Abstract

We estimate valence measures for candidates running in U.S. House elections from data on vote shares. Our estimates control for endogeneity of campaign spending and sample selection of candidates due to endogenous entry. Our identification and estimation strategy builds on ideas developed for estimating production functions. We find that incumbents have substantially higher valence measures than challengers running against them, resulting in about 9.2 percentage-point differences in the vote share, on average. We find that open-seat challengers have higher valence measures than those running against incumbents by about 5.3 percentage points. Our measure of candidate valence can be used to study various substantive questions of political economy. We illustrate its usefulness by studying the source of incumbency advantage in U.S. House elections.

Key words: Candidate Valence, Production Function, Dynamic Game, Incumbency Advantage

JEL classification: D72, D24
1 Introduction

In many models of political economy, political candidates are not only horizontally differentiated through ideology but vertically differentiated through valence. Vertical differences among candidates affect various aspects of political competition such as policy convergence between candidates, alignment of policy with the preferences of the voters, and campaign finance decisions of the candidates. While the development of the DW-NOMINATE scores for members of the U.S. Congress (Poole and Rosenthal 1985) has made empirical studies of political ideology possible, a corresponding metric for candidate valence is still lacking. The lack of valence measures makes it challenging to empirically study models of political economy with vertical differentiation among candidates.

In this study, we identify and estimate a metric of candidate valence from data on vote shares. Although the vote share of each candidate should, in principle, be informative about candidate valence, we need to isolate the effect of valence from other factors such as campaign activities of the candidates. We model the vote shares in each election as a random variable that is determined, in part, by candidates’ endogenous campaign spending and their valence. The valence of the candidate corresponds to a candidate specific constant term (unobservable to the researcher) in the equation that determines votes. Our measure of valence is in units of vote share, capturing the differences in expected vote shares across candidates holding everything else constant. Our measure contrasts with those based on an index of observable candidate characteristics which may miss aspects of candidate valence that are unobservable to researchers, or survey-based measures that do not allow for a straightforward interpretation of their magnitude.

In order to isolate the effect of valence on the vote share, we need to account for the fact that campaign activities of the candidates are endogenous and that candidate entry and exit induce selection in the valence of the candidates that compete. To overcome these challenges, we exploit a natural parallel between recovering candidate valence from vote shares and recovering unobserved firm-level productivity from firm output. In the context of production function estimation, the input decisions and entry/exit decisions of the firms depend on the unobserved (to the researcher) productivity of the firms. This dependence gives rise to endogeneity and sample selection bias similar to the one considered here. The approaches developed for estimating production functions enable one to recover the production function and firm productivity measures even in the presence of endogeneity and sample selection.
We adapt the control function approach developed in Olley and Pakes (1996) to our setup. Specifically, we embed the model of vote shares into a dynamic game with spending, fund-raising, savings, challenger entry and incumbent retirement and show that the incumbents’ policy functions are one-to-one between the valence and the observed actions. The one-to-one property allows us to recover the valence of incumbents as a function of their actions. We also use the model of challengers’ entry decision to derive a sufficient statistic for the valence of challengers that choose to enter. The structure of the dynamic game allows us to link the vote shares to the valence of the candidates while controlling for endogeneity of spending and selection of candidates. The dynamic game also provides optimality conditions of the candidates’ problem that serve as extra moment conditions for identification.

We use our approach to estimate the valence of each candidate running for U.S. House elections between 1984 and 2002. Our estimates suggest that there are substantial differences in the valence measures between incumbents and challengers. We find that the average valence measure among incumbents is about 9.2 percentage points higher in terms of vote share than that among challengers who run against them. We also find larger dispersion of valence measures among challengers than among incumbents. The inter-quartile range of valence measures among incumbents is about 2.7 percentage points, while that among challengers is about 9.6 percentage points. Our findings are consistent with the fact that incumbents are selected partly by valence.

Regarding open-seat candidates, we find that the upper tail of the valence distribution resembles that of the incumbents. However, unlike the valence distribution of the incumbents, there is a substantial fraction of low valence candidates that increases the dispersion of the distribution. The mean valence measure among open-seat candidates is about 5.3 points higher than that among challengers that run against incumbents. The inter-quartile range is about 6.9 percentage points.

Our measure of candidate valence can be used to study various substantive topics of political economy. To illustrate its usefulness, we study incumbency advantage in U.S. House elections. In particular, using the valence measures of candidates as outcome variables, we build on the regression discontinuity design used in Lee (2008) to identify the incumbency effect that can be attributed to differences in candidate valence. We also use the regression discontinuity design to identify the incumbency effect that is attributable to differential spending between incumbents and challengers. We hence offer a decomposition of the incumbency advantage identified in Lee (2008). Our results imply that about 69 percent
of the incumbency advantage is explained by differences in valence and the remaining 31 percent is explained by differences in spending. Our finding that spending accounts for a relatively small portion of the incumbency advantage suggests that policy interventions designed to reduce incumbency advantage through the spending channel (e.g., subsidizing challengers’ campaigns) have limited effectiveness.

Literature Candidate valence plays an important role in many models of political competition. Differences in the valence of candidates affect convergence of platforms between candidates and alignment of policy with the preferences of the voters (Aragones and Palfrey 2004, Carter and Patty 2015, Buisseret and Van Weelden 2021). Candidate valence also plays a significant role in models of political selection (e.g., Snyder and Ting 2011, Serra 2011, Adams and Merrill III 2008). Despite their importance, measures of candidate valence that go beyond an index of observable candidate characteristics have been mostly lacking. Existing studies use candidate characteristics such as candidates’ occupation, political experience, legislative accomplishment, etc. (e.g., Green and Krasno 1988, Maestas and Rugeley 2008) as proxies of candidate valence, but these measures miss potentially important components of valence unobservable to the researcher. Other studies use surveys as measures of valence (e.g., Stone et al. 2010, and Stone and Simas 2010), but survey-based measures typically do not allow for a straightforward interpretation of their magnitude. Because our measures of valence correspond to candidate fixed effects in the model of vote shares, they capture any observable and unobservable candidate specific characteristics that affect votes. In addition, our measures are defined in units of vote share, allowing for a straightforward interpretation of their magnitude.

An important part of our empirical exercise is to separately identify the effect of campaign spending, candidate valence and other district characteristics on the vote share. In this regard, our paper is related to the extensive literature that estimates the causal effect of candidate spending on the vote share, including Jacobson (1978), Green and Krasno (1988), Levitt (1994), Gerber (1998), Erikson and Palfrey (2000), and da Silveira and de Mello (2011).¹ The key difference between our paper and previous work is that we focus on identifying candidate valence. Much of the previous work has treated candidate valence as nuisance parameters, for example, by differencing them out.

Finally, our paper contributes to the study of incumbency advantage. Starting from the early work of Erikson (1971), various approaches have been used to identify the incum-

¹See Stratmann (2005) for a survey.

The paper is structured as follows. Section 2 presents the model and Section 3 discusses identification and estimation. Section 4 describes our data. We report the estimation results in Section 5. In particular, Figure 3 of Section 5.2 presents our main results, the histogram of candidate valence among incumbents, challengers, and open-seat candidates. Section 6 applies our measure of valence to study the sources of incumbency advantage.

2 Model

Overview We embed a model of vote shares in a dynamic model of U.S. House elections with endogenous spending, saving, entry and retirement decisions. In each period \(t (t = 1, 2, \ldots, \infty) \), there is a stage game which is either an election with an incumbent seeking re-election or an open-seat election. In an election with an incumbent, potential challengers from the out-party (i.e., not the incumbent’s party) decide whether or not to enter, and conditional on challenger entry, the incumbent and the challenger simultaneously make spending, saving and fund-raising decisions. We model the vote share as a function of the spending and the valence of the candidates, state variables (such as district characteristics) and a random shock. The winner becomes the incumbent next period. An open-seat election is the same as an election with an incumbent except that challengers from both parties make entry decisions. The time between the periods is two years, because Congressional elections take place every two years.

Sequence of Events within the Stage Game In an election with an incumbent, events occur in the following order:

1. Nature draws \(N \in \{0, 1, 2, \ldots\} \), the number of potential challengers from the out-party according to a distribution \(F_N \). The valence (quality) of the potential candidates, \(\{q_{C,1}, q_{C,2}, \ldots, q_{C,N}\} \), are drawn independently according to \(F_{q_C} \). We do not

2Levitt and Wolfram (1997) decompose the incumbency advantage into direct officeholder benefits, the ability of incumbents to scare-off high quality challengers, and higher average quality of incumbents vis-à-vis the typical open-seat candidate. Ansolabehere et. al. (2000) separates the electoral benefits of “homestyle” from other sources of incumbency advantage.
consider entry for the incumbent’s party. Each potential challenger observes the current state, the valence of the incumbent, and her own valence. Potential challengers simultaneously make entry decisions by comparing the value of entering and the cost of entry, \(\kappa \).

2(a). If exactly one challenger enters, that challenger becomes the party nominee. In the general election, the incumbent and the nominee of the out-party simultaneously decide how much to spend, raise and save, taking as given own and opponent’s valence. The vote shares are determined as a function of the spending and the valence of the candidates, state variables and a random shock.

If \(M (1 < M \leq N) \) potential challengers enter, there is a Primary election. We do not explicitly model the Primary, but we assume that an entrant with valence \(q_{C,m} \) is selected to be the party nominee with probability \(\pi(q_{C,m}, q_{C,-m}) \), where \(q_{C,-m} = (q_{C,1}, \ldots, q_{C,m-1}, q_{C,m+1}, \ldots, q_{C,M}) \). The party nominee competes against the incumbent in the general election.

2(b). If no potential challenger enters, the incumbent decides how much to spend, raise and save, and the incumbent becomes the winner with probability one.

3. The winner of the election receives utility \(B \). State variables such as the incumbent’s war chest and district characteristics evolve from current values to the next. Before the start of the next period, the winner chooses to retire or run for reelection. Conditional on running for reelection, the winner becomes the incumbent next period with war chest determined by the amount of money she saved in the previous period. If the incumbent retires, the stage game of the next period becomes an open-seat election.

Figure 1 illustrates the timeline of an election with an incumbent. \(vote_I \) denotes the incumbent’s vote share.

In open-seat elections, potential challengers from both parties make simultaneous entry decisions and the candidate selection process described in steps 1 and 2 applies to both parties. Once a single candidate is selected from each party, they compete in the general election in a way analogous to elections with an incumbent. Because the model of open-seat elections is similar to that of elections with an incumbent, we focus on the case of

\[^3 \text{Almost all incumbents in our sample become the party nominee, barring a major scandal. See Online Appendix 8.8 for the set of elections we drop due to scandals.} \]
Nature draws N and $q_{C,1}, \ldots, q_{C,N}$. Candidates make entry decisions

2(a) Primary (if $M > 1$)

Simultaneously choose amount to spend, save and raise

$vote_I < 0.5$ \hspace{1cm} $vote_I > 0.5$

Challenger becomes incumbent \hspace{1cm} Incumbent continues as incumbent

Figure 1: Timeline of the Stage Game for an Election with an Incumbent

elections with an incumbent in the following discussion. A full description of our model of open-seat elections is given in Online Appendix 8.1.

The Vote Share Equation We begin by describing how vote shares are determined in the general election (last step of case 2(a)). We specify the vote share equation as follows:

$$vote_I = \beta_I \ln d_I + \beta_C \ln d_C + \beta_{ten} \ln ten_I + \beta_X X + q_I - q_C + \varepsilon,$$

where $vote_I$ is the incumbent’s vote share, $\ln d_I$ is the log spending (disbursement) of the incumbent and $\ln d_C$ is the log spending of the challenger. $\ln ten_I$ is the log tenure of the incumbent (i.e., the number of consecutive terms in office), X is a vector of exogenous control variables such as district characteristics, q_I and q_C are the valence of the incumbent and the challenger, and ε is a random shock.

The valence terms, q_I and q_C, capture the candidate’s ability to attract votes. They may include candidates’ personal traits such as name recognition, perceived leadership skills, public speaking skills, etc. They are unobserved to the researcher but observed by the candidates. Because candidates observe q_I and q_C when making their decisions, $\ln d_I$ and $\ln d_C$ are potentially correlated with q_I and q_C. On the other hand, ε is not observed to the candidates, and hence orthogonal to their decisions.

We assume that the error term, ε, follows a Normal distribution with mean 0.5 and
variance σ^2. The probability that the incumbent wins, i.e. the probability that the vote share of the incumbent exceeds 0.5, can be written as follows:

$$\Pr(vote_I > 0.5) = \Phi\left(\frac{1}{\sigma} \left(\beta_I \ln d_I + \beta_C \ln d_C + \beta_{ten} \ln ten_I + \beta_X X + q_I - q_C\right)\right),$$

where Φ is the c.d.f. of a standard Normal distribution.

Incumbent’s Problem Consider the problem of the incumbent when the incumbent faces a challenger (after the Primary in case 2(a)). For a given strategy of the challenger, a contested incumbent solves the following dynamic programming problem:

$$v_I(s, q_C) = \max_{d_I \geq 0, w'_I \geq 0} u_I + \delta \Pr(vote_I > 0.5) \mathbb{E}_{X'|X}[V_I(s')],$$

where $u_I = B \cdot \Pr(vote_I > 0.5) - C_I(w'_I + d_I - w_I; q_I) + H_I(d_I).$ (3)

The incumbent chooses the amount of spending, d_I, and the amount of savings, w'_I, given the challenger’s valence q_C and the state s, where $s = \{q_I, w_I, ten_I, X\}$. The term w_I is the war chest of the incumbent at the beginning of the period. The flow payoff, u_I, consists of three terms. B is the utility from winning and it is multiplied by the probability of winning, given by expression (2). The term $C_I(\cdot)$ captures the costs that the incumbent incurs from raising money. The amount raised by the incumbent is the sum of future savings, w'_I, and spending, d_I, less the war chest, w_I. We let $C_I(\cdot)$ depend on q_I and assume that the marginal cost of raising money is strictly decreasing in q_I, so that candidates with higher valence have lower marginal cost of raising money. $H_I(\cdot)$ represents the consumption value of spending. It captures the fact that campaign spending can sometimes benefit candidates directly, for example, through purchases of personal articles.4

The second term of the value function is the continuation value which is a product of the discount factor δ, the probability of winning, and the next period’s (ex-ante) value function $\mathbb{E}_{X'|X}[V_I(s')]$ defined below. The expectation of the next period’s value function is taken with respect to X', the realization of X next period.

We assume that X follows an exogenous Markov process. We assume a deterministic transition for w_I, ten_I and q_I. The incumbent war chest in the next period equals the amount that the incumbent saves in the current period plus 10% interest.5 The tenure of the

4$H_I(\cdot)$ accounts for the fact that there is incumbent spending even in periods when the incumbent seems almost certain to win. In the estimation, we allow for the possibility that $H_I(\cdot) = 0$, however.

5Since the time between periods is two years, a 10% interest implies an annual interest of about 5%.

8
incumbent increases by 1 as $t_{I}^{'} = t_{I} + 1$. Finally, we assume that q_{I} is constant over time. While this is restrictive, we can account for deterministic trends in electoral strength through $t_{I}^{'}$. Allowing for q_{I} to evolve stochastically is conceptually straightforward, but the estimation of such a model becomes data-intensive. We discuss this point in detail in Online Appendix 8.9.

When no challenger enters (case 2(b)), the election is uncontested and the incumbent wins with probability one. The problem of the incumbent in an uncontested election is as follows:

$$
\tilde{v}_{I}(s) = \max_{d_{I} \geq 0, w'_{I} \geq 0} \tilde{u}_{I} + \delta \mathbb{E}_{X'|X}[V_{I}(s')],
$$
where $\tilde{u}_{I} = B - \tilde{C}_{I}(w'_{I} + d_{I} - w_{I}; q_{I}) + \tilde{H}_{I}(d_{I}).$

The term \tilde{u}_{I} is the period utility of the incumbent when she is uncontested, and the expression is obtained by replacing $Pr(\text{vote}_{I} > 0.5)$ with 1, and by replacing $C_{I}(\cdot)$ and $H_{I}(\cdot)$ with $\tilde{C}_{I}(\cdot)$ and $\tilde{H}_{I}(\cdot)$ in expression (3). $\tilde{C}_{I}(\cdot)$ and $\tilde{H}_{I}(\cdot)$ are the costs of raising money and the consumption value from spending in uncontested periods, respectively. We assume that the marginal cost of raising money is strictly decreasing in q_{I}.

The incumbent’s ex-ante value function at the beginning of the stage game is as follows:

$$
V_{I}(s) = (1 - \lambda(s))(1 - P_{e}(s))\tilde{v}_{I}(s) + (1 - \lambda(s))P_{e}(s) \int_{q_{C}} v_{I}(s, q_{C})dG_{q_{C}}(q_{C}|s),
$$
where $P_{e}(s)$ is the probability that a challenger enters and $\lambda(s)$ is the probability that the incumbent retires. The value function consists of two terms: the first is the value of the incumbent when she is uncontested and the second is the value when she is contested. We assume that if an incumbent retires, she receives zero payoff thereafter. Because the challenger’s valence, q_{C}, is uncertain at the beginning of the period, we take the expectation of $v_{I}(s, q_{C})$ with respect to q_{C}. We denote its distribution by $G_{q_{C}}(\cdot|s)$.

