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“Our Nation ... should be able to devise ways and means of insuring to all our able-bodied
working men and women a fair day’s pay for a fair day’s work.”

Franklin D. Roosevelt, Message to Congress on Establishing Minimum Wages and Maximum Hours, 1937

1 Introduction

Originating with Mirrlees (1971), the problem of optimally designing taxes and social insurance

programs is formalized as a tradeoff between the social benefits of redistributing financial resources

from richer to poorer households, and the efficiency costs of allocative distortions that such redis-

tribution necessarily entails when these agents’ productivity types or inclination to work are not

directly observable. One of the most celebrated achievements of this literature has been the deriva-

tion of the optimal tax rate on top income earners by Saez (2001) in terms of three observable

statistics that give empirical meaning to this tradeoff between efficiency and redistribution: the

elasticities of labor supply with respect to marginal tax rates and lump-sum transfers (substitu-

tion and income effects), and the Pareto coefficient of the tail of the earnings distribution, which

measures the degree of top income inequality.

Despite its undisputed success in guiding tax policy design, the static Mirrleesian framework

remains silent about a number of important policy questions. First, by focusing on a single

consumption-labor supply margin, the model abstracts from the optimal design of policies that

trade off between multiple policy tools. In practice, tax policies address concerns for redistribution

along many dimensions: income, savings or consumption taxes, public social insurance programs

for unemployment, healthcare or disability, subsidized provision of goods that are perceived to be

essential necessities like housing, food, education and mass entertainment, or excess taxation of

goods perceived to be luxuries. Moreover, the static Mirrleesian model implicitly assumes that the

government is the only provider of insurance against labor market risks. In practice, agents may

smooth labor market risks through other means than the government, such as private insurance,

precautionary savings, or intra-family transfers.

Second, equating consumption to after-tax income implies that we can always use the income

distribution to proxy for consumption, or vice versa. However, this stark assumption is clearly

rejected by empirical evidence which shows consumption to be substantially more evenly distributed

than income (Toda and Walsh (2015)). The distinction between income and consumption inequality

matters for quantitative conclusions of optimal tax policies: The optimal top income tax drops

from 80% to 50% in our preferred calibration if we instead use consumption- rather than income-

based measures of inequality. In other words, Saez (2001)’s sufficient statistic representation of
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top optimal income taxes is based on an economic model that is inconsistent with the discrepancy

between consumption and income inequality and provides no guidance about which measure is

the most appropriate for estimating optimal income taxes. More generally, focusing exclusively

on measures of income inequality may paint an incomplete picture of the link from allocations to

welfare, which should be the key concern for optimal policy design.1

In this paper, we develop a complementary perspective on optimal tax design, based on the

premise that policy makers trade off between multiple dimensions of worker welfare and have

potentially many policy tools at their disposal. Formally, in our baseline framework, we extend

the canonical Mirrleesian tax design problem to allow for two separate consumption goods, which

we interpret as “consumption” and “savings”, and consider a policy maker with a redistributional

objective who designs income and savings taxes. Importantly, the policy maker is not completely

free in designing redistributional policies, but these redistributional arbitrages must preserve the

households’ incentives to work, consume, or save as intended by the policy maker.

As our central result, we show that the optimal policy design obeys a simple principle of redis-

tributional arbitrage. The policy maker has three means of extracting resources from the richest

households: reducing their consumption, reducing their leisure (i.e., asking them to work more),

or reducing their wealth (taxing their savings). The optimal tax on labor income equalizes the

resources the policy maker can raise by asking the rich to work more, or reducing their leisure,

to the marginal resource gain from reducing their consumption. Similarly the optimal savings tax

equalizes the marginal resource gain from reducing the richest household’s consumption to the

marginal resource gain from reducing their savings. The same principle can be extended to any

number of redistributive policy margins and thus serves as a guiding principle to design optimal

redistributional policies along many different policy margins: The optimal policy equalizes the

marginal resource gains from additional redistribution across different goods, since otherwise the

tax designer would have an “arbitrage opportunity” by increasing redistribution along one margin

and reducing it along a different one.

Following Saez (2001), we express these marginal resource gains of redistributing consumption,

leisure and savings—and hence the optimal income and savings taxes—in terms of observables,

namely: the cross-sectional distribution (Pareto tail coefficients) of each good, along with standard

1Consumption data provides an independent empirical test (and rejection) of the model underlying the repre-
sentation of optimal taxes in the static model. This is an important caveat to the sufficient statistics approach: Its
implications rely on the empirical validity of the underlying economic model. The empirical literature on risk-sharing
emphasizes the importance of consumption, along with income data, for testing efficiency of risk-sharing arrangements
since (at least) Townsend (1994). See, e.g., Ligon (1998) and Kocherlakota and Pistaferri (2009) for applications of
this idea in a hidden information context.
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elasticity parameters that govern income and substitution effects. Abstracting from net comple-

ments or substitutes, the marginal gains from redistributing consumption are governed by the local

Pareto coefficient of the consumption distribution and a risk-aversion parameter; the marginal

gains from redistributing earnings or leisure are governed by the income distribution and labor

supply elasticities; and the marginal gains from redistributing savings are governed by the wealth

distribution and a risk aversion parameter over savings or second-period consumption. These repre-

sentations clarify the respective roles of consumption, income and wealth inequality in determining

optimal income and savings taxes.

The empirical evidence suggests that consumption has a thinner Pareto tail than income. This

implies that the consumption share of income converges to zero for top income earners. Thus, these

agents’ incentive problem reduces to a static trade-off between leisure and savings. It follows that

the formula of Saez (2001) determines the combined wedge on labor income and savings. However,

that does not answer how the combined wedge should be broken up into an income and a savings

wedge. While the savings wedge can, in principle, be positive or negative, simple calibrations of

our optimum formulas lend support to the conclusion that it is optimal to shift a significant share

of the tax burden on top earners from income to savings, unless the consumption elasticity takes

on an implausibly large value. Therefore, the formula obtained in the static model overstates the

top optimal labor income tax rate, because it fails to account for the fact that consumption is less

unequally distributed than after-tax incomes in the data.

Our calibration suggests that top savings taxes should be as high as 40%-50% of the level of

savings, with a corresponding reduction in top income taxes from a static optimum of 80% at our

baseline calibration towards 60%—almost doubling their take-home pay. In a life-cycle context

with a 30-year gap between the working period and retirement and a 5% annual return on savings,

a savings tax of 40% corresponds to a 1.8% annual tax on accumulated wealth, or a 35% capital

income tax. These estimates are thus in the same ballpark as existing proposals of annual wealth

taxes in the range of 1% to 2% (Saez and Zucman (2019a) and Saez and Zucman (2019b)). This

shift from income towards savings taxes is a fairly robust feature of our quantitative results, and

is driven by a combination of low consumption elasticities and/or thinner consumption tails at

the top of the income distribution. These features of the data imply that the marginal benefit

of redistributing consumption is small compared to the marginal benefit of redistributing savings,

making it optimal to shift part of the tax distortion towards savings. They also suggest that capital

income should still be taxed at a significantly lower rate than labor income.

While we are not aware of prior discussions or formalizations of redistributional arbitrage or
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related ideas in the economics literature on optimal tax design, the observation that redistributional

policies act on many margins simultaneously is certainly not new to policy makers. For example, the

labor movement’s 19th century slogan “A Fair Day’s Pay for a Fair Day’s Work” epitomizes a joint

concern for wages along with working hours, or leisure of the working classes that permeated policy

discussions over labor regulation and the concurrent emergence of the welfare state. The slogan

was picked up by Roosevelt in a speech that led to the Fair Labor Standards Act (1938), which

simultaneously introduced a minimum wage and regulations on total working hours. More recently,

Aguiar and Hurst (2007) document a large increase in leisure inequality from the top to the bottom

of the distribution since the 1960s in the U.S., mirroring the concurrent, well-documented and

widely discussed rise in income inequality. Contemporary concerns for “work-life balance” suggest

that high income earners today value leisure much like their working class peers in the 1930s or

the 19th century, and employers acknowledge these concerns when granting workers leisure-related

perks or non-pecuniary benefits, work-time flexibility or time-saving benefits like child-care services

to working parents.2

Relationship to the Literature. Our paper relates to the optimal taxation literature originat-

ing with Mirrlees (1971), as well as the sufficient statistics approach towards estimating optimal

tax rates that was pioneered by Saez (2001). By viewing tax policies as an arbitrage between

different margins of redistribution, we generalize Saez’s representation of optimal income taxes to a

dynamic, or multiple-good, environment and derive a companion formula for optimal savings taxes.

In linking this characterization of optimal taxes to its empirical counterparts, we show that optimal

top taxes rely not only on labor income data, as in the canonical Saez (2001) framework, but also

on consumption data. We rely on the analysis of Toda and Walsh (2015) and Straub (2019), who

show that the Pareto tail of the distribution of consumption is significantly thinner than that of

2According to Cambridge online dictionary, work-life balance represents “the amount of time you spend doing your
job compared with the amount of time you spend with your family and doing things you enjoy.” A 2011 report by the
Council of Economic Advisors (Romer (2011)) reviews evidence suggesting that both employers and employees benefit
from improved work-life balance: “A study of more than 1,500 U.S. workers reported that nearly a third considered
work-life balance and flexibility to be the most important factor in considering job offers. In another survey of two
hundred human resource managers, two-thirds cited family-supportive policies and flexible hours as the single most
important factor in attracting and retaining employees.” The report itself is evidence that the joint importance of
income and leisure for employee welfare is recognized at the highest levels of economic policy. The ongoing pandemic
provides further evidence of the importance of leisure time for workers’ wellbeing: while the time savings and flexibility
gains associated with remote work are greeted as a significant improvement in work-life balance, lack of access to
child care and home schooling due to school closures are viewed as adding stress to working parents’ lives. Schieman
et al. (2021) provide evidence from a sample of about 2000 Canadian households that reported work-life balance
improved for most workers, excepted for those with children under the age of 12 who reported no change. Their
cross-sectional controls further highlight that reported work-life balance appears to be as much affected by working
hours and flexibility as it is by financial stress, but unrelated to income after controlling for other job characteristics.
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the income distribution.3

Our model is based on Atkinson and Stiglitz (1976). Because we allow for arbitrary preferences,

their uniform commodity taxation theorem only applies as special case of our framework.4 Mirrlees

(1976), Saez (2002), and Golosov, Troshkin, Tsyvinski, and Weinzierl (2013) study a similar problem

as ours but do not characterize the optimal top tax rates analytically or express the formulas in

terms of empirically observable sufficient statistics. Gerritsen et al. (2020) and Schulz (2021) focus

on a different departure from the Atkinson-Stiglitz benchmark, namely, a model with heterogeneous

returns.5 Saez and Stantcheva (2018) characterize optimal top labor and capital tax rates under

restricted individual preferences. The papers that are closest to our work are Ferey, Lockwood, and

Taubinsky (2021) and Scheuer and Slemrod (2021). They study a model similar to ours,6 but using

different approaches. First, our optimal tax formulas rely on a different set of perturbations and

lead to redistributional arbitrage expressions that bear little resemblance to the “ABC” expressions

derived in these papers by perturbing tax schedules rather than allocations. Conceptually, our

novel representation offers a unified perspective on the optimal design of taxes on multiple goods

(income and savings). Second, and most importantly, our representation maps to a different set of

empirically observable sufficient statistics: specifically, we show that the relative values of the Pareto

tail coefficients on income and consumption, along with standard elasticity parameters, identify the

underlying structure of preferences that pins down optimal income and capital taxes. Third, our

main focus is on the income and capital tax rates for top earners, while Ferey, Lockwood, and

Taubinsky (2021) focus on the bulk of the distribution. Scheuer and Slemrod (2021), like us, derive

a characterization of the capital tax rates on top earners. In contrast to our analysis, however, they

take as given the labor income tax, and they moreover restrict preferences to be separable between

consumption and earnings, while the non-separability plays a key role in our analysis. We discuss

in more detail the relationship between our paper and theirs in Section 5.

3This finding is consistent with Meyer and Sullivan (2017) who show that consumption inequality has seen a
much more modest rise than income inequality since 2000.

4Several papers, such as Christiansen (1984), Jacobs and Boadway (2014), and Gauthier and Henriet (2018),
generalize Atkinson and Stiglitz (1976) to non-homothetic preferences, but typically constrain commodity or capital
taxes to being linear. We abstract from several other extensions of the Atkinson-Stiglitz framework, such as multidi-
mensional heterogeneity (Cremer, Pestieau, and Rochet (2003), Diamond and Spinnewijn (2011), Piketty and Saez
(2013), and Saez and Stantcheva (2018)) or uncertainty (Diamond and Mirrlees (1978), Golosov, Kocherlakota, and
Tsyvinski (2003), Farhi and Werning (2010), Shourideh (2012), Farhi and Werning (2013), Golosov, Troshkin, and
Tsyvinski (2016), and Hellwig (2021)).

5Our general framework of Section 5 nests this case. On the other hand, these papers explore various microfoun-
dations of return heterogeneity that are beyond the scope of our analysis.

