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Abstract

Affirmative action policies are widely employed in college admissions, hiring, and
other decisions to reduce underrepresentation of disadvantaged groups. Existing poli-
cies predominantly treat each identity dimension (e.g., race, gender, caste) as inde-
pendent. We find that generically such nonintersectional policies cannot eliminate
underrepresentation. Under certain conditions, every nonintersectional policy worsens
the representativeness of at least one intersectional group. Accounting for interactions
between identity dimensions, we construct intersectional policies that achieve a repre-
sentative outcome. Nonintersectional policies can, however, eliminate underrepresen-
tation along each identity dimension, despite preserving (and potentially disguising)
underrepresentation among intersectional groups.
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1 Introduction

This paper examines howmultidimensional identities affect the design of affirmative action policies.
We study a decision maker whomust select a subset of applicants from an applicant pool. Examples
include college admissions, hiring, lending, government contracting, and selection of electoral
candidates by political parties. We depart from existing work by assuming each applicant has a
multidimensional identity (e.g., race, gender, caste, socioeconomic class). With multidimensional
identities, we show that standard affirmative action policies cannot eliminate underrepresentation
and construct policies that can do so.

Policies aimed at reducing the underrepresentation of disadvantaged groups have been employed in
numerous countries, including caste-based quotas (reservation) in India, race and gender represen-
tation requirements in hiring, promotion, and procurement in South Africa, and reduced university
entry requirements for ethnic minorities (youhui zhengce) in China. In the United States, affirmative
action emerged from the Civil Rights movement and originally targeted racial discrimination. Title
VII legislation expanded the set of protected categories, banning discrimination on the basis of
race, skin color, religion, gender, and national origin. Protection for women was strengthened with
Executive Order 11375 in 1967 and the Equal Employment Act of 1972. Today, the representation
of groups defined by race, gender, and other identity characteristics is a major factor in college
admissions, private and public sector hiring, government contracts, lending, and many other areas
(Holzer and Neumark, 2000; Fryer and Loury, 2005). The incorporation of these characteristics
into the decision-making process is meant to reduce bias in evaluating candidates, as well as adjust
for socioeconomic disadvantages faced by groups (Chetty et al., 2014) and various forms of feed-
back through which underrepresentation reproduces itself (Loury, 1977; Borjas, 1992; Coate and
Loury, 1993; Athey et al., 2000).

Affirmative action policies have done much to reduce the underrepresentation of women and mi-
norities in universities and the professions (e.g., Leonard, 1984; Bagde et al., 2016). Nevertheless,
we show that existing affirmative action policies suffer from a design flaw. Most, if not all,
policies are formulated separately for each identity dimension (e.g., race and gender), often by
different committees or organizations. At times, only one dimension is treated. Describing the
European Union’s gender policies, Skjeie (2015) states: “The dominant equality notion is mainly
one-dimensional. What have recently been termed ‘gender+’ equality policies – i.e., policies which
address gender inequalities in relation to other inequalities – are rather few and far between” [p. 79].
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This failure to properly account for the multidimensionality of identity is not limited to policy. The
economics literature on structural inequality focuses almost exclusively on unidimensional notions
of identity (see reviews by Croson and Gneezy, 2009; Altonji and Blank, 1999; Fang and Moro,
2011). Conventions for collecting and reporting data are likewise reductive. Even where data are
disaggregated based on identity categories such as race and gender, there is seldom information on
the economic performance of the intersectional groups (e.g., black women).

The obvious reason for the reductive approach to assessing/addressing underrepresentation is sim-
plicity. It is common, and often necessary, to reduce a complex problem to several parts. Problems
arise, however, when the connections between the parts are neglected (Saari, 2015, 2018), as when
affirmative action policies fail to account for connections between different dimensions of identity.
This point has been long understood by scholars outside of economics; it is the central theme of
the literature on intersectionality (e.g., Crenshaw, 1989). However, the multidimensionality of
identity is largely unexplored by economists. As multiple dimensions of identity are bundled in
each person, there are connections between identity dimensions that cannot be neglected without
producing analytical and policy errors. This paper examines the nature and severity of these errors.

In our model, a decision maker must select a subset of applicants from an applicant pool. Each
applicant has a score (e.g., test score) and a multidimensional identity. Score distributions can
vary across intersectional groups due to socioeconomic disadvantages, bias, and other factors. We
conceptualize an affirmative action policy as follows. The decision maker adjusts each applicant’s
score as a function of their identity and then accepts every applicant with an adjusted score above
some threshold level. A nonintersectional policy is one in which scores are adjusted independently
along each identity dimension (e.g., race, gender). This is the conventional way of formulating
affirmative action policies by admissions committees, employers, lenders, and other decisionmakers
facing such selection problems. In contrast, an intersectional policy applies a potentially different
adjustment for each intersectional group.

We ask the following fundamental question: Can a nonintersectional policy achieve a representa-
tive outcome in which each intersectional group is represented according to its population share?
We find that, generically, nonintersectional policies cannot do so, whereas intersectional policies
can (Section 3.1). Nonintersectional policies can only achieve a representative outcome in special
environments, where inequality/bias has a nonintersectional structure, i.e., is independent across
identity dimensions (Section 3.2). Due to negative spillovers across identity dimensions, they can
fail to generate monotone improvements in representativeness, i.e., they can reduce representative-
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ness for some intersectional groups (Section 3.3). Nonintersectional policies can, however, achieve
a reductive representative outcome in which there is proportional representation along every iden-
tity dimension (Section 3.4). If data are gathered in this reductive manner, it could thus give the
false impression that structural inequality has been eliminated, whereas some intersectional groups
continue to be underrepresented. Finally, we show how our analysis can be incorporated into
existing work by extending an important paper on the design of affirmative action policies by Fryer
and Loury (2013) to multidimensional identities (Section 3.5).

