,139 13.669 10.200 11.000

flow (%) 406,661 1.601 419.975 −0.392

r12 2 407,158 0.108 0.173 0.107

LME 407,158 −0.385 0.108 −0.424

BEME 407,158 −0.153 0.376 −0.161

abnormal return (%) 407,158 −0.028 2.000 −0.028

exp ratio (%) 407,043 0.097 0.086 0.095

TNA 406,802 1,153.180 4,833.920 214.700
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Model tuning

� Select tuning parameters on validation data.

Notation Hyperparameters Candidates

HL Number of layers in Neural Network 1, 2, 3

HU Number of hidden units in each layer 26−i or 27−i , i = 1 to HL

DR Dropout 0.90, 0.95

LR Learning rate 0.001 , 0.1

L2 l2 regularization 0.0, 1e-3, 1e-2

� The optimal network structure is one hidden layer with 64 hidden states.
model

HL HU DR l2 LR

1 64 0.95 0.001 0.01
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Weighting schemes

� Prediction-weighted: µi,t model prediction,

For top portfolio: µ̃i,t = µi,t − min
i∈Top

(µi,t) (3)

For bottom portfolio: µ̃i,t = µi,t − max
i∈Bottom

(µi,t) (4)

wpred
i,t =

µ̃i,t∑N
i=1 µ̃i,t

(5)

� Construct long-short factor as difference between top and bottom deciles.
prediction
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Data source

� Mutual fund holding data: TFN/CDA S12.

� Quarterly frequency - used the last observed fund holding.

� Mutual fund characteristics data: CRSP.

� Monthly frequency.

� Stock characteristics data: CRSP and CompuStat. data

� Monthly frequency - characteristics shown to have predictive power

for the cross-section of expected returns.
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Macro Definitions

� Sentiment is the Principal Component (with twists) of

� The closed-end fund discount

� NYSE share turnover

� The number of IPOs

� The average first-day returns on IPOs

� The equity share in new shares

� Dividend premium

� CFNAI is the first principal component of 85 economic indicators from

four broad categories: production and income; employment,

unemployment, and hours; personal consumption and housing; and sales,

orders, and inventories. data

49



Impute Missing Data

� Method in Pelger and Xiong 2022 data :

Ct = Λt︸︷︷︸
L×K

Vt︸︷︷︸
K×Nt

� Intuition ⇒ Correlation between fund characteristics.

� Characteristics are cross-sectionally normalized to [-0.5, 0.5].

� Few PCs explain most variation in characteristics space

(illustration for 1992/01):
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Solving the model

� Estimate a “characteristics covariance matrix” with observed entries:

Σt,l,r =
1

|Ql,r |
∑
i∈Ql,r

Ct,l,iCt,r,i

Apply Λt as the normalized eigenvectors of Σt .

� Estimate the “characteristics factor” with a “regression”:

Vt,i︸︷︷︸
K×1

=

 ∑
l∈Qi,t

Λ2
tl

−1 ∑
l∈Qi,t

ΛtlCt,l,i

� Given Vt,i and Λt we estimate the missing entries as

C̃t,i = ΛtVt,i

� Normalize C̃t,l with a second round of quantile ranking. data
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