6The model of Scheuer and Slemrod (2021) has heterogeneous endowments and separable preferences. In Section
5, we apply our methodology to an extension of our baseline model that has both heterogeneous endowments and
arbitrary preferences.
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Outline of the Paper. We introduce our baseline model and derive theoretical formulas for

optimal taxes in Section 2. In Section 3, we provide a sufficient-statistic representation of the

optimal taxes. We calibrate the model and explore its quantitative implications in Section 4.

Finally, Section 5 extends our results to a general framework.

2 Theory of Redistributional Arbitrage

2.1 Baseline Environment

There is a continuum of measure 1 of heterogeneous agents indexed by a “rank” r ∈ [0, 1] uniformly

distributed over the unit interval. There are two periods 0 and 1. The preferences of agents of rank

r are defined over consumption C and labor income Y in period 0, and consumption S (“savings”)

in period 1.7 They are represented as

U (C, Y ; r) + βV (S)

where for any r, the functions U and V are twice continuously differentiable with UC > 0, UCC < 0,

UY < 0, UY Y < 0, V ′ > 0, V ′′ < 0 and satisfy the usual Inada conditions as C, Y or S approach 0

or ∞.

Assumption 1 (Single-Crossing Condition). The marginal rate of substitution between income

and consumption −UY (C, Y ; r) /UC (C, Y ; r) is strictly decreasing in r for all (C, Y ), or

∂ ln (−UY /UC)
∂r

≡ UY r

UY
− UCr

UC
< 0. (1)

Furthermore, the marginal disutility of effort is decreasing in r, UY r/UY < 0. The marginal utility

of consumption is monotonic in r, i.e., UCr/UC is either non-positive or non-negative everywhere.

Assumption 1 introduces a ranking of agents according to their preferences over consumption

and leisure bundles: On the margin, agents with higher r are more willing to work for a given

consumption gain. The restriction UY r/UY < 0 implies that higher ranks r find it easier to attain

a given income level Y . This gives rise to a motive for redistributing effort from less to more

productive agents, or equivalently leisure towards less productive agents; that is, redistribution

“from each according to his ability”.

7While it is convenient for the analysis to define preferences in terms of the observables C, Y , and S, it is
straightforward to map the type-contingent preference over earnings into a preference over leisure or labor supply.
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The rank r may also directly enter the marginal utility of consumption when UCr ̸= 0. This

results in a second motive for redistribution—of consumption towards those agents who have the

highest marginal utilities or “consumption needs”; that is, redistribution “to each according to

his needs”. If UCr/UC ≤ 0, both redistribution motives favor lower ranks: In other words, those

who are the most inclined to work are also those who are the most inclined to save. If instead

UCr/UC ≥ 0, consumption needs are higher for higher ranks, in which case the two redistribution

motives are not aligned: Those who are the most inclined to work are also those who are the most

inclined to spend their incomes on current consumption. Nevertheless, the single-crossing condition

guarantees that it is always optimal to redistribute from higher to lower ranks, i.e., the planner has

a motive of demanding higher effort from, and offering higher consumption to high types.

Social Planner’s Problem. Consumption, earnings, and savings are assumed to be observable,

but an individual’s preference rank r is their private information. Resources can be saved at a

rate R > 0 from period 0 to 1. In our baseline model, we assume that the planner’s objective is

to maximize revenue; equivalently, the social objective is Rawlsian.8 Thus, the optimal allocation

{C (r) , Y (r) , S (r)} maximizes the net present value of tax revenue:

� 1

0
[Y (r) − C (r) −R−1S (r)]dr

subject to the incentive compatibility constraint:

U (C (r) , Y (r) ; r) + βV (S (r)) ≥ U
(
C
(
r′) , Y (r′) ; r

)
+ βV

(
S
(
r′))

for all types r and announcements r′.

We solve this problem using a Myersonian approach, replacing full incentive-compatibility by

local incentive-compatibility. Define the indirect utility function W (r) ≡ U (C (r) , Y (r) ; r) +

βV (S (r)).9 Then an allocation is locally incentive-compatible, if it satisfies

W ′ (r) = Ur (C (r) , Y (r) ; r) . (2)

We refer to Ur (r) ≡ Ur (C (r) , Y (r) ; r) as the marginal information rent of type r. The solution

to this relaxed problem is obtained using optimal control techniques and is fully described in the

8We generalize our analysis to arbitrary Bergson-Samuelson social welfare objectives in Section 5. In particular,
the optimal top tax rate formulas of Section 3 remain valid for any social welfare function.

9To ease notation, we further write X (r) ≡ X (C (r) , Y (r) , S (r) ; r) for any function X of both the allocation
(C (r) , Y (r) , S (r)) and the type r.
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Appendix.

2.2 Optimal Taxes

Let τY (r) ≡ UY (r) /UC (r) + 1 denote the labor wedge at rank r implied by the optimal alloca-

tion {C (·) , Y (·) , S (·)}, i.e., the intra-temporal distortion between the marginal product and the

marginal rate of substitution between consumption and earnings. Let τS (r) ≡ βRV ′ (r) /UC (r)−1

denote the savings wedge at rank r, i.e., the inter-temporal distortion in the agent’s first-order

condition for savings.

The following theorem, which is the first main result of this paper, provides a full characteriza-

tion of the optimal taxes in our setting:

Theorem 1 (Redistributional Arbitrage). The optimal labor wedge τY satisfies

1 − τY (r) = BY (r)
BC (r) , (3)

and the optimal savings wedge τS satisfies

1 + τS (r) = BS (r)
BC (r) , (4)

where for X ∈ {C, Y },

BX (r) ≡ E
[
UX (r)
UX (r′) exp

(� r′

r

UXr (r′′)
UX (r′′) dr

′′
)

| r′ ≥ r

]
, and BS (r) ≡ E

[
V ′ (S (r))
V ′ (S (r′)) | r′ ≥ r

]
.

(5)

Theorem 1 summarizes the principle of redistributional arbitrage. It formalizes the idea that,

at the optimal allocation, the planner is indifferent between redistributing slighltly less along one

margin of inequality—consumption, leisure, or wealth—and slightly more along another. Formally,

the variables BC , BY and BS represent the marginal (resource) benefits of reducing the consump-

tion, leisure, and savings of agents with rank above r, respectively. This interpretation stems

from a simple set of perturbation arguments that we describe in Section 2.3. Thus, the ratio

BY /BC describes the trade-off between redistributing resources from the top via earnings or via

consumption—or in other words, how the social planner maximizes the extraction of resources from

top earners by asking them to work more versus consume less. Similarly, the ratio BS/BC describes

the trade-off between redistributing consumption or savings. Comparing equations (3) and (4) with

the individual’s first-order conditions 1 − τY = −UY /UC and 1 + τS = βRV ′/UC then leads to the
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following interpretation of optimal taxes: The optimal income (resp., savings) wedge equalizes the

agent’s private trade-off between consumption and leisure (resp., savings), to the social trade-off in

redistributing from the top via consumption or leisure (resp., savings).

Interpretation of the Model. One interpretation of our optimal tax system is a combination

of income taxes, social security contributions and pension payments (“savings”) that are indexed

to labor income, without any additional private savings. The savings wedge then represents the

marginal shortfall or excess of social security contributions relative to pension payments. Alterna-

tively, we could relabel S in our model as “bequests”, and let C and Y stand for life-time income

and consumption. In this case our results would reinterpret the savings tax as a tax on bequests.

We could also interpret C as “basic necessities” and S as “luxury goods” in a static interpretation

of our model. In this case the savings tax represents a relative price distortion between the two,

possibly in the form of subsidies on basic necessities. More broadly, we show in Section 5.1 that

our analyis can be straightforwardly extended to a framework with fully general preferences over

an arbitrary number of commodities.

2.3 Perturbation-Based Interpretation of Theorem 1

To interpret the marginal benefits of redistribution BC , BY , BS , fix a given rank r > 0 and perturb

(lower or raise) the utility of agents with rank r′ > r. We can do so in three independent ways: by

adjusting their consumption, their leisure, or their savings. The impact of any such perturbation

on the social objective is given by the (positive or negative) amount of extra resources that it

allows the planner to levy. In the sequel, we focus on the trade-off between redistributing via

consumption and leisure, and show how an arbitrage argument between these two margins leads to

formula (3). The optimum savings wedge (4) is obtained analogously as a no-arbitrage condition

between redistributing via consumption and savings.

Consider the following perturbation: We simultaneously raise the consumption of ranks r′ ≥ r

by ∆C (r′) > 0 and reduce their leisure, or raise their output by ∆Y (r′) > 0, while preserving local

incentive compatibility (2). Moreover, we design this joint perturbation such that the utility of agent

r remains unchanged, thus ensuring that the incentives of agents with ranks r′ < r are preserved;

that is, ∆C (r) = −UY (r)
UC(r) ∆Y (r). We show below that the first part of this perturbation—providing

agents r′ ≥ r with higher consumption—lowers the planner’s resources by −BC (r) ∆C (r), while

the second part—raising their output—increases resources by BY (r) ∆Y (r). At the optimum

allocation, this joint perturbation must neither raise nor lower resources, so that BY (r)
BC(r) = ∆C(r)

∆Y (r) =
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−UY (r)
UC(r) . Formula (3) follows immediately.

Marginal Cost of Raising Consumption: Case UCr = 0. Consider first the resource cost of

raising the consumption of ranks r′ ≥ r. If preferences satisfy UCr = 0, this perturbation preserves

local incentive compatibility for all r′ > r if and only if it induces a uniform increase in utility above

rank r. To see this formally, notice that an increase in the consumption of rank r′ by ∆C (r′) does

not affect the marginal information rent at r′, since ∆Ur (r′) = UCr (r′) ∆C (r′) = 0, and hence

does not require any further change in utility above r′. Now, this uniform increase in utility above

rank r implies that the consumption of agents r′ > r must increase in proportion to their inverse

marginal utility 1
UC(r′) . As a result, the perturbation lowers the planner’s resources by

−E
[ 1
UC (r′) | r′ ≥ r

]
∆W (r) = −BC (r) ∆C (r) ,

where ∆W (r) = UC (r) ∆C (r) represents the increase in utility for rank r associated with the

perturbation of consumption. Therefore, BC (r) represents the marginal resource cost of raising

the consumption of ranks r′ > r in an incentive-compatible manner.

Marginal Cost of Raising Consumption: General Case. With general non-separable pref-

erences UCr ̸= 0, a uniform increase in utility no longer preserves local incentive compatibility.

Rather, the perturbation must now raise the utility of ranks r′ > r in proportion to µC (r, r′) ≡

exp
(� r′

r
UCr(r′′)
UC(r′) dr

′′
)
, and consumption in proportion to 1

UC(r′)µC (r, r′), thus leading to expression

(5) for the marginal benefits BC . This is because the perturbation ∆C (·) changes utility levels for

r′ > r by ∆W (r′) = UC (r′) ∆C (r′) and marginal information rents by ∆Ur (r′) = UCr (r′) ∆C (r′).

It therefore preserves local incentive compatibility if and only if

∆W ′ (r′) = ∆Ur
(
r′) = UCr (r′)

UC (r′) ∆W
(
r′) .

That is, the change in utility at rank r′ causes a change in information rents that must be passed on

to the utility of all higher ranks r′′, thus further changing information rents, etc. Integrating up this

ODE yields the cumulative utility changes for higher ranks that are required as a result of preserving

local incentive compatibility at all lower ranks. Intuitively, suppose that higher ranks have lower

consumption needs, i.e., UCr < 0. We then have µC < 1, so that the utility of higher ranks does

not need to increase by as much as that of lower ranks to maintain incentive compatibility. This is

because the higher level of consumption at rank r′ is not that attractive for higher ranks r′′ > r′,
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who don’t value consumption as highly; thus, a relatively small increase in utility at r′′ is sufficient

to deter them from mimicking lower ranks.

Marginal Benefit of Reducing Leisure. Consider now the second part of the perturbation,

whereby the planner reduces the leisure, or raises the output, of ranks r′ ≥ r. Following analogous

steps as in the previous case, we find that if preferences satisfied UY r = 0, the utility of ranks

r′ ≥ r would need to fall uniformly to preserve local incentive compatibility, so that their output

would need to rise in proportion to 1/ (−UY (r′)). The non-separability UY r < 0 then requires

an incentive-adjustment µY (r, r′) = exp
(� r′

r
UY r(r′′)
UY (r′′) dr

′′
)
. As a result, this perturbation frees an

amount of resources equal to BY (r) ∆Y (r).10

Welfare-Improving Perturbations and Independence of Taxes. The elementary pertur-

bations described above can also be used to identify possible directions of welfare improvement to

a sub-optimal tax schedule. If one of the marginal benefits of redistribution exceeds another, then

the planner gains resources by increasing redistribution along one margin and reducing it along

another. This argument immediately implies that optimal taxes can be set independently of one

another: The arbitrage formula (3) characterizes the optimal labor income taxes regardless of the

value (optimal or not) of the savings taxes. Similarly the arbitrage formula (4) characterizes the

optimal savings taxes regardless of the level of labor income taxes.