1.1 Related Literature

There are two related (and overlapping) strands of literature in economics. The first deals with the
causes of intergroup inequality, including the socioeconomic environment (Chetty et al., 2014),
taste-based discrimination (Becker, 1957), statistical discrimination (Phelps, 1972; Arrow, 1973;
Chambers and Echenique, 2021), intergenerational transfers of human capital (Becker and Tomes,
1979; Loury, 1977, 1981; Borjas, 1992), norms (Akerlof andKranton, 2000; Young, 2015; Bertrand
et al., 2015; Eguia, 2017), learning (Chung, 2000; Fernández, 2013), peer effects, and local
complementarities in education (Borjas, 1992; Benabou, 1993; Chaudhuri and Sethi, 2008). The
second deals with affirmative action policies for reducing intergroup inequality (e.g., Coate and
Loury, 1993; Loury, 2009; Goldin and Rouse, 2000; Fershtman and Pavan, 2021). Coate and Loury
(1993) analyze the effects of affirmative action under statistical discrimination, famously showing
that a ‘patronizing equilibrium’ can arise in which groups have proportional representation but
one (disadvantaged) group has lower levels of skill formation. Fryer and Loury (2013) analyze
the conditions under which it is efficient to grant disadvantaged minorities preferential access to
positions rather than subsidize skill development. When affirmative action policies can be written
based on identity (sighted), preferential access is more efficient. We extend Fryer and Loury’s
model, showing how to construct such policies when individuals have multidimensional identities.
Recent advances include the design of reserve systems for the allocation of resources (Dur et al.,
2018; Sönmez and Yenmez, 2022). There is also an emerging interdisciplinary literature on
algorithmic fairness which deals with reducing bias in machine learning and algorithmic decision-
making (e.g., Kleinberg et al., 2016; Kleinberg and Raghavan, 2018; Kleinberg et al., 2018;
Chouldechova and Roth, 2018; Rambachan and Roth, 2019; Raji et al., 2020). In particular,
Kleinberg et al. (2016) provide an impossibility theorem in which three fairness conditions for
algorithmic classification of individuals cannot be jointly achieved.
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Much has been learned from this body of work. However, these analyses treat identity as unidimen-
sional, whereas human identity is a higher-dimensional object describing one’s race, gender, class,
and many other characteristics. Notable exceptions are described below. The simple extension of
affirmative action policies derived through undimensional analysis to a multidimensional setting is
to independently formulate an intervention along each identity dimension and then check for pro-
portional representation along each dimension (e.g., race, gender). This is the current practice. But
this approach does not properly account for the multidimensionality of identity, because it ignores
interactions between identity dimensions and neglects the basic unit of analysis when identity is
multidimensional: the intersectional group.

In a recent article, Small and Pager (2020) encourage economists studying discrimination to draw
on approaches from sociology and other disciplines, especially the notion of institutional discrim-
ination. This paper draws on the concept of intersectionality introduced by Crenshaw (1989) in a
critique of the unidimensional notions of identity that dominated legal doctrine and politics around
anti-discrimination. Based on the unique experiences of black women, Crenshaw (1989) argued
that an individual’s experience is not the sum of their race and gender. Intersectionality has been an
influential approach to studying discrimination and structural inequality outside of economics (see
Cooper, 2016; Collins and Bilge, 2020). Collins and Bilge (2020) define the approach as follows:
“As an analytical tool, intersectionality views categories of race, class, gender, genderuality, nation,
ability, ethnicity, and age—among others—as interrelated and mutually shaping one another” [p.
1].

Through our analysis of affirmative action with multidimensional identities, we arrive at a mathe-
matical characterization of the problems with unidimensional notions of identity and the gains from
switching to the intersectional group as the unit of analysis. In economics, there are few examples
of work on multidimensional identity. These include Sen (2006) on how drawing from multi-
dimensional identities can reduce conflict, Meyer and Strulovici (2012) on comparing economic
outcomes when inequality is multidimensional, Akerlof (2017) on how individuals choose to value
different dimensions of their identity, and Elu and Loubert (2013) on how returns to schooling in
sub-Saharan Africa depend on the interaction between gender and ethnicity. To our knowledge, the
first analysis of intersectional policies in economics is by Carvalho and Pradelski (2021) who study
a specific inequality-generating mechanism and show that subsidies along one identity dimension
will alter representation along other identity dimensions. They also characterize systems of inter-
sectional self-financing subsidies and role-model policies that achieve representative outcomes. In
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computer science, Flanigan et al. (2021) develop an algorithm for selecting citizens’ assemblies
when identities are multidimensional. Agents do not have scores; instead, the focus is on the trade-
off between giving each member of the population an equal likelihood of being assigned to a panel
and satisfying quotas defined in terms of the identity dimensions. Finally, Mehrotra et al. (2022)
study a model of selection for a specific inequality-generating mechanism (multiplicative bias) and
show that a particular policy, i.e., nonintersectional minimal quotas, cannot achieve efficiency.

Our paper reveals that the interaction across identity dimensions poses a far more general problem.
We demonstrate that all nonintersectional policies fail to achieve a representative outcome for an
arbitrary number of identity dimensions and for generic inequality-generating mechanisms. We
also show how to construct intersectional policies that achieve a representative outcome in this
more general environment.

2 The Model

Consider a decision maker (e.g., college, employer) who must select a subset of applicants from an
applicant pool. The applicant pool has unitmass and the decisionmaker accepts a shareU ∈ (0, 1) of
the applicants and rejects the rest. Each applicant has a score G belonging to an open interval - ⊂ R
and a multidimensional identity described by a vector of group characteristics 6 ∈ � = {0, 1}=,
with = ≥ 2.1 While an individual’s full identity is an =-dimensional object 6 = (61, ..., 6=), we
can also express an individual’s identity in a reductive manner in terms of one identity dimension:
all individuals with entry 68 = 1 belong to category 8 (e.g., all women). The joint distribution
over characteristics and scores, ?, is assumed to belong to the subspace % ⊂ Δ(- × �) for which
the conditional score distributions �6 (·) ≡ ?(·|6) are continuous and have full support on - . We
denote the marginal probability of belonging to group 6, ?(- × {6}), simply by ?(6).2

With the goal of achieving a more representative accepted class (e.g., student body, employee
pool), the decision maker sets a policy q = (@6)6∈� such that @6 : - → - maps the score G of an
applicant from group 6 to an adjusted score @6 (G). We impose structure on the space of policies by
supposing that there is a family of increasing bĳections& ⊂ -- such that q ∈ & |� |. We require the
set of functions to be (i) rich, meaning that for all G, H ∈ - there exists a function @ ∈ & satisfying

1Examples in this paper involve binary characteristics for illustration only. Our coding can accommodate more
realistic non-binary characteristics by interpreting each entry as an indicator variable for a characteristic.

2We endow R with the usual topology, Δ(- × �) with the weak∗ topology, and both - ⊂ R and % ⊂ Δ(- × �)
with their respective relative topologies.
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@(G) = H, and (ii) commutative, meaning that @, @′ ∈ & implies @ ◦ @′ = @′ ◦ @. Two exemplar
policy spaces are described by the following.

• Additive. For each @ ∈ & there exists X ∈ R such that @(G) = G + X for all G ∈ - = R.

• Multiplicative. For each @ ∈ & there exists \ ∈ R>0 such that @(G) = \ ·G for all G ∈ - = R>0.

Given the policy, the decision maker sets an acceptance threshold G∗ ∈ - whereby applicants
whose adjusted scores exceed the threshold @6 (G) ≥ G∗ are accepted and all others @6 (G) < G∗ are
rejected, subject to the capacity constraint

∑
6∈� Pr(@6 (G) ≥ G∗ |6)?(6) = U.3

Definition 1. A policy is nonintersectional if 6 = 6′ + 6′′ implies @6 = @6′ ◦ @6′′. Otherwise, a
policy is intersectional.

