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Abstract
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consequences of changes in individual behavior by 60%. However, it also implies that
the stock market is far from the competitive ideal. A consequence of this result is that
the large increase in passive investing over the last 20 years has led to substantially
more inelastic aggregate demand curves for individual stocks, by about 15%.
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1 Introduction

What happens to equilibrium prices when a subset of investors changes its behavior? For

example, what are the implications of investors switching to passive strategies, which has

occurred on a large scale over the last few decades?1 Answering these questions relies crucially

on how other investors react to this change. In the standard view that “financial markets are

competitive,” the answer is simple: nothing happens, because other investors pick up any

slack left off by those changing their behavior.2 Casually said: if you stop looking for $20

bills on the floor, someone else will replace you. In this paper, we propose a framework to

quantify investor competition in financial markets, combining information from prices and

portfolio positions. We implement the framework for the U.S. stock market.

We find that investors react to the behavior of others in the market: when an investor is

surrounded by less aggressive traders—that is, with a lower price elasticity of demand—she

trades more aggressively. While this reaction strongly mitigates the equilibrium consequences

of changes in individual behavior, the stock market is far from the competitive ideal. Our

estimates suggest that competition reduces the impact of an increase in passive investing

in half. Still, an increase as large as the last 20 years leads to substantially more inelastic

aggregate demand curves for individual stocks, by 15%.

To get to these answers, we proceed in three steps. First, we formalize the intensity

of competition between investors: how much does my demand elasticity respond to the

elasticity of others? Intuitively and in line with many theories, if investors compete strongly

for trading opportunities, their strategies will react to how others are trading. Second, we

provide a framework to quantify investor competition and its implications for prices. We

write down a demand system (à la Koijen and Yogo (2019)) where not only prices but also

demand elasticities are the equilibrium result of investors’ interactions. Third, we estimate

1For example, the ICI factbook (ICI, 2020) reports that the total assets of passive mutual funds in the
U.S. have increased from $11bn to $2.8tn between 1993 and 2020.

2In his discussion of Fama’s work on efficient markets, Cochrane (2013) emphasizes how intensely financial
market participants look for investment opportunities: “other fields are not so ruthlessly competitive as
financial markets.”
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the model using detailed portfolio positions of institutional investors in the U.S. stock market.

We quantify the impact of a rise in passive investing, and decompose the sources of evolution

in the demand for individual stocks.

Our model concentrates on how investors compete in setting their trading strategies.

Specifically, investors interact in choosing their demand elasticities. A more elastic demand

curve implies more aggressive trading: the investor increases their position a lot when the

asset is cheap. Unlike in standard price theory, demand elasticities in financial markets are

not only determined by the investor’s preferences for the asset but also by the behavior of

other investors. For example, if others are not trading agressively, investment opportunities

arise, and you trade more agressively. In the idealized view where markets are fiercely com-

petitive, this response is so strong that it compensates the initial change. In practice, many

aspects limit the strength of this reaction. Changing your strategy might require new infor-

mation to identify the trades (Grossman and Stiglitz, 1980), overcoming contractual frictions

(e.g. investment mandates) that limit flexibility in setting trading strategies, or having high

cognitive sophistication (Eyster, Rabin, and Vayanos, 2019); more generally, investors face

limits to arbitrage (Shleifer and Vishny, 1997). Also, while the issue of competition in trading

strategies is distinct from whether there is perfect competition for the asset, market power

also affects the intensity of strategic responses (Kyle, 1989).3

We entertain all of these mechanisms by taking a semi-structural approach: investors

follow exogenous but flexible investment strategies, and the market must be in equilibrium.

We assume that each investor’s demand elasticity combines an investor-specific component

and a response to the aggregate demand elasticity prevalent in the market. The strength

of this response is the level of competition. An equilibrium combines two layers. First,

the elasticities of all investors must be consistent with each other: the average of all investor

elasticities must be equal the aggregate elasticity. Second, the asset price is such that the sum

of all demand curves evaluated at this price is equal to the supply of the asset. The simplicity

3Going back to Kreps and Scheinkman (1983), it is understood that price-taking is not the only aspect
shaping competition.
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of this framework does not impede its richness. We show that all of the aforementioned

foundations for investor competition map to the structure of our model.

What happens when a group of investors becomes passive? Their investment strategy

turns irresponsive to the price of the asset, hence their demand elasticity goes to zero. This

pushes the aggregate elasticity down, which prompts a response from other investors, po-

tentially compensating the direct effect. When the competitive response is strongest, this

reaction completely offsets the direct effect, the equilibrium market elasticity is unchanged.

This corresponds to the ideal of “competitive financial markets”. In the other extreme, if

investors do not react, the elasticity provided by the traders who became passive is just

lost. We quantify the intensity of competition to obtain the pass-through of a rise in passive

investing into aggregate elasticities.

We parametrize the demand system in the style of Koijen and Yogo (2019) to take it to the

data. In particular, the specification entertains rich heterogeneity across investors. However,

unlike in Koijen and Yogo (2019), one cannot estimate independently the demand of each

institution. Because of the competitive response, the demand elasticities of all investors are

intertwined, and must be solved simultaneously. This elasticity equilibrium creates three

challenges that we overcome.

First, the interaction between investors through their elasticity decisions introduces a

reflection problem (Manski, 1993): a market with high elasticity could be the result of either

high individual elasticities or strong positive spillovers. The cross-section of stocks provides a

solution to this issue: the same investor faces a different mix of competing investors for each

stock, therefore a different aggregate demand elasticity. This variation allows us to isolate

the spillover from the individual-specific component of elasticity. We face a chicken-and-egg

question: to implement this comparison we need to know the elasticity of other investors,

which itself has to be estimated in the same way. We derive and verify conditions on the

graph of investor-stock connections under which this problem can be solved.

Second, both the price and the aggregate elasticity are equilibrium quantities and therefore
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depend on portfolio decisions. We construct an instrument for each of these two variables

using variation in investment universe across investors. Stocks that more investors can buy

naturally have more money chasing them and a higher price, an instrument introduced in

Koijen and Yogo (2019). For the aggregate elasticity, we introduce a new model-based

instrument combining the variation in investment universe with the estimated individual

component of elasticities. This adds the challenge that the instrument and the demand

system are estimated simultaneously. Still, this is valid strategy because model parameters

are exogenous by definition.

Third, the inclusion of rich investor heterogeneity, the need to solve for an elasticity equi-

librium, and the presence of model-based instrument, all concur to a seemingly intractable

estimation. However, we develop a computationally efficient algorithm that estimates the

model.

Our estimates suggest a substantial amount of competition. If the aggregate elasticity

for a stock increases by 1, an individual investor decreases her own elasticity of demand by

2.2. We confirm the robustness of this finding in a battery of specifications: alternative

instrument construction, more weights on large investors, additional controls, etc. Across

these specifications, the estimated competitive response remains between 1.9 and 2.5. The

competitive response stabilizes the levels of aggregate elasticity. Intuitively, when a very

aggressive investor trades a specific stock, other investors in this stocks adjust by becoming

less aggressive. This force implies about 50% less cross-sectional variation in elasticity across

stocks than estimates ignoring competitive interactions, highlighting the importance of these

interactions.

We use these estimates to assess the impact of a rise in passive investing. To do so, we

ask how equilibrium elasticities change when a fraction of investors exogenously switches to

be passive. We obtain a simple formula for the pass-through of a change in the fraction of

active investor to the aggregate elasticity. This pass-through only depends on the intensity

of competition and the initial fraction of active investors. It is decreasing in both quantities.
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Empirically, we find this pass-trough to be about 0.4. Half of a change in the fraction of

active investors translates into a reduction in demand elasticity. Given an estimate that the

fraction of active investors has decreased by about 30% over the last 20 years, this yields

a decrease in elasticities of 13%. This is a large change: in the context many models, it

would lead to less informative and more volatile prices, as well as more price impact — we

confirm these connections empirically in the cross-section. Again, this prediction highlights

that while competitive effects are strong, the stock market is far from the competitive ideal.

In competitive markets, the pass-through is 0, in which case a rise of passive investing has

no impact. On the other hand, without competitive effects, the pass-through is 1, leading to

a 30% decrease in elasticity.

A potential concern is that the model ignores some forces for the sake of maintaining

tractability. For example, in some theories, the strength of the competitive response depends

on who is switching to passive investing beyond their initial elasticity. Or, competition could

occur not only through existing investors changing their strategies (the intensive margin),

but also through the entry or exit of new investors (the extensive margin). To assess the

presence of these other mechanisms, we regress changes in aggregate elasticity on changes in

passive investing at the stock level, zooming in on several sources of variation. Confirming

our main estimate, we find a pass-through of about 0.4 irrespective of whether we include

stock or date fixed effects, or even instrumenting for passive investing using index inclusions.

The model also provides an account of the actual evolution of the demand for stocks over

the last 20 years. The entire cross-sectional distribution of stock-level elasticity has decreased

during that period, by 40%. Interestingly, the model attributes about equally this drop to

two investor-specific sources of change. First, the fraction of passive investors has increased

steadily over our sample. Second, the investor-specific component of the elasticity of active

investors has also experienced large changes: initally increasing until 2007 then trending

downwards, and overall dropping. This second dimension is interesting because it suggests a

role for market-wide shifts in individual strategies beyond the rise of passive investing, such
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as developments in computing power and access to big data.4 However, another aspect played

an important role: active investors also increased their equilibrium elasticity in response to

the broad decrease in aggregate elasticities. In a counterfactual exercise in which we shut

down the competitive responses, we find that elasticities would have decreased twice as much,

while they would have barely moved with strong competition.

Taken together, our results highlight the importance of a finer approach to competition

in financial markets. No, it is not the case that “financial markets are competitive” and

that all shocks are fully absorbed by other investors. But also no, it does not mean that

investors do not interact together at all. This framework is a first step towards quantifying the

intensity of competition and its implications. Our estimates suggest that competition played

an important role in shaping the response to the rise of passive investment. Competition is

likely important for many other questions about investor demand. What happens when a

large set of financial institutions must change their trading because of new regulation? What

happens when some sophisticated specialized investors get in financial trouble?

Contribution to the existing literature. The idea of competition among investors has

a long history in finance. Grossman and Stiglitz (1980) first formalize the notion of competi-

tion for information between investors and show it does not lead to informationally efficient

markets.5 Kyle (1989) highlights how market power also creates interaction among investors.

These seminal contributions have led to a large theoretical literature pointing out rich ways

in which investors react to each other and choose their trading strategy. In the context of the

rise of passive investing Subrahmanyam (1991) is an early contribution highlighting liquidity

concerns. More recent work includes Bond and Garćıa (2018), Malikov (2019), Lee (2020),

Buss and Sundaresan (2020), and Kacperczyk, Nosal, and Sundaresan (2020). Gârleanu and

Pedersen (2018) and Gârleanu and Pedersen (2021) focus on the interaction between the

4Farboodi and Veldkamp (2020) develop a theory of the effect of growth in financial data technology that
upends common wisdom.

5Coles, Heath, and Ringgenberg (2020) show that an increase in passive investing does not affect price
informativeness in this baseline model.
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market for asset managers and the market for assets. Farboodi and Veldkamp (2020) focus

on the choice between information about fundamentals or about demand in the context of

the rise in big data. However, with the exception of Kacperczyk, Van Nieuwerburgh, and

Veldkamp (2016), these theories are rarely confronted to portfolio data. Our new approach,

summarizing competition through choices of demand elasticity, allows us to bring the theory

to the data.

We contribute to a recent literature on estimating demand systems accounting for the

large heterogeneity in portfolio holdings, started by Koijen and Yogo (2019). Koijen et al.