2.4 Relationship to the “ABC” Optimal Tax Formulas

Our representation of the optimal tax system constrasts with the “ABC” expressions typically

derived in the literature following Diamond (1998). To understand the link between these two

characterizations, the proof of Theorem 1 shows that the optimal income and savings wedges can

also be expressed as the solution to the following three equations:

τY (r)
1 − τY (r) = A (r)BC (r) , τY (r) = A (r)BY (r) , τY (r)

1 − τY (r) (1 + τS (r)) = A (r)BS (r) , (6)

where A ≡ UCr
UC

− UY r
UY

. The first equation in (6) (“consumption-ABC”) re-states and generalizes

the familiar ABC formula from Theorem 1 in Saez (2001) to the present environment.11 It equates
10Similarly, a perturbation that lowers the utility of types r′ > r by reducing their savings, while preserving local

incentive compatibility, raises resources in proportion to BS (r). Notice that the derivation of these marginal benefits
is simplified by the fact that the marginal utility of savings is independent of r, so that no incentive-adjustment µS

is necessary in this case.
11Note in particular that, if the utility function takes the form u (C, Y/θ (r)), where θ (r) represents worker r’s

productivity and is distributed according to a distribution F , then A = 1+ζM
Y

ζH
Y

· 1−F (θ)
θf(θ) , where ζM

Y and ζH
Y denote
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the marginal efficiency cost of increasing the labor wedge at rank r, τY
1−τY

1
A·UC

, to the additional

resources the planner can raise by reducing the consumption of infra-marginal ranks r′ > r, BC/UC .

To see this, consider a perturbation (∆C (r) ,∆Y (r)) that keeps rank r indifferent by marginally

reducing both their consumption and their output, so that ∆Y = (−UC/UY ) ∆C. The resource

cost of this perturbation is given by ∆Y − ∆C = τY
1−τY

∆C. At the same time, the perturbation

reduces the marginal information rent at rank r by ∆Ur = UCr∆C + UY r∆Y = A · UC∆C and

thereby makes it strictly less attractive for ranks r′ > r to mimick rank r. This allows the planner

to increase the redistribution of consumption from ranks r′ > r, with a resource gain (per our

earlier analysis) equal to (BC/UC) ∆Ur.

Analogously, the second equation (“leisure-ABC”), which is novel, equates the marginal cost of

the tax distortion at r,12 to the marginal resource gains of reducing the leisure of agents r′ > r,

BY / (−UY ). The third equation (“savings-ABC”) equates the marginal cost of the tax distortion

at r, to the marginal benefit of reducing the savings of agents r′ > r, BS/ (βRV ′). Our arbitrage

representations (3) and (4) are then obtained by eliminating the marginal cost of tax distortions

A (r) from these ABC formulas.

Importantly, because leisure, consumption and savings are linked through the incentive compat-

ibility and budget constraints, the three formulas that characterize the optimal labor income taxes

(consumption-ABC, leisure-ABC, and redistributional arbitrage) are all equivalent to each other.

However, as we shall see below, they differ in terms of the observable statistics that they emphasize,

and therefore the calibration of optimal income taxes. Furthermore, comparing formulas (3), (4)

and (6) highlights that the principle of redistributional arbitrage, in contrast to the ABC represen-

tation, offers a unified perspective on optimal income and savings taxes. This representation also

clarifies that optimal savings taxes are independent of income taxes, which has direct implications

for the set of parameters and observables that determine the optimal savings wedge: It depends

on the parameters that enter BS and BC directly, but is independent of the parameters that only

affect BY or A.

2.5 When Should Savings Be Taxed?

The uniform commodity taxation theorem of Atkinson and Stiglitz (1976) is nested as a special

case of our savings wedge representation (4). Specifically, the optimal savings wedge must be

equal to zero for all types—i.e., redistribution should only be achieved through income taxes—if

the agents’ marginal rate of substitution between consumption and savings is homogeneous across

respectively the Marshallian (uncompensated) and Hicksian (compensated) elasticities of labor supply.
12Note that the marginal cost can be expressed as: τY

1−τY

1
A·UC

= τY
1

A·(−UY ) = τY
1−τY

1+τS
A·βRV ′ .
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ranks r. Coupled with the fact that preferences over savings are independent of rank, this condition

is equivalent to UCr = 0 for all r.13 The following corollary also shows that the converse statement

is true:

Corollary 1. The optimal allocation satisfies BS (r) ⋛ BC (r) and the optimal savings wedge is

τS (r) ⋛ 0 for all r, if and only if UCr (r) ⋚ 0 for all r.

In other words, the optimal savings tax inherits the sign of −UCr. This insight is already present

in Mirrlees (1976). If the marginal utility is increasing (resp., decreasing) with r, so that higher

ranks also have higher (lower) consumption needs, then it is optimal to subsidize (tax) savings at

the top of the income distribution. When UCr = 0, the optimal allocation equalizes the marginal

benefit of redistributing savings to the marginal benefit of redistributing consumption for all r,

and there is no reason to tax savings differently than consumption.14 When UCr < 0, the planner

can screen the more productive ranks—i.e., deter them from mimicking lower ranks—via positive

savings taxes by exploiting the fact that their taste for savings over current consumption is stronger

than that of lower ranks. Formally, a perturbation that increases consumption, and hence reduces

savings, for rank r by ∆C (r) raises their current utility by UC∆C (r) and changes their information

rent by UCr∆C (r). Thus, UCr/UC measures the ratio of the change in information rents to the

increase in utility that comes with a reduction in savings. If such a perturbation reduces information

rents (UCr < 0), then it allows the planner to increase the static redistribution from higher towards

lower ranks, thus leading to a rationale for taxing savings.15 Hellwig (2021) establishes the same

result in a general multi-period dynamic Mirrlees model and shows that the alignment of ability

with consumption needs offers a new rationale for taxing or subsidizing savings.

3 Sufficient Statistics Representation of Optimal Top Tax Rates

In this section, we express the marginal benefits of redistribution BC , BY , and BS , and hence

the optimal income and savings taxes τY , τS in terms of sufficient statistics that can be observed

empirically. In particular, Theorem 1 and Corollary 1 imply that the needs-based and ability-

based complementarity variables UCr/UC and UY r/UY play a critical role in our analysis. Our key
13This is a weaker restriction than the weak separability assumption imposed in Atkinson and Stiglitz (1976), which

in our setting would require UCY = 0. In particular, if the utility function takes the form u (C, Y ) − v (Y, r) + V (S),
we have UCr = 0 but UCY ̸= 0.

14It is straightforward to check from equation (5) that, when UCr = 0, BS (r) = BC (r) for all r if and only if
1/ (βRV ′ (S (r))) = 1/UC (r), or τS (r) = 0, for all r.

15As we show in Section 5, the intuition and the result generalizes to preferences of the form U (C, S, Y ; r), allowing
for interaction between S and r along the same lines as C and r. Uniform commodity taxation then holds (τS = 0
for all r) if and only if UCr

UC
= USr

US
for all r, in which case the incentive-adjustments µC (r, r′) and µS (r, r′) are the

same.
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identification result shows that the distributions of earnings and consumption, along with standard

behavioral elasticities, are sufficient to separately identify these variables in the data.16

3.1 Identification Lemma

We denote by sC (r) the share of consumption in retained income at rank r, and ρC (r) , ρY (r) , ρS (r)

the local Pareto coefficients of the distributions of consumption, labor income, and savings, respec-

tively:

sC (r) ≡ C (r)
(1 − τY (r))Y (r) and ρX (r) ≡ ∂ lnX (r)

∂r
= 1 − FX (X (r))

X (r) fX (X (r))

for any X ∈ {C, Y, S}, where FX and fX denote the c.d.f. and p.d.f. of the distribution of X. In

addition, we define four elasticity variables ζC (r) , ζY (r) , ζS (r) , ζCY (r) by

ζC (r) ≡ −∂ lnUC (r)
∂ lnC = −C (r)UCC (r)

UC (r) , ζY (r) ≡ ∂ ln (−UY (r))
∂ lnY = Y (r)UY Y (r)

UY (r) ,

and

ζS (r) ≡ −∂ lnV ′ (S (r))
∂ lnS = −S (r)V ′′ (S (r))

V ′ (S (r)) , ζCY (r) ≡ ∂ lnUC (r)
∂ lnY = Y (r)UCY (r)

UC (r) .

These four elasticity parameters all have direct empirical counterparts (see Section 4.1). The

variables ζC and ζS are the coefficients of relative risk aversion in periods 0 and 1, respectively, and

ζCY is a coefficient of complementarity between consumption and labor supply. The variable ζY is

an inverse elasticity of labor supply. Specifically, denote by ζH
Y and ζM

Y the Hicksian (compensated)

and Marshallian (uncompensated) elasticities, and by ζI
Y ≡ ζH

Y − ζM
Y the income effect parameter.

If the consumption share sC converges to zero for top earners, which we argue below is empirically

relevant, then we get ζY =
(
1 − ζI

Y

)
/ζH

Y and ζS = ζI
Y /ζ

H
Y as r → 1.17 More generally, we derive

the map between ζH
Y , ζ

I
Y and ζC , ζY , ζS , ζCY in the Appendix.

Lemma 1 (Identification). The variables UCr/UC and UY r/UY can be expressed in terms of

sufficient statistics as:

UCr (r)
UC (r) = ζC (r)

ρC (r) − ζS (r)
ρS (r) − ζCY (r)

ρY (r) − τ ′
S (r)

1 + τS (r) (7)

16Lemma 1 also suggests that wealth inequality plays a role in the identification. However, as we discuss in Section
3.3, the distribution of savings in our model is pinned down as a residual from those of earnings and consumption.

17Inverting these relationships leads to ζH
Y = 1/ (ζS + ζY ) and ζI

Y = ζS/ (ζS + ζY ).
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and
UY r (r)
UY (r) = − ζY (r)

ρY (r) − ζS (r)
ρS (r) + sC (r) ζCY (r)

ρC (r) − τ ′
Y (r)

1 − τY (r) − τ ′
S (r)

1 + τS (r) . (8)

This result, which generalizes Lemma 1 in Saez (2001) to our dynamic economy, is obtained

by differentiating the first-order conditions of the individual’s problem 1 − τY = −UY /UC and

1 + τS = βRV ′/UC with respect to the rank r. It shows that empirically observable parameters—

standard elasticities, Pareto coefficients, and measures of tax progressivity—together pin down the

weights on the consumption- and needs-based redistribution motives. This result does not rely on

specific functional form assumptions for preferences: The “data” implicitly informs us about the

underlying correlation structure between ranks and marginal utilities.18

To understand the key insight of Lemma 1, focus on top earners, i.e. r → 1, for whom the

Pareto coefficients ρC , ρY , ρS converge to constant and the progressivity terms τ ′
Y

1−τY
and τ ′

S
1+τS

converge to zero. Suppose moreover that the risk-aversion parameters in periods 1 and 2 are equal,

ζC = ζS , and that the complementarity coefficient ζCY is small relative to risk aversion, as is

the case empirically. Equation (7) then implies that the sign of UCr/UC is determined by the

relative thickness of the Pareto tails ρC vs. ρS . Specifically, UCr is negative—so that capital should

be taxed—if and only if ρC > ρS , i.e., iff consumption is strictly more evenly distributed than

wealth at the top. Intuitively, the relative thickness of the tails of consumption and wealth—or,

more generally the ratios of elasticities and Pareto coefficients ζC/ρC , ζS/ρS—reflect how the taste

for current consumption relative to savings varies along the ability distribution. In particular,

observing that ρC > ρS implies that the consumption share sC converges to 0 as r → 1; that is,

top earners spend a vanishing fraction of their labor earnings on current consumption. We view

these sufficient statistics for optimal labor and capital taxes, based on the direct comparison of two

Pareto tails, as particularly direct and transparent.19

18By contrast, many papers in the literature impose strong a priori assumptions on the utility function to derive
optimal taxes in terms of elasticity parameters and Pareto coefficients, before resorting to empirical estimates of
these parameters to evaluate the formulas quantitatively. As emphasized by Chetty (2009), a potential pitfall of this
“sufficient statistic” approach is that these empirical estimates may not be compatible with the structural restrictions
imposed by the underlying model that led to the formula. For instance, suppose that the values of the calibrated
parameters imply that the right-hand side of (7) is strictly negative, as will most often be the case in our quantitative
exercises of Section 4. This overidentifying restriction is inconsistent with, e.g., separable preferences with a marginal
utility of consumption that is independent of r. To take an even more striking example, suppose that optimal taxes
were derived under the assumptions that preferences are GHH, U = u (g (C) − v (Y/θ (r))) for some convave constant-
elasticity functions u and g and convex function v. While this utility function implies UCr ≤ 0, we can show that
this functional form must either violate the restriction (7), or impose that ρC = ρY , which as we discuss below is not
consistent with empirical evidence.

19Saez (2002) and Ferey, Lockwood, and Taubinsky (2021) emphasize different sufficient statistics, namely the
cross-sectional variation of savings with income net of the causal effect of income on savings. These two representations
provide equivalent but alternative ways of capturing the correlation between ranks and tastes for savings from the
data.
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More generally, these elasticities and Pareto coefficients not only determine the signs, but also

pin down the values of UCr/UC and UY r/UY . The separate identification of these two variables in

the data is critical and stems from the dynamic structure of our model. In the static framework,

one could match the observed income distribution by positing a complementarity between ranks

and either the marginal utility of consumption (UCr ̸= 0), or the marginal disutility of effort

(UY r ̸= 0), or a combination of both. The estimation of static optimal income tax formulas would

then require choosing functional form restrictions on preferences, e.g. UCr = 0. But such a choice is

far from innocuous, as optimal income taxes depend independently on both redistribution motives

UY r, UCr.20 Introducing a second behavioral margin in the model—consumption-savings in addition

to consumption-leisure—is what allows us to identify both of these complementarity variables and,

therefore, correctly evaluate optimal income taxes.