Note that $P_{e}(s)$ and $G_{q_{C}}(\cdot|s)$ are equilibrium objects that are endogenously determined by the challengers’ entry decisions. We describe how $P_{e}(s)$ and $G_{q_{C}}(\cdot|s)$ are determined by the problem of the challenger below. Although we do not explicitly model incumbents’ retirement decisions, $\lambda(s)$ can be interpreted as the policy function of the incumbent with respect to retirement that results from the incumbent’s optimizing behavior (See e.g., Diermeier et. al. (2005) for a model of retirement).
Challenger’s Problem The problem of a challenger who competes in the general election is given as follows:

\[
v_C(s, q_C) = \max_{d_C \geq 0, w_C' \geq 0} B \cdot \Pr(vote_I < 0.5) - C_C(w_C' + d_C, q_C) \\
+ H_C(d_C) + \delta \Pr(vote_I < 0.5) \mathbb{E}_{X'|X}[V_I(s')].
\] (6)

The challenger chooses the amount of spending, \(d_C\), and the amount of savings, \(w_C'\), given her own valence \(q_C\) and \(s\), where \(s = \{q_I, w_I, ten_I, X\}\). Note that \(s\) includes the incumbent’s valence, \(q_I\). \(C_C(\cdot)\) and \(H_C(\cdot)\) capture the challenger’s cost of fund-raising and personal benefit from spending, respectively. Challengers start out with no war chest. The challenger’s next-period value function is the same as that of the incumbent, \(V_I\), because the challenger becomes the incumbent if she wins. The next-period value, \(V_I\), depends on the valence of the challenger, savings from period \(t\) (plus 10% interest), tenure \((= 2)\) and the vector of exogenous variables, \(X'\), so that \(s' = \{q_C, 1.1w_C', 2, X'\}\).\(^6\)

We now consider the challenger’s entry decision. We assume that challengers make simultaneous entry decisions by comparing the value of entering with the cost of entry, \(\kappa\). The value of entering is the product of the challenger’s value function, \(v_C(s, q_C)\), and the probability of winning the primary, which we denote by \(p(s, q_C)\). The probability of winning the Primary is defined as follows:

\[
p(s, q_{C,m}) = \mathbb{E}_M \left[\int \pi(q_{C,m}, q_{C,-m}) dF_{q_{C,-m}}(q_{C,-m}|M, s) \Big| s \right], \tag{7}
\]

where \(\pi(q_{C,m}, q_{C,-m})\) is the probability that entrant \(m\) wins the primary if her valence measure is \(q_{C,m}\) and her opponents’ valence measures are \(q_{C,-m}\). We do not explicitly model the Primary but instead let \(\pi(\cdot)\) represent the candidate selection process in a reduced-form way. We let \(\pi(\cdot)\) be flexible, only requiring \(\pi(\cdot)\) to be symmetric in \(q_{C,-m}\) and increasing in own valence.\(^7\) To obtain the ex-ante probability of winning the Primary, \(p(s, q_C)\), we integrate \(\pi(q_{C,m}, q_{C,-m})\) with respect to the valence measures of the opponents, \(q_{C,-m}\), and the number of total entrants, \(M\). We denote by \(F_{q_{C,-m}}(q_{C,-m}|M, s)\) the distribution of the opponents’ valence measures conditional on \(M\) and the state \(s\). The distribution of \(q_{C,-m}\) and \(M\) are both endogenous.

\(^6\)We chose to define the tenure of a candidate running for the first time as a challenger to be one.

\(^7\)When exactly one potential challenger enters \((M = 1)\), the entrant becomes the party nominee with probability 1. One example of \(\pi(\cdot)\) that satisfies our assumptions is the Tullock contest function.
Each potential challenger chooses to enter if the value of entry, \(p(s, q_C)v_C(s, q_C) \), is higher than the entry cost, \(\kappa \). This implies that, as long as \(p(s, q_C)v_C(s, q_C) \) is increasing in \(q_C \), the entry decision of a challenger can be expressed by the following cutoff rule:\(^8\)

\[
\chi(s, q_C) = \begin{cases}
1: & \text{if } q_C > \bar{q}_C(s) \\
[0, 1]: & \text{if } q_C = \bar{q}_C(s) \\
0: & \text{if } q_C < \bar{q}_C(s)
\end{cases}
\]

where \(\bar{q}_C(s) \) is defined implicitly as the solution to \(p(s, \cdot)v_C(s, \cdot) - \kappa = 0 \). \(\bar{q}_C \) is the type of challenger that is indifferent between entering and not entering.

Equilibrium We now define the equilibrium of the game. Formally, the players of the game are the incumbent and an infinite sequence of potential challengers. The strategies of the game are how much to spend, save, and raise for both the incumbent and the general election challenger, as well as the entry decisions of the potential challengers. The solution concept we use is Markov Perfect Equilibria (Maskin and Tirole 1988).

It is intuitive to think of the equilibrium of the game as a fixed point in the potential challenger’s entry threshold, \(\bar{q}_C(\cdot) \ (s \mapsto \mathbb{R}) \). To see this, consider fixing a threshold \(\bar{q}_C(\cdot) \). As we explain below, fixing a threshold determines the probability that a challenger enters, \(P_e(s) \), the equilibrium valence distribution of the challengers, \(G_{q_C}(\cdot|s) \), and the probability that a challenger wins the Primary, \(p(s, \cdot) \).

\(P_e(s) \) and \(G_{q_C}(\cdot|s) \) are endogenous objects that enter the incumbent’s value function (expression (5)). Once \(P_e(s) \) and \(G_{q_C}(t|s) \) are determined, expressions (3) through (6) define a dynamic game of spending, saving and fund-raising indexed by \(\bar{q}_C(\cdot) \). Now, consider the value function of the challenger \(v_C \) associated with the solution of this dynamic game. The value function \(v_C \), along with \(p(s, \cdot) \), define a threshold for challenger entry given by \(p(s, \cdot)v_C(s, \cdot) - \kappa = 0 \). In equilibrium, the threshold for entry that solves this expression must coincide with the entry threshold that we fixed at the outset.

We now show that \(P_e(s) \), \(G_{q_C}(\cdot|s) \) and \(p(s, \cdot) \) can be expressed as a function of \(\bar{q}_C(\cdot) \). We start with the equilibrium entry probability, \(P_e(s) \). Given that the entry probability is

\(^8\)Because we assume that \(\pi(q_{C,m}, q_{C,-m}) \) is increasing in \(q_{C,m} \), \(p(s, q_C) \) is increasing in \(q_C \) by assumption. Hence \(p(s, q_C)v_C(s, q_C) \) is increasing in \(q_C \) when \(v_C(s, q_C) \) is not too decreasing in \(q_C \). In Online Appendix 8.2, we show that at the estimated parameter values, \(v_C(s, q_C) \) is increasing in \(q_C \) for about 86.5% of the challengers in our data. Moreover, even for the small subset of cases in which \(v_C(s, q_C) \) is decreasing in \(q_C \), the derivative is not very large in magnitude.
equal to one minus the probability of no entry, it can be expressed using $\tilde{q}_C(s)$ as follows:

$$P_e(s) = \mathbb{E}_N \left[1 - F_{q_C}(\tilde{q}_C(s)) \right] | s, \right] , \quad (8)$$

The equilibrium valence distribution of the challengers, $G_{q_C}(\cdot | s)$, can be expressed as follows:

$$G_{q_C}(t | s) = \mathbb{E}_N \left[\mathbb{E}_M \left[\Pr(\text{Valence of Primary winner} \leq t | M, s) | N, s \right] | s \right] , \quad (9)$$

where $\text{Bin}_{n_1,n_2}(p)$ is the probability that we have n_2 successes out of n_1 trials with success rate p. The derivation of expression (9) is given in Online Appendix 8.3. The only term that is endogenous in the right hand side of expression (9) is $\tilde{q}_C(s)$.

Lastly, the probability of winning the primary, $p(s, \cdot)$, can be similarly expressed as follows:

$$p(s, \cdot) = \mathbb{E}_N \left[\sum_{M=1}^{N} \text{Bin}_{N,M}(1 - F_{q_C}(\tilde{q}_C(s))) \frac{\int_{\tilde{q}_C(s)}^{t} \int_{\tilde{q}_C(s)}^{\infty} \cdots \int_{\tilde{q}_C(s)}^{\infty} \pi(q_{C,n}, q_{C,-n}) (dF_{q_C})^M | M - 1}{(1 - F_{q_C}(\tilde{q}_C(s)))^M | s} \right] . \quad (10)$$

Open-seat Elections Open-seat elections take place only when the current incumbent retires, which is assumed to be a terminal state for the incumbent. Hence, open-seat elections do not appear in any of the continuation games for incumbents and challengers of contested elections.

In an open-seat election, potential challengers from both parties make simultaneous entry decisions, and the candidate selection process for the out-party described above applies to both parties. Once candidates are selected as the party nominee, the candidates solve a problem that is similar to the one we defined earlier for the challengers that run against incumbents. We allow for the marginal effect of campaign spending on the vote share to be open-seat election specific, however. We denote the coefficient by β_O. Online Appendix 8.1 contains a full description of the model of open-seat elections.

Deriving Model Properties Used in Identification We now discuss two properties of the model that we exploit in identification. The first property is the injectivity of the
policy function of uncontested incumbents:

Proposition 1 (Injectivity): Assume that the marginal cost of raising money, \(\frac{\partial}{\partial x} C_I(x, q_I) \), is strictly decreasing with respect to \(q_I \). Then, the policy functions of an uncontested incumbent, \(\{d_I(s), w'_I(s)\} \), are one-to-one from \(q_I \) to \((d_I, w'_I) \), holding other state variables fixed.

Proof. See Online Appendix 8.4. ■

Proposition 1 states that, if we have \(s = \{q_I, w_I, ten_I, X\} \) and \(s' = \{q'_I, w_I, ten_I, X\} \) such that \(q_I \neq q'_I \), but all of the other elements of \(s \) and \(s' \) are the same, the actions associated with \(s \) and \(s' \) must be different, i.e., \(\{d_I(s), w'_I(s)\} \neq \{d_I(s'), w'_I(s')\} \). The injectivity of the policy function allows us to invert the policy functions of uncontested incumbents and express \(q_I \) as a function of observed states and actions. This property is used to construct a control function for \(q_I \) when we consider identification of the vote share equation. The property corresponds to the invertibility of the investment function in Olley and Pakes (1996).

The second model property is the presence of sufficient statistics for the valence distribution of the challengers, \(G_{qc}(\cdot|s) \), in elections with an incumbent:

Proposition 2-1 (Sufficient statistic): When the distribution of \(N \), the number of potential challengers, does not depend on \(s \), the probability of entry, \(P_e(s) \), is a sufficient statistic for the valence distribution of the challengers, \(G_{qc}(\cdot|s) \).

Proof. We say that \(h = h(s) \) is a sufficient statistic for \(f(s) \) if \(h(s') = h(s'') \) implies \(f(s') = f(s'') \). We can see that \(\tilde{q}_C(s) \) is a sufficient statistic for \(G_{qc}(\cdot|s) \) from expression (9). From expression (8), we can see that \(\tilde{q}_C(s) \) and \(P_e(s) \) are one-to-one if the distribution of \(N \) does not depend on \(s \). Hence, \(P_e(s) \) is also a sufficient statistic for \(G_{qc}(\cdot|s) \). ■

Proposition 2-1 states that \(P_e(s) = P_e(s') \) implies \(G_{qc}(\cdot|s) = G_{qc}(\cdot|s') \). It is a special case of the following proposition in which the distribution of \(N \) depends on \(s \):

Proposition 2-2 (Sufficient statistic): Suppose that \(N \) is distributed according to a CDF \(F_N(\cdot|s) \) that is fully characterized by the first \(L \) moments, \(\mathbb{E}[N|s], \cdots, \mathbb{E}[N^L|s] \). Let \(M \) denote the number of actual challengers entering the Primary. Generically, either (i) \(P_e(s) \) and \(L \) moments of \(M \), \(m_M = \{P_e(s), \mathbb{E}[M|s], \cdots, \mathbb{E}[M^L|s]\} \) or (ii) \(P_e(s) \) and \(L+1 \) moments of \(M \), \(m_M = \{P_e(s), \mathbb{E}[M|s], \cdots, \mathbb{E}[M^{L+1}|s]\} \) are sufficient statistics for \(G_{qc}(\cdot|s) \).
Proof. See Online Appendix 8.5.

Note that many distributions are fully characterized by the first few moments. For example, binomial distributions are fully characterized by their means and second moments. Discrete uniform and discrete Normal distributions are also fully characterized by the first two moments. Poisson distributions are fully characterized by their mean. Proposition 2-2 states that, if the number of potential challengers, \(N \), follows a distribution that is fully characterized by the first \(L \) moments (which can depend on \(s \)), then \(P_e(s) \) and the first \(L \) or \(L + 1 \) moments of \(M \), the number of challengers entering the Primary, are sufficient statistics for \(G_{q_C}(\cdot|s) \). Whether \(L \) moments or \(L + 1 \) moments are required as sufficient statistics depends on whether there is a unique solution to a system of polynomial equations. If the solution is unique, \(L \) moments suffice. If not, \(L + 1 \) moments are required. Online Appendix 8.5 specifies the system of polynomial equations that determine whether \(L \) or \(L + 1 \) moments are needed.

Propositions 2-1 and 2-2 allow us to control for the selection of challengers in identifying the vote share equation. The sufficient statistics property we derive here corresponds to the propensity score used in Olley and Pakes (1996) to control for firm exit. In our empirical application, we use \(P_e(s) \) and \(\mathbb{E}[M|s] \), the first moment of \(M \), as sufficient statistics for \(G_{q_C}(\cdot|s) \). Online Appendix 8.5 discusses a concrete case in which \(P_e(s) \) and \(\mathbb{E}[M|s] \) are sufficient statistics for \(G_{q_C}(\cdot|s) \).

3 Identification and Estimation

Our goal is to identify \(q_I \) and \(q_C \) for each candidate and the vote share equation. We first identify the vote share equation as well as the realization of \(q_I \) for a subset of the incumbents who were uncontested in prior elections. We use the actions of the incumbents in past uncontested elections to construct a control function for \(q_I \). We do not identify \(q_C \) in this step because we cannot construct an analogous control function for the challengers. In the second step, we identify \(q_C \) by utilizing the first-order conditions associated with the candidates’ problem. The valence terms of incumbents who were never uncontested, as well as the components of the candidates’ payoffs (e.g., \(C_I(\cdot) \) and \(H_I(\cdot) \)), are also recovered from the first-order conditions.
3.1 Identification of Incumbent’s Valence and the Vote Share Equation

We first identify the vote share equation as well as the realization of q_I for a subset of the incumbents who were uncontested in prior elections. Recall that the vote share equation is specified as follows:

\[
vote_I = \beta_I \ln d_I + \beta_C \ln d_C + \beta_{ten} \ln ten_I + \beta_X X + q_I - q_C + \varepsilon. \tag{1}
\]

The two main challenges in identifying the vote share equation and candidate valence are sample selection bias and endogeneity of spending. Sample selection problem arises from the fact that the challengers’ entry decisions and the incumbents’ exit decisions are endogenous. Because the candidates know the state s when making entry and exit decisions, the valence measures of the candidates are potentially correlated with variables in s including those that evolve exogenously such as X and ten_I. Endogeneity of spending arises because the candidates choose d_I and d_C based, in part, on q_I and q_C. For example, incumbents typically spend more against a challenger with higher valence. Note that because our main goal is to identify the candidate valence measures, we cannot rely on panel data methods that sweep out the valence terms as nuisance parameters.

To overcome these challenges, we exploit a natural parallel between our setting and estimation of production functions. In particular, we adapt the control function approach developed by Olley and Pakes (1996) to our setting. We use Proposition 1 to construct a control function that allows us to invert out q_I as a function of observable terms; and we use Proposition 2-2 to keep fixed the distribution of q_C by conditioning on sufficient statistics. Note that we have two unobservable terms (q_I and q_C) as opposed to just one in Olley and Pakes (1996).