A nonintersectional policy treats each identity dimension as independent: applying @6 to the scores
for members of group 6 is the same as iteratively applying @48 for each category 8 to which they
belong, where 48 denotes the 8th standard basis vector. For example, if the policy is additive then
X6 =

∑=
8=1 68 · X48 and if it is multiplicative then \6 =

∏=
8=1 \

68
48 . Observe that a nonintersectional

policy normalizes @0(G) = G for all G ∈ - since 6 = 6 + 0 implies @6 = @6 ◦ @0. Appendix C offers
a more general definition of nonintersectionality and proves that this normalization comes without
loss in generality.

Example 1. Consider a simplified example of multidimensional identity: male 6 = (0, ·), female
6 = (1, ·), white 6 = (·, 0), black 6 = (·, 1). Suppose the policy is additive, boosting the scores for
women by 0 and that of black individuals by 1:

X(0,0) = 0, X(1,0) = 0,

X(0,1) = 1, X(1,1) = 0 + 1.

This policy is nonintersectional. If instead the policy additionally lifts the scores of black women
by 2 ≠ 0 so that X(1,1) = 0 + 1 + 2, then the policy is intersectional.

3In our construction, an individual’s score G is adjusted based on their identity and then a (uniform) acceptance
rule is applied to each adjusted score @6 (G). Equivalently, a different acceptance rule could be applied to unadjusted
scores for each group 6. Hence our results apply to all acceptance rules, not just policies for adjusting scores.
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3 Results

Our analysis answers the following questions: Can proportional representation of identity groups be
achieved with nonintersectional policies (as is current practice)? If not generally, under what con-
ditions? Can nonintersectional measures of inequality disguise or even worsen underrepresentation
of some intersectional groups?

For a given policy and decision rule, let ?̂(6) denote the probability that an individual belongs to
intersectional group 6 given that they have been accepted, i.e., ?̂(6) = Pr(@6 (G)≥G∗ |6)?(6)

Pr(@6 (G)≥G∗) .

Definition 2. An outcome is representative if the representation of each intersectional group is
equal to its population share: ?̂(6) = ?(6) for all 6 ∈ �.

3.1 Nonintersectional policies do not eliminate underrepresentation

We demonstrate that the inherent constraints on nonintersectional policies prevent their achieving a
representative state. We employ the topological notion of genericity whereby a property is generic
of a set if it holds on a dense open subset.4

Theorem 1. For generic distributions ? ∈ %:

(a) There does not exist a nonintersectional policy that yields a representative outcome.

(b) There exists an intersectional policy that yields a representative outcome.

We relegate the technical details to Lemmas A.1 and A.2 in Appendix A. The rest of the proof,
including the construction of intersectional policies, is presented here.

Proof of Theorem 1. We begin with part (a). The ensuing outcome is representative if(
?(@6 (G) ≥ G∗ |6) − U

)
?(6) = 0 for all 6 ∈ �. (1)

Suppose ?(6) > 0 for all 6 ∈ �. Recall that �6 (G) is the CDF of a type 6’s score and define
V6 ≡ �−1

6 (1 − U) to be the (1 − U)th score quantile. Condition (1) becomes

@6 (V6) = G∗ for all 6 ∈ �. (2)

4Recall that a subset � ⊂ ( is dense in a set ( if its closure equals the set: �̄ = ( (see Aliprantis and Border, 2006).
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Let 0 and 1 be the vector of zeros and ones respectively. For a representative nonintersectional policy,
condition (2) requires @0(V0) = V0 = G

∗which pins down the admissions rule. The condition further
requires @48 (V48 ) = V0 for all 1 ≤ 8 ≤ =. When policies are rich and commutative, this uniquely
determines each @48 (see Lemma A.1). Condition (2) also requires @1(V1) = (@41 ◦ · · · ◦ @4=) (V1) =
V0 or equivalently V1 = (@−1

4=
◦ · · · ◦ @−1

41 ) (V0). For = ≥ 2, the set of distributions for which this
equality fails to hold and ?(6) > 0 for all 6 ∈ � is open and dense in % (see Lemma A.2). This
proves part (a).

Turning to part (b), for a given G∗ the richness assumption provides the existence of a policy
satisfying (2) for every ? ∈ %. Such a policy evidently satisfies the capacity constraint since
Pr(@6 (G) ≥ G∗ |6) = U for all 6 ∈ � and thus

∑
6∈� Pr(@6 (G) ≥ G∗ |6)?(6) = U. From the

conclusion of part (b), such a policy must be intersectional on an open dense subset of %. �

Hence an affirmative action policy can achieve a representative outcome when designed on the
basis of the intersectional groups. Condition (2) shows precisely how to construct an intersectional
policy that eliminates underrepresentation: the scores of each intersectional group must be adjusted
so that they are equal at the (1 − U)th quantile. We demonstrate that generically this cannot be
achieved by a nonintersectional policy based reductively on the identity dimensions such as race,
gender, and socioeconomic class. Note that the space of permissible nonintersectional policies is
large and far more general than the additive and multiplicative policies used as examples above. For
example, if ℎ : - → (0, 1) is any continuous and strictly increasing function (e.g., a continuous
CDF), then the functions ℎ−1(ℎ(G)0) with 0 ∈ R>0 form a rich and commutative family and can
be used to construct a policy on - . There are many other nonintersectional policies that follow a
simple functional form, as well as ones taking even more complicated forms that would be difficult
to describe. What Theorem 1 says is that, regardless of the family of functions used to construct the
policies &, as long as the policy can be sensibly applied nonintersectionally (independently across
identity dimensions), then generically the outcome will not be representative.

We can also show that there does not exist a sequence of nonintersectional policies that comes
arbitrarily close to a representative outcome. The representativeness induced by a policy can be
described by the vector d = (d6)6∈� ≡ (| ?̂(6) − ?(6) |)6∈� , so that d ∈ [0, 1]=. Letting ‖ · ‖ denote
the Euclidean norm, the following result proceeds from Theorem 1:

Corollary 1. Generically, for each distribution ?, there exists a number 2 > 0 such that ‖d‖ > 2
whenever the policy is nonintersectional.
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The proof is relegated to Appendix A. Hence, generically, the outcome of every nonintersectional
policy is bounded away from a representative outcome.

3.2 When do nonintersectional policies perform well?

A deeper point revealed in the proof of Theorem 1 is that a nonintersectional policy can only achieve
a representative outcome if the score distributions themselves have a specific “nonintersectional”
relationship. This can be formalized as follows. Recall that V6 ≡ �−1

6 (1− U) is the (1− U)th score
quantile.

Definition 3. The environment exhibits independence across identity dimensions if the function
@ ∈ & mapping @(V6) = V6′ also maps @(V6−6′) = V0 for all groups 6′ ≤ 6.5

To interpret this condition, consider the case of gender and race as coded in Example 1. The
condition in Definition 3 means that differences in scores based on race are independent of gender.
That is, the same adjustment required to equalize the scores of black women and white women at
the (1−U)th quantile is required to equalize the scores of black men and white men at the (1−U)th
quantile: @(V(1,1)) = V(1,0) implies @(V(0,1)) = V(0,0) .