(2021), Koijen and Yogo (2020), Koijen, Richmond, and Yogo (2020), and Jiang, Richmond,

and Zhang (2020) also apply this approach. Balasubramaniam, Campbell, Ramadorai, and

Ranish (2021) estimate a factor model of portfolio holdings. Dou, Kogan, and Wu (2020)

study how mutual funds change their portfolios in response to common fund flows. Gabaix

and Koijen (2020) estimate the aggregate demand for stocks. Our key innovation on that

front is to incorporate strategic interactions between investors, a long-theorized feature we

find to be quantitatively important.

More broadly our paper relates to a broader literature studying the relation between

portfolio quantities and asset prices. De Long et al. (1990) argue that noise trader shocks

can affect prices. These ideas have found applications across multiple asset classes: stocks

(Shleifer (1986), Warther (1995)), government bonds (Vayanos and Vila (2021), Greenwood

and Vayanos (2014), Haddad and Sraer (2020)), options (Gârleanu, Pedersen, and Poteshman

(2009)), currency markets (Gabaix and Maggiori (2015), Greenwood et al. (2019), Gourin-

chas, Ray, and Vayanos (2019)), or corporate bonds (Haddad, Moreira, and Muir (2021)).

While our estimates concentrate on the stock market, we bring to the forefront the importance

of strategic interactions between investors, which likely also matter in other markets.

Finally our results provide new insights in the debate on the consequences of the long-term

rise in passive investing. French (2008) and Stambaugh (2014) provide empirical evidence of

a shift towards passive investing. Zooming in on portfolios, we uncover how passive investing
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is altering how all investors trade and therefore its equilibrium implications. Other work

focuses on quasi-natural experiments around index or ETF inclusion such as Chang, Hong,

and Liskovich (2014) or Ben-David, Franzoni, and Moussawi (2018). Sammon (2021) studies

the response of stock prices around earnings announcements. Bai, Philippon, and Savov

(2016), Dávila and Parlatore (2018), and Farboodi et al. (2021) document long term trends

in price informativeness.

2 An Equilibrium Model of Financial Markets with In-

vestor Competition

We present our framework for investor competition. The key idea is that there are two layers

to an equilibrium in financial markets. First, the price is such that the sum of investor

demands equals the supply of the assets. Second, investors compete with each other: they

choose how aggressively they trade as a function of how others trade. This aggressiveness is

measured by their demand elasticity. First, we introduce the two layers, then we highlight

the implications for the rise of passive investing. Table 1 summarizes the model.

2.1 First layer: the asset price clears the market given demand

curves

For the sake of simplicity, we focus on the case of one asset in fixed supply S and a continuum

of investors indexed by i. We generalize to multiple assets when moving to the data in

Section 4. In an equilibrium each investor decides how much they buy as a function of the

price P of the asset: a demand curve Di(P ), which we can log linearize around the baseline

value for the price P̄ :

di = di − Ei × (p− p̄) , (1)
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Table 1. The 2-layer model of investor competition.

Individual Decision Equilibrium Condition

Demand di = di − Ei × (p− p̄)
∫
Di(p) = S

Elasticity Ei = E i − χ× Eagg
∫
EiDi/S = Eagg

where lowercase letters represent log values.6 The elasticity of this demand curve, Ei, deter-

mines how aggressive the investor is.7 An investor with Ei = 0 does not react to changes

in prices, while a trader with large Ei increases her position a lot when the asset is cheap.

Aspects beyond the price can also affect the choice of positions. For example an investor

could have a preference for environmental, social, and governance (ESG) investing. We col-

lect them all inside of the constant di; the empirical analysis will be more flexible about

modelling di.

Investors’ elasticities play an important role in the determination of equilibrium prices.

The aggregate demand curve is Dagg(P ) =
∫
Di(P ), and the equilibrium price solves

Dagg(P
∗) = S. Aggregate demand has elasticity

Eagg =

∫
EiDi∫
Di

. (2)

How strongly aggregate demand for the asset responds to prices is the (holdings-weighted)

average of individual elasticities. This aggregate elasticity shapes the behavior of the equilib-

rium price. If investors are very aggressive, aggregate demand is perfectly elastic, Eagg →∞,

and prices are pinned down at a fixed level. In such a situation, changes in individual

investor characteristics d0,i or in supply S do not affect the price. This is what people some-

6The assumption of demand curves does not necessarily imply price-taking. In the rational expectation
equilibrium with imperfect competition of Kyle (1989), investors also post demand curves.

7Similarly Gabaix and Koijen (2020) consider log-linear demand curves around a reference price level.
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times describe as “efficient markets”: any deviation of the price from a fundamental value is

immediately traded away by aggressive investors. On the other hand, when demand is more

inelastic, small changes in the market structure can have a large effect on prices, because

investors are unwilling to change their positions.

For example, if elasticities are constant, a small uniform change ∆d to the demand of all

investors results in a price change of

∆p = E−1
agg∆d. (3)

If all investors want to increase the size of their position by one percent, the price increases

by the multiplier Magg = E−1
agg percent. Consequently, more inelastic markets experience

larger price variation due to changing investor demands, and are therefore more volatile.8

A change in supply would have the opposite effect on the price with a multiplier −Magg.

More fleshed-out models such as the ones we present in Section 3 also relate the aggregate

elasticity to other equilibrium properties such as price informativeness, liquidity, or limits to

arbitrage. We confirm this relation empirically in Section 5.3.2.

2.2 Second layer: investors set their demand elasticity in response

to others

In standard price theory, the elasticity of demand reflects only an individual’s preference

for a good. In particular, it does not depend on the decisions of other market participants.

When choosing how many apples to put in your shopping cart, it does not matter what other

shoppers are doing beyond their effect on the price level. However, in financial markets,

it matters why the price is moving and consequently demand elasticities are not fixed.9

Investors compete for trading opportunities. If many investors trade aggressively, fewer good

8See also Gabaix and Koijen (2020) for a discussion of the role of the elasticity of aggregate demand in
financial markets.

9A similar phenomenon arises in auctions with a common value component: a bidder’s optimal bidding
strategy respond to the strategies of other participants in the auction.
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deals are available; therefore, there are also fewer incentives to trade with a high elasticity.

This relation adds a second layer to the equilibrium, which captures investor competition.

At the individual level, the elasticity responds to the aggregate demand elasticity. But

conversely, the aggregate demand elasticity is an average of individual elasticities. Formally,

we represent this feedback by endogenizing individual demand elasticities as a function of

the aggregate demand elasticity:

Ei = E i − χ Eagg. (4)

The parameter χ controls the strength of the response to aggregate elasticity; it measures

the extent of strategic substitution in demand elasticities.10 E i is a baseline level of elasticity

reflecting the investor’s own preferences for the asset, for example shaped by her risk aversion

or her beliefs about the payoffs. Together, the individual decision equation (2) and the

aggregation condition of equation (4) pin down the equilibrium of elasticities.

We call χ the competition parameter. The standard view is that financial markets are

very competitive, which corresponds to large values of χ. If a group of sophisticated investors

goes away, other investors pick up the slack by trading more aggressively. In the extreme case

where χ goes to infinity, the competitive response is so strong that the equilibrium aggregate

elasticity Eagg is pinned down at a fixed level. Changes in individual investor behavior or the

composition of investors do not affect the aggregate elasticity.

On the other hand, when χ = 0, individual investors do not respond at all to the aggregate

elasticity and financial markets are not competitive. We are back to standard price theory:

each investor follows a strategy that is independent of the actions of other investors. Under

this view, if a group of sophisticated investors goes bankrupt, nobody else steps in to take

advantage of the opportunities that are left untouched: the aggregate elasticity drops sharply.

The parameter χ offers a simple and flexible way to measure competition and its conse-

10We consider strategic substitutes and complements in the sense of Bulow, Geanakoplos, and Klemperer
(1985) and defined in chapter 4 of Veldkamp (2011).
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quences, consequences we highlight in the remainder of this section. We do not take a stand

on a specific microfoundation for the parameter χ. In many theories, demand elasticities

are a key feature of investors’ strategies and exhibit substitutability or complementarity; we

devote Section 3 to discuss these theories.11 Rather than restricting ourselves to a specific

foundation — many of these theories are operating side by side —, we measure competition

directly from trading and portfolio data.

2.3 The effect of a rise in passive investing

Our framework is useful to evaluate the effect of a rise in passive investing. Consider the

following thought experiment. We start from an economy with homogenous investors who,

in this initial equilibrium, have elasticity Ei = E0. The aggregate elasticity is therefore also

E0. What happens when a fraction 1−α of these investors becomes passive, that is keep the

same holdings, but reduce their elasticity to zero? The level of competition χ determines the

answer to this question.

The direct effect of this change is that now, only a fraction α of investors contribute to

the aggregate elasticity. If we only consider this effect, the aggregate elasticity decreases to

Eagg = αEi (from the aggregation equation (2)). However the story does not end here; the

active investors have a competitive response. They change their own elasticity in response to

the aggregate: ∆Ei = −χ∆Eagg (from equation (4)). This response compensates the direct

effect when χ > 0. Each active investor responds again to the response of other active

investors, until they reach a new equilibrium.12 The new aggregate elasticity is:

ENEW = αE0︸︷︷︸
direct effect

+ (1− α)E0
αχ

1 + αχ︸ ︷︷ ︸
competitive response

. (5)

11Technically, other aspects of investor decisions may be the source of substitutability (e.g. information
acquisition or social interactions). However, because elasticities are directly related to these other decisions,
the substitutability manifests itself in the demand elasticity.

12Formally, we do not model this tâtonnement, but rather focus directly on equilibria. We present details
of the calculation in Appendix Section A.1
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When financial markets are competitive, χ is large and ENEW = E0, the aggregate elasticity

is unchanged. The drop in elasticity due to the investors that became passive is exactly

compensated by a greater elasticity of the remaining active investors. On the other hand

when investors are insensitive to market conditions, χ close to zero, only the direct effect

operates and the elasticity declines by a factor α.

What does this imply quantitatively? In the estimation of Section 4, we find a level of

competition χ of 2. Over the last 20 years, the fraction of active investors has decreased by

30%, so we set α = 70%. This implies that the initial elasticity is multiplied by a factor of

(2 + 1)/(2 + 1/(70%)) = 0.875. The rise of passive investing leads to a substantial drop in

elasticity of 12.5%. This is about half of the direct effect that would have led to a decrease

of 30%. However, this is still much more than the zero predicted by the competitive market

paradigm.

In Section 4, we fully specify our framework to account for heterogeneity across investors

and stocks, and estimate it using holdings data. This allows us to revisit the question of the

rise in passive investing in the context of a realistic quantitative model in Section 5.1.

2.4 Other applications

We present two other applications for which competition plays a central role. First, we show

that competition determines whether investors react more when an asset is overpriced or

when it is underpriced. Second, competition determines the stability of arbitrage to price

movements.

2.4.1 Intermediary asset pricing

How do markets change when some financial institutions get distressed or when they are more

tightly regulated? As these institutions trade less aggressively they provide less elasticity to

the market and we expect more unstable prices. Two aspects shape this response: how

large is the direct shock to the institutions, but also how other competing investors respond.
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Consider how the aggregate elasticity responds to a combination of shocks to individual

elasticities {∆E i}i; for example, only the affected institutions receive a negative shock to

their elasticity. For simplicity, we assume that the price is at its baseline, p = p̄, and leave

the general case to Appendix A.13 We show the response of aggregate elasticity is

∆Eagg =
1

1 + χ
E[∆E i], (6)

where E[.] denote the demand-weighted population average.14 The change in aggregate elas-

ticity combines the average direct elasticity shock E[∆E i] and a mitigating factor due to

competition 1/(1 + χ). In fully competitive markets, χ → ∞, the shock to some investors

has no effect on the aggregate elasticity. This is the view of those arguing that intermedi-

aries cannot matter for asset prices. However, for lower values of χ the direct effect is not

mitigated. Theoretical models centered on intermediaries often assume χ = 0 (e.g He and

Krishnamurthy (2013) and Brunnermeier and Sannikov (2013)).