Control Function for q_I We use the inverse of the policy function of uncontested incumbents as a control function to express q_I as a function of observed variables. The policy functions associated with the problem of uncontested incumbents are how much to spend, $d_I(s)$, and how much to save, $w'_I(s)$. These policy functions can be viewed as mappings from q_I to (d_I, w'_I), holding the other state variables fixed. Because the mapping $q_I \mapsto (d_I, w'_I)$ is one-to-one (Proposition 1), we can uniquely solve for q_I using these policy functions as $q_I = q_I(\bar{s}_U)$, where \bar{s}_U denotes the vector of state variables and actions in the uncontested period.
Because the functional form of the policy functions, \(d_I(s) \) and \(w'_I(s) \), depends on the primitives of the model, so does \(q_I(\cdot) \). Hence, \(q_I(\cdot) \) is not a known object. Nevertheless, the fact that we can express \(q_I \) as \(q_I(s_U) \) allows us to substitute out \(q_I \) in the vote share equation with a nonparametric function of observables, \(s_U \). This allows us to identify \(q_I(\cdot) \) by tracing out how the vote share varies with \(s_U \).\(^9\)

Sample Selection Bias of \(q_C \) and Sufficient Statistics We next consider selection of challengers that choose to run against incumbents. We rewrite the vote share equation by decomposing \(q_C \) into a part that depends on \(s \) and a part that is orthogonal to \(s \).

\[
vote_I = \beta_I \ln d_I + \beta_C \ln d_C + \beta_{ten} \ln ten_I + \beta_X X + q_I(s_U) - \mathbb{E}[q_C|s] - (q_C - \mathbb{E}[q_C|s]) + \varepsilon.
\]

In our setup, endogenous entry creates a sample selection problem in that the state variables such as \(X \) and \(ten_I \) affect the vote share through their effect on challenger valence \(\mathbb{E}[q_C|s] \) in addition to the direct effect. Following Olley and Pakes (1996), we use sufficient statistics to identify the direct effect of \(ten_I \) and \(X \) on the vote share while holding fixed the sample selection effect.

As we showed in Proposition 2-2, \(m_M \) is a sufficient statistic for the distribution of the challenger’s valence in the election, \(G_{q_C}(\cdot|s) \). This implies that we can express \(\mathbb{E}[q_C|s] \) as a function of \(m_M \) as follows:

\[
\mathbb{E}[q_C|s] = \mathbb{E}[q_C|m_M(s)] \\
\equiv g(m_M(s)).
\]

Although \(m_M(s) \) are endogenous objects, they are nonparametrically identified directly from the data. This is because the only component of \(s \) that is not directly observed is \(q_I \); and \(q_I \) can be written as a function of observables as \(q_I = q_I(s_U) \). In other words, we can express \(m_M \) as functions of \(s_U \) and elements of \(s \) other than \(q_I \). Hence, \(m_M(s) \) is identified.

Replacing \(\mathbb{E}[q_C|s] \) as a function of \(m_M \) as in expression (11) allows us to control for

\(^9\)Unlike in Olley and Pakes (1996) and Levinsohn and Petrin (2003), there are no collinearity issues when estimating the vote share equation (See Ackerberg Caves and Frazer 2006 and Gandhi, Navarro and Rivers 2020). This is because we express \(q_I \) as a function of actions and state variables in some period \(t \) which we then use to replace out \(q_I \) in the vote share equation of some future period \(t' > t \).

\(^10\)In our empirical application, if an incumbent experiences multiple uncontested elections, we use the observations from the first uncontested election.
the indirect effect of \(s \) due to selection. By exploiting variation in \(s \) that leaves \(m_M \) fixed, \(\mathbb{E}[q_C|s] \) remains constant and we can identify the direct effect of \(s \) on the vote share.

Endogeneity of Spending with Respect to \(q_C \) Lastly, we control for the endogeneity between \(\{d_I, d_C\} \) and \((q_C - \mathbb{E}[q_C|s]) \). Because \((q_C - \mathbb{E}[q_C|s]) \) is the difference between the ex-post realization of the challenger’s valence from its expectation, it is orthogonal to the set of predetermined variables, \(s \). Hence we deal with the endogeneity by projecting the vote shares on \(s \) as follows:

\[
vote_I = \mathbb{E}[vote_I|s] + \epsilon
\]

\[
= \beta_I \mathbb{E}[\ln d_I|s] + \beta_C \mathbb{E}[\ln d_C|s] + \beta_{ten} \ln ten_I + \beta_X X
\]

\[
+ q_I(s_U) - g(m_M) + \epsilon,
\]

where \(\epsilon \equiv (vote_I - \mathbb{E}[vote_I|s]) \). The term \(\mathbb{E}[vote_I|s] \) is the vote share equation evaluated before the challenger’s valence \(q_C \) realizes. Hence \(\mathbb{E}[\epsilon|s] = 0 \) by construction. In particular, \(\epsilon \) is uncorrelated with \(\mathbb{E}[\ln d_I|s] \) and \(\mathbb{E}[\ln d_C|s] \). Because \(\mathbb{E}[\ln d_I|s] \) and \(\mathbb{E}[\ln d_C|s] \) are identified directly from the data, the orthogonality condition guarantees identification of \(\beta_I \) and \(\beta_C \). Similarly, the orthogonality between \(\epsilon \) and \(ten_I, X \) identifies \(\beta_{ten} \) and \(\beta_X \). Variation in \(s_U \) identifies \(q_I(\cdot) \).

The intuition behind the identification is as follows. Consider the case in which \(m_M \) consists of the probability that a challenger enters an election, \(P_e(s) \) and the expected number of Primary entrants, \(\mathbb{E}[M|s] \). This is the specification we use in our empirical analysis. Now, fix \(s_U \), the vector of state variables and actions in an uncontested period. This is equivalent to fixing \(q_I \). Now consider variation in \(s \) that keeps \(P_e(s) \) and \(\mathbb{E}[M|s] \) constant. For example, let state \(s = s_1 \) be such that the incumbent starts with high war chest, but variables in \(X \) that affect the vote share are not so favorable to the incumbent. Let state \(s = s_2 \) be such that the incumbent starts with low war chest, but variables in \(X \) are more favorable, so that \(P_e(s) \) and \(\mathbb{E}[M|s] \) are the same. The sufficient statistic property guarantees that the mean challenger valence will be the same in \(s_1 \) and \(s_2 \). Hence it is possible to use the variation in expected candidate spending and \(X \) across \(s_1 \) and \(s_2 \) to identify the coefficients of the vote share equation. Once all of the coefficients are identified, variation in \(s_U, P_e(s) \) and \(\mathbb{E}[M|s] \) identifies \(q_I(\cdot) \) and \(g(\cdot) \).

\(^{11}\)To be precise, \(q_I(\cdot) \) and \(g(\cdot) \) are identified up to an additive constant. In our environment, shifting up or down the valence measures of all of the candidates by the same amount does not change the distribution of observable outcomes. We normalize the sample average of \(q_I(\cdot) \) estimated from the control function to zero.
Note that this approach requires that we observe the incumbents’ actions in uncontested periods. Hence, in order to estimate the vote share equation, we only use a subset of elections in which the incumbent has experienced an uncontested election in the past. We discuss identification of valence measures for incumbents who never experience uncontested elections in Section 3.2.

Extensions for Incorporating Outside Spending and Lack of Uncontested Elections

Our approach of estimating the vote share equation extends to settings with substantial outside spending such as recent House elections and to those with very few uncontested races, such as Senate elections.

Consider first an environment with outside spending as follows:

\[
\text{vote}_I = \beta_I \ln d_I + \beta_C \ln d_C + \beta_{I,\text{out}} \ln d_{I,\text{out}} + \beta_{C,\text{out}} \ln d_{C,\text{out}} + \beta_{\text{ten}} \ln \text{ten}_I + \beta_X X + q_I - q_C + \varepsilon,
\]

where \(d_{I,\text{out}}\) and \(d_{C,\text{out}}\) denote outside spending supporting the incumbent and the challenger, respectively. Our approach directly extends to the identification of \(\beta_{I,\text{out}}\) and \(\beta_{C,\text{out}}\) because potential endogeneity between \(\{d_{I,\text{out}}, d_{C,\text{out}}\}\) and \(\{q_I, q_C\}\) can be controlled for by projecting all of the variables on the predetermined state variables \(s\). Moreover, if there exist variables that impact outside groups’ spending incentives that are orthogonal to \(q_I\) and \(q_C\) in a given district, including them as part of the state variable \(s\) provides extra source of variation to identify \(\beta_{I,\text{out}}\) and \(\beta_{C,\text{out}}\). An example of this type of variable is the number of other races that are predicted to be very close. Note that the sample selection bias can be dealt with in the same way as before even with outside spending.

Consider next an environment in which there are very few uncontested elections. In this case, we cannot invert the policy function of the incumbent in uncontested periods. However, if the researcher has access to additional data on the predicted vote shares, it is possible to extend our approach to this case as well. In Online Appendix 8.9, we describe conditions under which our approach can be modified to estimate the vote share equation and to identify valence terms.

12 We cannot use elections in which the incumbent experiences an uncontested election in the future, because it introduces selection on \(\varepsilon\); Experiencing an uncontested election in the future means that the incumbent wins the current election, which implies a high \(\varepsilon\) value.

13 If outside groups have budget constraints, the presence of other close races will impact spending in a given election.
3.2 Identification and Estimation of Challengers’ Valence and Components of Utility

We next consider identification and estimation of the challenger’s valence, q_C, taking as given q_I and the coefficients of the vote share equation. Because we do not have an adequate control function for q_C, we cannot directly identify q_C from the vote share equation. To establish identification, we utilize the first-order conditions associated with the candidates’ optimal spending and saving decisions. Because candidates observe q_C when they make these decisions, the first-order conditions are informative about the value of q_C. We identify q_C along with candidates’ payoff terms, such as the cost of raising money, $C_I(\cdot; \theta)$, $C_C(\cdot; \theta)$, $\tilde{C}_I(\cdot; \theta)$ and the consumption value of spending, $H_I(\cdot; \theta)$, $H_C(\cdot; \theta)$, $\tilde{H}_I(\cdot; \theta)$ from the first-order conditions. We also identify the standard deviation of the shock in the vote share equation, σ_ε.

We parameterize the cost of raising money and the consumption value of spending by θ, where θ is a vector of unknown parameters. We also fix the discount factor to 0.9. Because Congressional elections take place every two years, $\delta = 0.9$ corresponds to an annual discount of roughly 0.95. We also normalize the utility from winning, B, to one.15

First-Order Conditions The first-order conditions associated with the contested incumbent’s spending and saving decisions are as follows:

\[
\frac{\partial C_I}{\partial d_I} (w'_I + d_I - w_I, q_I; \theta) = \frac{\beta_I}{\sigma_\varepsilon d_I} \phi(K) \cdot \left(B + \delta \mathbb{E}_{X'|X} [V_I(s')] \right) + \frac{\partial H_I}{\partial d_I} (d_I; \theta) \tag{12}
\]

\[
\text{MC of fund-raising} \\ \text{MB of spending}
\]

\[
\frac{\partial C_I}{\partial w'_I} (w'_I + d_I - w_I, q_I; \theta) = \delta \Phi(K) \frac{\partial}{\partial w'_I} \mathbb{E}_{X'|X} [V_I(s')], \tag{13}
\]

\[
\text{MC of fund-raising} \\ \text{MB of saving}
\]

where

\[
K = \frac{1}{\sigma_\varepsilon} (\beta_I \ln d_I + \beta_C \ln d_C + q_I - q_C + \beta_{ten} \ln \text{ten}_I + \beta_X X). \tag{14}
\]

14We do not estimate some of the model primitives of the Primary, such as $\pi(\cdot)$, F_N, R, and κ. They are not necessary for recovering candidate valence measures, which is the focus of the paper.

15Identifying the discount factor in dynamic games is known to be difficult (Magnac and Thesmar 2002). We follow the literature in taking δ as given. Normalizing B to one implies that costs and benefits are measured relative to the utility of winning the election.
Expression (12) equates the marginal cost of raising money to the marginal benefit of spending. The marginal benefit consists of an increase in the probability of winning the election multiplied by the continuation value (the first term of the right-hand side) and the incremental consumption value of spending (second term of the right-hand side). Expression (13) equates the marginal cost of saving to the marginal benefit of saving, which is the incremental value of having more war chest next period. \(\Phi(\cdot) \) and \(\phi(\cdot) \) are the c.d.f and the p.d.f of the standard normal distribution. These expressions are obtained by using expression (2) to substitute out \(\Pr(vote_I > 0.5) \) from expression (3) and taking derivatives.

Consider the first-order conditions of the incumbents for whom we can identify the value of \(q_I \) using the control function, i.e., incumbents who are uncontested at least once. As we discuss below, we can simulate, as a function of \(\theta \) and \(\sigma_\varepsilon \), the continuation value \(\mathbb{E}_{X' \mid X}[V_I(s')] \) and compute its derivative \(\frac{\partial}{\partial w'_I} \mathbb{E}_{X' \mid X}[V_I(s')] \) for these incumbents. This allows us to solve for two values of \(K \), one using equation (12) and the other using equation (13) for a given \(\theta \) and \(\sigma_\varepsilon \). Our identification of \(\theta \) and \(\sigma_\varepsilon \) relies on the restriction that the values of \(K \) obtained from these two expressions for each incumbent coincide at the true parameter values.\(^{16}\) Once the model parameters in (12) and (13) are identified, the value of \(K \) for each election is identified, which implies identification of \(q_C \) through expression (14). Valence terms of the challengers who run against those incumbents (i.e., incumbents who experience uncontested elections) are hence identified.

The payoff terms of uncontested incumbents, \(\tilde{C}_I \) and \(\tilde{H}_I \), are identified from the first-order conditions of the uncontested incumbents whose \(q_I \) are known. Similarly, the payoff terms of the challengers, \(C_C \) and \(H_C \), are identified by using the first-order conditions of the challengers whose \(q_C \) are identified from the procedure outlined above.\(^{17}\)

In the rest of this subsection, we discuss how to (i) simulate the continuation value at each parameter value, (ii) identify the valence terms of the candidates for open-seat elections and (iii) identify and estimate the valence terms of all candidates (i.e., incumbents who are always contested and their opponents). Readers who are not interested in these details should skip to Section 3.3.

\(^{16}\)To the extent that \(q_I \) can be recovered without any error, the first-order conditions must hold with equality for each observation whenever \((d_I, w'_I) > 0 \). Of course, in practice, \(q_I \) is estimated nonparametrically, and the first-order conditions do not hold exactly at the estimated \(q_I \) in finite sample.

\(^{17}\)In practice, most challengers save 0, which means that we only have one first-order condition for the challengers in most cases. This makes it difficult to separately estimate \(H_C(\cdot) \) from \(C_C(\cdot) \) in our sample. For this reason, we assume \(H_C(\cdot) = H_I(\cdot) \) in our application.
Evaluating the Continuation Value by Simulation We now discuss how to express the continuation value as a function of θ and σ. Our approach is to adapt simulation methods developed by Hotz, Miller, Sanders and Smith (1994) and Bajari, Benkard and Levin (2007). These simulation methods involve estimating the transition of the state variables and the equilibrium policy functions nonparametrically in the first step, and using them to forward-simulate the value function for each parameter in the second step. Importantly, they do not require solving for an equilibrium at each candidate parameter value.

One challenge in applying these methods to our setting is that we do not observe q_C, one of the state variables in contested elections. Existing methods require that all of the state variables be observed when estimating the policy function. Nevertheless, it is still possible to forward-simulate the incumbent’s continuation payoff in our setting because in our model, (i) the incumbent’s utility does not depend directly on q_C but only indirectly through actions and outcomes; and (ii) q_C is independent across periods conditional on the observable state, s. These features of the model imply that we do not need to know the distribution of q_C in future periods to forward-simulate value function – we need only the distribution of actions (spending, saving and fund-raising) and outcomes (challenger’s entry status and electoral outcome).

In our forward simulation procedure, we estimate the distribution of actions and outcomes conditional on just the observable state, s, where $s \equiv \{q_I(s_U), w_I, ten_I, X\}$. Note that this is not the same as estimating the policy functions in contested elections, which would be functions of both s and the challenger’s valence, q_C. More specifically, we nonparametrically estimate the distribution of spending, fund-raising, the probability that the incumbent wins and the probability of retirement as functions of s : $F_{dl|s}, F_{fr|s}, \Pr(vote_I > 0.5|s), \lambda(s)$. We also estimate the distribution of incumbent savings conditional on winning, $F_{w_I|s,\{vote_I > 0.5\}}$. The randomness in these variables stems from the random realizations of q_C. We also estimate the transition of exogenous states, $X'|X$. Note that these conditional distributions are identified because all of the variables are observed. We can then draw a sequence of actions and outcomes to compute an associated sequence of flow payoffs which can then be averaged across simulation draws to evaluate $V_I(s)$. Once we simulate $V_I(s)$, we can obtain $E_{X'|X}[V_I(s)]$ as well as $\frac{\partial}{\partial w_I}E_{X'|X}[V_I(s')]$. Online Appendix 8.6 contains details on the simulation procedure.