Proposition 1. A nonintersectional policy can achieve a representative outcome if and only if the
environment exhibits independence across identity dimensions.

Proof. First, assume condition (2) holds so that @6 (V6) = @6′ (V6′) for any two groups. If addition-
ally 6′ ≤ 6, then @6 = @6′ ◦ @6−6′, implying @6−6′ (V6) = V6′. From (2) and the normalization of @0,
@6−6′ (V6−6′) = @0(V0) = V0. Because the function @ ∈ & mapping @(V6) = V6′ is unique (Lemma
A.1), it is equal to @6−6′ and the desired conclusion holds.

Now, assume @(V6) = V6′ implies @(V6−6′) = V0 for all groups 6′ ≤ 6. Then defining the
functions @6 (V6) = V0 for all 6 ∈ �, we want to show that these functions collectively define a
nonintersectional policy. To prove this, take any two groups with 6′ ≤ 6 and observe that because
@6 (V6) = @6′ (V6′) we have @−1

6′ ◦ @6 (V6) = V6′. By assumption, @−1
6′ ◦ @6 (V6−6′) = V0 and by

definition @6−6′ (V6−6′) = V0. As the function @ ∈ & mapping @(V6−6′) = V0 is unique (Lemma

5As usual, for two vectors a, b ∈ R=, a ≤ b if and only if 08 ≤ 18 for each dimension 8 = 1, ..., =.
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A.1) we have @−1
6′ ◦ @6 = @6−6′ and thus @6 = @6′ ◦ @6−6′, implying that the policy q defined by

@6 (G) for all G ∈ - and 6 ∈ � is nonintersectional. �

The following example illustrates:

Example 2 (Human Capital and Bias). Suppose that each individual’s human capital Ĝ is drawn
independently from a normal distribution with mean ˆ̀. The decision maker interprets scores in
a biased manner on the basis of an individual’s group affiliation. Specifically, an individual with
human capital Ĝ is ascribed a biased score G = Ĝ − 1, where the bias 1 is drawn independently for a
member of group 6 from a normal distribution with mean `6 and a variance that is common to all
groups. Thus, the biased scores for members of group 6 are normally distributed with mean ˆ̀ − `6
and variance f2. Letting Φ denote the standard normal distribution, then the (1 − U)th quantile
for each biased score distribution is defined as the number V6 satisfying Φ

(
V6− ˆ̀+`6

f

)
= 1 − U.

Simplifying this equation, we obtain V6 = Φ−1 (1 − U) f + ˆ̀ − `6.

Supposing the decision maker uses an additive policy, each @ ∈ & can be expressed as @(G) = G + X
for some real number X. From this and Theorem 1, if a policy q achieves a representative outcome,
then @6 (V6) = V6 +X6 is constant across groups, which is equivalent to requiring X6− `6 = X6′− `6′
for all 6, 6′ ∈ �. Moreover, if the policy is nonintersectional, then for any 6′ ≤ 6 we have
X6 = X6′ + X6−6′. Taken together, these conditions provide the following equalities

`6 − `6′ = X6 − X6′ = X6−6′ = `6−6′ − `0.

Thus, the bias to which groups are subject must itself take a specific additive, nonintersectional
form. This is summarized by the following result.

Corollary 2. For Example 2, a nonintersectional policy achieves a representative outcome if and
only if 6 = 6′ + 6′′ implies `6 + `0 = `6′ + `6′′ for all groups.

3.3 Monotone Improvements

We know that nonintersectional policies generically cannot achieve a representative outcome. We
now weaken the requirement and ask whether there are nonintersectional policies that can at least
improve representativeness for all intersectional groups. Let G∗0 be the acceptance threshold and

?̂0(6) = (1−�6 (G∗0))?(6)∑
6′∈� (1−�6′ (G∗0))?(6′)

be the representation of group 6 in the absence of any policy. A group
is overrepresented without a policy if ?̂0(6) > ?(6) and underrepresented if ?̂0(6) < ?(6). We
can then define an improvement in representativeness as follows:
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Definition 4. A monotone improvement occurs if | ?̂(6) − ?(6) | < | ?̂0(6) − ?(6) | for all 6 ∈ �.

Hence, a monotone improvement in representativeness is one that brings all intersectional groups
closer to proportional representation. We find that a nonintersectional policy can only yield
a monotone improvement in representativeness if underrepresentation/overrepresentation among
intersectional groups follows a certain ordering, as implied by the following proposition.

Proposition 2. Suppose groups 0 and 6 are overrepresented and there is a group 6′ ≤ 6 such that 6′

and 6−6′ are underrepresented. Then no nonintersectional policy yields a monotone improvement.

Proof. Toward a contradiction, suppose q is nonintersectional and delivers a monotone improve-
ment, groups 0 and 6 are overrepresented, and groups 6′ and 6′′ = 6 − 6′ are underrepresented.
Before introducing a policy, the acceptance rule admits a student if and only if their score G exceeds
the value G∗0 equating

∑
6∈� ?(6) (1 − �6 (G∗0)) = U. After introducing the policy, the admissions

cutoff shifts to G∗ equating
∑
6∈� ?(6) (1 − �6 (@−1

6 (G∗))) = U. A monotone improvement requires
@6̃ (G∗0) < G

∗ for any overrepresented group and @6̃ (G∗0) > G
∗ for any underrepresented group. The

new cutoff must exceed the initial one G∗ > G∗0 as group zero is overrepresented and @0(G∗0) = G
∗
0.

Thus we have

@6′ (G∗0) > G
∗ > G∗0

which, because @6′′ is increasing implies

@6′′ (@6′ (G∗0)) > @6′′ (G
∗) > @6′′ (G∗0).

Because @6 = @6′ ◦ @6′′ and 6′′ is underrepresented the preceding inequalities imply @6 (G∗0) >
@6′′ (G∗0) > G

∗. But then the policy cannot generate a monotone improvement since 6 is overrepre-
sented, a contradiction. �

To make the above condition concrete, return to Example 2 with two-dimensional identities, = = 2.
Suppose groups 0 and 1 are overrepresented at the expense of groups (1, 0) and (0, 1) who are
underrepresented, for instance when `(1,0) = `(0,1) < `0 = `1. Then there is no nonintersectional
policy that reduces underrepresentation of group (0, 1) without increasing underrepresentation of
group (1, 0), and vice versa. The reason is that nonintersectional policies fail to account for negative
spillovers across identity dimensions which can rule out monotone improvements.
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There are plausible conditions under which the ordering of representation in Proposition 2 holds.
For example, in the Dutch parliament in 2013whitemen andminority womenwere overrepresented,
while white women and minority men were underrepresented (Celis et al., 2014). While in many
cases minority women face a double disadvantage, one reason why the ordering in Proposition
2 (and the Dutch parliament) can arise is because of prior affirmative action policies. If the
measurement of representation is reductive, that is, based on the identity dimensions and not the
intersectional groups, the selection of a minority woman increases representativeness along two
dimensions (race/ethnicity and gender) and is thus a double improvement (see Muegge and Erzeel,
2016). However, this still leaves underrepresentation at the intersectional level. We turn our
attention to this issue in the following subsection.