As such, when analyzing how the financial health of intermediaries matters for asset pric-

ing, one must also take into account how other investors compete with them. Consistent with

this idea, Haddad and Muir (Forthcoming) show that in markets that are more sophisticated

and hence with lower competition, periods of distress in the financial sector are associated

with stronger movements in risk premium. Eisfeldt, Lustig, and Zhang (2017) also empha-

size this role of investor competition in markets for complex assets such as mortgage-backed

securities.15

13Unlike in the precedent calculation, we assume that there are no passive investors.
14Formally this corresponds to

E[xi] =

∫
xi
Di

S
.

15Other examples of large effects of intermediary health in specialized markets include Gabaix, Krishna-
murthy, and Vigneron (2007) and Siriwardane (2019).
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2.4.2 Asymmetry of mispricing

In this section, we show that in very competitive markets, prices are less responsive to demand

when their levels are high than when they are low. The opposite happens for low levels of

competition. This distinction has important practical implications: when competition is mild,

as we find in the data, we expect to observe more situations of overpricing than underpricing,

and more sensitivity to demand shocks for overpriced assets. This prediction lines up with

the evidence in Stambaugh, Yu, and Yuan (2012) and Stambaugh, Yu, and Yuan (2015)

across a large set of anomaly strategies.16 In particular, they document that trading the

short leg of the portfolio (overpriced stocks) is more profitable than the long leg (underpriced

stocks) in episodes of high investment sentiment (demand shocks in our theory).17

Multiplier. First, we revisit the calculation of equation (3) in the presence of competition.

We show in Appendix A that the price multiplier to an aggregate demand shock becomes:

Magg =
1

Eagg
· 1

1 + χ
1+χ

Var[Ei]
Eagg (p− p̄)

, (7)

where Var[Ei] is the demand-weighted cross-sectional variance of elasticity.18 For small devi-

ations of the price from its baseline (small values of p− p̄), the response of prices to a change

in demand is still determined by the aggregate elasticity Eagg. For example, at first order,

the effect of a rise in passive investing on aggregate elasticity is reflected one-to-one into the

multiplier. In competitive markets, the rise in passive investing does not affect the sensitivity

of prices to demand, whereas it increases it when markets are not competitive. We now turn

to how the multiplier changes when the price deviates from its baseline p̄.

16The anomaly strategies are portfolio sorted on characteristics that predict unconditional returns, in the
style of Fama and French (1993).

17As such, imperfect competition is an alternative explanation to short-sell constraints (for example, Miller
(1977) or Haddad, Ho, and Loualiche (2021)) for the pervasiveness of overpricing.

18Formally this corresponds to

Var[Ei] =

∫ (
E2i
Di

S

)
− E2agg.
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No competition. Without competition (χ = 0), the aggregate multiplier is Magg = E−1
agg.

While each of the investors’ elasticities is fixed at E i, their contribution to aggregate elasticity

depends on their relative demand. When the price is below its baseline, the more elastic

investors have a stronger response than the less elastic investors: they buy relatively more

of the asset. Thus more elastic investors represent a larger fraction of the market; aggregate

elasticity increases. For example in response to a supply shock, the aggregate elasticity

moves in the opposite direction from the price: ∆Eagg = −Var[Ei] ∆p. How much investors

differ from each other, the variance of individual elasticities, controls the strength of the

composition effect. The market has a higher capacity to absorb demand shocks on the

downside than on the upside. Without competition, overpricing is more likely to happen

than underpricing.

High level of competition. Consider now the other extreme of full competition, χ→∞.

In this case the aggregate elasticity Eagg is constant; if more elastic investors decrease their

relative share, everybody becomes more elastic and exactly compensates the initial decline.

However, the multiplier changes because second term of the product in equation (7) is not

constant: it is smaller than one for p > p̄ and larger than one otherwise. What happens then?

If the price is above its baseline, the increase in individual elasticities due to the competitive

response implies a decrease in demand. Because all investors become more agressive, they

demand less of the asset, which prevents the price from increasing much, leading to a smaller

multiplier. The demand effect goes in the opposite direction when the price is below its

baseline. Overall this leads to an opposite behavior of the multiplier Magg relative to no

competition. The multiplier is larger with underpricing than overpricing: underpricing is

more likely to happen than overpricing.

2.4.3 Limits to arbitrage

An important insight is that engaging in arbitrage trades (or more broadly exploiting mis-

pricing) is a risky activity and this risk limits the effectiveness of arbitrageurs (De Long
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et al. (1990), Shleifer and Vishny (1997), Shleifer and Summers (1990), Brunnermeier and

Pedersen (2008)).

If an asset is underpriced (p < p̄), we expect arbitrageurs (high elasticity investors) to

take on large positions. When the mispricing worsens, the arbitrageurs suffer large losses

due to their large exposure. If they are unable to raise additional capital, they have to

liquidate some of their positions which pushes the price down even further. This feedback

creates a natural instability of arbitrage activity: shocks that worsen the mispricing hurt the

arbitrageurs and deepen the mispricing. Mitchell, Pulvino, and Stafford (2002) and Mitchell

and Pulvino (2012) document this instability in action.

Competition plays an important role in this process. Without competition, the arbitrage

capacity destroyed by arbitrageurs’ losses is gone altogether. With competition, other in-

vestors become more elastic in response to the decline of the arbitrageurs. They purchase

more of the asset, thereby partially compensating the lower positions of the arbitrageurs.

We can illustrate this mechanism in our model by considering how the price responds to a

demand shock that affects disproportionately investors with high elasticity. We assume that

each investor’s baseline demand changes by an amount {∆di}i and compute the equilibrium

price response:

∆p = Magg ×
[
E (∆di) +

χ

1 + χ
(p− p̄) Cov(Ei,∆di)

]
, (8)

where expectation and covariance represent demand-weighted moments. Without competi-

tion, χ = 0, the price response is simply the product of the aggregate multiplier Magg with

the average demand shock E(∆di). A shock that hurts disproportionately investors with

large positions (for example the asset is underpriced and these investors have a high demand

elasticity) pushes the price down. The second term captures the role of competition. When

the asset is underpriced (p < p̄), and demand decreases more for high elasticity investors

(Cov(Ei,∆di) < 0), we obtain a positive response which compensates the direct effect. A

symmetric compensation occurs when the asset is overpriced (see Appendix A). Interestingly,
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the stabilizing role of competition is stronger the further away prices are from their baseline.19

3 Why are financial markets not fully competitive?

The standard view is that financial markets are very competitive. Investors are constantly on

the lookout for good opportunities, ready to come in if another market participant steps down.

This corresponds to χ = +∞ in our framework. In practice, many forces limit competition.

We discuss the most prominent ones in this section: costly information acquisition, bounded

rationality, liquidity, peer effects, and investment mandates. Our 2-layer equilibrium model

captures the main insight of these theories in a parsimonious way.

3.1 Costly information acquisition

The basic idea of investor competition is that if some active investors exit the market, there

are more investment opportunities to take advantage of, and other investors go after them

by trading more aggressively. In practice, knowing that there are more investment opportu-

nities is not enough, investors have to evaluate them. The costs of this process of learning

(information gathering, hiring analysts, etc.) naturally limit the ability to compete.

We formalize this intuition in a model in the style of Grossman and Stiglitz (1980) with

information acquisition as in Veldkamp (2011), and show it maps tightly to our two-layer

equilibrium.20 We focus here on the main results and leave details of the setting and deriva-

tions to Appendix B.

There is one period and one asset, and a continuum of agents indexed by i. Each agent has

CARA preferences with risk aversion ρi. The gross risk-free rate is 1, and the (random) asset

payoff is f . The asset is in noisy supply x̄+ x with x̄ an exogenous fixed parameter and x ∼

N (0, σ2
x). Initially, each agent is endowed with an independent signal µi of the fundamental

19Duffie (2010) and Duffie and Strulovici (2012) study how the competitive response unfolds over time.
20Bond and Garćıa (2018) and Malikov (2019) provide theoretical analyses of the rise of passive investing

in this family of theories.
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f , distributed µi ∼ N (f, σ2
i ).

21 Each agent can acquire a private signal ηi ∼ N (f, σ2
i,η)

at monetary cost ci(σ
−2
i,η + σ−2

i ), with ci(.) a non-decreasing positive function.22 That is,

obtaining more precise signals is more costly. The signal being private implies in particular

that signal realizations are uncorrelated across agents conditional on the fundamental f .

Optimal asset demand is linear in the price: di = di − Eip.23 The slope of the demand

curve characterizes how aggressively an investor changes her portfolio when the price moves.

We find:

Ei =
1

ρi

(
σ−2
i + σ−2

iη

)
. (9)

Two elements shape the investor’s demand elasticity: her risk aversion and her private

information. An investor with more precise information about the asset is more confident in

her forecast of the asset returns, and therefore trades more aggressively. Looking ahead, we

can already see that constraints to the ability to change information acquisition will limit

the ability of the investor to change her elasticity and compete with others.

Before that, we show that the aggregate elasticity, Eagg =
∫
i
Eidi, is the appropriate notion

for how the collective actions of all investors shape the price. In equilibrium, the price follows

p = A+ f − E−1
aggx, (10)

where A is a constant. The price responds one-to-on to the fundamental f , but is also

affected by noise trading x. The aggregate elasticity controls the impact of noise: if everybody

trades aggressively against abnormal price movements, noise traders cannot push the price

far away from fundamentals. In line with this intuition, a market with higher aggregate

21Following Veldkamp (2011), we assume agents start with a flat prior on f , hence their initial belief is
f ∼ N (µi, σ

2
i ).

22This parametrization is without loss of generality relative to a cost function that would only depend on
the acquired signal ση,i.

23For all of this subsection, we do a small abuse of notation: lowercase letters represent levels rather than
logarithms and Ei denotes the slope of the demand curve, rather than the elasticity stricto sensu. This
approach lends itself to the linearity of the CARA-Normal framework, but is less appealing for empirical
applications.
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elasticity also has less volatile returns (Var(f − p) = E−2
aggσ

2
x) and more informative prices

(Var(f |p)−1 = E2
aggσ

−2
x ).

Investor competition occurs through information choices. The aggregate elasticity impacts

price dynamics, which in turns affect the incentives to acquire information and trade in an

elastic way. When choosing how much information to acquire, investors trade off the cost of

a more precise signal with the benefit of a more informed trading strategy. The utility gain

from precise information is proportional to knowledge of the fundamental, which combines

private information (corresponding to Ei) and information learned from prices (corresponding

to Eagg). Focusing on elasticities, this leads to the following optimization problem:

max
Ei

1

2
log
(
ρiEi + E2

aggσ
−2
x

)
− ρici(ρiEi) (11)

This problem is the counterpart to equation (4): the choice of individual elasticity Ei responds

to the aggregate elasticity Eagg. To a first-order approximation, the competition parameter is

the response of the optimal individual elasticity to the aggregate elasticity: χ = −∂Ei/∂Eagg.24

In this model, competition χ is always positive. If others acquire less information and become

less aggressive, there are incentives to look for information and step in to replace them.

However, competitive forces only partially offset the initial change, χ < ∞. In particular,

costs to adjust information limit the ability to react and result in lower χ. FormalIy, we show

in Appendix B.5 that χ is decreasing in a form of curvature of the information cost function,

c′′i /c
′2
i .25

24The relation between Ei and Eagg is not linear in general. In Appendix B.3 we find a two-parameter
family of simple cost functions under which this relation is exactly linear as in equation (4). Each of the two
parameters maps to in closed-form to the value of competition χ and individual elasticity E0,i.