Note that because the period utility is additively separable with respect to actions and outcomes, forward-simulation only requires the marginal, and not joint, distributions of actions and outcomes.
Open-Seat Elections To identify the model primitives for open-seat elections, consider the set of open-seat elections in which the winner becomes an incumbent whose valence can be identified using the control function. Now consider the first-order condition of these candidates in open-seat elections. The first-order conditions are analogous to expressions (12) and (13). Given that the valence measures of one of the candidates are known and the primitives of the elections with incumbents are known, the continuation value that appears in the first-order conditions of one of the candidates \((\mathbb{E}_{X'|X}[V_I(s')])\) and \(\frac{\partial}{\partial w} \mathbb{E}_{X'|X}[V_I(s')]\) are also known. This means that the primitives for open-seat elections can be recovered from the first-order conditions. Because we do not estimate the vote share equation for open-seat elections directly, the coefficient of spending, \(\beta_O\), is also identified from the first-order conditions.\(^{19}\)

Note that by restricting the estimation sample to candidates whose valence measure is known, we are selecting the sample partly based on the realization of \(\varepsilon\), the error term in the vote share equation.\(^{20}\) However, given that the candidates choose actions so as to satisfy the first-order conditions before \(\varepsilon\) is realized, the selection on \(\varepsilon\) does not bias our estimates.\(^{20}\)

Recovering Valence for All Candidates We now consider recovering the valence terms for incumbents who were never uncontested and those of challengers that run against them. Because the vote share equation and the payoff functions of the candidates are known, the four first-order conditions of the candidates in each contested election (two for each candidate) can be used to identify the valence terms of these candidates: the first-order conditions can be considered as a system of equations in \(q_I\) and \(q_C\). Similarly, for open-seat elections in which the valence terms of both candidates are yet to be identified, the first-order conditions can be considered as equations in \(q_O\), where \(q_O\) is a \(2 \times 1\) vector that represents the valence of open-seat candidates. We recover the valence measures of all candidates by solving these first-order conditions.\(^{21}\) Note that the first-order conditions of those whose valence is not known at this stage were not used in any of the previous stages.

\(^{19}\)Consider an analog of expression (12) in an open-seat election. Note that \(\beta_O\) appears inside \(K\) as well as in a term outside of \(K\) that multiplies \(\phi(K)\) in the first-order condition.

\(^{20}\)If the valence measure of one of the candidates is known, it means that the candidate won the open-seat election. Hence, those candidates must have received a favorable value of \(\varepsilon\) in the election.

\(^{21}\)In practice, we minimize the sum of squared deviations. See Online Appendix 8.7 for details.
3.3 Estimation

Our estimation closely follows the step-by-step identification procedure described above. In step 1, we estimate the vote share equation using the control function approach. We estimate the probability that a challenger enters an election, $P_e(s)$, and the expected number of Primary entrants, $E[M|s]$. We then estimate the vote share equation by sieve minimum distance estimator (Ai and Chen 2003). In step 2, we estimate candidates’ payoffs and the challengers’ valence terms by GMM in which we treat the candidates’ first-order conditions as well as orthogonality conditions from the vote share equation as moments. To forward-simulate the continuation payoffs, we estimate the distribution of actions in contested elections by nonparametric maximum likelihood (Gallant and Nychka 1987). We also estimate the policy functions in uncontested elections as well as the evolution of the state variables by regression. We then forward-simulate the continuation payoffs according to the procedure described in Online Appendix 8.6. In step 3, we estimate the parameters of the open-seat elections using GMM analogous to the case of contested elections. In step 4, we recover the valence terms of candidates whose valence measures are not recovered from the control function. We use GMM by stacking the candidates’ first-order conditions as moments. The details of the estimation are described in Online Appendix 8.7.

4 Data

We obtain the campaign finance data from the Federal Election Commission. The data contain information on the amount of fund-raising, spending and savings of all U.S. House candidates from 1984 to 2002. Data on electoral outcomes and candidate characteristics are obtained from the database of the CQ Press. We obtain demographic characteristics of congressional districts from the Census and the Bureau of Labor Statistics. We also use Presidential election vote shares to create the partisanship measures of each district. Presidential vote shares are obtained from Adler (2003) and POLIDATA.22

From the set of regular-cycle House elections, we drop elections in Louisiana, elections in Texas in 1996 that are affected by Supreme Court rulings and elections involving major scandals. We also drop contested elections in which the spending and savings of one of the candidates are zero or very close to zero.23 Lastly, we drop elections in which the

\footnote{https://polidata.org/default.htm}

\footnote{When savings and spending are zero, the first-order conditions of the candidates do not necessarily hold with equality. We drop elections in which one of the candidates spends and saves less than $5,000. These}
<table>
<thead>
<tr>
<th></th>
<th>(1) Contested Incumbent</th>
<th>(2) Contested Challenger</th>
<th>(3) Uncontested Incumbent</th>
<th>(4) Open-Seat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spending ((d))</td>
<td>450.4 (319.2)</td>
<td>173.4 (268.7)</td>
<td>225.0 (158.7)</td>
<td>453.6 (364.3)</td>
</tr>
<tr>
<td>Amount Raised ((fr))</td>
<td>473.0 (311.6)</td>
<td>175.6 (270.9)</td>
<td>287.6 (168.4)</td>
<td>462.3 (366.8)</td>
</tr>
<tr>
<td>War Chest ((w))</td>
<td>78.0 (110.2)</td>
<td>0.5 (4.4)</td>
<td>110.1 (137.0)</td>
<td>0.7 (5.9)</td>
</tr>
<tr>
<td>Savings ((w'))</td>
<td>100.8 (130.5)</td>
<td>2.9 (8.5)</td>
<td>173.4 (172.0)</td>
<td>10.1 (28.2)</td>
</tr>
<tr>
<td>Tenure ((ten))</td>
<td>5.9 (3.8)</td>
<td>1 (0)</td>
<td>6.5 (4.1)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Vote Share</td>
<td>0.640 (0.087)</td>
<td>0.360 (0.087)</td>
<td>1 (0)</td>
<td>0.5 (0.418)</td>
</tr>
<tr>
<td>Sample Size</td>
<td>2,531</td>
<td>2,531</td>
<td>581</td>
<td>369</td>
</tr>
</tbody>
</table>

Note: Spending, Amount Raised, War Chest and Savings are reported in units of $1,000. Dollar values are deflated to their values in 1984. Standard Errors are reported in parenthesis.

Table 1: Descriptive Statistics of Incumbents, Challengers and Open-Seat Candidates

incumbent saves more than $1.2 million (in 1984 dollars).\(^{24}\) Appendix 8.8 describes in more detail how the data are constructed.

Table 1 reports the summary statistics of the key variables. Dollar values are normalized to 1984 dollars and reported in units of $1,000. Column (1) corresponds to sample statistics for the incumbents in contested elections and Column (2) corresponds to those for the challengers. In contested elections, incumbents start out with an average war chest of about $78,000 and raise about $473,000. The incumbent spends about $450,400 and saves about $100,800, on average. The challengers, on the other hand, typically start out with zero war chest and raise about $175,600, almost all of which is spent. Average incumbent vote share is 64%.

Column (3) of Table 1 corresponds to the sample statistics for the incumbents in uncontested elections. Uncontested incumbents start with an average war chest of $110,100, which is higher than the average war chest of contested incumbents. The average amount of money raised in uncontested periods is about $287,600 and the average amount spent is about $225,000. Incumbents save more in uncontested races ($173,400) than in contested races ($100,800). Column (4) reports the sample statistics for open-seat elections.

Table 2 reports the summary statistics of the characteristics of the Congressional Dis-
elections account for 16.6 percent of all observations.

\(^{24}\)These elections account for 0.4 percent of all observations. Unusually large amount of savings are invariably for running for higher offices.
Table 2: Characteristics of Congressional Districts

We consider congressional districts that we include as control variables (X) in the vote share equation. Column (1) corresponds to districts with an incumbent Democrat, Column (2) corresponds to those with an incumbent Republican, and Column (3) corresponds to open-seat elections. Partisanship index is a measure of a district’s partisanship, constructed by following Levendusky et. al. (2008). In particular, we regress the log difference in the district-level vote shares of the Presidential election on demographic characteristics, year fixed effects and state fixed effects. Our measure of district partisanship is the fitted value of the regression for the concurrent or the most recent Presidential election. Positive (negative) values of the partisanship index correspond to an expected Presidential vote share above (below) 50% for the Democrats. Online Appendix 8.8 contains a detailed discussion of how this variable is constructed. Party of President is a dummy variable that equals 1 (-1) if the incumbent president is a Democrat (Republican).
5 Specification and Estimation Results

5.1 Specification

Vote Share Equation We specify the vote share equation as follows:

\[
\text{vote}_I = \beta_I \ln d_I + \beta_C \ln d_C + \beta_{ten} \ln ten_I \\
+ \beta_{pt}(pt \times D_I) + \beta_{ue}(ue \times D_I \times D_P) + q_I - q_C + \varepsilon.
\]

The variable \(pt \) is the district’s partisanship index that we discussed in Section 4. We interact this variable with \(D_I \) which is a variable that is equal to 1 (−1) if the incumbent is a Democrat (Republican). The term \(pt \times D_I \) captures predictable cross-sectional variation in the strength of the Democratic candidates across districts.

In order to account for intertemporal variation in the popularity of the parties, we include the term \(ue \times D_I \times D_P \). This term captures the effect of retrospective voting. The variable \(ue \) is the unemployment rate of the district, which proxies for the current economic environment in the district.25 Although retrospective voting can take many forms in principle, several studies find that voters express their satisfaction with the current administration by voting for or against the candidate from the president’s party (Hibbing and Alford 1981, Stein 1990). For this reason, we interact \(ue \) with a variable that indicates whether or not the incumbent and the president are from the same party. Specifically, we let \(D_P \) be equal to 1 (−1) if the president is a Democrat (Republican). \(D_I \times D_P \) is then equal to one if the candidate and the president are from the same party, and −1, otherwise.

State Variables and Their Transition We assume that \(ue \) and \(pt \) follow an AR(1) process. We also assume the following process for the President’s party, \(D_P \): (1) \(D_P \) remains the same next period with probability 0.75 in a presidential election when the president is running for the second term; (2) \(D_P \) remains the same with probability 0.5 when the incumbent president is at the end of his second term; and (3) \(D_P \) remains the same next period with probability one if the election is a Midterm election. Because the transition of \(D_P \) depends on the President’s term of office (in his first term or second term) and whether or not the election is a Midterm election, these variables are part of the state

25Unemployment rate is often used as a proxy for the current economic environment, e.g., Ansolabehere et. al. (2014).
Components of the Utility Function We specify the cost of fund-raising and the benefit associated with spending for uncontested incumbents as follows:

\[
\tilde{C}_I(fr_I; q_I) = c(q_I)(\ln fr_I)^2, \\
\tilde{H}_I(d_I) = \gamma_U \sqrt{\ln d_I},
\]

where \(fr_I\) denotes the amount raised and \(c(\cdot)\) is a decreasing function of \(q_I\). This specification implies that the cost of fund-raising is increasing and convex in \(\ln fr_I\) and the benefit associated with spending is increasing and concave in \(\ln d_I\). The assumption that \(c(\cdot)\) is decreasing in \(q_I\) guarantees that \(q_I\) is invertible with respect to the actions of the incumbent in uncontested periods (see Proposition 1). In particular, in Online Appendix 8.4 we show that the functional form we specify for \(\tilde{C}_I\) and \(\tilde{H}_I\) allows us to express \(q_I\) as a function of a scalar variable \(z_U \equiv \frac{fr_I}{\sqrt{\ln d_I \ln fr_I}}\) as \(q_I = q_I(z_U)\), where \(d_I\) and \(fr_I\) are incumbent’s spending and fund-raising amount in an uncontested period. Being able to express \(q_I\) as a function of a scalar variable, \(z_U\), rather than a vector of all states and actions in the uncontested period, \(\bar{s}_U\), significantly reduces the data requirement for estimation. For estimation, we further specify \(c(\cdot)\) as \(c(q_I) = c_1 + c_2 \exp(-q_I)\), where \(c_1 > 0\) and \(c_2 > 0\) are parameters to be estimated. The functional form for \(c(q_I)\) ensures that \(c(q_I)\) is positive and decreasing for all \(q_I\).

We specify the cost function of contested incumbents, \(C_I(\cdot; q_I)\), and the cost function of challengers, \(C_C(\cdot; q_C)\), as scalar multiples of \(\tilde{C}_I\):

\[
C_I(fr_I; q_I) = \eta_I c(q_I)(\ln fr_I)^2, \\
C_C(fr_C; q_C) = \eta_C c(q_I)(\ln fr_C)^2.
\]

26Formally, the vector of state variables \(s\) is

\[
s = \{q_I, w_I, ten_I, pt \times D_I, ue \times D_I \times D_P, 1\{President 1st term\}, 1\{Midterm\}\}.
\]

Both \(pt \times D_I\) and \(ue \times D_I \times D_P\) enter in the vote share equation. \(1\{President 1st term\}\), and \(1\{Midterm\}\) are only needed to characterize the evolution of \(D_P\).
| | $P_e(s)$ | $\mathbb{E}[M|s]$ |
|---------------------|------------------|------------------|
| Constant | 2.934 (1.265) | 1.580 (0.638) |
| \ln War Chest | -0.212 (0.214) | -0.139 (0.089) |
| $(\ln$War Chest$)^2$| 0.006 (0.011) | 0.005 (0.005) |
| \ln Tenure | 0.163 (0.108) | 0.206 (0.088) |
| Partisanship Index $\times D_I$ | -0.394 (0.116) | -0.281 (0.095) |
| Unemployment $\times D_I \times D_P$ | 3.527 (0.848) | 2.069 (0.652) |
| B-Spline of z_U | ✓ | ✓ |
| Election cycle | ✓ | ✓ |

Note: We take 7 knots corresponding to $(1/8, \cdots, 7/8)$ quantiles of z_U for the B-Spline of z_U. Election cycle corresponds to a complete interaction of dummy variables $1\{\text{President 1st term}\}$ and $1\{\text{Midterm}\}$. Standard errors are reported in parentheses.

Table 3: Estimates of $P_e(s)$ and $\mathbb{E}[M|s]$

We specify the benefit of spending for contested incumbents and challengers as follows:27

$$H_I(d) = H_C(d) = \gamma \sqrt{\ln d}.$$

We assume that the costs of fund-raising and the benefit from spending for open-seat candidates are the same as those of challengers running against incumbents. We specify the retirement probability, $\lambda(s)$, as a nonparametric function of ten_I.28

5.2 Parameter Estimates

\textbf{Estimates of $P_e(\cdot)$ and $\mathbb{E}[M|s]$} We first report our estimates of challenger entry probability, $P_e(s)$, and the average number of entrants, $\mathbb{E}[M|s]$. Estimates of $P_e(s)$ and $\mathbb{E}[M|s]$ are used to control for the sample selection problem in expression (1''). Both $P_e(s)$ and $\mathbb{E}[M|s]$ are functions of $s = (q_I, w_I, \text{ten}_I, X)$. Because q_I can be expressed as a function of the incumbent’s actions in uncontested periods as $q_I = q_I(z_U)$ ($z_U \equiv \frac{fr_I}{\sqrt{\ln d_I \ln fr_I}}$), we

27We assume $H_C(\cdot) = H_I(\cdot)$ because it is difficult to separately estimate $H_C(\cdot)$ from $C_C(\cdot)$ in our sample. The difficulty arises because (i) the probability of winning the election is very small for many challengers and (ii) many challengers save nothing, i.e., $w'_C = 0$. When the winning probability is very small, expression (12) reduces to $C'_C(d_C) = H'_C(d_C)$. When $w'_C = 0$ (i.e., corner solution), expression (13) becomes an inequality. Hence, the two first-order conditions reduce to a single restriction, $C'_C(d_C) = H'_C(d_C)$. This means that we need to normalize C_C or H_C.

28We model λ as just a function of ten_I which is consistent with the findings of Ansolabehere and Snyder (2004). Ansolabehere and Snyder (2004) find that incumbents do not seem to retire strategically.
estimate $P_e(s)$ and $E[M|s]$ as functions of $(z_U, w_I, \text{ten}_I, X)$. Note that all of these variables are observed.

We specify $P_e(s)$ as a Probit with $\ln w_I$, $(\ln w_I)^2$, $\ln \text{ten}_I$, X, and B-spline bases of z_U. We specify $E[M|s]$ as a linear regression with the same set of regressors. In principle, $P_e(s)$ and $E[M|s]$ should be estimated flexibly as functions of the state variables because they are equilibrium objects. Our relatively parsimonious specification is driven by moderate sample size. Online Appendix 8.7 contains details on the estimation of $P_e(s)$ and $E[M|s]$ as well as those of other results in this section.

Table 3 reports the results. The first column of the table reports our estimate of P_e. We find that a higher incumbent war chest is associated with a lower entry probability, and a longer tenure is associated with a higher entry probability, although the coefficients are not statistically significant. We find that the unemployment rate and the district partisanship index have statistically significant and sizeable effects on the entry probability. The second column of Table 3 reports the estimated coefficients for $E[M|s]$. The sign and significance of the coefficients are similar to those for P_e.