3.4 Reductive Representation and Hidden Inequality

Structural inequality is an important concept because inequality structured by race, gender, and
other identity characteristics often goes unnoticed when focusing on aggregate measures of income
and wealth inequality. When identities are multidimensional, the basic unit of analysis is the
intersectional group. Accordingly, we have defined a representative outcome as proportional
representation across intersectional groups. However, this is not the standard measure in current
practice. Admissions and hiring committees tend to reduce the dimensionality of the problem and
pursue the following (nonintersectional) objective of proportional representation across identity
dimensions:

Definition 5. A reductive representative outcome is one in which ?̂(68) = ?(68) for each identity
dimension 8 = 1, . . . , =.

We now ask whether a nonintersectional policy can at least achieve this reductive objective.

Theorem 2. For a nonempty open subset of distributions in %, there exists a nonintersectional
policy that achieves a reductive representative outcome.

The proof is relegated to Appendix B. While Theorem 2 may lend some support to nonintersec-
tional policies, it raises the problem of hidden inequality. Suppose an admissions/hiring committee
designs a nonintersectional policy to achieve a reductive representative outcome, while gathering
data on underrepresentation along each identity dimension. It is conventional to gather and ana-
lyze data in such a nonintersectional manner. On this basis, the committee might conclude that
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underrepresentation has been eliminated. But this will only be true for each identity dimension.
According to Theorem 1, generically, at least one intersectional group will remain underrepre-
sentated. Thus, the reductive approach to structural inequality only goes part of the way and can
create a false impression of having eliminated structural inequality. In fact, the problem could be
even worse. A reductive representative policy could actually increase the underrepresentation of
an underrepresented group. The following example illustrates.

Example 3. Building onExamples 1 and 2, consider a population inwhich ten percent of individuals
are black, the remainder are white, and each racial group is evenly split between men and women.
Suppose the biased scores for each group are normally distributed with a mean of zero for black
and white women, a mean of 0.25 for black men, a mean of one for white men, and a variance of
one for all groups. Assume that the decision maker has the capacity to admit half of the applicants.

Without an affirmative action policy, the decision maker would admit roughly a third of both black
and white women, about 42 percent of black men, and about 70 percent of white men. Figure 1
plots the acceptance rates for women, black individuals, and black men for the nonintersectional
policy lifting the scores of women by 0 = 0.925_ and lifting the scores for black individuals by
1 = 0.375_ so that the degree of intervention is measured by _ ∈ [0, 1]. When _ = 1 the policy
achieves a reductive representative outcome and when _ = 0 there is no intervention.

While moving toward the reductive representative outcome has the desirable effect of increasing
the representation for women and black individuals, only attending to these two dimensions hides
the fact that the policy reduces the representation of black men. This is due to the rivalry inherent in
representation. Even though blackmen are recipients of affirmative action, the increased acceptance
of women leads the score admission threshold to increase by an even larger amount, crowding out
the benefit to black men.

3.5 Fryer and Loury (2013) with Multidimensional Identities

Fryer and Loury (2013) study the design of affirmative action policies in a two-stage environment,
which we shall describe below. We will show how to extend their analysis to multidimensional
identities and apply our results. In doing so, we alter their notation to clarify the connection to our
work. Among other things, this provides an example of how the score distributions in our analysis
can be made at least partially endogenous.

In stage 1, individuals decide whether or not to invest in skills, B ∈ {0, 1}. An individual’s cost of
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Figure 1: Group acceptance rates moving from no intervention (_ = 0) to the nonintersectional
policy achieving a reductive representative outcome (_ = 1).

acquiring skills is a draw from a distribution which depends on their social identity 6 ∈ � = {�, �}.
Let �6 (2) and ℎ6 (2) be the cost distribution and density for members of identity group 6 ∈ �
taking full support on the same interval for all groups. Group � is disadvantaged in the sense that
ℎ� (2)/ℎ� (2) is strictly increasing in 2. In stage 2, each individual’s productivity G is realized. Given
skill B, the distribution of productivity is given by the distribution �B (G) with supportR. We assume
�1 to have first order stochastic dominance over �0. That is, the likelihood of a high productivity
draw is higher for those who invested in skills at stage 1. To simplify the exposition, further
assume the support of the cost distributions �6 contains the interval [0, � (G |B = 1) − � (G |B = 0)].
After observing their productivity, individuals can purchase one of a fixed number of production
opportunities (slots) at the market-clearing price G∗. Under laissez-faire, all individuals with G ≥ G∗

will purchase a slot and produce. Because group � is disadvantaged in skill acquisition at stage 1,
it will be underrepresented among those with production opportunities at stage 2. Fryer and Loury
(2013) show that when sighted affirmative action policies are permitted, the most efficient policy
that achieves a representative outcome is one which subsidizes the purchase of slots by members
of the disadvantaged group at stage 2.6

Our model has the same deep structure as the Fryer-Loury model. Rather than individuals purchas-
ing slots if their productivity satisfies G ≥ G∗, with the productivity distributions varying between
groups, a decision maker accepts applicants whose scores satisfy G ≥ G∗, with the score distri-
butions varying among groups. The subsidies to groups in their model are the same as the score

6When policies are constrained to be blind (cannot be written on the basis of identity), then the most efficient
policy that achieves a representative outcome is one which subsidizes skill acquisition at stage 1.
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adjustments in ours. Hence we can extend the Fryer-Loury model to multidimensional identities,
6 ∈ � = {0, 1}=, and apply our results. Following the original formulation, let the affirmative
action policy be additive. If a member of group 6 buys a slot, they receive a payment equal to their
productivity, minus the cost G∗, net of the subsidy/tax X6, i.e., G + X6 − G∗. Normalizing the outside
option to zero, such an individual purchases a slot if and only if G + X6 − G∗ ≥ 0.

• An individual in group 6 with skill B buys a slot with probability Pr(G ≥ G∗ − X6 |B) =
1 − �B (G∗ − X6).

• The expected payoff to acquiring skills, B = 1, is
∫ ∞
G∗−X6
(G + X6 − G∗)d�1(G) − 2.

• The expected payoff to not acquiring skills, B = 0, is
∫ ∞
G∗−X6
(G + X6 − G∗)d�0(G).

To simplify notation, let C6 = G∗ − X6 denote the threshold that the productivity of members of
group 6 must exceed to buy a slot. As in Fryer and Loury (2013), we can write the benefit to skill
formation as

�(C6) =
∫ ∞

C6

(G − C6)d�1(G) −
∫ ∞

C6

(G − C6)d�0(G)

=

∫ ∞

C6

(1 − �1(G))dG −
∫ ∞

C6

(1 − �0(G))dG

=

∫ ∞

C6

(�0(G) − �1(G))dG.

Note m
mC6
�(C6) = −(�0(C6) − �1(C6)) < 0.