3.2 Optimal Top Tax Rates

We now proceed to expressing the optimal labor income and savings wedges at the top of the

income distribution in terms of the sufficient statistics introduced in Section 3.1.

Assumption 2. The optimal allocation {C (·) , Y (·) , S (·)} is co-monotonic, and the distributions

of earnings, consumption and savings have unbounded support and upper Pareto tails with coef-

ficients ρY , ρC , ρS, respectively. In addition, the elasticities ζC , ζS , ζY , ζCY and the parameter sC

converge to finite limits as r → 1.

Lemma 1, along with Assumption 2, allows us to derive empirical counterparts for the marginal

benefits terms BC , BY , BS that appear in the optimal tax formulas of Theorem 1 (equation (5)).

We find21

lim
r→1

BC (r) =
[
1 − ζC

ρC
+ ζCY

ρY

]−1
(9)

and

lim
r→1

BY (r) =
[
1 + ζY

ρY
− sCζCY

ρC

]−1
(10)

20It is straightforward to see that UY r and UCr matter independently for optimal taxes in the static setting.
Suppose that the planner is not Rawlsian (see Section 5). Then the marginal utility of consumption determines the
marginal social welfare weights at each income level below the top. For instance, witth GHH preferences, the concavity
of the outer utility function affects the level of optimal taxes but is irrelevant for the difference UCr/UC − UY r/UY

that the static model allows us to identify in the data.
21As long as leisure is a normal good, BY is finite and bounded above by 1. On the other hand, the representation

of BC requires that ζC
ρC

< 1+ ζCY
ρY

; if this condition is violated then the marginal benefits of redistributing consumption
BC are infinite, and thus the allocation cannot be optimal. Similarly, the representation of BS requires that ζS

ρS
< 1;

otherwise BS is infinite. These restrictions are imposed jointly on the primitive preference parameters and on the
Pareto tails of the income, consumption, and savings distributions. They are, in principle, testable.
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and

lim
r→1

BS (r) =
[
1 − ζS

ρS

]−1
. (11)

Abstracting for now from complementarities, these expressions show that there is a natural mapping

between consumption (resp., earnings, savings) data and the marginal benefits of redistributing

consumption (leisure, wealth). The marginal benefits of redistributing consumption BC (resp.,

savings BS) are increasing in the level of consumption (savings) inequality, as measured by the

respective inverse Pareto coefficients 1/ρC and 1/ρS . The marginal benefits of redistributing leisure,

BY , are increasing in the level of leisure inequality, or decreasing in the level of earnings inequality

1/ρY ; intuitively, high earnings inequality indicates that top earners are hard-working and have

relatively little leisure. Together with Theorem 1, this implies that, ceteris paribus, high earnings

and consumption inequality both lead to high optimal tax rates on top incomes τY , while high

wealth inequality but low consumption inequality lead to high optimal tax rates of top savings τS .

Finally, the complementarity between consumption and earnings ζCY lowers (raises) the marginal

benefits of redistributing consumption (leisure). As a result, a higher degree of complementarity

unambiguously lowers the optimal top income tax rate τY , and raises the optimal top savings tax

rate τS . These are familiar results: When preferences are non-separable, it is optimal to tax less

heavily the goods that are complementary to labor (Corlett and Hague (1953)).

Expressions (9), (10) and (11) immediately lead to the following theorem, which is the second

main result of this paper:

Theorem 2. Suppose that the optimal allocation satisfies Assumption 2. Then the optimal labor

wedge on top income earners τY ≡ limr→1 τY (r) satisfies

1 − τY = 1 − ζC/ρC + ζCY /ρY

1 + ζY /ρY − sCζCY /ρC
(12)

and the optimal savings wedge on top income earners τS ≡ limr→1 τS (r) satisfies

1 + τS = 1 − ζC/ρC + ζCY /ρY

1 − ζS/ρS
, (13)

where ζC
ρC

< 1 + ζCY
ρY

and ζS
ρS
< 1.

Equation (12) provides a very simple generalization of the standard top income tax rate for-

mula of Saez (2001) to a dynamic environment, and equation (13) provides an analogous sufficient

statistics formula for savings taxes. The static optimum derived by Saez (2001) (equation (8)) is
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expressed in terms of the Hicksian and Marshallian elasticities of labor supply ζH
Y , ζ

M
Y as:

τSaez
Y = 1

1 −
(
ζH

Y − ζM
Y

)
+ ρY ζH

Y

, (14)

where the map between ζH
Y , ζ

M
Y and ζC , ζY , ζS , ζCY is given in the Appendix. In constrast to the

static formula (14), the optimal income tax rate in the dynamic environment (12) depends explicitly

on the Pareto tail coefficient of consumption in addition to that of labor income. Recall that

this dependence arises naturally from the marginal benefits of redistributing consumption BC , and

intuitively captures the notion that the marginal gains of further redistribution are linked to the tail

of the consumption distribution, that is, to how much the tax system—as well as, potentially, all of

the additional private insurance mechanisms to which individuals have access—already manages to

redistribute. For the same reason, this variable is also implictly present in equation (14). However,

in a static economy, consumption is equal to after-tax income, so that the Pareto coefficients ρY

and ρC coincide—an over-identifying restriction that can be tested and is generally rejected by

the data. Because of this equivalence, the existing literature systematically expresses the optimal

static tax formula (14) in terms of ρY only, and uses income data to estimate it. But there is no

compelling conceptual reason to do so: One could alternatively express this formula in terms of ρC

and estimate it using consumption data. As soon as we break the equivalence between consumption

and after-tax income by adding a consumption-savings margin to the model, it becomes clear that

both coefficients ρY and ρC matter independently for the level of optimal labor income taxes. Thus,

the central take-away is that, in dynamic economies, the optimal design of taxes should rely not

only on income, but also on consumption data. Our redistributional arbitrage representation gives

a transparent interpretation of this result.

3.3 A Tale of Three Tails

The budget constraint in our model imposes that earnings are split between consumption and

savings. This in turn leads to ρY = min {ρC , ρS}, that is, consumption and savings are both at

least as evenly distributed as labor income. In particular, this restriction implies that one cannot

choose all three Pareto coefficients freely from the data. This is the analogue of the condition

ρY = ρC in the static setting, which follows from the fact that consumption is equal to after-tax

income. Our model is thus consistent with the following three scenarii:22

22If ρC < ρY (resp., ρS < ρY ), then the consumption (resp., savings) shares of after-tax earnings must grow
arbitrarily large, which violates that these shares are both bounded between 0 and 1. If min {ρC , ρS} > ρY , then the
consumption and savings shares must both converge to 0, which violates the inter-temporal budget constraint. Thus,
min {ρC , ρS} = ρY . Differentiating the inter-temporal budget constraint with respect to r and taking limits implies
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1. ρY = ρC < ρS , so that savings are strictly more evenly distributed than earnings and con-

sumption. Equivalently, the budget share of consumption sC converges to 1 for top earners.

2. ρY = ρS < ρC , so that consumption is strictly more evenly distributed than earnings and

savings. Equivalently, the budget share of consumption sC converges to 0 for top earners.

3. ρY = ρC = ρS , so that earnings, consumption, and savings are all as evenly distributed.

Equivalently, the budget share of consumption sC takes on any value between 0 and 1.

Previewing our quantitative results, we present empirical evidence in Section 4 that ρC > ρY ,

which in turn requires that ρS = ρY (Case 2). Conversely, variations of our model that would

be consistent with higher wealth inequality than income inequality, such as Scheuer and Slemrod

(2021), implicitly require that consumption be as unequally distributed as savings, ρC = ρS < ρY .

We analyze such a model in Section 5.23

Case 1. Savings have a Thinner Tail than Income and Consumption. Suppose first that

savings have a thinner tail than income and consumption, so that ρY = ρC < ρS and sC = 1. Using

the map between ζY , ζC and the Hicksian and Marshallian elasticities ζH
Y , ζ

M
Y ,24 it is straightforward

to show that formula (12) reduces to the static optimum (14). Thus, the static analysis of Saez

(2001) delivers the correct optimal tax rate on labor income, and data on consumption (or savings)

is not required to evaluate it. Intuitively, the dynamic model is equivalent to a static model at the

top, since the savings share of income converges to zero—top earners spend most of their earnings

on current consumption. Unfortunately, as we argue below, this case is not the empirically relevant

one.

Case 2. Consumption has a Thinner Tail than Income and Savings. Suppose next that

consumption has a thinner tail than income and savings, so that ρY = ρS < ρC and sC = 0. Using

the map between ζY , ζC and ζH
Y , ζ

M
Y , we obtain that, in this case, the optimal top labor income

tax rate τY no longer coincides with the static optimum τSaez
Y given by equation (14), unless the

relationship ζS/ρY = ζC/ρC −ζCY /ρY holds—that is, unless the Atkinson-Stiglitz theorem applies,

ρY
ρC

sC + ρY
ρS

sS = 1 with sC + sS = 1, which pins down sC in Cases 1 and 2.
23Picking the three parameters freely from the data and allowing for ρS < ρY < ρC would require introducing

an additional source of heterogeneity, which can be rates of return or endowments. While this may certainly be
empirically plausible, incorporating such heterogeneity leads to complex multidimensional screening issues that the
literature has not yet been able to fully address; for recent explorations of these questions, see e.g. Rothschild and
Scheuer (2014), Spiritus, Lehmann, Renes, and Zoutman (2021), and Boerma, Tsyvinski, and Zimin (2022).

24In Case 1, we have ζ′
Y =

(
1 − ζI

Y

)
/ζH

Y and ζ′
C = ζI

Y /ζH
Y where ζ′

Y ≡ ζY − ζCY and ζ′
C ≡ ζC − ζCY , or conversely,

ζH
Y = 1/(ζ′

Y + ζ′
C) and ζI

Y = ζ′
C/(ζ′

Y + ζ′
C). Hence, 1 − τSaez

Y = 1−ζ′
C /ρY

1+ζ′
Y

/ρY
.
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so that the optimum savings tax rate τS is equal to zero. More generally, we have

1 − τSaez
Y = 1 − τY

1 + τS
= 1 − ζS/ρS

1 + ζY /ρY
. (15)

This result implies that the static optimum τSaez
Y overstates the correct optimum τY whenever the

optimal savings tax rate τS is strictly positive. Conversely, the static framework underestimates

the optimum top labor income tax rate if savings are subsidized. Intuitively, when the consumption

share converges to zero at the top, so that top earners save most of their earnings, the optimal

allocation is determined by a static trade-off between the two variables Y and S. Thus, the static

optimum τSaez
Y now characterizes the optimal wedge between earnings and savings, which is the

combination of the labor and savings wedges τY and τS (equation (15)). By Corollary 1, whenever

the optimal tax on savings is strictly positive, i.e., if preferences are such that UCr < 0, then the

optimal tax on labor income is strictly lower than that predicted by the formula of Saez (2001).25

Case 3. Income, Consumption, and Savings have Identical Tails. Suppose finally that

the distributions of earnings, consumption, and savings all have the same tail coefficient, so that

ρY = ρC = ρS and sC ∈ (0, 1). In this case, the optimal top income tax rate (12) generally

differs from the static optimum (14). The dynamic adjustments can only be neglected when the

first-period utility is quasilinear in consumption, so that UCC = UCY = 0.26 However, whenever

the utility of consumption is strictly concave, even if preferences are GHH, the response of savings

to labor income taxes modifies the optimal top inccome tax rate, and the standard formula of Saez

(2001) ceases to apply.

4 Quantitative Implications

In this section, we calibrate our model in Case 2, which is likely to be the relevant case empirically.

For completeness, we propose an alternative calibration for Case 3 in the Appendix.

25The fact that the optimal labor tax rate is smaller (resp., larger) than the static optimum if capital is taxed
(resp., subsidized) can also be understood by considering a marginal reduction in the labor income tax rate, starting
from the static optimum. In addition to the standard effects on labor supply, this tax reform now also raises savings,
which in turn raises (resp., lowers) government revenue if savings are taxed (resp., subsidized). The static model fails
to account for this fiscal externality, hence overstates (resp., understates) the optimal tax rate on labor income.

26Indeed, we then have ζC = ζCY = ζI
Y = 0 and ζY = 1/ζH

Y , so that the optimal labor income tax rate is equal to
1/ (1 + ρY /ζY ) both in the static and the dynamic settings.
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4.1 Calibration

Pareto Tails: ρY , ρC , ρS. The fact that the income distribution has a Pareto tail is well docu-

mented. In the U.S., the Pareto coefficient on income is equal to 1.6 and that on wealth is equal

to 1.4 (Diamond and Saez (2011)). Since our model imposes ρY = ρS , we take their common value

to be equal to 1.5. Turning to measures of consumption inequality, Toda and Walsh (2015) argue

that consumption is also Pareto distributed at the top, and they estimate an upper tail coefficient

of ρC = 3.65, i.e., ρY /ρC = 0.41. Straub (2019) finds that the income elasticity of consump-

tion is equal to 0.7, which pins down the ratio of Pareto coefficients of earnings and consumption,

ρY /ρC = C′/C
Y ′/Y = 0.7 or ρC = 2.14. Both of these estimates suggest that consumption has a substan-

tially thinner tail than income, so that sC → 0 as r → 1: Top earners save most of their earnings.