The fact that variables such as the partisanship index affect $P_e(s)$ and $E[M|s]$ suggests that these variables indirectly affect the valence of the general election challenger, q_C, through the challengers’ endogenous entry decisions.

Estimates of Vote Share Equation In the first column of Table 4, we report our estimates of the vote share equation. The parameters are estimated by applying a sieve minimum distance estimator of Ai and Chen (2003) to expression $(1^{'})$. Our point estimates of β_I and β_C are 0.025 and -0.025, respectively.29 These estimates imply that a standard deviation increase in the spending of the incumbent increases the incumbent vote share by about 1.7 percentage points, while a standard deviation increase in the challengers’ spending decreases the incumbent vote share by about 4.3 percentage points.30

We find that the impact of spending on the vote share is smaller in open-seat elections, although the standard error is quite large. The estimate of β_O is 0.013 which implies that a standard deviation increase in the spending of an open-seat candidate increases the vote share of that candidate by about 1.1 percentage points.31

29The fact that the magnitudes are the same is a coincidence.

30Although the magnitude of the coefficients is the same, the marginal effect is different because we specify the vote share equation as a linear function of log spending (and, hence, the marginal return from spending diminishes) and challengers on average spend less than incumbents.

31Note that we estimate β_O from the first-order conditions associated with the problem of open-seat can-
We also find that the partisanship index has a large positive effect on the vote share. The estimated coefficient is 0.054, which implies that a standard deviation change in the partisanship index in the incumbent’s favor leads to an increase in the incumbent vote share by 2.3 percentage points. Our estimate of β_{ue} is negative, suggesting that incumbents who are of the same party as the president obtain less votes when the unemployment goes up. Our estimates of β_{ten} is small and statistically insignificant. Our estimate of σ_ε, the standard deviation of the error term in the vote share equation, is 0.041.

<table>
<thead>
<tr>
<th></th>
<th>Control function</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_I</td>
<td>0.025 (0.014)</td>
<td>-0.015 (0.004)</td>
</tr>
<tr>
<td>β_C</td>
<td>-0.025 (0.011)</td>
<td>-0.029 (0.002)</td>
</tr>
<tr>
<td>β_O</td>
<td>0.013 (0.038)</td>
<td></td>
</tr>
<tr>
<td>β_{pt}</td>
<td>0.054 (0.013)</td>
<td>0.062 (0.007)</td>
</tr>
<tr>
<td>β_{ue}</td>
<td>-0.073 (0.058)</td>
<td>-0.096 (0.044)</td>
</tr>
<tr>
<td>β_{ten}</td>
<td>0.001 (0.009)</td>
<td>-0.014 (0.006)</td>
</tr>
<tr>
<td>σ_ε</td>
<td>0.041 (0.009)</td>
<td>0.063 (0.007)</td>
</tr>
</tbody>
</table>

Note: First column corresponds to the estimates obtained using the approach discussed in Section 3. Second column corresponds to OLS estimates. Standard errors are reported in parentheses. The standard errors of the first column are computed based on 500 bootstrap samples.

Table 4: Parameter Estimates of the Vote Share Equation

In the second column of Table 4, we report the OLS estimates of the vote share equation for elections with incumbents for comparison. The OLS results correspond to a simple regression of expression (1) in which the vote shares are regressed on observables without controlling for candidate valence. We find that the OLS estimate of incumbent spending is negative and statistically significant, reflecting the fact that incumbents choose higher d_I against stronger challengers (i.e., q_C and d_I are positively correlated). We also find that OLS overestimates (in terms of magnitude) the effect of the partisan index and the unemployment rate. This suggests that the OLS estimates are picking up the indirect effect from a change in the composition of the challengers in addition to the direct effect of these variables on the vote share. The direction of the bias suggests that challengers are weaker when the electoral environment is favorable to the incumbent.
<table>
<thead>
<tr>
<th>(C(\cdot))</th>
<th>(H(\cdot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>0.003 (0.002)</td>
</tr>
<tr>
<td>(c_2)</td>
<td>0.102 (0.069)</td>
</tr>
<tr>
<td>(\eta_I)</td>
<td>2.559 (1.115)</td>
</tr>
</tbody>
</table>

Note: Standard errors (reported in parentheses) are computed based on 500 bootstrap samples.

Table 5: Parameter Estimates of Fund-Raising Cost and Benefit from Spending

Figure 2: Cost of Fund-Raising and Benefit of Spending

Note: In Panel (A), the horizontal axis corresponds to the log amount raised and the vertical axis corresponds to the cost of raising money relative to the utility of winning. In Panel (B), horizontal axis corresponds to the log amount spent and the vertical axis corresponds to the benefit of spending money measured relative to the utility from winning.

Estimates of \(C(\cdot) \) and \(H(\cdot) \) We now report the estimates of \(C(\cdot) \) and \(H(\cdot) \), the candidates’ cost of fund-raising and the personal benefit of spending. Table 5 reports the parameter estimates and Figure 2 illustrates the shape of \(C(\cdot) \) and \(H(\cdot) \) at the estimated parameters.\(^{32}\) The vertical axes of the figure correspond to the cost of fund-raising and the benefit of spending measured relative to the utility from winning, which is normalized to 1. The horizontal axes correspond to the amount raised and amount spent.

\(^{32}\)We use the mean of the estimated valence measures to draw the cost function in Panel (A) of Figure 2. In particular, we set \(q = -0.006, -0.005 \) and \(-0.098\) for contested incumbents, uncontested incumbents, and challengers in contested elections, respectively.
Figure 3: Distribution of Candidate Valence

Note: The top, middle and bottom panels correspond to the histogram of valence measures of incumbents, challengers running against incumbents and open-seat candidates, respectively. The valence measures are scaled in unit of vote shares.

5.3 Estimates of Candidate Valence

Figure 3 reports our estimates of candidate valence measures. The top panel corresponds to the histogram of the estimated valence measures of the incumbents and the middle panel
corresponds to those of challengers that run against incumbents.\footnote{If a candidate competes in an election as a challenger and subsequently becomes an incumbent, the valence measure of the candidate is included in both panels. Similarly, candidates that compete in open-seat elections who later become incumbents appear twice.} We find that, on average, the valence measures of the incumbents are about 0.092 higher than those of the challengers, implying that the differences in candidate valence translates to a 9.2 percentage point vote-share advantage for the incumbents. To put this number in perspective, the incumbent won with less than 59.2 percent of the vote share in about 30.0 percent of the elections in our sample. We also find a relatively small dispersion of valence measures among incumbents. The inter-quartile range of incumbent valence is about 2.7 percentage points. On the other hand, the valence measures of the challengers are more dispersed. The inter-quartile range is about 9.6 percentage points. Our finding that there is a longer tail of low-valence challengers is consistent with the fact that incumbents are selected partly by valence.

The bottom panel of Figure 3 plots the histogram of the estimated valence measures for open-seat candidates. We find that the upper tail of the distribution of the open-seat challengers resembles that of the incumbents. However, there is also a substantial mass of low valence open-seat challengers. The average valence measure of open-seat challengers is about 3.9 percentage points lower than that of the incumbents, and about 5.3 percentage points higher than that of challengers that run against incumbents. The inter-quartile range is about 6.9 percentage points. Our finding suggests that open-seat challengers are on average substantially stronger than challengers that run against incumbents.

Valence of Winners and Losers, Democrats and Republicans

We now report the distribution of candidate valence by whether or not the candidate wins the election, and by the party of the candidate. Panel (A) of Figure 4 illustrates the valence measure of incumbents, challengers, and open-seat candidates by whether or not the candidate wins the election. The gray bars correspond to the winners and the uncolored bars correspond to the losers of the election. For incumbents, we find that the valence distribution of the winners and the losers are similar, although the mean valence is slightly higher for winners (-0.061) than for losers (-0.087). For challengers and open-seat candidates, we find that the valence measures of the winners are much higher than those of the losers. The average valence of challengers that win is 0.022, while the average valence of challengers that lose is -0.105. The average valence of open-seat candidates that win is -0.010 while the average for those that lose is -0.080.
Panel (B) of Figure 4 illustrates the valence measures broken down by party. The gray bars correspond to the Democrats and the uncolored bars correspond to the Republicans. We do not find any significant differences in the distribution of valence between the parties.

Comparison with Existing Valence Measures In order to assess the validity of our measure of candidate valence, we compare our measure with one constructed by Maestas and Rugeley (2008). In Maestas and Rugeley (2008), the authors construct four dummy variables (Serious 25, Serious 50, Serious 75, Serious 90) that capture the seriousness of the challengers that run for House seats between 1992 and 2000. The dummies are constructed based on observed characteristics of the candidates, such as previous political experience and extent of personal investment in the campaigns. The differences among the four dummies roughly reflect how much the candidate used his or her own personal funding in the campaign. Because these measures are specifically aimed at capturing factors that
Table 6: Correlation with Seriousness Measure of Maestas and Rugeley (2008)

<table>
<thead>
<tr>
<th></th>
<th>Serious 25</th>
<th>Serious 50</th>
<th>Serious 75</th>
<th>Serious 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spearman’s ρ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_C</td>
<td>0.106 [0.000]</td>
<td>0.240 [0.000]</td>
<td>0.309 [0.000]</td>
<td>0.351 [0.000]</td>
</tr>
<tr>
<td>Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const.</td>
<td>0.960 (0.009)</td>
<td>0.886 (0.014)</td>
<td>0.751 (0.016)</td>
<td>0.660 (0.017)</td>
</tr>
<tr>
<td>q_C</td>
<td>0.419 (0.087)</td>
<td>1.383 (0.137)</td>
<td>2.103 (0.160)</td>
<td>2.424 (0.160)</td>
</tr>
<tr>
<td>Sample size</td>
<td>1765</td>
<td>1765</td>
<td>1765</td>
<td>1765</td>
</tr>
</tbody>
</table>

Note: We use challengers that run for election between 1992 and 2000. We report the Spearman’s rank correlation coefficient and the regression coefficients. We report the p-values (in square brackets) for the Spearman’s rank correlation coefficient and standard errors (in round brackets) for the regression.

affect a candidate’s probability of winning, they serve as good benchmarks of comparison.

The first row of Table 6 reports the Spearman’s rank correlation coefficient between our measure and each of the four measures of seriousness in Maestas and Rugeley (2008). We report the p-values in square brackets. In all four columns, we find that the rank correlation coefficients are positive and statistically significant. The second row of Table 6 reports the results from linear regressions in which we regress each of the four measures of seriousness on our measure of valence. We find that the coefficient on q_C is positive and statistically significant. These results suggest that our measure captures an important aspect of candidate electability.

6 Source of Incumbency Advantage in U.S. House Elections

Our measures of candidate valence can be potentially useful in studying a wide variety of substantive questions in political economy. In order to illustrate their usefulness, we use the estimated valence measures to study incumbency advantage in U.S. House elections. Specifically, we contribute to the literature by identifying the extent to which incumbency advantage is explained by differences in candidate valence and differences in campaign spending.

Following Lee (2008), we define incumbency advantage as the difference in the period
$t + 1$ vote share of the party who marginally won a seat in period t and the party who marginally lost the seat in period t as follows:

$$
\lim_{\epsilon \to +0} \mathbb{E}[vote_{Dem,t+1}|vote_{Dem,t} = 0.5 + \epsilon] - \lim_{\epsilon \to +0} \mathbb{E}[vote_{Dem,t+1}|vote_{Dem,t} = 0.5 - \epsilon],
$$

where $vote_{Dem,\tau}$ is the Democrat’s vote share in period τ. The regression discontinuity (RD) estimate identifies the extra vote shares that a party gains from fielding an incumbent (who marginally won the previous election), relative to the case in which the party fields a challenger (against the rival party’s marginal incumbent).

Using the estimated measures of candidate valence and the parameters of the vote share equation, we decompose the incumbency advantage into a valence effect, a spending effect and a tenure effect. The valence effect is the difference in the valence between marginal winners and challengers that are fielded against the incumbents. The spending effect is the differences in the amount of spending between marginal incumbents and average challengers. The tenure effect is the differences in tenure: a marginal incumbent has typically served several terms in office at the time of the election in period $t + 1$. Identifying the sources of incumbency advantage is important for understanding the effectiveness of various policies (e.g., subsidizing challengers’ campaigns) to reduce incumbency advantage and increase political competition.

We first estimate the incumbency advantage in our sample by using the same regression discontinuity design as Lee (2008). Column (1) of Table 7 reports the results. We find that the RD estimate of the incumbency advantage is 9.9 percentage points. Figure 5 shows the binned scatter plot of the Democratic vote share in period $t + 1$ against the Democratic vote share in period t.

We now study how much of the incumbency advantage is explained by differences in candidate valence, spending, and tenure. To do so, we estimate the same RD regression as expression (15), but replace the outcome variable with valence, spending and tenure of the candidates. Columns (2) through (8) of Table 7 report the results.

Columns (2) through (4) of Table 7 report the RD estimates for candidate valence. Column (2) corresponds to the case in which we take the outcome variable to be the valence

34 We use the bias-correction estimator proposed by Calonico et. al. (2014) for all of our RD estimates.

35 This result is reasonably close to the Lee’s original result, which is around 8.0 percentage points. The difference of 2.0 percentage points is likely to reflect the fact that we only use elections from 1984, whereas Lee’s data include elections from the 1950s. There is evidence that incumbency advantage is increasing over time (see, e.g., Gelman and King (1990)).
<table>
<thead>
<tr>
<th>(1) Vote share</th>
<th>(2) Valence Dem</th>
<th>(3) Valence Rep</th>
<th>(4) Valence Total</th>
<th>(5) Spending Dem</th>
<th>(6) Spending Rep</th>
<th>(7) Spending Total</th>
<th>(8) Log-Tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>0.099</td>
<td>0.038</td>
<td>-0.028</td>
<td>0.069</td>
<td>0.543</td>
<td>-0.825</td>
<td>1.336</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.166)</td>
<td>(0.166)</td>
<td>(0.189)</td>
<td>(0.143)</td>
</tr>
<tr>
<td>In Vote share</td>
<td>0.099</td>
<td>0.069</td>
<td></td>
<td>0.058</td>
<td>0.059</td>
<td>0.062</td>
<td>0.053</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>0.048</td>
<td>0.057</td>
<td>0.049</td>
<td>0.057</td>
<td>1944</td>
<td>1944</td>
<td>1944</td>
</tr>
<tr>
<td>Obs</td>
<td>1944</td>
<td>1944</td>
<td>1944</td>
<td>1944</td>
<td>1944</td>
<td>1944</td>
<td>1944</td>
</tr>
</tbody>
</table>

Note: The sample of elections used for this regression includes all election pairs between period \(t \) and \(t+1 \) in which period \(t+1 \) is not an uncontested election. The total effect in Columns (4) is estimated with the dependent variable being \(q_{\text{Dem},t+1} - q_{\text{Rep},t+1} \) for the case of \(\text{vote}_{\text{Dem},t} > 0.5 \), and \(q_{\text{Rep},t+1} - q_{\text{Dem},t+1} \) otherwise. The total effect of spending in Column (7) and the effect on Log-Tenure in Column (8) are estimated analogously. We use a uniform kernel to estimate these RD regressions. Standard errors are reported in parentheses.

Table 7: RD Estimates of Incumbency Advantage

![Binned Scatter Plot - Democratic Vote Share at t+1](image)

Figure 5: Binned Scatter Plot - Democratic Vote Share at t+1

Note: The figure plots the vote share of the Democratic candidates at \(t+1 \) on the vertical axis and the Democratic candidate’s vote share in period \(t \) on the horizontal axis. The curves in the figure correspond to a fourth-order polynomial approximation of the conditional expectation.
of the Democratic candidate in period $t+1$. The estimate (0.038) implies that a Democratic
candidate who marginally wins in period t (and hence is an incumbent in period $t + 1$) has
higher valence measure than an average Democratic candidate that is fielded as a challenger
by about 3.8 percentage points. Column (3) reports the corresponding RD estimate for the
Republicans. The estimate implies that an average Republican challenger has lower valence
than a marginal Republican incumbent by about 2.8 points. Thus, a narrow Democratic win
in period t relative to a narrow Democratic loss implies a stronger Democratic candidate as
well as a weaker Republican candidate in $t + 1$. Column (4) reports the combined effect,
which is estimated to be about 6.9 percentage points. Panel (A) of Figure 6 is the binned
scatter plot of the valence of the Democrats in period $t + 1$ and Panel (B) is that of the
Republicans in period $t + 1$. In both panels, the horizontal axis is the Democratic party’s
two-party vote share in period t.

![Figure 6: Binned Scatter Plot - Candidate Valence](image)

Note: Panel (A) is the binned scatter plot of the valence of Democratic candidates at
$t + 1$ and Panel (B) is that of the Republican candidates at $t + 1$. The horizontal axis for both panels is the
Democratic candidate’s vote share in period t. The curves in the figure correspond to a fourth-order
degree polynomial approximation of the conditional expectation.