Given cost 2, a group 6 member invests in skills if and only if �(C6) ≥ 2. The probability that they
invest in skills is therefore �6 (�(C6)). The acceptance rate of group 6 members, i.e., the share of
group 6 members who purchase a slot, is therefore:

'6 (C6) = �6 (�(C6)) (1 − �1(C6)) + (1 − �6 (�(C6))) (1 − �0(C6))

= �6 (�(C6)) (�0(C6) − �1(C6)) + 1 − �0(C6).

Computing the change in acceptance as a result of changing C6, we obtain

m'6

mC6
= −ℎ6 (�(C6)) (�0(C6) − �1(C6))2 + �6 (�(C6)) ( 50(C6) − 51(C6)) − 50(C6)

= −ℎ6 (�(C6)) (�0(C6) − �1(C6))2 − (1 − �6 (�(C6))) 50(C6) − �6 (�(C6)) 51(C6) < 0.
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Noting that limC6→−∞ �B (C6) = 0 and limC6→∞ �B (C6) = 1, we can also see that limC6→−∞ '6 (C6) = 1
and limC6→∞ '6 (C6) = 0. Thus, there exists a unique C∗6 satisfying '6 (C∗6) = U for each 6 ∈ �.
To achieve a representative outcome, consider the policy with X0 = 0, the threshold G∗ equal to
C∗0 ≡ '

−1
0 (U), and with X6 = '−1

0 (U) − '
−1
6 (U) for all 6. With such a policy, a member of group 6

buys a slot with probability U for each group 6 ∈ � and thus the capacity constraint is also satisfied.

Now consider nonintersectional policies which require X6 = X6′ + X6′′ for all groups 6, 6′, and 6′′

satisfying 6 = 6′ + 6′′. Recall that such a policy normalizes X0 = 0 so that the cutoff G∗ must equal
C∗0. A nonintersectional policy achieves a representative outcome if and only if 6 = 6′ + 6′′ implies

C∗6 = G
∗ − X6 = G∗ − X6′ − X6′′ = C∗6′ + C∗6′′ − C∗0.

By the same reasoning as Theorem 1, this equality generically does not hold.

Formally, to connect with Theorem1, we treat the distributions �B as fixed and let % be the set of joint
distributions over group identity and investment costs such that ?(·|6) ∼ �6 is continuous. Then
the conclusion of Theorem 1 holds. In particular, if subsidies are calculated independently for each
identity dimension, this will generically leave one or more intersectional groups underrepresented.
To eliminate all underrepresentation, the subsidies will have to be intersectional, i.e., computed
separately for each intersectional group. Precisely how to compute the intersectional subsidies is
given by condition (2) in the proof of Theorem 1 and in this specific case by the system derived
above: X6 = '−1

0 (U) − '
−1
6 (U) for all 6 ∈ �. Thus, our analysis shows how existing work can be

extended to incorporate the effects of multidimensional identities.

4 Conclusion

The economics literature on intergroup inequality and affirmative action treats identity as unidi-
mensional. This paper has shown that when identities are multidimensional, structural inequality
generically cannot be eliminated using conventional nonintersectional policies, even approximately.
For an open set of conditions, a reductive representative outcome can be achieved in which under-
representation is eliminated along each identity dimension. However, underrepresentation at the
intersectional level will persist. Of course, the simplicity argument for nonintersectional policies
remains, as the number of intersectional groups grows rapidly in the number of identity dimen-
sions. Our framework is flexible and can be extended in a number of directions, including new
ways of making the score distributions endogenous. Our work also points to an empirical research
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program on how multidimensional identities shape the evolution of intergroup inequality and the
effectiveness of affirmative action policies. A potentially fruitful way to proceed both theoretically
and empirically is to examine the manipulability of identity, either through some form of “passing”
or misrepresentation.7 The design challenge would be to identify affirmative action policies that
are robust to identity manipulation.
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A Appendix: Technical details for Theorem 1

Throughout, & ⊂ -- is maintained to be a rich and commutative family of increasing bĳections.
Recall that & is rich if for each pair G, H ∈ - there is a function @ ∈ & satisfying @(G) = H and
commutative if @, @′ ∈ & implies @ ◦ @′ = @′ ◦ @.

The first lemma characterizes several useful properties of the set &.

Lemma A.1. The family of functions & holds the following properties.

(a) Each @ ∈ & is continuous.

(b) The function mapping G to H is unique for each G, H ∈ - .

(c) & contains the identity function.

(d) & is closed under composition: @, @′ ∈ & implies @ ◦ @′ ∈ &.

(e) & contains its inverses: @ ∈ & implies @−1 ∈ &.

Proof. (a) Each @ ∈ & is continuous because it is an increasing bĳection.

(b) Suppose there are two functions @ and @′ in & satisfying @(G0) = @′(G0) for some G0 ∈ - .
For any G ∈ - , richness provides the existence of a function @′′ in & satisfying @′′(G0) = G. Thus
@′′(@(G0)) = @′′(@′(G0)) and commutativity implies @(@′′(G0)) = @′(@′′(G0)) and so @(G) = @′(G)
for all G ∈ - .

(c) To prove that & contains an identity function, for a given G0 ∈ - there is a function @ ∈ &
satisfying @(G0) = G0. For an arbitrary G ∈ - and a function @′ ∈ & satisfying @′(G0) = G

G = @′(G0) = @′(@(G0)) = @(@′(G0)) = @(G)

and thus @(G) = G for all G ∈ - .

(d) To verify that & has the closure property, for any @, @′ ∈ & and G0 ∈ - , there is a function
@′′ ∈ & for which @(@′(G0)) = @′′(G0). For any G ∈ - and @′′′ ∈ & for which @′′′(G) = G0 the
commutativity property provides that @′′′(@(@′(G)) = @′′′(@′′(G)) and thus @(@′(G)) = @′′(G) for all
G ∈ - . Therefore, for every @, @′ ∈ & there exists @′′ ∈ & such that @ ◦ @′ = @′′.

(e) To show that & contains its inverses, for a function @ ∈ & and a point G0 ∈ - , there is another
function @′ ∈ & satisfying @′(@(G0)) = G0. The closure property (d) implies @ ◦ @′ ∈ & which must
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mean that @ ◦ @′ is the identity function as (b) and (c) provide that it is the unique function in &
admitting a fixed point. Thus, @′ = @−1. �

Observe that by taking together properties (c)-(e), the commutativity assumption, and the asso-
ciativity of functional composition, (&, ◦) takes the form of an abelian group. Two additional
conclusions follow immediately from this lemma. From (a) and (b), the functions in & are ordered
in the sense that @(G) > @′(G) for some G ∈ - implies @(G′) > @′(G′) for all G′ ∈ - . Since &
contains the identity function, this conclusion further implies that each function either increases
scores, decreases scores, or leaves them constant, i.e., for all @ ∈ & the sign of @(G) − G is constant.