25Coles, Heath, and Ringgenberg (2020) show that full competition arises in the baseline setup of Grossman
and Stiglitz (1980) without adjustment costs.
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3.2 Other costs of adjusting elasticity

In this first approach, we saw that the costs of adjusting information strategies limit the

ability of investors to compete with each other. Other practical reasons hinder flexibility in

setting a trading strategy, and bring χ down towards zero.

One such aspect is risk. Following an aggressive high-elasticity trading strategy entails

taking more extreme positions, and hence more risk. Risk itself is endogenous to the aggres-

siveness of other traders: in more efficient markets, prices are tightly related to fundamentals,

while without any active traders, prices are more sensitive to the whims of noise traders.26

Thus, it is unappealing to follow aggressive strategies exactly when they are most needed,

which limits the process of competition. In Appendix Section C.1, we present a setting where

investors do not make information choices but learn from prices. We show that endogenous

risk shapes competition; for example when all risk is endogenous investors do not compete,

χ = 0, while otherwise there is positive competition.27

Another aspect is institutional. Many financial institutions face strong mandates from

their ultimate investors in terms of what strategies they are allowed to follow. While these

restrictions can be viewed as an optimal contract solving information asymmetry between

final investors and the asset manager, they are costly in terms of competition. Investment

mandates limit the ability of institutions to react to changes in the behavior of other investors,

pushing χ down relative to an unconstrained setting. Beber et al. (2018) show how explicit

mandates and constraints in active mutual funds prospectuses strongly limit their investment

opportunity set. Banks and insurance companies investment strategies are also restricted,

this time by their regulatory framework (for example, Basel III capital regulation).

26De Long et al. (1990) first highlighted the importance of endogenous risk for dynamic arbitrage.
27In this case, the model coincide with that of the previous section when the information cost is infinitely

steep, c′′i /c
′2
i →∞.
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3.3 Bounded rationality

Competition between investors relies on their understanding of the market structure. For

example, in the rational expectations equilibrium of Section 3.1, each investor knows the

strategies followed by everyone else. Practically, how would investors figure out other people’s

strategies? In our model and in the microfounded models, investors only need to know the

aggregate elasticity Eagg and not the actions of each of the other investors. In the real world,

institutions can track changes in investment styles directly (e.g. industries, factors, arrival

of activist investors) or through their impact on prices (e.g. price impact, volatility, price

informativeness). While this information is useful, it is still a leap to assume investors can

follow exactly the optimal policies in frictionless models.

First, the information available to investors about the aggregate elasticity might be im-

perfect.28 In such a setting the response to other investors is dampenened which reduces

the intensity of competition. For example, assume an investor wants to react to aggregate

elasticity with a coefficient χ0, but she only observes a noisy signal about Eagg. Then, her

elasticity choice is

Ei = E i − χ0θ · Eagg + ε. (12)

Because the investor cannot separate the noise from the information about Eagg, she responds

to her signal with a Bayesian shrinkage factor 0 < θ < 1. The residual ε is due to the noise in

the signal. Appendix C.3 provides derivations and explicit expressions for these quantities.

The effective level of competition is χ0θ and incorporates the baseline competition parameter

χ0 with the dampening factor θ.

Second, investors have to be sophisticated enough to understand the equilibrium mech-

anisms leading them to compete. A recent strand of research considers equilibria in which

investors miss the actions of others (Eyster and Rabin (2005), Greenwood and Hanson (2014),

28Imperfect information about other investors’ strategies is different from imperfect information about
fundamentals or noise traders.
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Eyster, Rabin, and Vayanos (2019), Bastianello and Fontanier (2021)). Neglecting equilib-

rium forces can either amplify or mitigate competition. On the one hand, investors could

simply ignore how the elasticity choice of others affect their investment opportunities. In this

case, we will not observe any competition. On the other hand, investors might understand

the direct effect of changes in elasticity but fail to realize that others react to those as well, a

form of partial equilibrium thinking as in Bastianello and Fontanier (2021). For example, all

investors understand there is a rise in passive investing but fail to realize that others will react

by trading more aggressively. We include partial equilibrium thinking into the calculation

from Section 2.3 on the effect of a rise in passive investing. We show in Appendix C.4 that

the new aggregate elasticity becomes:

EPETNEW = αE0 + (1− α)χαE0. (13)

Because investors do not account for the response of others, they overreact to the initial

change in elasticity. With partial equilibrium thinking, the competitive response is stronger

by a factor 1 + αχ than in the baseline (see equation (5)). This leads to a higher final level

of aggregate elasticity and is therefore akin to more competition.

3.4 Strategic complementarities

Finally, some forces generate strategic complementarity rather than substitutability, which

yields negative values of competition χ. In these situations, when some investors become less

aggressive, other investors also pull out of markets instead of replacing them.

One such case arises when investors worry about the price impact of their trades. In

Appendix Section C.2, we show that a model of market power in the style of Kyle (1989)
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yields a negative value of χ.29 Specifically, the standard CARA elasticity becomes

Ei =
1

ρiσ2 + (Eagg − Ei)−1︸ ︷︷ ︸
λ−i

. (14)

The investor responds to the price based on her risk aversion and the risk of the asset,

ρiσ
2, and the slope of the residual demand curve for the asset, what Kyle (1989) calls λ−i.

When other investors are more price elastic, it enhances liquidity in the market. In turn,

this facilitates my ability to trade and I can be more responsive to prices. This type of

complementarity holds in a broader family of theories of liquidity such as Vayanos and Wang

(2007).

Strategic complementarities can also arise through social interactions. When investors

follow their peers, as in Hong, Kubik, and Stein (2004), changes in some investors are ampli-

fied by similar decisions from other investors. If I see others around me trade a stock more

aggressively, I also want to trade that stock more aggressively. This herding leads to negative

values of χ.

4 Estimating investor competition

In this section, we estimate the level of investor competition χ and demand elasticities in the

context of the U.S. stock market. First, we enrich our model to account for the heterogeneity

of stocks and investors. Then, we design and implement a new identification strategy for

demand estimation when there are strategic interactions.

4.1 Quantitative model

Individual decisions. In practice, agents invest in many assets. Therefore, an empirical

model must make sure that portfolio positions add up to total assets for each investor. In

29We also show that the measure of price impact Kyle’s λ is closely related to the inverse of aggregate
elasticity.
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addition, it should also account for the portfolio aspect of financial decisions, that is some

form of substitution across assets. Koijen and Yogo (2019) show that a logit framework

satisfies both of these requirements. We denote each security by the index k, the total assets

of an investor by Ai, and the portfolio share of investor i in security k by wik. Therefore

dik = log(wikAi) − pk. The framework of Koijen and Yogo (2019) corresponds to specifying

a log-linear model for relative portfolio shares wik/wi0 instead of the individual demand

directly, with index 0 being the outside asset. We follow this approach. For each investor,

we take as given total assets under management, Ai, and investment universe, Ki, that is the

set of assets they can invest in.

Second, we need to specify the baseline levels of demand and elasticity di and E i. We

assume that each of those combines potentially distinct sets of asset characteristics using

investor specific coefficients. Going back to the setting of Section 3, an interpretation of this

assumption is that investors form priors on different assets based on their characteristics; for

example, characteristics could capture factor loadings. This corresponds to expressing the

baseline demand as dik = d0i +d′1iX
(d)
k + εik and the baseline elasticity as E ik = E0i +E ′1iX

(e)
k ,

where the two vectors of characteristics are X
(d)
k and X

(e)
k . We also account for asset-specific

changes in demand by including a shock εik in dik. For example, εik captures the private

signal η and noise trading x of the model of Section 3.

Finally, we estimate the model using only the cross-section in each time-period. Thus,

we allow all quantities and parameters of the model to depend on time. For ease of notation

we drop the subscript t. Putting it all together, our model of portfolio demand is30

log
wik
wi0
− pk = d0i + d′1iX

(d)
k − Eik pk + εik, (15)

Eik = E0i + E ′1iX
(e)
k − χ Eagg,k. (16)

30To match equation (15) with equation (1), recall that: dik = log Aiwik

Pk
. Then dik = d0i + d′1iXk +

log(Ai) + log(w0i) + εik.
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Starting from the relative shares ωik = wik/wi0t, the actual shares can be obtained by

wik =
ωik

1 +
∑

k∈Ki ωik
, (17)

wi0 =
1

1 +
∑

k∈Ki ωik
. (18)

Interestingly, the demand system of Koijen and Yogo (2019) is a special case of this frame-

work. In their framework, demand elasticities are fixed structural parameters.31 This cor-

responds to setting E1i = 0 and χ = 0. Therefore, their model implicitly assumes no com-

petition at all. For example, when some investors are removed from the markets, the other

ones do not step in with larger elasticities. This is the extreme opposite from the standard

hypothesis of perfect competition, which corresponds to χ → ∞. Our framework lets us

quantify how close or far reality is from these extremes.

Passive investors. We also include passive investors. By passive, we mean that these are

investors whose demand does not respond to prices. Index funds are a specific example of such

investors. Our notion is larger though, because it accommodates arbitrary fixed portfolios.

To represent such behavior, we simply replace equation (16) by Eik = 0. Separating out

these investors is important, not only because of their low level of elasticity, but also because

they do not respond to aggregate trading conditions. We denote the set of active investors

for asset k by Activek and the total assets under management of this group of investors as

|Activek|.

Equilibrium prices and elasticities. Going from individual decisions to an equilibrium

relies on market clearing. As in the model of Section 2, two equilibrium objects play a

role in individual decisions: prices, pk, and aggregate elasticities, Eagg,k. The corresponding

31Technically in the logit model the demand elasticity is 1− (1−wik)(1− Eik). For values of wik that are
small relative to one, as in the data, this expression is close to Eik. Hence we refer to Eik as the demand
elasticity throughout the paper.
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equilibrium conditions are

∑
i

wikAi = Pk, ∀k, (19)

∑
i

wikAi
Pk
Eik = Eagg,k, ∀k. (20)

We normalize the number of shares available to 1 to obtain the market-clearing condition

for assets, equation (19). Said otherwise, pk denotes the log market capitalization. In the

appendix, we present the details of an algorithm to solve for the equilibrium efficiently; we

rely on a quasi-Newton method.

4.2 Data

We estimate the model for the U.S. stock market. We use stock level data from CRSP: price,

dividend, shares outstanding. We merge the CRSP file with COMPUSTAT for balance

sheet information and compute stock level characteristics: book equity, profitability, and

investment.

We obtain portfolio holdings data from the 13F filings to the SEC from 2001 to 2020. We

build the dataset from the SEC EDGAR website following the method of Backus, Conlon,

and Sinkinson (2019, 2020). The SEC requires that every institution with more than $100m

of assets under management file a quarterly report of their stock positions. We find that

collectively the holdings reported in the 13F account for 80% of the total stock market

capitalization.

We follow Koijen and Yogo (2019) to construct the final panel dataset.

4.3 Identification

To estimate the model described above we have to overcome three difficulties: (i) first, the

classic problem of endogeneity in demand estimation; (ii) a reflection problem induced by

the interactions between investors; and (iii) how to implement the estimation given that one
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of the “regressors”, the aggregate elasticity, is unknown.

4.3.1 Identifying demand

Combining equation (15) and (16), the model is similar to a regression equation:

log
wik
wi0
− pk = d0i + d′1itX

(d)
k −

(
E0i + E ′1iX

(e)
k − χ Eagg,k

)
pk + εik. (21)

The parameters are d0i, d1i, E0i, E1i, and χ. There are two challenges to identify these

parameters: residual demand εik is unobservable and aggregate elasticities Eagg,k is itself a

function of E i and wik as expressed in the equilibrium condition (20). To solve these issues

we make identification assumptions.