Below we evaluate our optimal tax formulas for ρY = ρS = 1.5 and ρY /ρC ∈ {0.4, 0.6, 0.75}.

Elasticities: ζY , ζS. Recall that there is a one-to-one map between the Hicksian and Marshallian

elasticities of labor supply ζH
Y , ζ

M
Y , on the one hand, and the elasticity parameters ζY , ζS , on the

other hand. There is a vast literature that estimates the elasticities of labor income with respect

to marginal and average tax rates. The meta-analysis of Chetty (2012) yields a preferred estimate

of the Hicksian elasticity of ζH
Y = 1/3. For top income earners, Gruber and Saez (2002) estimate

a value of ζH
Y = 1/2. Empirical evidence about the size of the income effects ζI

Y = ζH
Y − ζM

Y is

mixed; see, e.g., Keane (2011). Gruber and Saez (2002) find small income effects, while Golosov,

Graber, Mogstad, and Novgorodsky (2021) estimate that $1 of additional unearned income reduces

the pre-tax earnings in the highest income quartile by 67 cents, which for a top marginal tax

rate of 50 percent translates into an income effect of 1/3. For our baseline calibration, we choose

ζH
Y = 1/3 for the Hicksian elasticity and the intermediate value ζI

Y = 1/4 for the income effect.

These values imply ζY = (1 − ζI
Y )/ζH

Y = 2.25 and ζS = ζI
Y /ζ

H
Y = 0.75, a reasonable value for the

risk-aversion parameter of top earners. We then evaluate the robustness of our quantitative results

to the alternative parameter values ζH
Y = 1/2 (so that ζS = 0.5) and ζI

Y = 1/3 (so that ζS = 1).

Elasticities: ζC , ζCY . Because the combined wedge on income and savings is equal to the static

wedge (equation (15)), the values of the labor supply elasticity ζH
Y and the income effect parameter

ζI
Y are sufficient to evaluate the ratio BY

BS
= 1−τY

1+τS
. Information about consumption, i.e., the

remaining two elasticities ζC and ζCY , are only required to quantify the breakdown of the combined

wedge into income and savings taxes. In our baseline calibration, we choose a first-period risk-

aversion coefficient for top earners of ζC = ζS = 0.75, and we evaluate the robustness of our results
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Table 1: Optimal Taxes in Case 2
ρY /ρC = 0.4 ρY /ρC = 0.6 ρY /ρC = 0.75

τY
τS

1+τS
τY

τS
1+τS

τY
τS

1+τS
τSaez

Y

Baseline 68% 38% 72% 29% 75% 20% 80%
ζH

Y = 0.5 60% 17% 65% 5% 69% −7% 67%
ζI

Y = 1/3 66% 58% 70% 52% 73% 47% 86%
ζC = 1.25 73% 25% 80% 0% 85% −33% 80%

ζCY = 0.15 64% 44% 68% 38% 71% 31% 80%

to the value ζC = 1.25. To calibrate the complementarity between consumption and labor ζCY , we

follow Chetty (2006) who shows that this parameter can be bounded as a function of the coefficient

of relative risk aversion by ζCY ≤ ∆ ln C
∆ ln Y · ζC , where ∆ ln C

∆ ln Y is the change in consumption that results

from an exogenous variation in labor supply (e.g., due to job loss or disability). He then estimates

the latter parameter in the data and finds an upper bound ∆ ln C
∆ ln Y < 0.15. We use ζCY = 0 as our

baseline value (separable utility function) and evaluate the robustness of our results to the upper

bound ζCY
ζC

= 0.15.

4.2 Quantitative Results

Table 1 below summarizes our quantitative results for the optimal top tax rates on labor income

and savings. The first row reports the results for our baseline calibration (ρY , ζ
H
Y , ζ

I
Y , ζC , ζCY ) =

(3
2 ,

1
3 ,

1
4 ,

3
4 , 0) and three values of the Pareto coefficient on consumption ρC . We also report the

static optimum τ̄Saez
Y = 1 − 1−ζS/ρS

1+ζY /ρY
. The remaining rows of the table vary one parameter at a

time. Note that while τ̄Y represents a marginal labor income tax on gross earnings, τ̄S represents

the savings wedge as a proportion of net savings S. For constant top savings wedges, this translates

into a top marginal tax on gross savings equal to τS
1+τS

, which is the variable we report in the table.

To interpret the values of the savings wedge, it is useful to translate them into a tax on annualized

returns. In our model, the first period represents a 30-year gap between the beginning of the

working period and retirement. If the annual return on savings is 5% (resp., 3%), a savings tax of
τS

1+τS
= 40%, say, corresponds to a 1.8% (resp., 1.7%) annual tax on accumulated wealth, or a 35%

(resp., 58%) capital income tax. Alternatively, if we interpret our model as one of retirement saving,

a wedge of 40% means that top income earners can only expect to receive a present value of 0.71

dollars of additional pension payments for each additional dollar in social security contributions.

Note that we do not restrict the utility a priori: Our calibration of the elasticities and Pareto

tails implicitly determines the underlying structure of preferences. Some parameter values can only
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be generated by UCr < 0, so that savings should be taxed, while others are only consistent with

UCr > 0, so that savings should be subsidized. Specifically, the breakdown of the combined wedge

τSaez
Y between savings and income taxes τY , τS is pinned down by the ratios of elasticities (or

risk-aversion parameters) and Pareto coefficients ζC/ρC , ζY /ρY , ζS/ρS that respectively drive the

marginal benefits of redistributing consumption, leisure, and savings. For low values of the first-

period risk aversion or a very thin consumption tail (ρY /ρC = 0.4), BC is relatively low, so that the

savings tax is high and the labor income tax rate is substantially lower than in the static framework.

If the consumption and savings elasticities are the same, then the fact that consumption appears to

have a thinner tail than savings, or that top income earners save most of their income, suggests that

the marginal benefits of redistribution are higher for savings than for consumption (BS > BC)—

and thus that it is optimal to load tax distortions into savings rather than consumption, resulting

in a lower income and a higher savings tax. Which of these marginal benefits dominates is then

a matter of the elasticity estimates on consumption vs. savings, along with the tail coefficients of

the consumption and savings distributions. For higher values of the first-period risk aversion or

more unequal distributions of consumption, the savings tax is lower and the labor income tax grows

closer to the static optimum. The marginal gains of redistributing consumption eventually exceed

those of redistributing savings (BC > BS), in which case the optimum income tax τY exceeds τ̄Saez
Y

and savings are subsidized, τS < 0. Analogously, higher values of the second-period risk-aversion

ζS , driven either by a higher income effect parameter ζI
Y or a lower Hicksian elasticity ζH

Y , reduce

(resp., raise) the optimal labor (savings) tax. With ζCY = 0, our model also provides a lower

bound on optimal income taxes and an upper bound on savings wedges that depends only on the

Pareto coefficients ρY and ρS . Since BC ≥ 1, we have τY ≥ 1 − BY = 1
1+ρY /ζY

= 60% and

τS ≤ BS − 1 = 1
ρS/ζS−1 so τS

1+τS
≤ 52% in our baseline calibration.

Next, the complementarity between consumption and labor income ζCY > 0 leaves the combined

labor and savings wedge unchanged but shifts the wedge from labor to savings taxes. As we

discussed above, when earnings and first-period consumption are complements, the Corlett-Hague

rule implies that the planner should reduce the tax rate on labor income and raise the tax rate on

savings. Quantitatively, the complementarity correction has a significant impact on the optimal

tax rates for reasonable empirical values of ζCY . Formulas (12) and (13) imply that the correction

for complementarity ζCY /ρY is equivalent to adjusting the Pareto tail coefficient on consumption

upwards to ρ̃C defined by ρY /ρ̃C = ρY /ρC −ζCY /ζC . It thus amounts to increasing the effective gap

between income and consumption inequality. In our baseline calibration, the adjustment increases

the ratio of tail coefficients from ρY /ρC = 0.40 to ρY /ρ̃C = 0.25. For ζC = 0.75, this lowers the
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marginal benefit of redistributing consumption BC from 1.25 to 1.14, equivalent to a 9.6% increase

in after-tax labor income and a corresponding increase in the savings wedge.

Savings should be taxed if and only if ζS/ζC > ρS/ρ̃C where ρ̃C is the adjusted Pareto tail

coefficient. Without the complementarity correction, the values ζS = 0.75 and ρS/ρC = 0.4 (resp.,

0.75) imply that savings should be taxed unless the first-period risk-aversion coefficient for top

earners ζC is larger than ρC
ρS
ζS = 1.875 (resp., 1). With the complementarity correction, we have

ρS/ρ̃C = 0.25 (resp., 0.6), so risk aversion ζC would need to exceed 3 (resp., 1.25) to overturn

the conclusion that savings should be taxed. To sum up, already without complementarity the

marginal benefit of redistributing savings appear to be high relative to the marginal benefit of

redistributing consumption, as consumption has a much thinner upper tail than income and savings.

The correction only reinforces this conclusion. So unless ζC is very large, the marginal benefits of

redistributing consumption remain substantially smaller than the marginal benefits of redistributing

savings, resulting in a significant shift from income to savings taxes at the optimal allocation.

5 Extensions

In this last section, we extend our baseline model, our redistributional arbitrage formulas, and their

sufficient-statistic representations, to a general environment with a one-dimensional preference type,

arbitrary preferences and commodities.

5.1 General Preferences and Multiple Commodities

We have assumed that preferences were additively time-separable, so that the benefits of “savings”

were independent of rank r, “consumption” and “earnings”. As we discuss formally below, it is

straightforward to generalize Theorem 1 to general preferences of the form U (C, S, Y ; r): A further

incentive-adjustment µS (r, r′) to the inverse marginal utilities will appear in the computation of

BS in equation (5). In addition, the separability assumption imposed some structure on income

and substitution effects of the different commodities, which simplified the identification of sufficient

statistics leading to Theorem 2: The computation of the top income and savings taxes required

estimates of four preference parameters—three elasticities and an adjustment for complementarity

between consumption and earnings. With unrestricted preferences, the analysis will require esti-

mates for two additional preference elasticities to account for the complementarity of consumption

and earnings with savings. Finally, our analysis can be directly extended to an arbitrary set of

consumption goods, leading to a characterization of optimal relative price distortions as arbitraging
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between redistribution through one commodity vs. another.

Formally, suppose that agents’ preferences are defined as U (X; r), where X is an N -dimensional

commodity vector and r ∈ [0, 1]. Let ∂U
∂xn

= Un and ∂Ur
∂xn

= Unr and assume that Unr
Un

is increasing

in n. Hence, Um
Un

is increasing in r whenever m > n. The planner’s cost of providing an aggregate

commodity vector X is C (X), and we let pn = ∂C
∂xn

denote the “price” of good n. The planner’s

problem reads

max
X(·)

� 1

0
ω (r)G (U (X (r) ; r)) dr − C

(� 1

0
X (r) dr

)

subject to the agents’ incentive compatibility constraints. In this formulation, ω (·) represents

rank-dependent Pareto weights, and the concave function G (·) represents the planner’s aversion to

inequality.

To characterize the optimal allocation, fix r ∈ (0, 1) and consider a perturbation such that: (i)

the consumption of good n increases for all r′ ≥ r; (ii) the consumption of good m decreases for all

r′ ≥ r; (iii) the utility of rank r remains unchanged; (iv) incentive-compatibility is preserved for

all r′ ≥ r. Any such perturbation around the optimal allocation must keep the planner’s objective

function unchanged, for otherwise the perturbation or its negative would lead to a strict welfare

improvement. The unique perturbation {δxn (r′) , δxm (r′)} that satisfies these four requirements

is given by

δxk

(
r′) = 1

Uk (r′) exp
(� r′

r

Ukr

Uk
dr′′

)
∆ ≡ 1

Uk (r′)µk

(
r, r′)∆, for k ∈ {n,m}

for small positive ∆. This perturbation impacts the planner’s objective by

{� 1

r
ω̂
(
r′) [µn

(
r, r′)− µm

(
r, r′)] dr′ − pn

� 1

r

1
Un (r′)µn

(
r, r′) dr′ + pm

� 1

r

1
Um (r′)µm

(
r, r′) dr′

}
∆

where ω̂ (r) = ω (r)G′ (U (r)) represents the marginal welfare weight on rank r. Setting this

expression equal to 0 and rearranging terms yields

Um (r)
Un (r)

pn

pm
≡ 1 − τm,n (r) = Bm (r)

Bn (r) , (16)

where, for any k ∈ {n,m},

Bk (r) = E
[
Uk (r)
Uk (r′)µk

(
r, r′) |r′ ≥ r

]1 − E [ω̂ (r′)µk (r, r′) |r′ ≥ r]
pkE

[
(Uk (r′))−1 µk (r, r′) |r′ ≥ r

]
 (17)
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represents the marginal benefits of reducing the consumption of commodity k for ranks above r

while preserving incentive-compatibility. In other words, equation (16) implies that the planner’s

marginal benefits of redistribution must be equalized between any pair of goods. Note that the

Inada conditions ensure that the ratio in brackets in (17) vanishes at the top of the type distribution:

We thus recover the Rawlsian representation of optimal wedges of Theorem 1.