Lemma A.2. Assume & to be rich and commutative. The subset of ? for which V1 ≠ (@−1
4=
◦ · · · ◦

@−1
41 ) (V0) (with @48 (V48 ) = V0 for 1 ≤ 8 ≤ =) and ?(6) > 0 for all 6 ∈ � is open and dense in %.

Proof. First, let us show that the subset � =
{
? ∈ % : V1 = (@−1

4=
◦ · · · ◦ @−1

41 ) (V0)
}
is closed. Toward

a contradiction, let {?W}W∈Γ be a net in � converging to ? ∈ �2. Let (V6)6∈� be defined with
respect to ? and (VW6 )6∈� be defined with respect to ?W for each W ∈ Γ. By the definition of weak∗

convergence, for any n > 0,

�
W
6 (V6 − n) → �6 (V6 − n) < 1 − U, �W6 (V6 + n) → �6 (V6 + n) > 1 − U.

Hence, VW6 converges to V6 for all 6 ∈ �. Thus, there exists W0 such that W ≥ W0 implies
V
W

1 ≠
∑=
8=1 V

W
48 − (= − 1)VW0 contradicting the assumption that {?W}W∈Γ is a net in �. Furthermore,

� = {? ∈ % : ?(6) = 0 for some 6 ∈ �} is closed and thus (� ∪ �)2 is open.

Finally, to show (� ∪ �)2 is dense in %, let ? ∈ � ∪ � and let {?W}W∈(0,1) be a net with �W6 = �6
for all W ∈ (0, 1) and 6 ≠ 1, ?W (6) = ?(6)W + ?′(6) (1 − W) where ?′(6) > 0 for all 6 ∈ �,
�
W

1 = �1W + �′1(1 − W) where �1(V1) ≠ �′1(V1).8 As {?W}W∈(0,1) is a net in (� ∪ �)2 that converges
to ?, it follows that ? is in the closure of (� ∪ �)2. As the choice of ? ∈ � ∪ � was arbitrary,
(� ∪ �)2 is dense in %. �

Proof of Corollary 1. Toward a contradiction, suppose there is a distribution ? for which no nonin-
tersectional policy achieves a representative outcome, but there is a sequence of nonintersectional
policies {q<} with corresponding score thresholds {G<} such that, for all n > 0 there is an index
<n satisfying ‖d(q<, G<)‖ < n if < ≥ <n . Continue to denote the 1 − Uth score quantile by

8Notice that % includes the family of normal distributions {N (`, 1)}`∈R for the conditional distributions �6 and
so we can find such an � ′1.
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V6 = �
−1
6 (1 − U) for each group 6 ∈ �. It must be that G< → G∗ ≡ V0 or else d0 is bounded away

from zero. Similarly, denoting q< = (@<6 )6∈� , it must also be that @<48 (V48 ) → G∗ for each 8 = 1, ..., =
or else some d48 is bounded away from zero. But then, letting q be the unique nonintersectional
policy satisfying @48 (V48 ) = G∗ for all 8 = 1, ..., =, we have that supG∈- ‖q< (G) − q(G)‖ → 0 and
G< → G∗, and thus the nonintersectional policy q achieves a representative outcome with score
threshold G∗, a contradiction. �

B Appendix: Theorem 2

To prove Theorem 2, we (i) restate the problem in simpler terms, (ii) provide a sufficient condition
on a distribution ?̄ guaranteeing that each ? in a neighborhood of ?̄ has a nonintersectional policy
that achieves a reductive representative outcome, and (iii) give a simple example of one such
distribution ?̄ satisfying the condition.

There are settings in which the nonintersectional policy achieving a reductive representative out-
come is easily computed. Building on Example 1, suppose scores are normally distributed with
mean `6, variance one, and the policy adds 0 to the scores of women and 1 to the scores of black
individuals. Letting '8 denote the acceptance rate for 8 = 1 women and 8 = 2 black individuals, the
total acceptance rate can be written simply as

( =
1
4
(1 −Φ(G∗ − `0)) +

1
2
'1 +

1
2
'2 +

1
4
(1 −Φ(G∗ − `1 − 0 − 1))

A reductive representative outcome requires '1 = '2 = ( = U. Rearranging the above expression,
these equalities imply Φ(G∗ − `0) = Φ(G∗ − `1 − 0 − 1) and thus `0 = `1 + 0 + 1. Writing
out the expressions for '1 and '2, one also finds that `(1,0) + 0 = `(0,1) + 1. Thus the unique
nonintersectional policy that achieves a reductive representative outcome is characterized by

0 =
`0 − `(1,0) + `(0,1) − `(1,1)

2
and 1 =

`0 + `(1,0) − `(0,1) − `(1,1)
2

.

Inputting these values for 0 and 1 guarantees '1 = '2 = ( for all threshold values and thus a
straightforward application of the intermediate value theorem provides that a unique threshold G∗

equates each of these functions with U.

B.1 Proof of Theorem 2

It is useful to parameterize the functions in &. To do this, fix some G0 ∈ - and let A (·|\) be the
function @ ∈ & for which @(G0) = \. Using Lemma A.1, it is straightforward to prove that A (G |\)
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is continuous in \ for all G, \ ∈ - . Notice that the mapping @ ↦→ \ represents an isomorphism: For
each @ ∈ & there is a unique \ ∈ Θ satisfying @(·) = A (·|\) and for each \ ∈ - there is a unique
@ ∈ & satisfying A (·|\) = @(·).

If a policy is nonintersectional, then it is determined by the score adjustments @48 for 8 = 1, ..., =.
Using our parameterization, a nonintersectional policy q can be characterized by the vector ) ∈ -=

satisfying @48 = A (·|\8) for all 8 = 1, ..., =. For a given group 6, we can write the function adjusting
its scores in terms of the parameterization explicitly as A6 (·|)) = A (·|\1 · 61 + (1 − 61) · G0) ◦ · · · ◦
A (·|\= · 6= + (1 − 6=) · G0). We can therefore write the acceptance rate for individuals belonging to
dimension 8 = 1, . . . , = when the score threshold is G∗ as

'8 () , G∗) =
∑
6∈�
(1 − �6 (A−1

6 (G∗ |))))?(6 |68 = 1).

The total acceptance rate is

(() , G∗) =
∑
6∈�
(1 − �6 (A−1

6 (G∗ |))))?(6).

The goal is to find a vector () , G∗) ∈ -=+1 satisfying '8 () , G∗) = U for 8 = 1, ..., = and (() , G∗) = U.

Let C ()) be the unique threshold satisfying (() , C ())) = U. Suppose that for a distribution ?̄ ∈ %
there are two vectors a, b ∈ -= satisfying

'8 (08, )−8, C (08, )−8)) < U < '8 (18, )−8, C (18, )−8)) for all )−8 ∈ × 9≠8 [0 9 , 1 9 ] . (3)

For example, the following are two natural conditions that guarantee (3) is satisfied.

1. There exist a, b ∈ -= for which '8 (a, C (a)) < U < '8 (b, C (b)) for all 8 = 1, . . . , =.

2. '8 () , C ())) is decreasing in )−8 for all ) ∈ [a, b].