The simplest possible assumption takes residual demand as exogenous to all other vari-

ables to get the moment condition

E
[
εik|X(d)

k , X
(e)
k , pk, Eagg,k

]
= 0. (22)

Then, we could estimate (21) using ordinary least squares. The independence of εik from

Xk is naturally motivated by taking the supply of assets as exogenous, as in endowment

economies (Lucas, 1978). Furthermore, the independence from pk and Eagg,k relies on the

logic that residual demands do not matter for equilibrium outcomes because they “cancel

out” in the aggregate. This rules out both the presence of non-atomistic investors and

correlated demand shocks — see the equilibrium conditions in equations (19) and (20). Both

of these last assumptions are not likely to hold for institutional investors. Therefore we relax

these assumptions and propose an alternative identification strategy.

We assume that the variation in total assets and the investment universe is exogenous to

the residual demand, an assumption shared with Koijen and Yogo (2019). They argue that

the investment universe is often determined by mandates, which are predetermined rules on

which assets can be held. Similarly assets under management (AUM) are also predetermined.
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Building on this we construct instruments for equilibrium outcomes pk and Eagg,k. The

instrument for the price of asset k is

p̂k,i = log

(∑
j 6=i

Aj
1k∈Kj
|Kj|

)
, (23)

where 1k∈Kj is an indicator variable of when stock k is in investor j investment universe. This

instrument corresponds to how much money would flow to stock k if all investors other than

i had an equal-weighted portfolio.32 Variation in the instrument comes from variation across

investors’ investment universe. For example, a stock with large investors has more money

flowing towards it. Given our assumption of downward-sloping demand for stocks, a larger

exogenous demand generates higher prices that are uncorrelated with residual demand.

Our setting includes the additional equilibrium variable Eagg,k, for which we develop a

new instrument:

Êagg,k =
1

1 + χ|Activek|

∑
j∈Activek Aj/|Kj| · 1k∈Kj · E jk∑

j∈Activek Aj/|Kj| · 1k∈Kj
(24)

This instrument is the solution to the elasticity equilibrium defined by equations (16) and

(20), where we have replaced the endogenous weights wik with counterfactual weights under

the assumption that each investor holds an equal-weighted portfolio.33 The variation in this

instrument also comes from variation across investors’ investment universe. However, the

asset flows are weighted by individual elasticity: a stock with more intrinsically inelastic

investors (for example, passive mutual funds) will tend to have a lower aggregate elasticity.

32We consider an alternative with portfolio weights proportional to book equity.
33Our instrument for aggregate elasticity is the solution to the following problem:

Êik = E ik − χ Êagg,k;
∑
j

ŵjkAj/ exp(p̂k)Êjk = Êagg,k,

where the counterfactual weights ŵjk are defined as:

ŵjk =
1k∈Kj

|Kj |
.
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We are interested in the response to the interaction of aggregate elasticity with the price (see

equation (21)). To isolate this interaction from linear effects, we also include a linear control

for aggregate elasticity, similarly to X
(d)
k .34

The two instruments allow us to weaken the moment condition (22) to

E
[
εik|X(d)

k , X
(e)
k , p̂i,k, Êagg,k

]
= 0. (25)

The instrument for the aggregate elasticity depends on the model parameters (E0i and E1i).

This is not an issue for identification as parameters are by definition not endogenous. How-

ever, this precludes us from using standard methods such as two-stage least squares to esti-

mate the model. Appendix Section E.1 lists the unconditional moments derived from condi-

tion (25) that we use for estimation. In Section 4.3.3, we detail our numerical procedure for

estimating the model.

Relevance condition. To evaluate the strength of our instruments, we run what would

be a first-stage regression in a standard two-stage least square estimation. First, we regress

the price onto the instrument and the other characteristics for each manager. For each date,

we compute the first and the fifth percentile of the (Kleibergen and Paap, 2006) F-statistics

across managers. Figure 1 reports the histogram of these percentiles across all dates. At least

95% of the F-statistics in any given date are above 18 (panel A). We also confirm the relevance

of the elasticity instrument. In the panel, we regress the product of the price interacted with

the aggregate elasticity onto their instrumented version and the other characteristics. We

represent the histogram of the F-statistic of this regression for each date in panel C; the

F-statistic is always above 10.35

34To maintain tractability in estimation we assume that the coefficient on this linear control, like χ, is
constant across investors.

35Appendix Figure IA.6 reports the results for the book-equity weighted instrument.
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Figure 1. Relevance condition for the price and elasticity instruments.
Figure 1 shows the F-statistic of the first-stage for the price and aggregate elas-
ticity variables. For the price, we estimate the F-statistic (Kleibergen-Paap) at
the manager level for each year. We summarize these statistics at every date
with the 5th percentile (Panel A) and 1st percentile (Panel B). Panel A shows
that 95% of all F-statistics are above 10 across all dates, and Panel B shows that
99% of all F-statistics are above 10 across most dates. In Panel C we regress the
elasticity interacted with the price onto their instrumented version and report the
F-statistic for each date. The sample period is 2001–2020.

4.3.2 The reflection problem.

While our instruments provide us with as many moment conditions as parameters, we discuss

how the estimation can disentangle the individual component of elasticity from competitive

effects. Individual investor elasticities Ei depend on an investor specific term, E i and on the
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Figure 2. Illustration of Identification Strategy.

aggregate elasticity Eagg as

Eik = E ik − χEagg,k. (26)

We need to disentangle whether investors are elastic because of their own characteristics or

in response to other investors on the market. For example, if we see in a market that all

investors behave in a very elastic manner, it could be that each of them is fundamentally very

elastic, high E i. But it could also be the consequence of a strong positive feedback where

χ < 0. This identification problem is the reflection problem (Manski, 1993).

Two features of our model let us solve the reflection problem. First, there is variation

in investor composition across stocks, Ki. Second, we assume that the investor specific

component of elasticity depends on observable asset characteristics, E ik = E0i + E ′1iXk. To

measure the effect of competition, the ideal experiment would be to compare the behavior

of the same investor for the same stock with variation in the characteristics of the other

investors.

With the second assumption, two stocks with the same characteristics Xk, will elicit

the same baseline elasticity E i for the same investor. In addition because the coefficients

on stock characteristics is investor specific, we focus on variation within the same investor
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across different stocks. Finally to estimate χ, we need variation in Eagg,k across stocks. The

different investment universe for different investors guarantees such a source of variation.

Figure 2 illustrates this idea: we need to compare how Alice trades differently when facing

different groups of other investors, such as for GameStop and Tesla. Last, we need to ensure

that the system of equations for all investors and stocks given by (26) and the equilibrium

condition for aggregate elasticity (20) has a unique solution. In our example, to estimate

Alice’s behavior, we also simultaneously need to figure out the elasticity for Bob, Charles,

Daunte, etc. The following theorem formalizes the intuition behind the needed identifying

variation and proves uniqueness.

Theorem 1. A decomposition of demand elasticities {Eik}i,k into individual elasticities {E i}i

and the competition parameter χ is unique if:

(a) The graph G of investor-stock connections is connected.

(b) Position-weighted averages of demand elasticities are not constant across stocks: there

exists k and k′ such that
∑

i∈Ik wik/PkAiE i 6=
∑

i∈Ik′
wik′/Pk′AiE i.

We derive and discuss this theorem in Appendix E.2. In particular, we explain that the

two conditions for the result to apply are satisfied in our setting.

4.3.3 Implementation

Last, we need to implement the estimation free of the identification issues discussed above.

We cannot estimate (21) using off-the-shelf methods. This is because the competition param-

eter χ and the aggregate elasticities Eagg,k must not only satisfy moment conditions but also

respect the two-layer equilibrium relations. A näıve approach to solve all these conditions

simultaneously is computationally untractable due to the large dimension of the parameter

space.

However, we develop an algorithm that leads to rapid computation: estimating the model

for a given quarter takes about two minutes on a personal computer. The basic idea of our
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method is to focus on two nested equilibrium questions. On the one hand, if one knows the

effect of aggregate elasticity, solving the values of aggregate elasticities can be done using

an iteration process: run standard instrumental regressions at the investor level to estimate

their demand then update aggregate elasticities using equation (20); repeat until obtaining

convergence. On the other hand, if one knows all the equilibrium quantities, finding the

effect of aggregate elasticity is a low-dimensional fixed point problem involving a single large

panel regression; we solve it using the standard Newton method. In the interest of space,

Appendix Section E.3 details this estimation procedure.

4.4 Estimates

We estimate the model for each quarter from 2001Q1 to 2020Q4. Recall that our identifi-

cation comes from the cross-section, such that for each time period the model is estimated

independently.

4.4.1 Competition χ

The average value of the competition parameter is χ = 2.2. We show a summary of the

estimates of the competition parameter χ across quarters in row 1 of Table 2; Appendix

Figure IA.3 represents the whole distribution. The estimates show little variation around

their median. There are no detectable trends in the time series of the estimates as seen in

Appendix Figure IA.4.

A competition parameter of 2.2 implies a substantial competitive response at the individ-

ual level. If all other investors become more aggressive and increase their elasticity by 1, an

atomistic investor would respond by decreasing her elasticity by 2.2. However, the estimate

of competition points to an equilibrium behavior far from perfect competition. Recall that

the perfect competition benchmark corresponds to χ→ +∞ and no-competition benchmark

to χ = 0. For example our simple calculation in equation (5) shows that we need large

values of χ for strong equilibrium effects. Making 50% of investors passive, a value of χ of
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at least 18 is necessary to compensate 90% of the drop in aggregate elasticity. This is an

order of magnitude larger than our estimate of 2.2, and actually than all of our estimates.

We investigate the implications of the competition parameter χ for the impact of the rise of

passive investing in Section 5.

Robustness. We assess the robustness of the estimates along several dimensions. Table 2

reports the results of the estimation for these alternative specifications in rows 2 to 6. Overall

the estimates of competition χ do not very substantially across specifications — the median

value of χ is always between 1.91 and 2.46.

First, in row 2, we consider an alternative construction of the instrument where the coun-

terfactual portfolio positions are weighted by book equity instead of being equally weighted.

While these weights are potentially more realistic and can strengthen the relevance condition,

their ad-hoc nature might weaken the plausibility of the exogeneity condition. This leads

to a median χ of 1.91, close to our baseline. Row 3 includes additional controls for stock

characteristics to the regression (Xk): profitability, investment, and dividend yield. The

estimates do not change much. However, we find that including many additional parame-

ters sometimes hinders the convergence of the estimation algorithm (Appendix Table IA.1

restricts to a sample where all the methods converge, 2003Q3 to 2020Q4, and finds very

similar results). Rows 4 and 5 considers an alternative weighting scheme. In our baseline all

investors contribute equally to the estimate of χ, while row 4 weigh them by their assets under

management. If our model was misspecified and the competitive response varied by investor

size, this change would lead to different estimates. This is not the case here, with extremely

close estimates. Row 5 weighs by book assets under management to avoid contamination by

prices, also leading to virtually identical estimates. Row 6 addresses the details of how we

deal with investors with few positions. In the baseline, active investors with fewer than 1,000

stock holdings are grouped together based on their assets under management such that each

group on average contains 2,000 stock holdings. A finer way to construct these groups is to

make them based on investor types, but data coverage is incomplete. The estimates in row
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Table 2.
Estimates of competition χ under alternative specifications

Estimates for χ

Median 25th pct. 75th pct.