Columns (5) through (7) of Table 7 report the RD estimates for spending. For Column
(5), we take the outcome variable in the RD regression to be the log spending of the Demo-
cratic candidate in period $t + 1$. The coefficient estimate implies that the log spending of a

36 The total effect in Columns (4) is estimated by an RD regression with the dependent variable being $q_{Dem,t+1} - q_{Rep,t+1}$ for the case of $vote_{Dem,t} > 0.5$, and $q_{Rep,t+1} - q_{Dem,t+1}$ otherwise. In the absence of sampling error, the combined effect should be exactly equal to the effect for the Democratic candidates minus the effect for the Republican candidates.
marginal Democratic incumbent is higher than the log spending of an average Democratic challenger by about 0.54 points. Similarly, the coefficient estimate in Column (6) implies that the log spending of an average Republican challenger is lower than a marginal Republican incumbent by about 0.83 points. The estimates correspond to about a 150,000-dollar difference in spending for the Democrats and 360,000-dollar difference for the Republicans. Column (7) of Table 7 reports the combined effect, which is estimated to be 1.34 points in terms of log spending, or about 480,000 dollars. Given our coefficient estimate of spending in the vote share equation, differences in spending amount to an incumbency advantage of about 2.9 percentage points in terms of vote share. Panel (A) of Figure 7 is the binned scatter plot of spending by the Democratic candidate in period $t + 1$ and Panel (B) is the corresponding plot for the spending of the Republicans.

![Figure 7: Binned Scatter Plot - Candidate Spending](image)

Note: The left panel is the binned scatter plot of the log spending of Democratic candidates at $t + 1$ and the right panel is that of the Republican candidates at $t + 1$. The horizontal axis for both panels is the Democratic candidate’s vote share in period t. The curves in the figure correspond to a fourth-order polynomial approximation of the conditional expectation.

Lastly, we consider the component of the incumbency advantage that is attributable to the differences in the tenure of the candidates. The RD estimate of the log tenure of the Democrats is 1.06 points, or 2.95 terms and the estimate for the Republicans is -0.91 points, or -1.89 terms. These estimates imply that a marginal Democratic winner has served about 2.95 terms in office at period $t + 1$ and the marginal Republican winner has served about 1.89 terms in office. Column (8) of Table 7 reports the combined effect on log tenure, which is 1.97 points, or 4.75 terms. Given that our coefficient estimate on tenure in the vote
share equation is small (0.001), the differences in tenure between the incumbent and the challenger translates to an incumbency advantage of about 0.1 percentage points in terms of vote share.

To summarize, we find that the incumbency advantage that results from differences in candidate valence accounts for about 6.9 percentage points in terms of vote share. Differences in candidate spending accounts for about 2.9 percentage points and differences in the experience of the candidates account for about 0.1 percentage points. Our results suggest that differences in candidate valence account for a substantial component of the incumbency advantage. This in turn suggests that policy interventions designed to reduce incumbency advantage through the spending channel, such as subsidizing challengers’ campaigns, may have limited effectiveness.

7 Conclusion

This study is a first attempt at recovering the valence of candidates from vote shares. Although candidate valence plays a prominent role in many theoretical models of political competition, empirical measures of valence has been mostly lacking. We think that the methods developed in this paper can serve as a starting point for testing and estimating models of political competition with vertical differentiation among candidates.

References

8 Online Appendix [For Online Publication]

In the Online Appendix, we provide proofs that we omitted from the main text as well as details regarding the model, estimation, data construction and applications to other environments. In Section 8.1, we describe the model of open-seat elections. In Section 8.2, we show that at the estimated parameter values, the challenger’s value function, \(v_C \), is not too decreasing in \(q_C \) in our data: a condition that ensures that the challenger’s entry decision follows a cutoff strategy. In Section 8.3, we provide a step-by-step derivation of \(G_{qC}(\cdot|s) \) as a function of \(q_C(s) \) (expression (9)). In Section 8.4, we prove Proposition 1 (Injectivity). In Section 8.5, we prove Proposition 2-2 (Sufficient statistics). In Section 8.6, we discuss how we forward-simulate the continuation value. We provide details of the estimation procedure in Section 8.7 and data construction in Section 8.8. In Section 8.9, we show how our approach can be extended to environments in which \(q_I \) is time-varying, and one in which there are few uncontested elections.

8.1 Description of the Model of Open-Seat Elections

In an open-seat election, challengers from both parties decide whether or not to enter. Consequently, the process that determines the valence of the challengers (Stages 1 and 2(a) in Figure 1) applies to both parties. The value function of candidate \(i \) running against candidate \(j \) in the general election is as follows:

\[
v_O(X, q_i, q_j) = \max_{w'_i \geq 0, d_i \geq 0} B \cdot \Pr(\text{vote}_i > 0.5) - C_O(w'_i + d_i, q_i) \\
+ H_O(d_i) + \delta \Pr(\text{vote}_i > 0.5) \mathbb{E}_{X'|X}[V_I(s')],
\]

where

\[
\text{vote}_i = \beta_O \ln d_i - \beta_O \ln d_j + \beta_{pt}(pt \times D_i) + \beta_{ue}(ue \times D_i \times D_P) + q_i - q_j + \varepsilon,
\]

We assume \(\varepsilon \) follows \(N(0.5, \sigma_e^2) \). The problem of open-seat candidates is similar to that of challengers that run against incumbents. We allow for the coefficient of campaign spending to be open-seat specific, which we denote by \(\beta_O \). \(C_O(\cdot) \) and \(H_O(\cdot) \) are the cost of fundraising and the benefit of spending in open-seat elections.\(^{37}\)

\(^{37}\)In our empirical specification, we assume that \(C_O(\cdot) = C_C(\cdot) \) and \(H_O(\cdot) = H_C(\cdot) \).
Open-seat candidates make entry decisions by comparing their expected return from entry and the cost of entry, κ_O. The ex-ante value function can be expressed as follows:

$$V_O(X, q_i) = \max \left\{ p_O(q_i, X) \int v_O(X, q_i, q_j)dG_{q_j}(q_j|X) - \kappa_O, 0 \right\}, \quad (i \neq j),$$

where $p_O(q_i, X)$ denotes the ex-ante probability that challenger i is selected as a party nominee, defined analogously to Expression (7). Because candidates do not know the valence of the candidate from the opponent party, we take expectation over v_O with respect to the valence distribution of the opponent in the general election, which we denote by G_{q_j}.

8.2 Simulating Derivatives of v_C with respect to q_C

In our identification and estimation, we rely on the property that a potential challenger’s entry decision is characterized by a cut-off strategy with threshold $\bar{q}_C(s)$. A sufficient condition for this property to hold is that $p(s, q_C)v_C(s, q_C)$ is increasing in q_C. Because we assume that $\pi(q_{C,m}, q_{C,-m})$ is increasing in $q_{C,m}$, $p(s, q_C)$ is increasing in q_C by assumption (see expression (7)). Hence, $p(s, q_C)v_C(s, q_C)$ is increasing in q_C as long as $v_C(s, q_C)$ is not too decreasing in q_C. In this section, we simulate the derivative $\frac{\partial v_C}{\partial q_C}$ for each challenger at the estimated parameter values to show that the condition generally holds.

Recall that v_C is given as follows.

$$v_C(s, q_C) = \max_{d_C \geq 0, w'_C \geq 0} B \cdot \Pr(\text{vote}_I < 0.5) - C_C(f r_C, q_C)$$

$$+ H_C(d_C) + \delta \Pr(\text{vote}_I < 0.5) \mathbb{E}_{X'|X}[V_I(s')].$$

To numerically evaluate $\frac{\partial v_C}{\partial q_C}$ at a given $\{s, q_C\}$ in the data, we need to evaluate v_C at state $\{s, q'_C\}$ such that q'_C is located sufficiently close to q_C. To do so, we first compute, at q'_C, the optimal choice of incumbent’s spending, d_I, and challenger’s spending, fund-raising and saving, $d_C, f r_C$ and w'_C. Using these optimal choices, we evaluate each component of v_C.

In order to compute the actions at q'_C, we approximate the candidates’ policy functions regarding spending, saving and fund-raising as a flexible function of $\{s, q_C\}$ and evaluate these functions at q'_C to compute the optimal actions.\(^{38}\) Specifically, using the set of

\(^{38}\)Note that we cannot solve the dynamic game to compute the policy function because we do not estimate some of the primitives regarding the model of the Primary, e.g., $\pi(\cdot)$, κ, $F_N(\cdot|s)$, etc. See e.g., Barwick and Pathack (2015) for a similar approach. They use a polynomial to approximate the value function of a dynamic
contested elections, we regress d_I, d_C, fr_C and w_C' on a set of state variables and their interactions.\footnote{We include as regressors $q_C, \exp(q_C), q_I, \exp(q_I)$. We also include a constant, $pt \times D_I, uc \times D_I \times D_P$ and ten_I and we let coefficients of these variables depend on the President’s term of office (in his first term or second term) and whether or not the election is a Midterm election.} We then use the regressions to evaluate the optimal level of spending, saving and fund-raising at q_C'.

Once we compute the optimal actions at q_C', we evaluate each component of the value function at q_C'. For the continuation payoff, we use the same polynomial approximation computed for estimating the payoff components from the first-order condition. In Figure 8, we report the histogram of $\frac{\partial v_C}{\partial q_C}$, evaluated at $\{s, q_C\}$ for each contested election in the data. We find that $\frac{\partial v_C}{\partial q_C} > 0$ for 86.5% of our sample. Moreover, even when $\frac{\partial v_C}{\partial q_C}$ is negative, the magnitude is relatively small, which implies that $v_C(s, q_C)$ is not too decreasing in q_C. Of those whose $\frac{\partial v_C}{\partial q_C}$ is negative, the median value of $\frac{\partial v_C}{\partial q_C}$ is -0.07, which is roughly half the magnitude of $\frac{\partial v_C}{\partial q_C}$ for those that are positive (0.13).
8.3 Derivation of $G_{qc}(\cdot |s)$ as a Function of $\bar{q}_C(s)$

In this section, we provide a derivation of expression (9). We can rearrange the expression for the equilibrium valence distribution of the challengers, $G_{qc}(\cdot |s)$ as follows:

$$G_{qc}(t|s) = \mathbb{E}_N \left[\mathbb{E}_M \left[\mathbb{P}(\text{Valence of Primary winner } \leq t|M, s) | N, s \right] | s \right]$$

$$= \mathbb{E}_N \left[\mathbb{E}_M \left[\left. M \int_{q_C}^t \pi(q_C, q_{C,-m})dF_{q_{C,-m}}(q_{C,-m}|M, s) \frac{dF_{q_C}}{1 - F_{q_C}(\bar{q}_C)} \right| N, s \right] | s \right]$$

$$= \mathbb{E}_N \left[\mathbb{E}_M \left[\left. M \int_{q_C}^t \int_{q_C}^{+\infty} \int_{q_C}^{+\infty} \pi(q_C, q_{C,-m})(dF_{q_C})^M \right| N, s \right] | s \right]$$

$$= \mathbb{E}_N \left[\sum_{M=1}^N \text{Bin}_{N,M}(1 - F_{q_C}(\bar{q}_C))M \int_{q_C}^t \int_{q_C}^{+\infty} \int_{q_C}^{+\infty} \pi(q_{C,n}, q_{C,-n})(dF_{q_C})^M \right| N, s \right]$$

where we suppress the dependence of \bar{q}_C on s. To go from the first to the second line, we use the fact that when M challengers enter, each candidate with valence q_C wins the primary with probability $\int \pi(q_{C,m}, q_{C,-m})dF_{q_{C,-m}}(q_{C,-m}|M, s)$. Hence, the probability that a given entrant that wins the Primary has valence less than t is the integral of this expression from q_C to t. Because the event that each one of M entrants wins the Primary is disjoint, we multiply this expression by M to obtain the probability that the Primary winner has valence less than t. To derive the third line, we use the assumption that $\{q_{C,m}\}_m$ are independently drawn from F_{q_C}. When q_C are independently drawn from F_{q_C}, the valence distribution of the other entrants, $F_{q_{C,-m}}(q_{C,-m}|M, s)$, is obtained by a restriction of $F_{q_C} \times \cdots \times F_{q_C}$ to $[q_C(s), \infty]^{M-1}$. To derive the fourth line, we use the fact that $M = \sum_{n=1}^N \chi(s, q_{C,n})$: the number of entrants equals the number of potential challengers whose $q_{C,n}$ exceeds $\bar{q}_C(s)$. The probability of observing M entrants given N potential challengers can then be expressed as $\text{Bin}_{N,M}(1 - F_{q_C}(\bar{q}_C))$, where $\text{Bin}_{n_1,n_2}(p)$ is the probability that we have n_2 successes out of n_1 trials with success rate p.

8.4 Inversion of q_I from Uncontested Periods

In this Section, we give a proof of Proposition 1.

Proposition 1 (Injectivity): Assume that the marginal cost of raising money, $\frac{\partial}{\partial x} \tilde{C}_I(x, q_I)$,

40 The probability that the valence of the Primary winner is less than t is the sum of the probabilities that candidate 1 wins and her valence is less than t, candidate 2 wins and her valence is less than t, and so on.
is strictly decreasing with respect to \(q_I \). Then, the policy functions of an uncontested incumbent, \(\{d_I(s), w'_I(s)\} \), are one-to-one from \(q_I \) to \((d_I, w'_I) \), holding other state variables fixed.

Proof. Consider the problem of an uncontested incumbent. The first-order condition for \(d_I \) implies

\[
\frac{\partial}{\partial d_I} \tilde{H}_I(d_I) - \frac{\partial}{\partial d_I} \tilde{C}_I(w'_I + d_I - w_I, q_I) = 0.
\]

MB of spending

MC of fund-raising

Now suppose to the contrary that the mapping from \(q_I \) to \((d_I, w'_I) \) is not one-to-one, so that \(q_I \) and \(\tilde{q}_I \) (\(q_I > \tilde{q}_I \)) both map to \((d_I, w'_I) \). Then,

\[
\frac{\partial}{\partial d_I} \tilde{H}_I(d_I) = \frac{\partial}{\partial d_I} \tilde{C}_I(w'_I + d_I - w_I, q_I)
\]

and

\[
\frac{\partial}{\partial d_I} \tilde{H}(d_I) = \frac{\partial}{\partial d_I} \tilde{C}_I(w'_I + d_I - w_I, \tilde{q}_I)
\]

However, given that \(\frac{\partial}{\partial d_I} \tilde{C}_I(\cdot, \cdot) \) is strictly decreasing in the second argument,

\[
\frac{\partial}{\partial d_I} \tilde{C}_I(w'_I + d_I - w_I, q_I) < \frac{\partial}{\partial d_I} \tilde{C}_I(w'_I + d_I - w_I, \tilde{q}_I),
\]

which is a contradiction. \(\blacksquare \)

Proposition 1 allows us to invert the policy function of uncontested incumbents to express the unobserved incumbent valence, \(q_I \), as a function of the state and incumbent’s actions in uncontested periods, \(\bar{s}_U \). In our empirical analysis, we make use of the following lemma that allows us to simplify the mapping \(q_I(\bar{s}_U) \).

Lemma 1 Suppose that the mapping from \(q_I \) to \((d_I, w'_I) \) is one-to-one given other state variables according to Proposition 1. If we further assume that \(\tilde{C}_I(y; q_I) = c(q_I)(\ln y)^2 \), where \(c(\cdot) \) is a decreasing function and \(\tilde{H}_I(y) = \gamma_U \sqrt{\ln y} \) as specified in our estimation, the inverse mapping from \((d_I, w'_I) \) to \(q_I \) simplifies to

\[
q_I = c^{-1} \left(\frac{\gamma_U}{4} \frac{w'_I + d_I - w_I}{\ln(d_I)^{3/2} \ln(w'_I + d_I - w_I)} \right).
\]

Proof. Suppose that \(\tilde{C}_I(y; q_I) = c(q_I)(\ln y)^2 \), and \(\tilde{H}_I(y) = \gamma_U \sqrt{\ln y} \). Substituting
these expressions into the first-order condition, we obtain
\[
\frac{\gamma_U}{2} (\ln d_I)^{-1/2} (d_I)^{-1} - 2c(q_I)(\ln f_{r_I})(f_{r_I})^{-1} = 0 \tag{16}
\]
\[
\iff c(q_I) = \frac{\gamma_U}{4} (\ln d_I)^{-1/2} (d_I)^{-1} (\ln f_{r_I})^{-1} f_{r_I}
\]
\[
\iff q_I = c^{-1} \left(\frac{\gamma_U}{4} (\ln d_I)^{1/2} d_I (\ln f_{r_I}) \right),
\]
where \(f_{r_I} \) denotes the amount raised \((f_{r_I} = w_I' + d_I - w_I) \). We use the fact that \(c(\cdot) \) is monotone to obtain the last line of the expression.

The fact that we can control for \(q_I \) just by conditioning on a one-dimensional object, \(z_U \equiv \frac{f_{r_I}}{(\ln d_I)^{1/2} d_I (\ln f_{r_I})} \), simplifies our estimation immensely. It would be very difficult to implement our procedure if we had to condition on the full vector of actions and state variables, \(\bar{s}_U \).