Next, we rewrite Mn (r′) ≡ 1
Un(r′)µn (r, r′) in terms of observables. Taking derivatives w.r.t. r

yields
M ′

n (r′)
Mn (r′) = Unr

Un
− d logUn

dr
= −

N∑
k=1

Unk

Un
xk

(
r′) · x

′
k (r′)
xk (r′)

or Mn (r′) ∼
∏N

k=1 xk (r′)ζnk as r → 1, where ζnk = Unk
Un
xk (r′) is assumed to converge to a constant.

It then follows that E
[

Un(r)
Un(r′)µn (r, r′) |r′ ≥ r

]
=
[
1 −

∑N
k=1

ζnk
ρk

]−1
where ρk denotes the Pareto

coefficient on good k. Hence, we obtain, for top earners,

1 − τm,n (r) = Bm (r)
Bn (r) =

[
1 −

∑N
k=1

ζmk
ρk

]−1

[
1 −

∑N
k=1

ζnk
ρk

]−1 . (18)

Equation (18) shows that the optimal wedge at the top between any pair of commodities can be

represented as a function of: (i) the distributions of consumption of all N commodities (or more

specifically their Pareto tail coefficients); and (ii) the full matrix of income and substitution effects

of all commodities which is summarized by {ζnk}1≤k≤N .

To conclude this section, as we discussed in the context of Corollary 1, our model reveals a

potential rationale for non-uniform commodity taxation for redistributive objectives, which our

baseline model of Section 2 displayed through savings taxes. This rationale arises whenever two

different commodities yield different incentive-adjustments µn (r, r′). Potential departures from

uniform commodity taxation are then linked to these incentive-adjustments which can in turn be

mapped to observables. Our analysis thus develops a template for future empirical work that seeks

to identify optimal commodity taxes and subsidies by identifying the required marginal benefits

of redistribution for any commodity, using observed distributions of consumption and estimated

demand elasticities. Subsidies for basic necessities, such as subsidized rent, food stamps, public

transportation, education or health services play a central role in increasing the welfare of low-

income households. On the other hand, governments may also find it opportune to tax certain

consumption goods favored by higher income households. One key application of this framework

may be to housing which is an important budget component of most households, thus displaying

important wealth effects, and which benefits from a whole array of redistributive interventions,
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from subsidized public housing or rent subsidies at the low end of the income distribution to

mortgage interest deductions at the upper end. Our analysis may offer an efficiency rationale for

implementing such policies, as well as practical guidance on how they should be structured to

achieve the government’s redistributive objective.

5.2 Heterogeneous Initial Capital

Scheuer and Slemrod (2021) derive a formula for the optimal top capital tax rate in a model that

is similar to, but slightly different than our baseline environment. In their framework, as in ours,

agents are indexed by a one-dimensional productivity type r. Preferences satisfy the restrictions

of Atkinson and Stiglitz (1976); namely, they are separable between consumption and earnings

and homogeneous across consumers. However, agents receive an exogenous endowment Z (r) that

is perfectly correlated with productivity. This alternative framework makes it possible to break

the equality between the Pareto coefficients on income and wealth that the budget constraint in

our baseline model imposes. In this section, we study in more detail a special case of our general

environment of Section 5.1 that nests both our baseline model and that of Scheuer and Slemrod

(2021). The proofs are in the Appendix.

We show that the characterization of optimal labor and savings wedges of Theorem 1 is the same

as in our baseline model, except that we must adjust the definition of the incentive-adjustments

µC (r, r′) and µY (r, r′). To express the top tax rates in terms of sufficient statistics, we now need to

keep track of one additional key parameter, which depends on the consumption to endowment ratio

at the top, as well as the respective Pareto coefficients: sZ = ρC
ρZ

limr→1
Z(r)
C(r) . Under Assumption

2, the marginal benefits of redistributing earnings, consumption, and savings at the top are then

respectively given, as r → 1, by

BY (r) → 1
1 + ζY

ρY
− (1 − sZ) sCζCY

ρC

, BC (r) → 1
1 − (1 − sZ) ζC

ρC
+ ζCY

ρY

, BS (r) → 1
1 − ζS

ρS

.

Thus, the adjustment of marginal benefits for rank-dependent endowments reduces both BY and

BC , resulting in strictly higher savings wedges, and a higher combined wedge. We can then dis-

tinguish four scenarios, based on the relative values of the Pareto coefficients of the income, con-

sumption, and wealth distributions.

First, suppose that initial wealth endowments have a thinner tail than consumption, so that

ρC < ρZ and sZ → 0 as r → 1. Then the results of our baseline model continue to hold. Intuitively,

if endowments have a strictly thinner tail than consumption, then it must be that they simply do
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not matter at the top of the distribution—i.e., top earners get all of their income from labor—

and we recover the analysis from our baseline framework. Second, take the opposite case where

consumption has a thinner tail than wealth endowments, so that ρC > ρZ and sZ → ∞ as r → 1. It

follows that BC and BY both converge to 0, with lim BY (r)
BC(r) > 1 and lim BS(r)

BC(r) = ∞. Hence τY < 0

(earnings should be subsidized) and τS → ∞ (savings should be taxed at 100%). In the limit

where sCζCY → 0 (in particular, if preferences are separable between consumption and earnings)

the earnings subsidy becomes infinitely large.

Third, suppose that endowments, consumption and earnings all have the same tail coefficient,

so that ρC = ρZ = ρY and 0 < sC , sZ < ∞. Optimal taxes are then given by τY = 1 − BY
BC

and τS = BS
BC

− 1, where BY , BC , BS are given by the above expressions. The combined wedge

in income and savings 1−τY
1+τS

equals the optimal static wedge when sZ = 1, i.e., when top income

earners consume just their endowment and save all their labor income; it grows larger when sZ > 1

(top income earners consume less than their endowment), and smaller when sZ < 1 (top income

earners consume less than their endowment). Fourth, suppose that endowments and consumption

have the same tail coefficient, while income has a strictly thinner tail, so that ρC = ρZ < ρY and

sC → ∞ with sZ < ∞. If ζCY > 0 and sZ > 1 (top earners save a positive fraction of their income),

it follows that both BY → 0 and BC → 0. Hence, τY = 0 while the optimal savings tax converges

to 100%.

To summarize: With ζCY > 0, the scenario with ρC > ρZ prescribes 100% savings coupled with

an earnings subsidy at the top, whereas the opposite scenario reduces to the one in our baseline

model. The equal tails scenario ρC = ρZ allows for two subcases: Either all tails are equal with

interior (finite) solutions for optimal taxes, or the labor income tail is strictly thinner than the

consumption/endowment tail, and then we again recover no distortion at the top for labor and full

expropriation of marginal savings. Scheuer and Slemrod (2021) consider the case where preferences

are separable (ζCY = 0) and endowments and consumption have an equal tail (ρZ = ρC). This

leads to an interior solution for both labor and savings taxes, which depends on the top earners’

budget shares of consumption and labor earnings. However, when earnings have a thinner tail than

endowments or wealth (ρY > ρC = ρZ) this result is “knife-edge”: Even small degrees of preference

complementarity lead to discontinuous changes in optimal income and savings taxes.

5.3 Further Extensions

We conclude by briefly discussing other extensions that are outside the scope of the present paper.
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Richer Dynamics. A natural extension consists of following the lead of dynamic Mirrlees models

(Golosov, Kocherlakota, and Tsyvinski (2003), Farhi and Werning (2013), and Golosov, Troshkin,

and Tsyvinski (2016)) and allowing for stochastic evolution of types over multiple periods. Hellwig

(2021) develops the implications of such a model for labor and savings wedges with non-separable

preferences, and derives conditions, linked to the persistence of types and information rents, under

which the optimal labor wedge can still be represented as 1 − τY

(
rt
)

= BY (rt)
BC(rt) , where rt represents

a t-period sequence of type realizations, leading to an analogous sufficient-statistic representation

to that of Theorem 2. The interpretation of this formula as a redistributional arbitrage is the same

as here, but in contrast to the present static setting, the current marginal benefits—and hence,

in the sufficient-statistic representation, the Pareto coefficients on each good—are now based on

distributions of earnings and consumption growth conditional on the prior sequence of types, or

equivalently, the prior earnings history.

Multi-Dimensional Types. The assumption of a one-dimensional type (“rank”) space becomes

more difficult to justify as one moves beyond a single consumption good, since there is no rea-

son why individual ability should be perfectly aligned with tastes for different commodities, for

example. In line with this assumption, our derivation of sufficient statistics made use of the fact

that consumption, earnings, and savings were perfectly co-monotonic at the optimal solution. Such

perfect co-monotonicity seems implausible from an empirical point of view, even with a simple

commodity space with three goods, like ours. Another natural extension is therefore to extend

the present analysis to multi-dimensional type spaces. While multi-dimensional screening is no-

toriously challenging, preliminary results in Hellwig (2022) for a multi-good monopolist problem

suggest that core ideas from the present analysis can be generalized, in particular the representation

of local incentive compatibility through incentive-adjusted probability measures, the characteriza-

tion of optimal relative price distortions through an arbitrage of information rents, and a general

representation of optimal distortions that generalizes the Bj/Bk-formula presented here. These

preliminary results suggest that there is scope to generalize the analysis, and that the core idea

of redistributional arbitrage across different dimensions of the commodity space also applies in

multi-dimensional type spaces.

6 Conclusion

We developed a new perspective on optimal tax design, based on the idea that optimal allocations

trade off not only between efficiency and redistribution, but also between the margins along which
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redistribution takes place. The optimal tax system then equalizes the marginal benefit of redis-

tribution from higher to lower ranks for all goods, around any given rank r, a property that we

call redistributional arbitrage. As our main result, we derived a simple new formula for optimal

tax distortions based on redistributional arbitrage. We show how to infer the respective marginal

benefits of redistibution from income and consumption data and key preference elasticities, thus

giving empirical content to this new perspective on optimal tax design.

As our main policy implication, our calibration results suggest that there may be significant

gains from taxing and redistributing savings at the top of the income distribution. Our model

suggests that it may be optimal to tax savings by up to 2% per year, while lowering top income

taxes substantially relative to existing sufficient statistics calibrations. These results are consistent

with the empirical observation that savings, like income, appear to be far more unequally distributed

than consumption, suggesting potential welfare gains from shifting redistribution from consumption

towards savings.

The importance of multiple dimensions of worker welfare—e.g., leisure and consumption—

is both historically and contemporaneously well documented. This generates trade-offs between

different margins of redistributing welfare. Redistributional arbitrage formalizes how these trade-

offs are resolved by optimal tax policies. In practice, many policy makers probably develop an

intuitive understanding for redistributional arbitrage, when determining what policies are popular

with their voters and matter for their welfare. In fact, the Roman emperors are perhaps the first

rulers on record to perform redistributional arbitrage, since they already knew that the most cost-

effective way to keep their working population happy was to provide them with a combination of

panem et circenses, or bread and entertainment!27

27To be fair, the Roman poet Juvenal coined the phrase panem et circenses in the early 2nd century to mock the
high levels of political corruption, motives that are outside the tradeoffs considered by our benevolent social planner.
But what worked for a corrupt Roman politician also works for a benevolent Mirrleesian planner, as long as the
working population’s welfare depends on being provided the right mix of bread and entertainment.
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A Appendix: Proofs and Derivations

Proof of Theorem 1. Consider a general weighted-utilitarian social welfare objective, with Pareto

weights ω (r) ≥ 0 assigned to ranks r that satisfy E [ω] = 1.The social planner minimizes the net

present value of transfers:

K (v0) = min
{C(r),Y (r),S(r)}

� 1

0
(C (r) − Y (r) +R−1S (r))dr

subject to the ex-ante promise-keeping constraint

� 1

0
ω (r)W (r) dr ≥ v0

the promise-keeping constraint

W (r) = U (C (r) , Y (r) ; r) + βV (S (r))

and the local incentive compatibility constraint

W ′ (r) = Ur (C (r) , Y (r) ; r) .

If the utility promise v0 is chosen so that the net present value of transfers at the optimum equals

0, the solution to the problem corresponds to the allocation that maximizes the expected utility of

agents, subject to satisfying an aggregate break-even condition. The problem studied in the main

body of the paper is a special case of this general formulation with ω (r) = 0 for all r > 0.

We solve it as an optimal control problem using W (·) as the state variable, and C (·), Y (·),

and S (·) as controls. Defining λ, ψ (r), and ϕ (r) as the multipliers on, respectively, the ex-ante

promise-keeping constraint and the promise-keeping and local incentive compatibility constraints

given r, the Hamiltonian for this problem is given by:

H = {C (r) − Y (r) +R−1S (r) + λ (v0 −W (r))ω (r)}

+ψ (r) {W (r) − U (C (r) , Y (r) ; r) − βV (S (r))} + ϕ (r)Ur (C (r) , Y (r) ; r) .