(1) Baseline Specification 2.15 1.81 2.76

(2) BE-weighted Instrument for Eagg 1.91 1.52 2.31
(3) Additional Controls 2.51 2.09 3.5
(4) AUM-weighted Regression 2.3 1.81 2.8
(5) Book-weighted Regression 2.27 1.76 2.78
(6) Investor-Type Grouping 2.42 1.93 2.94
(7) Constant χ 1.95

(8) No Instrument for Eagg 1.21 0.77 1.56
(9) No Instruments 0.96 0.67 1.38

Table 2 presents statistics of estimates of χ across dates (2001Q1 - 2020Q4) under various specifications.
Our baseline specification (1) estimates χ given aggregate elasticities Eagg,k each period via the regression:

log
wik
wi0
− pk = d0i + d′1iX

(d)
k + ξ Eagg,k −

(
E0i + E ′1iX

(e)
k − χ Eagg,k

)
pk + εik,

where X
(d)
k contains log book equity and log book equity squared. X

(e)
k is log book equity. Active investors

with fewer than 1,000 stock holdings are grouped together based on their assets under management such
that each group on average contains 2,000 stock holdings. The regression is weighted such that each
group’s weights sum to the same constant. Specification (2) shows estimates of χ based on the book-equity

weighted instrument. Specification (3) adds additional characteristics to X
(d)
k ; profitability, investment

and dividends relative to book equity. Specification (4) value-weights the regression by weighting investors
by their AUM. Specification (5) similarly value-weights the regression by weighting investors by their book
assets. An investor’s book assets are determined as follows: A stock’s book equity is first allocated to
investors proportional to the number of shares they hold, and subsequently summed up within investor
across stocks to form an investor’s books assets. Specification (6) follows Koijen and Yogo (2019) in
grouping investors both by investor type and AUM. Institutional investors whose type we cannot determine
are bundled together in a separate group. Specification (7) imposes for χ to be constant across time in the
estimation, with each year receiving equal weight. Specification (8) reports results without instrumenting
for the aggregate elasticity Eagg. Specification (9) additionally removes the instrument for prices.

6 updates our estimation based on these data, which results in little change. Finally, row 7

constrains the competition parameter χ to be constant over time. This estimation is more

computationally demanding, and yield a value of χ of 2.07 close to the baseline.

We also estimate the model without using instruments. Row 8 removes the insturment for

aggregate elasticity. In this case we find an average value of χ of 1.2. This estimate far below

that from any other specification suggests that it is important to account for the endogeneity
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of elasticities — because they depend on actual portfolio weights which themselves depend

on residual demand. Also removing the instruments for prices — row 9 — leads to even lower

estimates, suggesting a deeper bias.

4.4.2 Stock-level Elasticities

The model also delivers estimates of aggregate elasticity, Eagg,k, for each stock. Figure 3

represents these elasticities for 2011Q3 as a function of stock market capitalization. Each

green dot corresponds to the elasticity estimate of one stock in our model for that date. We

compare our estimates to a model where individual level elasticities are fixed, where E1,i = 0

and χ = 0. These estimates are represented with red dots in Figure 3.

There is substantial cross-sectional variation in elasticities, lending credence to our ability

to identify the competition parameter χ. In both sets of estimates, the demand curve for

individual stock is inelastic with average values around 0.45. This magnitude is far from the

typical asset-pricing benchmark of perfectly horizontal demand curves with infinite elasticity.

However, it is consistent with other empirical estimates, in particular based on portfolio data;

see for example the discussion in Chang, Hong, and Liskovich (2014) and Koijen and Yogo

(2019).

Figure 3 demonstrates a few ways in which accounting for the endogeneity of demand

elasticities is important. First, the full model estimates exhibit less variation than the model

with constant elasticities. With constant individual elasticities, variations in investor compo-

sition directly translates in variation in aggregate elasticities. However, with positive levels

of competition χ, investors react to each other and soften those variations. For example, if

an active investor with high-elasticity takes positions in a stock, other investors respond by

trading less aggressively. Thus, stocks become more similar to each other.

Second, the full model exhibits a stronger negative relation between the size of a stock and

its elasticity. Koijen and Yogo (2019) point out that large stocks tend to have more inelastic

investors overall. Once we allow individual elasticities to respond to stock characteristics
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Figure 3. Aggregate elasticity at the stock level: Eagg,k. Figure 3 represents
estimates of the aggregate elasticity Eagg,k, where each stock is represented by a
circle, as a function of their market capitalization (in logarithm) for the date
2011Q3. Green circles are our estimates, while red circles correspond to a model
where elasticities are fixed.

and the aggregate elasticity, the data reveals an additional source for this relation: the same

investor behaves more inelastically for large stocks than small stocks. This additional source

of variation within investor rather than across investors leads to a steeper relation between

size and elasticity. We estimate a linear relation between size and elasticity at the investor-

level for computational tractability; this linearity leads to extremely low values of elasticity

for the very largest stocks.

Table 3 shows that these conclusions hold not only for this specific date, but across our

sample. We report the distribution across dates of various statistics of the cross-section of

Eagg. In particular, we confirm that our estimates have less variation in elasticity across

stocks (Panel B), by about 50%, and a steeper relation between elasticity and stock size

(Panel C), by about 25%.
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Table 3.
Properties of Aggregate Elasticity Eagg

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.489 0.411 0.46 0.54
Fixed elasticity 0.389 0.357 0.389 0.442

Panel B: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.

Elasticity Eagg −0.109 −0.117 −0.1 −0.0855
Fixed elasticity −0.0286 −0.0309 −0.0272 −0.0249

Panel C: Residual cross-sectional standard deviation of elasticity

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.0498 0.0389 0.0441 0.0521
Fixed elasticity 0.0842 0.0739 0.0826 0.0917

Table 3 presents statistics of the aggregate elasticity Eagg(k, t). We estimate the elasticity in our model
accounting for competition χ and without competition as in Koijen and Yogo (2019) (denoted by fixed
elasticity). Panel A has summary statistics of the average elasticity by date. Panel B shows summary
statistics of the coefficient βt from the the regression Eagg(k, t) = αt + βtsizek,t + εk,t by date. Panel C
reports summary statistics of the cross-sectional standard deviation of the residual from the regression
described in Panel B. The sample period is 2001 to 2020.

The negative relation between size and elasticity might appear surprising given the ev-

idence on prices suggesting that large stocks are more informationally efficient.36 However

there are good reasons to think that institutions are more reluctant to change their positions

for large stocks than for small stocks. Mechanically, the largest stocks occupy a larger share

of portfolios. As of July 2021, the five largest corporations in the U.S. stock market account

for about 18% of total market capitalization.37 As a consequence, a large change in portfolio

weight would have a large effect on an institution’s portfolio return. Many institutions are

either benchmarked to the index or have hard dollar limits on how much they can trade

a given stock, and hence they would be unwilling to take on such large changes. As an

36See Lo and MacKinlay (1990), Jegadeesh and Titman (1993), Lakonishopk, Shleifer, and Vishny (1994),
and Hong, Lim, and Stein (2000).

37The total market capitalization of Apple, Microsoft, Amazon, Alphabet (Google), and Facebook amount
to $8.8tn for total U.S. market capitalization of $49tn.
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illustration, Figure 4 decomposes trading activity—the sum of squared relative change in

portfolio position—across percentiles of portfolio weights; Appendix Section F.1 details this

calculation. There is much less trading activity for the larger portfolio positions: the top 50%

of portfolio positions only account for 9% of trading activity. As such, the interpretation of

our results is not so much that large stocks experience more mispricing but rather that high

investor elasticity cannot be the explanation for the evidence on their returns.38
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Figure 4. Trading activity across portfolio positions. Figure 4 presents the cu-
mulative share of trading activity (defined in equation (IA.139)) by quantiles of investor
portfolio weights.

5 Implications

5.1 The rise of passive investing

The last 20 years have seen a large increase in passive investing, a fact documented in French

(2008). More recently Stambaugh (2014) shows that both the fraction of mutual funds that

38In the model of Section 3, both elasticity and the quantity of noise trading determine price informative-
ness. Farboodi et al. (2021) use a richer structural model to decompose informativeness into data, growth,
and volatility.
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Figure 5. Share of Passive and Active Funds. Figure 5 shows the share of
domestic mutual funds and ETFs as a fraction of the US stock market capitalization for
passive funds (black solid line) and active funds (blue dashed line); Source ICI (2020).

are actively managed (at the extensive margin) and the active share of the portfolio of active

equity mutual funds (at the intensive margin) have declined. We update and confirm these

trends in Figure 5. The share of passive funds of the U.S. stock market has grown from nearly

zero at the beginning of the 1990s to more than 15% in 2019. Concurrently, the share of

active funds topped out at the end of the 1990s and has declined from 20% to 15% from 2000

to 2019.39 Our model takes a more comprehensive view of who are the passive investors,

not restricting ourselves to mutual funds. With this approach we find that the share of

passive strategies has grown by 22 percentage points over the last 20 years (see Appendix

Figure IA.8).

Has the shift to passive portfolios impacted the behavior of prices? Understanding how

investors react to changes in the behavior of other investors is crucial to answer this question.

In the standard view of competitive markets, when some investors stop looking for profitable

trading opportunities, some other investors step in to replace them; prices do not change. In

39We report the dollar numbers in Figure IA.7. Net assets of passive funds has grown from virtually zero
to $5.4tn in 2019, whereas the net assets of active funds only increased from $600bn in 1993 to $5.5tn in
2019.
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contrast, if investors do not respond to others, the demand for stock becomes more inelastic

wich strongly affects the behavior of prices. For example in the theory of Section 3.1, more

inelastic demand leads to prices that are more volatile and less informative. Our model,

and in particular the parameter χ, accounts for the strength of this reaction. We use the

estimated parameters to quantify the impact of the rise in passive investing on aggregate

demand elasticities.

Starting with the demand system from Section 4, we impose an exogenous change in

the fraction of active investors and compute the new equilibrium elasticities. Of course the

rise of passive investing is not a purely exogenous phenomemon. However, most plausible

explanations of this phenomemon are independent from the rest of the demand system.

For example, the development of financial technology made it cheaper to pursue passive

strategies: fees on passive funds have dropped dramatically and ETFs became available. Or,

one subset of investors, maybe after listening to finance professors, realized they were making

mistakes when pursuing active strategies. Such shocks are equivalent to an exogenous change

in the fraction of passive investors as long as they do not directly affect the demand for the

remaining investors.

Computing the effect of the rise of passive investing corresponds to the calculation of

equation (5), accounting for heterogeneous investors. Combining the individual demand

elasticity Eik in equation (16) with the equilibrium condition of (20), we have

Eagg,k =
∑

i∈Activek

wikAi∑
j∈Activek wjkAj

· E ik × |Activek| ×
1

1 + χ |Activek|
. (27)

The aggregate elasticity is the product of three terms: (i) the average baseline elasticity

among active investors, weighted by their respective positions; (ii) the fraction of the asset

held by active investors, |Activek|; and (iii) an adjustment for the competitive response of

active investors to the aggregate elasticity, which depends on χ.

From this expression we obtain the effect of a change in the fraction of active investing.
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Changing |Activek| while holding everything else constant corresponds to the assumption

that the set of active investors that become passive is a representative sample of the active

population. This leads to a simple formula:

d log Eagg,k
d log |Activek|

=
1

1 + χ |Activek|
. (28)

The pass-through from a rise in active investment to aggregate elasticity is determined by two

numbers: the competition parameter χ and the fraction of active investors. In competitive

financial markets, when χ is large, aggregate elasticity does not respond to shift in passive

investing, the pass-through is zero. At the opposite end, when χ = 0 such that investors

do not respond to market conditions, the pass-through is 100%; an increase in the fraction

of passive investors translates into a one-to-one decrease in aggregate demand elasticity.

Furthermore, because only active investors change their elasticities in response to others

(passive investors always have an elasticity of zero), starting with a larger fraction of active

investors leads to a smaller pass-through.

We can readily compute the pass-through: it solely depends on two observable quantities,

χ and |Activek|. In Section 4, we estimated the competition parameter and found that

χ = 2.15. Recall we measure the total quantity of passive investors as investors with an

elasticity of zero in the Koijen-Yogo demand system. Not surprisingly, we find a trend down

from 81% in 2001 to 59% in 2020. Taking the average across dates for the share of active

investors, 68%, and for the competition parameter, χ = 2.15, we find a value of the pass-

through of40

1

1 + χ |Activek|
=

1

1 + 2.15× 0.68
= 40.6%. (29)

This implies that competition is strong enough to compensate about 60% of the direct effect

of a rise in passive investing. It is still far from the full cancellation of the competitive market

40When the share of active investors is at 81% as in 2001 the pass-through is 36.5%, while when it is
towards its lowest value of 59% at the end of the sample it is 44%.
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view.