8.5 Sufficient Statistics when \(N \) Depends on \(s \)

We give a proof of Proposition 2-2 below.

Proposition 2-2 (Sufficient statistic): Suppose that \(N \) is distributed according to a CDF \(F_N(\cdot|s) \) that is fully characterized by the first \(L \) moments, \(\mathbb{E}[N|s], \ldots, \mathbb{E}[N^L|s] \). Generically, either (i) \(P_e(s) \) and \(L \) moments of \(M \), \(m_M = \{P_e(s), \mathbb{E}[M|s], \ldots, \mathbb{E}[M^L|s]\} \) or (ii) \(P_e(s) \) and \(L + 1 \) moments of \(M \), \(m_M = \{P_e(s), \mathbb{E}[M|s], \ldots, \mathbb{E}[M^{L+1}|s]\} \) are sufficient statistics for \(G_{qc}(\cdot|s) \).

Proof. Recall from expression (9) that \(G_{qc}(q_C|s) \) has the following expression:

\[
G_{qc}(t|s) = \mathbb{E}_N \left[\sum_{M=1}^{N} Bin_{N,M}(1 - F_{qc}(\bar{q_C})) \int_{q_C}^{t} \cdots \int_{q_C}^{+\infty} M \pi(q_C, n, q_{C,-n})(dF_{qc})^M \left| s \right| \right].
\]

By assumption, the distribution of \(N \) is characterized by the first \(L \) moments, \(\mathbb{E}[N|s], \ldots, \mathbb{E}[N^L|s] \). Hence, \(\bar{q}_C(s) \) and \(\mathbb{E}[N|s], \ldots, \mathbb{E}[N^L|s] \) are sufficient statistics for \(G_{qc}(\cdot|s) \). We now want to show that we can take \(\{P_e(s), \mathbb{E}[M|s], \ldots, \mathbb{E}[M^L|s]\} \) or \(\{P_e(s), \mathbb{E}[M|s], \ldots, \mathbb{E}[M^{L+1}|s]\} \) as sufficient statistics.

Because each potential entrant decides whether or not to enter independently of other
potential entrants, the expected number of actual entrants in the Primary, $\mathbb{E}[M|s]$, can be written as the product of the expected number of potential entrants $\mathbb{E}[N|s]$ and the probability of entry, $1 - F_{\bar{q}_C}(\bar{q}_C(s))$:

$$\mathbb{E}[M|s] = \mathbb{E}[N|s] \times (1 - F_{\bar{q}_C}(\bar{q}_C(s))).$$ \hspace{1cm} (17)$$

Using the fact that the moment generating function of Binomial distribution $B(N, p)$ is given by $(1 - p + pe^t)^N$, we can obtain expressions for higher order moments of M:

$$\mathbb{E}[M(M - 1)|s] = \mathbb{E}[N(N - 1)|s] \times (1 - F_{\bar{q}_C}(\bar{q}_C(s)))^2$$

$$\vdots$$

$$\mathbb{E}[M(M - 1) \cdots (M - L - 1)|s] = \mathbb{E}[N(N - 1) \cdots (N - L - 1)|s] \times (1 - F_{\bar{q}_C}(\bar{q}_C(s)))^{L+2}.$$

The above expressions are equations in $(\mathbb{E}[N^k|s])_{k=1}^{L+2}$, $(\mathbb{E}[M^k|s])_{k=1}^{L+2}$ and $F_{\bar{q}_C}(\bar{q}_C(s))$. Now, consider the problem of solving for $(\mathbb{E}[N^k|s])_{k=1}^{L+2}$ and $F_{\bar{q}_C}(\bar{q}_C(s))$ taking as given $(\mathbb{E}[M^k|s])_{k=1}^{L+2}$. If the distribution of N is fully characterized by the first L moments, then $\mathbb{E}[N^{L+1}|s]$ and $\mathbb{E}[N^{L+2}|s]$ are deterministic functions of the first L moments, $\mathbb{E}[N|s], \ldots, \mathbb{E}[N^L|s]$. Hence, if we take $(\mathbb{E}[M^k|s])_{k=1}^{L+2}$ as known, the above expressions can be thought of as $(L + 2)$ equations in $(\mathbb{E}[N^k|s])_{k=1}^{L}$, and $F_{\bar{q}_C}(\bar{q}_C(s))$. Because there are more equations $(L + 2)$ than unknowns $(L + 1)$, there is generically a unique profile $(\mathbb{E}[N^k|s])_{k=1}^{L+2}$, and $F_{\bar{q}_C}(\bar{q}_C(s))$ that satisfies the above expressions, which implies that $(\mathbb{E}[M^k|s])_{k=1}^{L+2}$ are sufficient statistics. Note that when the system of equations defined by considering the first $L + 1$ moments in M has a unique solution, then $(\mathbb{E}[M^k|s])_{k=1}^{L+1}$ are sufficient statistics.

Finally, recall that the probability of entry $P_e(s)$ has the following expression:

$$P_e(s) = \mathbb{E}_N \left[1 - F_{\bar{q}_C}(\bar{q}_C(s))^N \right]_s$$

$$= 1 - \sum_{N=1}^{N=\infty} \Pr(N|s) F_{\bar{q}_C}(\bar{q}_C(s))^N.$$

Because the distribution of N is fully characterized by the first L moments, each of $\{\Pr(N|s)\}_{N=1}^{N=\infty}$ can be expressed as functions of $(\mathbb{E}[N^k|s])_{k=1}^{L}$, Hence, this expression can be used to replace one of the expressions for the higher order moments of M. This implies that $m_M = \{P_e(s), \mathbb{E}[M|s], \ldots, \mathbb{E}[M^L|s]\}$ or (ii) $P_e(s)$ and $L + 1$ moments of M, $m_M = \{P_e(s), \mathbb{E}[M|s], \ldots, \mathbb{E}[M^{L+1}|s]\}$ are sufficient statistics for $G_{\bar{q}_C}(\cdot|s)$. \hspace{1cm} \blacksquare$
In our application, we use $P_e(s)$ and $\mathbb{E}[M|s]$ as sufficient statistics. We now discuss a concrete example in which $\{P_e(s), \mathbb{E}[M|s]\}$ are sufficient statistics for $G_{qC}(s)$. One example is when $F_N(\cdot|s)$ is given by a negative binomial distribution with mean $\mu(s)$ and success probability $0 < p < 1$. When the mean of N is $\mu(s)$, the two parameters of the negative binomial distribution are $(r(s), p)$, where $r(s) = \frac{1-p}{p} \mu(s)$. We have the following lemma:

Lemma 2 Suppose that $F_N(\cdot|s)$ is given by the negative binomial distribution, $F_N(\cdot|s) = NB(r(s), p)$, where $r(\cdot)$ can be an arbitrary function of s. Then, $P_e(s)$ and $\mathbb{E}[M|s]$ are sufficient statistics for $G_{qC}(q_C|s)$.

Proof. Recall from expression (9) that $G_{qC}(q_C|s)$ has the following expression:

$$G_{qC}(t|s) = \mathbb{E}_N \left[\sum_{M=1}^{N} \text{Bin}_N,M \left(1 - F_{qC}(\bar{q}_C) \right) \int_{q_C}^{\infty} \cdots \int_{q_C}^{\infty} M \pi(q_{n},q_{C-n}) (dF_{qC})^M (1 - F_{qC}(\bar{q}_C))^M \right] | s,$$

where the dependence of $G_{qC}(t|s)$ on $r(s)$ is implicit through the expectation over N. Note that $\bar{q}_C(s)$ and $r(s)$ are sufficient statistics, by inspection. That is, as long as $\bar{q}_C(s) = \bar{q}_C(s')$ and $r(s) = r(s')$, we have $G_{qC}(t|s) = G_{qC}(t|s')$. In order to show that $P_e(s)$ and $\mathbb{E}[M|s]$ are also sufficient statistics for $G_{qC}(t|s)$, it then suffices to show that whenever $P_e(s) = P_e(s')$ and $\mathbb{E}[M|s] = \mathbb{E}[M|s']$, we have $\bar{q}_C(s) = \bar{q}_C(s')$ and $r(s) = r(s')$.

Recall from expression (17) that

$$\mathbb{E}[M|s] = \mathbb{E}_N \left[N(1 - F_{qC}(\bar{q}_C)) | s \right]$$

$$= (1 - F_{qC}(\bar{q}_C(s))) \mathbb{E}_N \left[N | s \right].$$

When $F_N(\cdot|s)$ is the negative binomial distribution, the expression for $\mathbb{E}[M|s]$ becomes

$$\mathbb{E}[M|s] = (1 - F_{qC}(\bar{q}_C(s))) \frac{pr(s)}{1-p}, \quad (18)$$

where we use the fact that the mean of the negative binomial distribution $NB(r, p)$ is $\frac{pr}{1-p}$.
On the other hand, $P_e(s)$ has the following form (see expression (8)):

$$
P_e(s) = \mathbb{E}_N \left[1 - F_{qc}(\bar{q}_C(s))^N \right] s
$$

$$
= 1 - \sum_{N=0}^{+\infty} \left(\frac{N + r(s) - 1}{N} \right) p^N (1 - p)^{r(s)} F_{qc}(\bar{q}_C(s))^N
$$

$$
= 1 - \sum_{N=0}^{+\infty} \left(\frac{N + r(s) - 1}{N} \right) (F_{qc}(\bar{q}_C(s))p)^N (1 - F_{qc}(\bar{q}_C(s))p)^{r(s)} \times \frac{(1 - p)^{r(s)}}{(1 - F_{qc}(\bar{q}_C(s))p)^{r(s)}}
$$

$$
= 1 - \left(\frac{1 - p}{1 - F_{qc}(\bar{q}_C(s))p} \right)^{r(s)}, \quad (19)
$$

where the second line follows from the definition of the probability mass function of the negative binomial distribution, and the fourth line follows from the fact that the probability mass function sums up to one. In order to show that $P_e(s)$ and $\mathbb{E}[M|s]$ are sufficient statistics, it suffices to show that we can uniquely solve for $r(s)$ and $\bar{q}_C(s)$ in equations (18) and (19) as functions of $\mathbb{E}[M|s]$ and $P_e(s)$.

With that in mind, we first take expression (18) and solve for $F_{qc}(\bar{q}_C(s))$:

$$
F_{qc}(\bar{q}_C(s)) = 1 - \frac{\mathbb{E}[M|s](1 - p)}{pr(s)}. \quad (20)
$$

We then substitute out $F_{qc}(\bar{q}_C(s))$ from expression (19):

$$
P_e(s) = 1 - \left(\frac{1 - p}{1 - \left(1 - \frac{\mathbb{E}[M|s](1 - p)}{pr(s)} \right) p} \right)^{r(s)}
$$

$$
= 1 - \left(\frac{1 - p}{1 - \frac{\mathbb{E}[M|s](1 - p)}{r(s)}} \right)^{r(s)} = 1 - \left(\frac{1 + \frac{\mathbb{E}[M|s]}{r(s)}}{1 + \frac{\mathbb{E}[M|s]}{r(s)}} \right)^{r(s)}. \quad (21)
$$

If we can show that the right-hand side of expression (21) is monotone in $r(s)$, this implies that we can express $r(s)$ uniquely as a function of $P_e(s)$ and $\mathbb{E}[M|s]$. The proof would then be done because, together with equation (20), the monotonicity would ensure that both $r(s)$ and $\bar{q}_C(s)$ are expressed uniquely as a function of $P_e(s)$ and $\mathbb{E}[M|s]$.

41 Suppose that we can uniquely solve for $r(s)$ and $\bar{q}_C(s)$ as functions of $\mathbb{E}[M|s]$ and $P_e(s)$. Then, if we have $\mathbb{E}[M|s] = \mathbb{E}[M|s']$ and $P_e(s) = P_e(s')$, we would have $r(s) = r(s')$ and $\bar{q}_C(s) = \bar{q}_C(s')$. Given that $r(s)$ and $\bar{q}_C(s)$ are sufficient statistics, this means that $\mathbb{E}[M|s]$ and $P_e(s)$ are also sufficient statistics.
In order to show that the right-hand side of expression (21) is monotone in $r(s)$, consider a function $f(x)$ defined as follows:

$$f(x) = \frac{1}{x} \ln(1 + x), \quad (x > 0).$$

Note that $\frac{1}{x} \ln(1 + x)$ corresponds to the slope of $\ln(t)$ between $t = 1$ and $t = 1 + x$ (See 9). Because $\ln(t)$ is concave, $f(x)$ is decreasing. Therefore, $f(x)$ is monotone decreasing in x for any $x > 0$.

Given that $f(x)$ is monotone decreasing, $\exp(-\alpha f(\alpha/x))$ is monotone decreasing for $x > 0$ for any constant $\alpha > 0$, where

$$\exp(-\alpha f(\alpha/x)) = \left(\frac{1}{1 + \frac{\alpha}{x}}\right)^x.$$

By inspection, the right-hand side of expression (21) is monotone increasing in $r(s)$, and we are done. \qed
8.6 Forward-Simulation of the Continuation Value

In this section, we discuss how we forward-simulate the continuation value. As we discussed in Section 3.2, our idea is based on Hotz, Miller, Sanders, and Smith (1994) and Bajari, Benkard and Levin (2007). These papers propose a method of simulating the value function by first estimating the policy function and then using the policy function to generate sample paths of outcomes and actions, which can then be averaged to compute the continuation value. Because we do not observe q_C in contested periods, we estimate the distribution of the actions and outcomes conditional on observed state variables instead of the actual policy function. Below, we describe the details of our procedure.

8.6.1 Estimation of the Transition Probability of the States

We assume an exogenous AR(1) process for $\tilde{X} = \{ue, pt\}$ as $\tilde{X}_{t+1} = \alpha_0 + \alpha_1 \tilde{X}_t + \xi_{t+1}$, and $\xi_{t+1} \sim N(0, \Sigma_{\xi})$. Regarding the evolution of D_P, we assume that (1) D_P remains the same next period with probability 0.75 in a general election when the president is running for the second term; (2) D_P remains the same with probability 0.5 when the incumbent president is in his second term; and (3) D_P remains the same next period with probability one if the election is a Midterm election.

8.6.2 Estimation of the Distribution of Actions Conditional on Observed State Variables

The second set of objects we estimate are the projections of the policy functions on observed state variables. The relevant objects we estimate are as follows:

Distribution of d_I and fr_I Conditional on s in Contested Periods Recall that the equilibrium spending and amount raised by the incumbent in contested periods map (s, q_C) to a non-negative number, where $s \equiv \{q_I(\bar{s}_U), w_I, telen_I, X\}$. The projection of the policy function on s is just the conditional distribution of d_I and fr_I in contested periods given observable states, denoted as $F_{d_I}(\cdot|s)$ and $F_{fr_I}(\cdot|s)$, respectively. We use a (first-order) Hermite series approximation to estimate the conditional distribution, by nonparametric

42 In our application, we assume that Σ_{ξ} is a diagonal matrix. We estimated $\alpha_{ue0} = 0.02$, $\alpha_{ue1} = 0.70$, $\sigma_{ue}^2 = 0.0002$ and $\alpha_{pt0} = 0.01$, $\alpha_{pt1} = 0.85$, $\sigma_{pt}^2 = 0.07$.

43 In practice, we use lemma 1 in Appendix 8.4 and use a scalar variable z_U in place of \bar{s}_U.

55
maximum likelihood (Gallant and Nychka 1987). Because ten is a discrete variable, we estimate separate distributions for ten ∈ [1, 3], ten ∈ [4, 7], and ten ∈ [7, ∞].

Distribution of w′| Conditional on s and vote_I > 0.5 in Contested Periods We estimate the distribution of incumbent savings in contested periods in the same way as spending and fund-raising. However, in order to simulate the value function, we need the distribution of savings conditional on winning. Hence we estimate Fw′(·|s, {vote_I > 0.5}), where {vote_I > 0.5} corresponds to the event that the vote share of the incumbent is above 50 percent.44

Policy Functions in Uncontested Periods We approximate the amount of spending and saving in uncontested periods by least squares. The regressors include a constant, X, ten and B-spline of zU. We also include quadratic terms as well as interactions of these variables. In uncontested periods, we can estimate the policy function itself because the state variables are all observed.

8.6.3 Estimation of the Distribution of Outcomes Conditional on Observed State Variables

Lastly, we estimate the retirement probability, λ(s), and the probability that the incumbent wins, Pwin(s).

Retirement Probability, λ(s) We estimate the probability that the incumbent retires as a function of s. We specify λ(s) to be a nonparametric function of ten.45

Probability of Winning, Pwin(s), in Contested Periods We also estimate the probability that the incumbent wins in contested periods given s, denoted as Pwin(s). Pwin(s) is estimated by a Probit, with the regressors being ln w_I, (ln w_I)^2, ln ten, ue × D_I × D_P, pt × D_I and B-spline bases of zU.