The first-order conditions with respect to the allocations C (·), Y (·), and S (·) yield:

ψ (r) = 1
UC (r) + ϕ (r) UCr (r)

UC (r) = 1
−UY (r) + ϕ (r) UY r (r)

UY (r) = 1
βRV ′ (S (r)) .
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The first-order conditions for C (·), Y (·), and S (·) define a shadow cost of utility of agents with

rank r, ψ (r), which consists of a direct shadow cost 1/UC (r), 1/(−UY (r)), or 1/ (βRV ′ (S (r)))

of increasing rank r utility through higher consumption, lower earnings or higher savings, and a

second term that measures how such a consumption or earnings increase affects Ur (r) and thereby

tightens or relaxes the local incentive compatibility constraint at r by UCr(r)
UC(r) or UY r(r)

UY (r) . The latter is

weighted by the multiplier ϕ (r) and added to the former; it is missing from the first-order condition

for savings since preferences are separable in savings.

Combining the first two first-order conditions and rearranging terms then yields the following

static optimality condition:

1
UC (r)

τY (r)
1 − τY (r) = 1

−UY (r) − 1
UC (r) =

(
UCr (r)
UC (r) − UY r (r)

UY (r)

)
ϕ (r) ≡ A (r)ϕ (r) .

The multipliers ϕ (·) and λ are derived by solving the linear ODE ϕ′ (r) = − ∂H
∂W , after substituting

out ψ (r) using any of the three first-order conditions:

ϕ′ (r) = − ∂H

∂W
= λω (r) − ψ (r) = λω (r) − 1

UC (r) − ϕ (r) UCr (r)
UC (r) ,

along with the boundary conditions ϕ (0) = ϕ (1) = 0. Define UCr(r)
UC(r) = m′

C(r)
mC(r) , or mC (r) =

exp
(
−
� 1

r
UCr(r′)
UC(r′) dr

′
)
. Substituting into the above ODE and integrating out yields

ϕ (1)mC (1) − ϕ (r)mC (r) =
� 1

r

(
λω
(
r′)− 1

UC (r′)

)
mC

(
r′) dr′,

or

ϕ (r) = 1 − r

mC (r)

{
E
[ 1
UC (r′)mC

(
r′) |r′ ≥ r

]
− λE

[
ω
(
r′)mC

(
r′) |r′ ≥ r

]}
.

The boundary condition ϕ (0) = 0 then gives λ = E[mCU−1
C ]

E[mC ω] . Therefore,

ϕ (r)
1 − r

= E
[ 1
UC (r′)

mC (r′)
mC (r) |r′ ≥ r

]
−

E
[

1
UC(r′)

mC(r′)
mC(r)

]
E
[
ω (r′) mC(r′)

mC(r) |r′ ≥ r
]

E
[
ω (r′) mC(r′)

mC(r)

]
≡ 1

UC (r)BC (r) .

Notice that mC(r′)
mC(r) = µC (r, r′) defined in the text. Substituting this expression into the static

optimality condition then yields the first intra-temporal optimality condition (“ABC”) τY (r)
1−τY (r) =

A (r) ·BC (r).
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The first-order condition for earnings yields an analogous ODE,

ϕ′ (r) = λω (r) − 1
−UY (r) − ϕ (r) UY r (r)

UY (r) .

Let mY (r) = exp
(
−
� 1

r
UY r(r′)
UY (r′) dr

′
)

and apply the same steps as above yields λ = E[mY (−U−1
Y )]

E[mY ω] to

get

ϕ (r)
1 − r

= E
[ 1

−UY (r′)
mY (r′)
mY (r) |r′ ≥ r

]
−

E
[

1
−UY (r′)

mY (r′)
mY (r)

]
E
[
ω (r′) mY (r′)

mY (r) |r′ ≥ r
]

E
[
ω (r′) mY (r′)

mY (r)

]
≡ 1

−UY (r)BY (r) .

We obtain the second intra-temporal optimality condition (“ABC”) τY (r) = A (r) ·BY (r).

Finally, we solve for the inter-temporal optimality condition. Combining the ODE ϕ′ (r) =

− ∂H
∂W = λω (r) − ψ (r) with the first-order condition for savings yields

ϕ′ (r) = λω (r) − 1
βRV ′ (S (r)) ,

which can be integrated and solved along the same lines as above to find

ϕ (r)
1 − r

= E
[ 1
βRV ′ (S (r′)) |r′ ≥ r

]
− E

[ 1
βRV ′ (S (r))

]
E
[
ω
(
r′) |r′ ≥ r

]
= 1
βRV ′ (S (r))BS (r)

with λ = E [1/ (βRV ′ (S (r)))]. Equating this last expression to 1
UC(r)BC (r) then yields the expres-

sion for the savings wedge:

1 + τS (r) ≡ V ′ (S (r))
UC (r) = BS (r)

BC (r) .

We finally show that if savings are unbounded above and limr→1 τY (r) < 1, then optimal

allocations satisfy the Inada condition limr→1 UC (r) = limr→1 (−UY (r)) = limr→1 V
′ (S (r)) =

0. The last equality follows from the Inada condition on V . Moreover, limr→1 (−UY (r)) =

limr→1
BY (r)
BS(r)βRV

′ (S (r)). It is easy to check that limr→1BS (r) ≥ 1 and limr→1BY (r) ≤ 1, and

hence limr→1 (−UY (r)) ≤ limr→1 βRV
′ (S (r)) = 0. Finally, limr→1 UC (r) = limr→1

(−UY (r))
1−τY (r) =

0.

Proof of Corollary 1. We saw in the proof of Theorem 1 that

1
βRV ′ (S (r)) = 1

UC (r) + ϕ (r) UCr (r)
UC (r) ,
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with ϕ (r) > 0 for all r. Since UCr (r) has a constant sign, we get UC (r) ⋚ βRV ′ (S (r)), or

τS (r) ⋛ 0 for all r, if and only if UCr (r) ⋚ 0 for all r.

Proof of Lemma 1. Totally differentiating the two first-order conditions −UY
UC

= 1 − τY and

UC = βR
1+τS

V ′ gives respectively

CUCY

UY

C ′ (r)
C (r) + Y UY Y

UY

Y ′ (r)
Y (r) + UY r

UY
+ τ ′

Y

1 − τY
= CUCC

UC

C ′ (r)
C (r) + Y UCY

UC

Y ′ (r)
Y (r) + UCr

UC

and
CUCC

UC

C ′ (r)
C (r) + Y UCY

UC

Y ′ (r)
Y (r) + UCr

UC
+ τ ′

S

1 + τS
= SV ′′ (S)

V ′ (S)
S′ (r)
S (r) .

Using the elasticities and Pareto coefficients introduced in the text, and noting that CUCY
−UY

=
C

(1−τY )Y
Y UCY

UC
= sCζCY implies that these two equations can be rewritten as

−sCζCY

ρC
+ ζY

ρY
+ UY r

UY
+ τ ′

Y

1 − τY
= − ζC

ρC
+ ζCY

ρY
+ UCr

UC

− ζC

ρC
+ ζCY

ρY
+ UCr

UC
+ τ ′

S

1 + τS
= − ζS

ρS
.

Equations (7) and (8) follow immediately.

Proof of Theorem 2. Let MC (r) = 1
UC(r)e

−
� 1

r

UCr(r′)
UC(r′) dr′

, MY (r) = 1
−UY (r)e

−
� 1

r

UY r(r′)
UY (r′) dr′

, and

MS (r) = 1
βRV ′(S(r)) . Differentiating V ′ (S (r)) with respect to r implies

d
drV

′ (S (r))
V ′ (S (r)) = V ′′ (S (r))

V ′ (S (r)) S
′ (r) = −ζS (r) S

′ (r)
S (r) ,

so that MS (r) = (βR)−1 e
−

� 1
r ζS(r′) S′(r′)

S(r′) dr′

. Next, equation (7) leads to

MC (r) = 1
UC (r)e

� 1
r

{
−

d
dr

V ′(S(r′))
V ′(S(r′)) +

d
dr (1+τS(r′))

1+τS(r′)

}
dr′

e
−

� 1
r

{
ζC(r′) C′(r′)

C(r′) −ζCY (r′) Y ′(r′)
Y (r′)

}
dr′

= e
−

� 1
r

{
ζC(r′) C′(r′)

C(r′) −ζCY (r′) Y ′(r′)
Y (r′)

}
dr′

,

where the second equality uses the first-order condition 1
UC(r)

βRV ′(S(r))
1+τS(r) = 1. Analogously, equation

38



(8) leads to

MY (r) = 1
−UY (r)e

� 1
r

{
−

d
dr

V ′(S(r′))
V ′(S(r′)) −

d
dr (1−τY (r′))

1−τY (r′) +
d

dr (1+τS(r′))
1+τS(r′)

}
dr′

e

� 1
r

{
ζY (r′) Y ′(r′)

Y (r′) −sC(r′)ζCY (r′) C′(r′)
C(r′)

}
dr′

= e

� 1
r

{
ζY (r′) Y ′(r′)

Y (r′) −sC(r′)ζCY (r′) C′(r′)
C(r′)

}
dr′

.

Now, it follows from the Inada condition and the condition that elasticities converge to finite limits

that

lim
r→1

τY (r) = 1 − lim
r→1

E
[

MY (r′)
MY (r) |r′ ≥ r

]
E
[

MC(r′)
MC(r) |r′ ≥ r

] = 1 − lim
r→1

E
[
e

−
� r′

r ζY
Y ′(r′′)
Y (r′′) dr′′+

� r′
r sCζCY

C′(r′′)
C(r′′) dr′′

|r′ ≥ r

]

E
[
e

� r′
r ζC

C′(r′′)
C(r′′) dr′′−

� r′
r ζCY

Y ′(r′′)
Y (r′′) dr′′

|r′ ≥ r

]

= 1 − lim
r→1

E
[(

Y (r′)
Y (r)

)−ζY
(

C(r′)
C(r)

)sCζCY |r′ ≥ r

]
E
[(

C(r′)
C(r)

)ζC
(

Y (r′)
Y (r)

)−ζCY |r′ ≥ r

] .

For the numerator, define X (r) ≡ (Y (r))−ζY (C (r))sCζCY . We wish to compute E
[

X(r′)
X(r) |r′ ≥ r

]
,

given that C (r), Y (r), and X (r) are perfectly co-monotonic and C and Y are distributed according

to a Pareto distribution with tail coefficients ρC and ρY . We get

d lnX (r)
dr

= X ′ (r)
X (r) = −ζY

Y ′ (r)
Y (r) + sCζCY

C (r)
C ′ (r) = − ζY

ρY
+ sCζCY

ρC
,

so that X (r) follows a Pareto distribution with tail coefficient
(
− ζY

ρY
+ sCζCY

ρC

)−1
. This implies

lim
r→1

E
[(

Y (r′)
Y (r)

)−ζY
(
C (r′)
C (r)

)sCζCY

|r′ ≥ r

]
= 1

1 + ζY
ρY

− sCζCY
ρC

Along the same lines,

lim
r→1

E
[(

C (r′)
C (r)

)ζC
(
Y (r′)
Y (r)

)−ζCY

|r′ ≥ r

]
= 1

1 − ζC
ρC

+ ζCY
ρY

and therefore

lim
r→1

τY (r) = 1 −
1 − ζC

ρC
+ ζCY

ρY

1 + ζY
ρY

− sCζCY
ρC

.

At the optimal allocation, BC (r) must be finite, and therefore ζC
ρC

< 1 + ζCY
ρY

. It then fol-
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lows automatically that limr→1 τY (r) < 1. To prove the second part of Theorem 2, combine

limr→1BS (r) = 1
1−ζS/ρS

for ζS/ρS < 1 with limr→1BC (r) = 1
1− ζC

ρC
+ ζCY

ρY

to get

lim
r→1

τS (r) =
1 − ζC

ρC
+ ζCY

ρY

1 − ζS
ρS

− 1.

This concludes the proof.

Income and Substitution Effects: Hicksian and Marshallian Elasticities. Consider a la-

bor income tax schedule TY (Y ) and a savings tax schedule TS (S). For ease of notation, assume that

β = R = 1 and that the tax schedules are locally linear in the top bracket, T ′′
Y (Y ) = T ′′

S (S) = 0. A

perturbation δT̂Y with δ ∈ R leads to behavioral responses (δŶ , δĈ, δŜ) that satisfy the perturbed

first-order conditions

−
UY

[
C + δĈ, Y + δŶ ; r

]
UC

[
C + δĈ, Y + δŶ ; r

] = 1 − T ′
Y (Y ) − δT̂ ′

Y (Y )

and
V ′
[
S + δŜ

]
UC

[
C + δĈ, Y + δŶ , θ

] = 1 + T ′
S (S)

with

Ĉ +
(
1 + T ′

S (S)
)
Ŝ =

(
1 − T ′

Y (Y )
)
Ŷ − T̂Y (Y ) .