We multiply this pass-through by the rise in the proportion of passive investing to obtain

the total effect on elasticity. We consider different takes for the size of the exogenous change.

First we use our comprehensive measure of passive investing. The decline from 81% to 59%

corresponds to a 32% drop, leading to elasticities lowered by 40.6%×32% = 13%. Translating

the elasticities into price multipliers, this implies that the price impact of buying $1 of a stock

went up roughly from $2.5 to $2.9. Second, we look at a narrower measure of the rise in

passive investing centered around the assets under management of passive mutual funds and

ETFs. Their fraction of total market capitalization has increased by 15 percentage points

in the last 30 years. Starting from a baseline of 81% of active investors, this represents a

19% drop in the total fraction of active investors. With our pass-through of 0.4, this reduces

elasticities by 8%.

5.2 Decomposing the evolution of the demand for stocks

In the previous exercise, we isolated the causal effect of a change in passive investing on equi-

librium demand elasticities. Next, we propose a positive account of the data: we decompose

the actual changes in elasticity over the last twenty years in light of our model.

5.2.1 The downward trend in aggregate elasticity

Figure 6 presents the time series of the distribution of equilibrium elasticities across stocks.

For each date, we compute quantiles of the cross-section of aggregate elasticities, Eagg,k. We

find a downward trend in equilibrium elasticities across the whole distribution of stocks. The

average elasticity (bold solid line) goes from 0.46 to 0.31, a 40% drop. The one exception

to the trend is the early part of the sample with an increase in elasticities between 2000

and 2004. The tails of the distribution also decrease. The 90th percentile (upper dashed

line) drops from 0.64 to 0.53 (a 19% decrease). The 10th percentile (lower dashed line) also

drops from 0.25 to 0.12. The downward trend in equilibrium elasticities affects the whole
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distribution of stocks. We further our understanding of what is behind the decline in the

next section through a simple decomposition.

2000Q4 2004Q4 2008Q4 2012Q4 2016Q4 2020Q4

0.0

0.5

1.0

Figure 6. Distribution of aggregate elasticity across stocks.
Figure 6 traces out the distribution of aggregate elasticity Eagg,k over time. The
bold line represents the average elasticity across stocks for each year. The solid
lines represents the 25th and 75th percentile and the dashed lines the 10th and
90th percentile.

5.2.2 Sources of change in elasticity

In Section 4, we estimated the demand elasticities for each investor-stock in each quarter

from 2000 to 2020. While our identification strategy is purely cross-sectional, we can use

the time-series dimension of our estimates as a description of the evolution of the demand

for stocks over time. To make parameters such as the investor-specific demand elasticity

E i comparable across periods, we use the model estimates under the assumption that the

competition parameter is constant over time (row 6 of Table 2).

We decompose changes in elasticity from year to year into three components using equa-

tion (27). We denote by 〈E ik〉 the position-weighted average of the individual-specific compo-

nent of the elasticity of active investors, E ik; this corresponds to the first term in equation (27).
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We derive the effect of a change in investor composition,

dEagg,k︸ ︷︷ ︸
Change in aggregate elasticity

= |Activek| · d〈E ik〉︸ ︷︷ ︸
Individual elasticity of active investors

+ 〈E ik〉 · d|Activek|︸ ︷︷ ︸
Share of active investors

+

+

 −χ|Activek|1 + χ|Activek|
· d(〈E ik〉|Activek|)︸ ︷︷ ︸

Response to direct changes

+
−|Activek|

(1 + χ|Activek|)2
〈E ik〉 · d|Activek|︸ ︷︷ ︸

Fraction responding


︸ ︷︷ ︸

Competitive response

.

(30)

The first component corresponds to the average individual-level component elasticity of active

investors; how their own characteristics contribute to the elasticity. The second component

accounts for changes in the share of active investors over time and their ultimate effect on

the elasticities. These forces correspond respectively to the intensive and extensive margin

of individual elasticities. The last component corresponds to the equilibrium forces and are

largely shaped by the parameter χ. It has two parts. First, the equilibrium response itself

wich dampens the total effect of both the extensive and intensive margins (d(〈E ik〉Activek)).

When competition is low and χ = 0, this term is zero and there is no equilibrium response;

when competition is high and χ → +∞, the equilibrium coefficient goes to −1 and there

is full compensation of the direct effect on aggregate elasticity. The second part represents

the change of the equilibrium effect itself when the number of active investors changes; only

active investors’ demands respond to others and the more there are, the larger the equilibrium

response will be.

We present the three terms of this decomposition over time in Figure 7 and we summarize

the total effects in Table 4.41 We smooth the series to make the secular trends easier to

identify. Over time we estimate that the aggregate stock-level elasticity has decreased by

40% on average. Consistent with the importance of the rise in passive investing discussed in

41Because we cannot continuously integrate equation 30, we use the natural discrete approximation of the
first two terms and compute the third one as a residual.
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Figure 7. Decomposition of the change in aggregate elasticity.
Figure 7 shows the decomposition derived in equation (30) over time. We compute
each term of the decomposition for each date and accumulate the changes over
time.

Section 5.1, we find that the direct effect of the decrease in the fraction of active investors

contributes 227% of the total drop in elasticity. Interestingly, investors also change their

own elasticities at the intensive margin. If individual elasticities increase until 2006, they

experience a sharp drop after and decline by 38% overall. Appendix Figure IA.9 confirms this

pattern holds in the entire cross-section of investors. This second direct force adds 95% to

the drop in aggregate elasticities. However, the competitive response strongly mitigates these

individual changes in equilibrium. Competition reverses around two thirds of the decline,

leading to the total change in aggregate elasticity of −40%.
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Table 4. Decomposition of the change in aggregate elasticity Eagg

Aggregate elasticity Decomposition

Total change (2001-2020) Active share Active elasticity Competition

−33% 77% 120% −96%

Table 4 reports the total change in aggregate elasticity and its decomposition, as derived in equation (30).
We compute each term of the decomposition for each date and accumulate the changes over time. We report
each term as a fraction of the total change in elasticity.

5.2.3 Evolution under counterfactual levels of competition

Finally we can ask how the changes in the individual components of investor demand would

have affected the aggregate elasticities under different competition regimes. We start from

the equilibrium levels of demand elasticity at the beginning of our sample (2001Q1). We feed

into the model the two direct components highlighted above: how individual elasticities, E ik,

change over time and who becomes passive. However we make different assumptions on how

investors react to changes in the behavior others. We show the time series of the results in

Figure 8. The black line represents the actual evolution of the average aggregate elasticity

across stocks; the colored lines show the counterfactual results.

We first consider the case of competitive investors, corresponding to χ → +∞. In this

situation any change in individual behavior is completely counteracted by other investors.

The aggregate elasticities for each stock are pinned down at their initial level. The only

source of variation in the average elasticity over time are changes in the composition of the

universe of stocks. This is the red line in Figure 8, which experiences very little change over

our sample. This result also confirms that the trends that we have documented of a decline

in aggregate elasticities are not the consequence of changes in which stocks are traded.

The other extreme is the situation where investors do not react to others at all and χ = 0.

Then, all the changes in individual investor behavior directly feed into aggregate elasticities.

This leads to a more dramatic drop in elasticities overtime than our baseline estimates. This

is the green line in Figure 8. We observe a strong decrease, about twice as large as the
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Figure 8. The evolution of aggregate elasticity under alternative com-
petition regimes.
Figure 8 shows the evolution of aggregate elasticity Eagg,k under alternative com-
petition regimes. The bold black line presents our baseline estimate. The top red
line shows the elasticity with fully competitive investors (χ → ∞). The bottom
green line shows the elasticity with no competition (χ = 0).

baseline.

Overall these results confirm that changes in the behavior of investors have profoundly

changed the aggregate demand curves for individual stocks. Competition among investors

played an important role in mitigating the total impact of those changes. However, compe-

tition was not strong enough to fully negate the course of a downward trend in aggregate

elasticities.

5.3 Implications in the cross-section of stocks

5.3.1 The competition mechanism in the cross-section

In our model, the response to a change in the share of passive investors occurs through the

competitive response: the other active investors change their elasticity. However, other types
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of adjustments could happen, for example, the composition of active investors could change.

Also, the identity of who becomes passive beyond their demand elasticity might shape the

response, as is the case in some more sophisticated theories.

While these possibilities are not explicitly part of our empirical model, they would mani-

fest themselves through the changes in aggregate elasticity in response to changes in passive

investing. We investigate their presence by zooming in on different sources of variations in

passive investing than our baseline estimates (the ones caused by our instrument).

We regress annual log changes in stock-level elasticity on changes in the fraction of active

investors

log(Eagg,k,t)− log(Eagg,k,t−1) = β (log(|Activek,t|)− log(|Activek,t−1|)) + αk + γt + ek,t. (31)

The inclusion of time and stock fixed effects allow to focus on variation independent of

the average variation. A benchmark value for the coefficient β is the pass-through from

equation (28), about 40%. However, if changes in individual-level elasticities or other types

of changes in investor composition, are correlated with the active share, this would push

β away from the theoretical pass-through. So effectively, we are assessing whether changes

in investor behavior beyond the competition effect are correlated with changes in passive

investing .

Table 5 presents the result, using the unconstrained cross-sectional model estimates. Col-

umn 1 is a univariate regression; column 2 and 3 add date then stock fixed effects. Throughout

we find a coefficient of about 0.4, close to the theoretical pass-through.42 This result supports

the interpretation that our measured competition is the main driver of the response of aggre-

gate elasticity to changes in passive investing. Furthermore, because our model estimates are

only based on cross-sectional evidence, this result from including the time series dimension

provides additional support for our theory. Going in this direction, in Appendix Table IA.3,

42Statistical significance is not completely meaningful in this setting, because the left-hand-side of the
regression is model-generated.
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we confirm that the regression results are mostly unchanged when using the estimates that

impose a constant value of χ through time.

We also consider what happens around index inclusions. For these events the source of the

variation in passive investing is known because index funds are forced to change their portfolio

after reclassification. Following Chang, Hong, and Liskovich (2014), Ben-David, Franzoni,

and Moussawi (2018), and Chinco and Sammon (2022), we exploit the mechanical rule that

allocates stocks between the Russell 1000 and 2000 indexes.43 We use the index-switching

event as an instrument for the share of passive investors; column 5 of Table 5 reports the

result. The first stage is significant with reclassification changing active ownership by about

5% (see Appendix Table IA.4). The coefficient is 0.44, again very close to the theoretical

pass-through.

5.3.2 Behavior of asset prices

Our empirical model focuses on the estimation of demand elasticities for two reasons. First,

elasticities are the quantity through which investor competition manifests itself across many

theories. Second, these elasticities are a key determinant of the behavior of asset prices.

For example, an asset with highly elastic investors will tend to be more liquid, because

these investors are willing to to provide liquidity. Similarly aggressive investors limit the

influence of excess fluctuations in prices, which often results in less volatility or more price

informativeness. In this section, we document the relation between aggregate elasticity and

some of these aspects of asset prices in the cross-section.