44In practice, instead of directly estimating incumbent’s savings conditional on winning, we estimate incumbent’s spending and fund-raising conditional on winning and derive the distribution of saving using the incumbent’s budget constraint. This helps to ensure that the estimated distribution of savings is internally consistent with that of spending and fund-raising.

45We assume that λ(ten) is constant for all ten ≥ 10.
8.6.4 Computation of the Continuation Value

Once we obtain estimates of the distribution of actions and outcomes conditional on observed states, it is possible to simulate the continuation value for each profile of parameters. The key to our approach is that the incumbent’s utility does not depend directly on \(q_C \), which is unobservable, but only indirectly through actions and outcomes such as \(d_I, fr_I \), etc. We compute the continuation value, \(\mathbb{E}[V_I(s')] \) starting from a given \(s \) as follows:

1. Randomly draw \(X' \), given \(X \) using the estimated transition matrix, which gives us a new state vector, \(s' = \{q_I, w_I, ten_I, X'\} \). Draw a random variable \(U_{RET} \) from a uniform \(U(0,1) \). If \(U_{RET} \) is less than \(\lambda(s') \), then the incumbent retires and we terminate the process.

2. Draw a random variable \(U_{ENT} \) from a \(U(0,1) \). If \(U_{ENT} \) is less than the probability of entry, i.e., \(U_{ENT} \leq P_e(s') \), then there is entry (Recall that \(P_e \) is estimated as part of sufficient statistics). If \(U_{ENT} > P_e(s') \), then there is no entry.

3. Depending on whether or not there is challenger entry in the previous step, draw \(d_I \) and \(fr_I \) using the conditional distributions (if there is entry) or the estimated policy functions (if there is no entry). In case of entry, further draw a random variable \(U_{win} \) from a \(U(0,1) \).

4. The period utility function is computed as \(\tilde{u}_I = B - \tilde{C}_I(fr_I, q_I) + \tilde{H}_I(d_I) \) in the case of no entry. If there is entry, the period utility is either \(u_I = B - C_I(fr_I, q_I) + H_I(d_I) \) or \(u_I = -C_I(fr_I, q_I) + H_I(d_I) \), depending on whether \(U_{win} \) is smaller or bigger than \(P_{win}(s') \). A draw of \(U_{win} \) smaller than \(P_{win}(s') \) is interpreted as a victory for the incumbent, and a larger value is a loss of the incumbent.

5. Terminate the process if the incumbent loses to the entrant. Otherwise, draw \(w'_I \) from \(F_{w'_I}(\cdot|s', \{v_I > 0.5\}) \). This determines the amount of savings.

6. The state variables become \(\{q_I, w'_I, ten_I + 1, X'\} \). Go back to step 1 and repeat until termination. Take the discounted sum of \(u_I \).

7. Repeat steps 1 through 6 and take the average.

Note that for computing the continuation value, knowledge of the marginal distributions of the actions is enough, and not the joint distribution. This follows from the additive separability of \(u_I \) and it greatly simplifies the computation.
8.6.5 Computation of the Derivatives of Continuation Value and Challengers’ Continuation Value

In evaluating the right hand side of expression (13), we need to compute the derivative of the value function with respect to w_I. To do so, we approximate the value function with polynomials of the state variables and use its derivative with respect to w_I.\footnote{The alternative approach is to use numerical differentiation, but we found the numerical derivative to be less stable, depending heavily on the step size. This may be because we are not allowing the distribution of actions to be sufficiently flexible in our estimation.} We also use this polynomial to evaluate challengers’ continuation payoff. This is possible because the challenger becomes the incumbent conditional on winning.

8.7 Details on the Estimation

We now discuss the details on the estimation that we omit from the main text. The estimation proceeds according to the following steps.

Estimation of $P_e(s)$ and $\mathbb{E}[M|s]$ We estimate $P_e(s)$ with a Probit, and $\mathbb{E}[M|s]$ by a linear regression. We specify both $P_e(s)$ and $\mathbb{E}[M|s]$ as a function of a constant, $\ln w_I$, $(\ln w_I)^2$, $\ln D_I \times D_P$, $pt \times D_I$, $\ln ten_I$, $1\{\text{President 1st term}\}$, $1\{\text{Midterm}\}$ and $1\{\text{President 1st term}\} \times 1\{\text{Midterm}\}$, where $1\{\text{President 1st term}\}$ and $1\{\text{Midterm}\}$ are dummy variables for the event that the current president is in his first term of office, and for the event that the election is a Midterm election, respectively. We also include B-spline bases of $z_U = \frac{fr_I}{(\ln d_I)^{1/2} \ln d_I \ln fr_I}$ and their interaction terms with $\ln w_I$. We take 7 knots, corresponding to $(1/8,...,7/8)$ quantiles of z_U.

Estimation of the Vote Share Equation We approximate $g(P_e(s), \mathbb{E}[M|s])$ with a second-order polynomial of $P_e(s)$ and $\mathbb{E}[M|s]$. We also approximate $q_I(z_U)$ as a polynomial of order four in z_U. We then project the residual of the vote share equation on a set of basis functions consisting of pre-determined variables. The set of pre-determined variables includes (i) the set of variables in the vote share equation except for $\ln d_I$ and $\ln d_C$, as well as (ii) other pre-determined variables $\ln w_I$, $(\ln w_I)^2$, $ue^2 \times D_I \times D_P$, pt, $(\ln ten_I)^2$, $1\{\text{President 1st term}\}$, $1\{\text{Midterm}\}$, $1\{\text{President 1st term}\} \times 1\{\text{Midterm}\}$ and B-spline bases of z_U. We then minimize the squared sum.
Estimation of Components of Candidates’ Payoffs and \(\sigma^2 \) We estimate the components of the candidates’ payoff function and \(\sigma^2 \) using moments constructed from the first-order conditions and orthogonality conditions implied by the model. For each parameter value, we first simulate the continuation value of the incumbents, \(\mathbb{E}_{X'|X}[V_I(s')] \), and compute its derivative, \(\frac{\partial}{\partial q_{I}} \mathbb{E}_{X'|X}[V_I(s')] \), according to the method described in Appendix 8.6. We then invert the incumbent’s first-order condition regarding saving (expression (13)) to obtain the value of \(K \), and expression (14) to obtain the value of \(q_C \). Finally, we substitute out \(K \) and \(q_C \) in expressions (12) and the two first-order conditions of the challengers. The three first-order conditions are then only a function of observed actions, observed states (note that \(q_I \) has been estimated in the previous step), and model parameters. We stack those three first-order conditions with the moment conditions corresponding to the incumbents’ first-order conditions in uncontested periods and 14 extra orthogonality conditions. The orthogonality conditions are weighted by the inverse of their standard deviations. For some of the observations, we encounter trouble inverting \(\Phi \) in expression (13) to obtain \(K \), because the argument inside \(\Phi^{-1} \) exceeds 1. This corresponds to the case in which the implied winning probability of the incumbent exceeds 1. We replace the value of \(\Phi^{-1}(\cdot) \) with \(1 - 10^{-6} \) when the argument is above 1. At the estimated parameters, the argument inside \(\Phi^{-1} \) is bigger than 1 in 281 elections out of 408 total elections. We acknowledge that this is not ideal. However, note that even at the true parameter values, the argument of \(\Phi^{-1} \) can exceed 1 when the other parameters (such as the distribution of outcomes and actions) are estimated with noise. Given that there are many elections in which the incumbent is almost sure to win, even small estimation errors can make the term inside \(\Phi^{-1} \) exceed 1 for a large fraction of elections in the sample.

Estimation of Parameters in Open-seat Elections We estimate \(\beta_O \) and \(q_O \) by following the same procedure as the case of elections with incumbents, except that we only use the first-order conditions as moments. The value functions are computed using the polynomial approximation of the incumbents’ value function obtained above.

47To utilize information available in the vote share equation, we include orthogonality conditions between \(\varepsilon \) and each of the 8 right hand side variables in the vote share equations as moments. We also include 5 moment conditions corresponding to the orthogonality between \(q_C - g(P_e(s), \mathbb{E}[M|s]) \) and predetermined states (\(ue \times D_I \times D_P \times pt \times D_I \), ten, qI and a constant). Note that \(g(P_e(s), \mathbb{E}[M|s]) \) is the conditional expectation of \(q_C \) estimated in the first stage, and that the observed states must be orthogonal to the residual \(q_C - g(P_e(s), \mathbb{E}[M|s]) \). Finally, we include the restriction that the variance of the error term obtained in the estimation of the vote share equation equals the sum of \(\sigma^2 \) and the variance of \(q_C - g(P_e(s), \mathbb{E}[M|s]) \).

48In order to maintain stability of estimation, we also impose the restriction that the continuation payoffs and its derivative with respect to saving are nonnegative.
Estimation of Candidate Valence in All Elections Once all the model parameters are estimated, we recover q_I, q_C and q_O for all candidates in our sample. We run a GMM similar to the one we used to estimate payoffs, but now payoffs are known and the parameters to be estimated are the valence measures of each candidate whose valence is not recovered from the control function. We use as moment conditions the first-order conditions of both candidates from each contested and open-seat election, as well as the first-order conditions of the incumbent from each uncontested election.\footnote{In order to recover the valence terms of incumbents who are never contested, we use the first-order conditions of uncontested incumbents.}

When we recover the valence using the first-order conditions, there is some degree of freedom in terms of which first-order conditions we use. This is because there are more equations than unknowns per election, and because we restrict the valence measure of each candidate to be constant across elections. In practice, we minimize the sum of squared deviation of all of the first-order conditions with the constraint that the valence measure of a given candidate is invariant across elections. We also impose the constraint that the valence measures estimated in this stage satisfy the vote share equation estimated in the previous stage. The latter condition can be interpreted as a particular weighting scheme for the first-order conditions.

8.8 Data Construction

We constructed the sample we use for our estimation as follows: We first drop all House elections in Louisiana.\footnote{Louisiana has a run-off election unlike any other U.S. state.} We also drop elections in Texas in 1996 which were deemed unconstitutional by the Supreme Court.\footnote{The Congressional Elections that were affected by the Supreme Court ruling are TX03, TX05, TX06, TX07, TX08, TX09, TX18, TX22, TX24, TX25, TX26, TX29 and TX30 in 1996.} We also drop special elections held outside of the regular election cycle, elections that occur right after special elections, instances in which two incumbents run against each other, and elections in which a major scandal broke out.\footnote{Elections that were dropped because of a scandal are CA17 (1990), MA04 (1990), MN06 (1992), NY15 (1992) and NY15 (2000). These events were identified by going through the biography of candidates in the CQ press Congressional Collection.} Some observations were also dropped because of missing data.\footnote{Some of the entries in the FEC data set are clearly incorrect. Some candidates are listed as having run in a wrong State, for example. Most of these missing data are easily identifiable because the vote shares do not add up to one or there are multiple candidates from the same party. Where the accuracy of the data is suspect, Open Secrets (http://www.opensecrets.org/) was used as a cross-check in order to correct the mistakes.} We also drop elections in which either candidate spends and saves less than $5,000 because both of the first-order
Conditions of the candidate may not hold with equality. Lastly, we drop elections in which the incumbent saves more than $1.2 million since unusually large savings are invariably for running for higher offices. We are left with a base sample of 2,531 contested elections, 581 uncontested elections and 369 open-seat elections.\footnote{At a certain stage of the estimation procedure, we may use only a subset of the sample. For example, to estimate the candidates’ utility functions such as $H_1(\cdot)$, the identification requires that we find two values of K, each derived from the incumbent’s first-order conditions for saving and spending (see Section 3.2), indicating that both first-order conditions need to be satisfied with equality. Thus, we only use incumbents whose spending and savings are both strictly positive in this stage.}

Creation of Partisanship Measure One of the variables that we include in the vote share equation is the partisanship measure of the District, p_t. In order to construct this variable, we follow Levendusky et al (2008) and regress the log difference in the district-level vote shares of the Democrats and the Republicans in the Presidential election between 1952 and 2008 on the following variables: fraction of the population who are 65 or above, fraction of blue-collar workers, fraction of foreign-born people, the median income, population density, unemployment rate, fraction of Blacks and Hispanics and its interactions with a dummy variable that corresponds to the South. All of the regressors are in the logs. In addition, we include a dummy variable that corresponds to whether or not the candidate is from the state in which the District is located, and year and state fixed effects. The partisanship measure is obtained as the fitted value of the regression for the concurrent or the most recent Presidential election.

8.9 Extensions

Time-Varying q_I It is possible to extend our approach to settings in which q_I varies over time. Suppose that (1) $q_{I,t}$ evolves as a random walk as $q_{I,t} = q_{I,t-1} + \xi_t$; (2) ξ_t is revealed after the challenger makes her entry decision but before the candidates decide how much to spend, raise and save. This would be the case if the challenger makes an entry decision based on what she knows from the previous election and learns ξ_t only as she starts to compete for the seat. Under this timing assumption, P_e and $E[M]$ are functions of $q_{I,t-1}, w_{I,t}, ten_{I,t}$ and X_t.

Consider estimating the vote share equation using the subset of the sample in which (1) the incumbent is contested in period t; (2) the incumbent is uncontested in period $t-1$. Using s_{U_I} from one period before to substitute out $q_{I,t}$, the vote share equation can be
expressed as follows:

\[
vote_{I,t} = \beta_I \ln d_{I,t} + \beta_C \ln d_{C,t} + \beta_{ten} \ln ten_{I,t} + \beta_{pt}(pt_t \times D_I) + \beta_{ue}(ue_t \times D_I \times D_{pI}) + q_I(s_{U,t-1}) - g(P_e, \mathbb{E}[M]) + \xi_t + (q_{C,t} - g(P_e, \mathbb{E}[M])) + \varepsilon_t.
\]

The econometric error term is \(\xi_t + (q_{C,t} - g(P_e, \mathbb{E}[M])) + \varepsilon_t\), where \(\xi_t = (q_{I,t} - q_I(s_{U,t-1}))\). Given that the expectation of the error term conditional on \(s_t = \{s_{U,t-1}, w_{I,t}, ten_{I,t}, X_t\}\) is 0, we can proceed as in the main text by regressing \(\mathbb{E}[vote_{I,t}|s_t]\) on regressors projected on \(s_t\).\(^{55}\) In our estimation, we assume time-invariant \(q_I\) due to data limitations.

Extensions to Settings without Uncontested Races We give a sketch of how our approach can be modified to settings with few uncontested elections, such as Senate races.

For this application, we assume that the researcher has access to auxiliary data such as polling data that directly identify the expected vote share, \(\mathbb{E}_{e}[vote_{I}]\) up to the error term in the vote share equation, \(\varepsilon_t\). An implication of this assumption is that we identify the exact realization of \(\varepsilon\) for each election as the difference between the realized vote and the expected vote share. Moreover, since Expression (14) implies that \(K = \frac{1}{\sigma_{\varepsilon}} \mathbb{E}_{e}(vote_{I})\), the variable \(K\) is identified in every election.

We first show that, under the assumption that the continuation value \(V_I\) is increasing in own quality, the policy functions are invertible with respect to \(q_I\) and \(K\). To see this, suppose, counterfactually, that \(q_I\) and \(q'_I\) \((q_I > q'_I)\) spend and save the exact same amount conditional on \((w_{I}, ten_{I}, X, K)\). Now consider the first-order condition (9) which equates the marginal cost of fund-raising to the marginal benefit of spending. The marginal cost of fund-raising is higher for \(q'_I\) than for \(q_I\) given our assumption of \(C_I\). On the other hand, the marginal benefit of spending must be higher for \(q_I\) than for \(q'_I\) under the assumption that the continuation value is higher for \(q_I\) (note that \(K\) is fixed). This implies that the first-order condition cannot hold with equality at the same levels of spending and savings for both \(q_I\) and \(q'_I\). It is easy to see that the \(q_I\) can be inverted from the policy function. As long as the policy functions are invertible, we can use actions of the incumbent, states and \(K\) from any past contested elections to replace out \(q_I\).

In order to control for \(q_C\), we focus on elections in which a challenger defeats an incumbent.\(^{56}\) As the challenger who defeats an incumbent becomes an incumbent, we observe

\(^{55}\)Note that \(\ln d_{I,t}, \ln d_{C,t}\), etc. are correlated with \(\xi_t\), but \(\mathbb{E}[^{\ln d_{I,t}|s_t}]\), \(\mathbb{E}[\ln d_{C,t}|s_t]\), etc. are not.

\(^{56}\)Note that no observations of uncontested elections imply that entry probability is one, and hence our original approach to control for selection of \(q_C\) is no longer feasible.
that candidate’s actions in the next election as an incumbent. This implies that we can use the actions, states and K from future contested elections to replace out q_C. We can then identify the vote share equation and the values of q_I and q_C for a subset of the candidates. Once the vote share equation has been identified, it is straightforward to use the first-order conditions to identify the marginal cost of raising money and the marginal benefit of spending. Once these primitives are identified, the first-order conditions can be used to recover the valence measure of all candidates.