We obtain the responses of earnings, consumption and savings by taking first-order Taylor expan-

sions of the two perturbed FOCs as δ → 0:

ζ̃Y
Ŷ

Y
+ ζ̃C

Ĉ

C
= − T̂ ′

Y

1 − T ′
Y

and

ζ̃S
Ŷ

Y
−
[
sS ζ̃C + sC ζ̃S

] Ĉ
C

= ζS
T̂Y

(1 − T ′
Y )Y

where ζ̃C ≡ ζC − sCζCY , ζ̃Y = ζY − ζCY , ζ̃S = ζS + sSζCY , and sC = C

(1−T ′
Y )Y

, sS = (1+T ′
S)S

(1−T ′
Y )Y

. Note

that as r → 1, so that Y, S → ∞ and T ′
Y , T

′
S converge to constants, we have sC + sS → 1. Solving

this system leads to
Ŷ

Y
= −ζH

Y

T̂ ′
Y

1 − T ′
Y

+ ζI
Y

T̂Y

(1 − T ′
Y )Y ,
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with

ζH
Y = 1

ζ̃Y + ζ̃C ζ̃S

sS ζ̃C+sC ζ̃S

, and ζI
Y =

ζ̃CζS

sS ζ̃C+sC ζ̃S

ζ̃Y + ζ̃C ζ̃S

sS ζ̃C+sC ζ̃S

.

In particular, when sC → 1 and sS → 0 (Case 1), we have ζH
Y = 1

ζ̃Y +ζ̃C
and ζI

Y = ζ̃C

ζ̃Y +ζ̃C
. When

sC → 0 and sS → 1 (Case 2), we have ζH
Y = 1

ζY +ζS
and ζI

Y = ζS
ζY +ζS

.

Calibration for Case 3. In case 3, the Pareto coefficients of consumption, earnings, and savings

must coincide: ρY = ρC = ρS . We set this parameter to 1.5, the value we used for income and

savings in the calibration of Case 2. To calibrate the elasticities, we take ζH
Y = 1/3, ζI

Y = 1/4. Using

the expressions derived above and imposing that the risk aversion parameters are the same in both

periods, so that ζC = ζS , we obtain ζC = ζI
Y

ζH
Y

+sCζCY and ζY = 1
ζH

Y

− ζI
Y

ζH
Y

+sCζCY

(
1 − sSζCY

ζI
Y /ζH

Y +sCζCY

)
.

In our benchmark calibration, we take ζCY = 0 and get ζC = ζS = 3/4 and ζY = 9/4 = 2.25.

We finally need to calibrate the consumption share sC . To do so, note first that, by the above

derivations, we can express the consumption response to a lump-sum tax transfer, or marginal

propensity to consume (MPC), as
Ĉ

−T̂Y

= sC
ζ̃Y

ζ̃C

ζI
Y .

We match an MPC of top income earners of 0.2 (see Figure 2 in Auclert (2019)). This implies

sC = 4
3MPC = 0.27.

In this benchmark calibration with ζC = ζS and ζCY = 0, we obtain an optimal savings

wedge τS = 0 and an optimal labor wedge τY = τSaez
Y = 80%. This is a consequence of the

Atkinson-Stiglitz theorem, or Corollary 1. Indeed, preferences are then separable and the utility of

consumption is homogeneous across consumers. This implies that the benefits of redistributing via

consumption and savings are then identical:BC = 1/(1 − ζC/ρC) and BS = 1/(1 − ζS/ρS).

Now, when preferences are non-separable (or when ζC ̸= ζS), it becomes optimal to distort

savings. We take ζCY /ζC = 0.15 (the upper bound in Chetty (2006)) and MPC = 0.2. Solving

the non-linear system of three equations in three unknowns ζC , ζY , sC derived above, leads to

ζC = ζS = 0.79, ζY = 2.29, and sC = 0.35. As in Case 2, the complementarity between consumption

and income raises the optimal savings wedge and lowers the labor wedge: We get τY = 78% and

τS = 17%.

Extension to a Model with Heterogeneous Endowments. Consider the same setting as in

our baseline model, but suppose in addition that agents also receive an exogenous rank-specific

endowment Z (r). Since earnings and savings are taxed and hence observable, consumption is

assumed to be unobserved. An agent with rank r then consumes C (r, r′) = C (r′) + Z (r) −
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Z (r′) when announcing type r′. Define the indirect utility function W (r) = U (C (r) , Y (r) ; r) +

βV (S (r)). The planner’s problem is stated as follows:

K (v0) = min
{C(r),Y (r),S(r)}

� 1

0

(
C (r) − Y (r) +R−1S (r)

)
dr

such that � 1

0
ω (r)W (r) dr ≥ v0

W (r) = U (C (r) , Y (r) ; r) + βV (S (r))

W ′ (r) = UC (C (r) , Y (r) ; r)Z ′ (r) + Ur (C (r) , Y (r) ; r) .

The last equation is the local incentive compatibility constraint. We solve the planner’s problem

as an optimal control problem using W (·) as the state variable, and C (·), Y (·), and S (·) as

controls. Defining λ, ψ (r), and ϕ (r) as the multipliers on respectively the ex-ante promise-keeping

constraint, the promise-keeping and local incentive constraints given r, the Hamiltonian for this

problem is stated as follows:

H = C (r) − Y (r) +R−1S (r) + λ (v0 −W (r))ω (r)

+ψ (r) {W (r) − U (C (r) , Y (r) ; r) − βV (S (r))}

+ϕ (r)
{
UC (C (r) , Y (r) ; r)Z ′ (r) + Ur (C (r) , Y (r) ; r)

}
.

The first-order conditions with respect to the allocations C (·), Y (·), and S (·) yield:

ψ (r) = 1
UC (r) + ϕ (r)

(
UCC (r)
UC (r) Z

′ (r) + UCr (r)
UC (r)

)
= 1

−UY (r) + ϕ (r)
(
UCY (r)
UY (r) Z

′ (r) + UY r (r)
UY (r)

)
= 1
βRV ′ (S (r)) .

Combining the first two FOCs and rearranging terms yields the following static optimality condition:

1
UC (r)

τY (r)
1 − τY (r) = 1

−UY (r) − 1
UC (r) = A (r)ϕ (r) ,

where

A (r) = UCr (r)
UC (r) − UY r (r)

UY (r) +
(
UCC (r)
UC (r) − UCY (r)

UY (r)

)
Z ′ (r) .

The multipliers ϕ (·) and λ are derived by solving the linear ODE ϕ′ (r) = − ∂H
∂W , after substituting
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out ψ (r) using any of the three first-order conditions:

ϕ′ (r) = − ∂H

∂W
= λω (r) − ψ (r) = λω (r) − 1

UC (r) − ϕ (r)
(
UCr (r)
UC (r) + UCC (r)

UC (r) Z
′ (r)

)
,

along with the boundary conditions ϕ (0) = ϕ (1) = 0. Define UCr(r)
UC(r) + UCC(r)

UC(r) Z
′ (r) = m′

C(r)
mC(r) ,

or mC (r) = e
−

� 1
r

(
UCr(r′)
UC(r′) + UCC(r′)

UC(r′) Z′(r′)
)

dr′

. Substituting into the above ODE and integrating out

yields

ϕ (1)mC (1) − ϕ (r)mC (r) =
� 1

r

(
λω
(
r′)− 1

UC (r′)

)
mC

(
r′) dr′,

or

ϕ (r) = 1 − r

mC (r)

{
E
[ 1
UC (r′)mC

(
r′) |r′ ≥ r

]
− λE

[
ω
(
r′)mC

(
r′) |r′ ≥ r

]}
.

The boundary condition ϕ (0) = 0 then gives λ = E[mCU−1
C ]

E[mC ω] . Therefore,

ϕ (r)
1 − r

= E
[ 1
UC (r′)

mC (r′)
mC (r) |r′ ≥ r

]
−

E
[

1
UC(r′)

mC(r′)
mC(r)

]
E
[
ω (r′) mC(r′)

mC(r) |r′ ≥ r
]

E
[
ω (r′) mC(r′)

mC(r)

]
≡ 1

UC (r)BC (r) .

Substituting this expression into the static optimality condition then yields the first intra-temporal

optimality condition τY (r)
1−τY (r) = A (r) ·BC (r). The FOC for earnings yields an analogous ODE,

µ′ (r) = λω (r) − 1
−UY (r) − ϕ (r)

(
UY r (r)
UY (r) + UCY (r)

UY (r) Z
′ (r)

)
.

LetmY (r) = e
−

� 1
r

(
UY r(r′)
UY (r′) + UCY (r′)

UY (r′) Z′(r′)
)

dr′

and apply the same steps as above yields λ = E[mY (−U−1
Y )]

E[mY ω]

to get

ϕ (r)
1 − r

= E
[ 1

−UY (r′)
mY (r′)
mY (r) |r′ ≥ r

]
−

E
[

1
−UY (r′)mY (r′)

]
E [ω (r′)mY (r′)] E

[
ω
(
r′) mY (r′)

mY (r) |r′ ≥ r

]
≡ 1

−UY (r)BY (r) .

We obtain the second intra-temporal optimality condition (“ABC”) τY (r) = A (r) ·BY (r). Finally,

we solve for the inter-temporal optimality condition. Combining the ODE ϕ′ (r) = − ∂H
∂W = λω (r)−
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ψ (r) with the FOC for savings yields

ϕ′ (r) = λω (r) − 1
βRV ′ (S (r)) ,

which can be integrated and solved along the same lines as above to find

ϕ (r)
1 − r

= E
[ 1
βRV ′ (S (r′)) |r′ ≥ r

]
− E

[ 1
βRV ′ (S (r))

]
E
[
ω
(
r′) |r′ ≥ r

]
= 1
βRV ′ (S (r))BS (r)

with λ = E [1/ (βRV ′ (S (r)))]. Equating this last expression to 1
UC(r)BC (r) then yields the expres-

sion for the savings wedge:

1 + τS (r) ≡ V ′ (S (r))
UC (r) = BS (r)

BC (r) .

It then follows that the characterizations of optimal labor and savings wedges are the same as in

our baseline model, except that we must adjust the definition of incentive-adjustments.

Next, we map the incentive-adjustmentss to our observable sufficient statistics. Totally differ-

entiating UC (r) yields

d
drUC (r)
UC (r) = UCr (r)

UC (r) + UCC (r)
UC (r) C

′ (r) + UCY (r)
UC (r) Y

′ (r)

= UCr (r)
UC (r) − ζC (r) C

′ (r)
C (r) + ζCY (r) Y

′ (r)
Y (r) .

It follows that

e
−

� 1
r

(
UCr(r′)
UC(r′) + UCC(r′)

UC(r′) Z′(r′)
)

dr′

= UC (r) e
−

� 1
r

(
ζC(r′)

[
C′(r′)
C(r′) − Z′(r′)

C(r′)

]
−ζCY (r′) Y ′(r′)

Y (r′)

)
dr′

= UC (r) e
−

� 1
r

(
ζC(r′)(1−sZ(r′)) C′(r′)

C(r′) −ζCY (r′) Y ′(r′)
Y (r′)

)
dr′

where sZ (r) ≡ Z′(r)
C′(r) . Applying the same steps to −UY (r) yields

d
drUY (r)
UY (r) = UY r (r)

UY (r) + UCY (r)
UY (r) C

′ (r) + UY Y (r)
UY (r) Y

′ (r)

= UY r (r)
UY (r) − sC (r) ζCY (r) C

′ (r)
C (r) + ζY (r) Y

′ (r)
Y (r) ,
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and hence

e
−

� 1
r

(
UY r(r′)
UY (r′) + UCY (r′)

UY (r′) Z′(r′)
)

dr′

= −UY (r) e
� 1

r

(
−sC(r′)ζCY (r′)

[
C′(r′)
C(r′) − Z′(r′)

C(r′)

]
+ζY (r′) Y ′(r′)

Y (r′)

)
dr′

= −UY (r) e
� 1

r

(
−sC(r′)ζCY (r′)(1−sZ(r′)) C′(r′)

C(r′) +ζY (r′) Y ′(r′)
Y (r′)

)
dr′

.

Let us now calculate the marginal benefits of redistribution. Assume that Assumption 2 is satisfied.

Then, using the Inada conditions which imply that λ (−UY ), λUC and λβRV ′ converge to zero, we

obtain that the marginal benefit of redistributing income (or leisure) satisfies

BY (r) ∼ E
[(

Y (r′)
Y (r)

)−ζY
(
C (r′)
C (r)

)sC(1−sZ)ζCY

|r′ ≥ r

]

= 1
1 + ζY /ρY − sC (1 − sZ) ζCY /ρC

.

The marginal benefit of redistributing savings satisfies

BS (r) ∼ E
[(

S (r′)
S (r)

)ζS

|r′ ≥ r

]
= 1

1 − ζS/ρS
.

The marginal benefit of redistributing consumption is given by

BC (r) ∼ E
[(

C (r′)
C (r)

)(1−sZ)ζC
(
Y (r′)
Y (r)

)−ζCY

|r′ ≥ r

]

= 1
1 − (1 − sZ) ζC/ρC + ζCY /ρY

.

It follows that

lim
r→1

τY (r) = 1 − 1 − (1 − sZ) ζC/ρC + ζCY /ρY

1 + ζY /ρY − sC (1 − sZ) ζCY /ρC

and

lim
r→1

τS (r) = 1 − (1 − sZ) ζC/ρC + ζCY /ρY

1 − ζS/ρS
− 1

where 1 > (1 − sZ) ζC/ρC − ζCY /ρY , and 1 > −ζY /ρY + sC (1 − sZ) ζCY /ρC , and 1 > ζS/ρS .
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