When (3) holds, the Poincaré-Miranda Theorem provides that there exists a vector )∗ ∈ [a, b]
satisfying '8 ()∗, C ()∗)) = U for all 8 = 1, . . . , =. Thus, the nonintersectional policy with @48 (·) =
A (·|\∗

8
) for all 8 = 1, . . . , = and the threshold G∗ = C ()∗) achieves a reductive representative outcome.9

To complete the proof, we show that for any distribution ?̄ satisfying (3), each ? in a neighborhood
of a ?̄ likewise satisfies (3) and then demonstrate the existence of a ?̄ satisfying (3).

9For a simple statement of the Poincaré-Miranda Theorem, see Fonda and Gidoni (2016, Theorem 1).
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Lemma B.1. Suppose that for ?̄ ∈ % there exist a, b ∈ -= such that (3) is satisfied. Then (3) is
satisfied by all ? in a neighborhood of ?̄.

Proof. Let us explicitly include the distribution ? as an argument in the functions so that C () , ?)
satisfies (() , ?, C () , ?)) = U when the distribution is ?.

We can first verify that C () , ?) is continuous in ? ∈ % for all ) ∈ -= by noting that

arg max
G∗ [0,1]


−U2 if G∗ = 0
− ((() , ?, G∗) − U)2 if 0 < G∗ < 1
−U2 if G∗ = 1

is a singleton and applying theBergeMaximumTheorem (seeAliprantis andBorder, 2006, Theorem
17.31).

Next, since �−8 = × 9≠8 [08, 18] is compact, by a second application of the Berge Maximum Theorem

<8 (\8, ?) = max
)−8∈�−8

'8 () , ?, C () , ?))

is continuous in \8 and ?. Because <8 (08, ?̄) < U < <8 (18, ?̄) there is a neighborhood*8 of ?̄ such
that, if ? is in this neighborhood, then <8 (08, ?) < U < <8 (18, ?). Thus, for all ? ∈ ∩=8=1*8, (3) is
satisfied. �

Lemma B.2. There exists a distribution ?̄ ∈ % satisfying (3).

Proof. Consider a distribution ?̄ for which ?̄(6 ∈ {48}=8=1) + ?̄(6 = 0) = 1, ?̄(6 = 0) ∈ (0, 1), and
the score distributions are the same for all groups �6 = � for all 6 ∈ �. The acceptance rates
simplify to '8 () , C ())) = 1 − � (A−1

48
(C ()) |))). Given a threshold, let '0(C) ≡ 1 − � (C ())) denote

the acceptance rate of group 0. The total acceptance rate likewise simplifies to

(() , C ())) =
=∑
8=1

'8 () , C ()))?(48) + '0(C ()))?(0).

An increase in the adjusted scores ) ≤ )′ implies an increase in the score threshold C ()) ≤
C ()′). Because the score distributions are the same for all groups, for any a = (0, . . . , 0) and
b = (1, . . . , 1) with 0 < G0 < 1 we have '8 (a, C (a)) < '0(a, C (a)) < '8 (b, C (b)) and thus
'8 (a, C (a)) < U < '8 (b, C (b)) for all 8 = 1, . . . , =. Finally, because )−8 only enters '8 through the
threshold C, it follows that '8 () , C ())) is decreasing in )−8 for all 8 = 1, . . . , = and ) ∈ -=. �
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C Appendix: Generalizing

In this appendix, we show that our definition of nonintersectional policies does not rely on the
particular labels used for the groups. We generalize by defining a policy q to be nonintersectional∗

if @6 ◦ @6′ = @6∨6′ ◦ @6∧6′.10 First, we show how applying a normalization produces the simpler
definition used in the text.

Proposition C.1 (Normalize). Let 6∗ ∈ � be a group. If q is a nonintersectional∗ policy, then so
is the policy A defined by A6 ≡ @−1

6∗ ◦ @6 for all 6 ∈ �.

Proof.

A6 ◦ A6′ = @−1
6∗ ◦ @−1

6∗ ◦ @6 ◦ @6′ = @−1
6∗ ◦ @−1

6∗ ◦ @6∨6′ ◦ @6∧6′

= A6∨6′ ◦ A6∧6′ .

Notice that for group 6∗, A6∗ (G) = (@−1
6∗ ◦ @6∗) (G) = G for all G ∈ - . Thus, if 6∗ = 0 then for 6′ ≤ 6,

A6−6′ ◦ A6′ = A6 ◦ A0 = A6. �

Next, we show that if a policy is nonintersectional∗, then it remains so if we relabel the groups.

Proposition C.2 (Relabel). Suppose the policy q is nonintersectional∗. Let 6∗ be a group and
relabel all groups according to the mapping ℎ(6) = |6−6∗ |. Then the policy r defined by Aℎ(6) = @6
for all 6 ∈ � is likewise nonintersectional∗.

Proof. First observe that from the definition of a nonintersectional∗ policy: @6−6848 ◦ @6848 = @6 ◦ @0

for 1 ≤ 8 ≤ =. Repeated application of this observation yields

@6 = @0 ◦ (@−1
0 ◦ @6141) ◦ · · · ◦ (@−1

0 ◦ @6=4=). (4)

It is enough to prove that the claim is true for 6∗ = 48 for 1 ≤ 8 ≤ =. For simplicity of notation but
without loss of generality, consider 6∗ = 41. As ℎ(0) = 41 and ℎ(41) = 0, we have A41 = @0 and
A0 = @41 . For 8 > 1, ℎ(41 + 48) = 48 and so

A48 = @41+48 = @0 ◦ (@−1
0 ◦ @41) ◦ (@−1

0 ◦ @48 ) = @
−1
0 ◦ @41 ◦ @48

= @−1
0 ◦ A0 ◦ @48

10Equivalently, 6 = 6′ + 6′′ implies @6 ◦ @0 = @6′ ◦ @6′′
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and so @−1
0 ◦ @48 = A

−1
0 ◦ A48 . Denoting ℎ(6) = (ℎ1, . . . , ℎ=), for 8 > 1, ℎ8 = 68 and ℎ1 = 1 − 61.

Furthermore, @6141 = Aℎ141 . Combining these observations, (4) can be written

Aℎ(6) = @6 = @0 ◦ (@−1
0 ◦ Aℎ141) ◦ (A−1

0 ◦ Aℎ242) ◦ · · · ◦ (A−1
0 ◦ Aℎ=4=)

= A0 ◦ (A−1
0 ◦ Aℎ141) ◦ (A−1

0 ◦ Aℎ242) ◦ · · · ◦ (A−1
0 ◦ Aℎ=4=). (5)

Since ℎ : � → � is a bĳection, for all groups ℎ′ ∈ � there is a group 6 ∈ � such that ℎ′ = ℎ(6);
hence, Aℎ′ can be formulated as in (5). Using this formulation, it follows immediately that r is
nonintersectional∗. �
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