In the spirit of our structural model, we run the following regressions:

Yk,t = βEagg,k,t + αt + γ′tXk,t + ek,t, (32)

where Yk,t is a stock-level outcome, αt are time fixed effects, and Xk,t controls for stock char-

acteristics. This OLS specification is likely biased because Eagg,k,t correlates with unobserved

43We are grateful to Alex Chinco for sharing his data with us.
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Table 5. Change in aggregate stock-level elasticity Eagg,k on the active
share

Log Change in Elasticity

(1) (2) (3) (4) (5)

Change in Active share 0.446*** 0.475*** 0.457*** 0.426*** 0.389***
(0.044) (0.036) (0.036) (0.034) (0.066)

Date Fixed Effects Yes Yes Yes Yes
Stock Fixed Effects Yes
Controls Yes Yes

Estimator OLS OLS OLS OLS IV

N 50,292 50,292 49,661 50,292 10,619
R2 0.076 0.461 0.497 0.569 0.748
First-stage F statistic 9.444
First-stage p value 0.000

Table 5 reports a panel regression of annual log change in stock level elasticity Eagg,k on the annual log change
in the active share |Activek|. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Column 4
uses date fixed effects and controls for lagged book equity and annual log changes of log book equity. Column
5 instruments the log change in the active share |Activek| between Q1 and Q2 in any given year by two
indicator variables corresponding to stocks switching between Russell 1000 and 2000 in either direction. It
filters to stocks with CRSP market capitalization ranked between 500 to 1500 as of the end of Q1 to maintain
comparability between stocks. The sample period is 2001-2020 for columns 1-4, and 2007-2020 for column 5.
Standard errors are 2-way clustered by date and stock for columns 1-4, and clustered by date for column 5.

aspects of the stocks. Therefore, our preferred specification is 2SLS in which we instrument

for Eagg,k,t using Êagg,k,t. We have already shown in Section 4.3.1 that the first stage of this

estimation is strongly significant.

Table 6 reports the results. In columns 1 to 4, we measure the effect of aggregate elas-

ticity on daily stock volatility. The first two columns use total volatility and the latter two

use idiosyncratic volatility (from the three-factor model of Fama and French (1993)) While

the relation is weak without instrumenting, the IV specifications reveal a strongly negative

relation. Consistent with most theories, stocks with more elastic investors have less volatile

returns. This result also ties together our mechanism with the results of Ben-David, Franzoni,

and Moussawi (2018) on index inclusions. When a stock has more passive investors following

an index switch, its aggregate elasticity declines due to a lack of competition (Table 5), which
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results in more volatility, as documented in their paper.

Columns 5 and 6 consider the measure of price informativeness of Dávila and Parlatore

(2018). We find no significant relationship. However, the large standard errors reveal that

the relation is difficult to estimate precisely rather than a tight zero. Columns 7 and 8

use the illiquidity measure of Amihud (2002). The IV specification is consistent with the

theory: illiquidity is lower for stocks with more elastic investors. An interesting aspect of

this connection is that our elasticity estimates focus on low-frequency aspects of portfolios

while the Amihud (2002) measure highlights high-frequency properties of returns.

Overall, these results support the view that estimating the demand for stocks is useful

to get to a better understanding of the behavior of financial markets. Specifically, demand

elasticities appear to shape many aspects of this behavior.
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Table 6. Determinants of the behavior of asset prices and stock-level elasticities Eagg,k

Total Volatility Idiosyncratic Volatility Price informativeness Illiquidity

(1) (2) (3) (4) (5) (6) (7) (8)

Elasticity 0.081 −0.757∗∗∗ 0.008 −0.740∗∗∗ −0.078 −0.270 1.250∗∗∗ −0.475∗∗

(0.068) (0.164) (0.049) (0.134) (0.306) (0.731) (0.066) (0.228)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS IV OLS IV OLS IV OLS IV

N 219,531 219,531 206,140 206,140 66,677 66,677 216,983 216,983
R2 0.218 0.178 0.247 0.209 0.020 0.019 0.744 0.610

Table 6 reports panel regressions of measures of volatility, price informativeness and illiquidity on stock level elasticity Eagg,k. All variables are
standardized for each date (demeaned and standardized). Uneven columns show results from OLS regressions. Even columns show results from
instrumental variables regressions that use our instrument for stock elasticity defined in equation (24). For columns (1) and (2), we compute the total
daily volatility of stocks. For columns (3) and (4) we compute daily idiosyncratic volatility with respect to the Fama and French (1993) three-factor
model based on daily CRSP data within a quarter. Columns (5) and (6) take the measure of price informativess provided by Dávila and Parlatore
(2018). Columns (7) and (8) use the Amihud (2002) measure for illiquidity as the dependent variable, calculated again based on daily CRSP data
within a quarter. All specifications are weighted by lagged market equity. We follow our main specification for the estimation of elasticity and
control non-linearly for book equity to maintain comparability between stocks. The sample period starts in 2001 for all columns, and ends in 2020 for
specifications 3-4 and 7-8, 2019 for specifications 1-2, and 2017 for specifications 5-6, based on respective data availability. Standard errors are 2-way
clustered by date and stock.



6 Conclusion

The idea that investors compete with each other is fundamental in financial markets. In

theories of financial decisions, how others trade has a large impact on how you trade. We

put forward a framework to measure competition and analyze its impact on equilibrium

outcomes. Our framework is simple yet encompasses many theories of investor competition.

In the US stock market we find evidence that investors do react to each other but also that

this response is much weaker than anticipated by classic views. The effects of changes in

the composition of investors on the demand for stock is reduced by 60%. This implies for

example that the rise in passive investing leads to substantially more inelastic markets.

The presence of measurable competition bears on many other important issues in finance.

To assess the impact of financial regulation on some market participants, for example the

Basel III leverage constraint on banks, one cannot ignore how other institutions will re-

spond. Likewise to understand how the distress of some financial institutions creates fire-sale

spillovers, one must realize that other investors will step up. Our framework measures how

many actually will. Recent work in international finance emphasizes the importance of cross-

border flows and global imbalances. What happens if a large sovereign institution stops

investing in one market, like China with US treasuries? Again the competition among in-

vestors will be a crucial input in determining the final impact of such momentous shift. Last,

the rise and availability of big data promises to change the face of institutional investing.
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A Equilibrium Model of Financial Markets with In-

vestor Competition

We derive the aggregate multiplier under different counterfactuals. First we consider an
aggregate shock to the supply of a stock, then a shift in demand across investors, before
concluding by examining a change in investors’ elasticities.

A.1 The effect of a rise in passive investing

In Section 2.3, we ask how does the elasticity change when a fraction of investors become
passive. We start with an economy with homogenous investors and assume in initial equilib-
rium p = p̄. Because all investors are identical, we have Ei = Eagg. Combined with elasticity
decision equation (4), this gives E i = (1 + χ)Ei. We denote the initial equilibrium elasticity
of investors by Ei = Eagg = E0.

Assume that a fraction 1 − α of investors becomes passive such that their elasticity
becomes zero and their level of demand is unchanged. We have to determine the new
elasticity of active investors Ei. The individual decisions and equilibrium conditions are:

Ei = E i − χEagg, (IA.1)

Eagg = αEi + (1− α) · 0. (IA.2)

Solving this system gives aggregate elasticity:

Eagg =
α

1 + αχ
Ei. (IA.3)

Eagg =
α

1 + αχ
(1 + χ)E0 = αE0 +

αχ

1 + αχ
(1− α)E0. (IA.4)

The first part of the equation corresponds to the direct effect of the rise in passive investing
and the second part represents the compensation from the equilibrium response.

A.2 Aggregate multiplier and the asymmetry of the demand elas-
ticity

How do prices decrease in the two-layer equilibrium in response to an exogenous shift in the
supply of a stock ∆S. We start by defining aggregation operators which weight investors’
outcomes by the fraction of the stock they own:

Ě [xi] =

∫
xi
Di

S
, (IA.5)

V̌ar [xi] =

∫
x2
i

Di

S
−
(∫

xi
Di

S

)2

(IA.6)

ˇCov [xi, yi] =

∫
(xi − Ě[xi])(yi − Ě[yi])

Di

S
. (IA.7)
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To see the impact on the equilibrium of the change in supply we start by deriving the
change in individual demand:

∆Di = ∆edi−Ei(p−p̄) = −EiDi∆p− (p− p̄)Di∆Ei, (IA.8)

such that change in aggregate demand which corresponds to the change in aggregate supply
reads:

∆S = ∆D = −∆pS

∫
EiDi/S − (p− p̄)S

∫
∆EiDi/S (IA.9)

= −∆pSEagg + χ(p− p̄)S∆Eagg, (IA.10)

where we have used in the last equation the individual elasticity equation Ei = E i − χEagg
leading to the uniform change in individual investors’ elasticity

∆Ei = −χEagg. (IA.11)

To estimate the change in aggregate elasticity we write:

∆Eagg =

∫
∆ (EiDi/S) =

∫
∆EiDi/S −

∆S

S
Eagg +

∫
Ei∆Di/S (IA.12)

= −χ∆Eagg −
∆S

S
Eagg −∆pĚ

[
E2
i

]
+ χ(p− p̄)Eagg∆Eagg. (IA.13)

∆Eagg = − 1

1 + χ− χ(p− p̄)Eagg

(
Eagg

∆S

S
+ Ě

[
E2
i

]
∆p

)
, (IA.14)

Then we can plug the change in aggregate elasticity into the main equation expressing the
change in aggregate demand and solve for ∆p as a function of the change in supply ∆S.

∆S

S
= −Eagg∆p−

χ(p− p̄)
1 + χ− χ(p− p̄)Eagg

(
Eagg

∆S

S
+ Ě

[
E2
i

]
∆p

)
(IA.15)

After some algebra we find the change in prices in response to an exogenous change in supply:

∆p =
1

Eagg
· 1

1 + χ
1+χ

p−p̄
Eagg V̌ar[Ei]

∆S

S
= Magg ·

∆S

S
, (IA.16)

where we define the aggregate multiplier Magg as:

Magg =
1

Eagg
· 1

1 + χ
1+χ

p−p̄
Eagg V̌ar[Ei]

∆S

S
. (IA.17)

A.3 Limits to arbitrage

A more realistic experiment considers a shift in demand across investors. We consider an
experiment where demand across investors changes by {∆di}i. Solving for the equilibrium
response of the price and elasticity is similar to the simple case of a change in aggregate
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supply. First, we consider the effect of a change in investors’ demands on aggregate demand:

∆D = ∆

∫
edi−Ei(p−p̄) =

∫
∆diDi −

∫
Ei∆pDi −

∫
(p− p̄)∆EiDi (IA.18)

∆D

S
= Ě [∆di]− Eagg∆p+ χ(p− p̄)∆Eagg, (IA.19)

where we have used Ě[Ei] = Eagg and ∆Ei = −χ∆Eagg. To solve for the change in price as a
function of the change in investors’ demands we use the second market clearing condition of
aggregate elasticities to find ∆Eagg:

∆Eagg =

∫
∆EiDi/S +

∫
Ei∆Di/S (IA.20)

= −χ∆Eagg +

∫
Ei∆diDi/S −∆p

∫
E2
i Di/S − (p− p̄)

∫
Ei∆EiDi/S (IA.21)

= (−χ+ χ(p− p̄)Eagg) ∆Eagg +

∫
Ei∆diDi/S −∆p

∫
E2
i Di/S (IA.22)

=
1

1 + χ− χ(p− p̄)Eagg
·
(
Ě [Ei∆di]− Ě

[
E2
i

]
∆p
)
. (IA.23)

No we plug this expression back into the expression for the change in aggregate demand
above:

∆D

S
= Ě [∆di]− Eagg∆p+

χ(p− p̄)
1 + χ− χpEagg

·
(
Ě [Ei∆di]− Ě

[
E2
i

]
∆p
)

(IA.24)

The supply is fixed such that ∆D/S = 0, which after rearranging terms gives the final
expression for the change in price:

∆p =
1

Eagg
1

1 + χ
1+χ

p−p̄
Eagg V̌ar [Ei]

(
Ě [∆di] +

χ

1 + χ
(p− p̄) ˇCov (Ei,∆di)

)
(IA.25)

We recognize the first term as the standard aggregate multiplier (obtained when we derived
the response to change in supply) and write the price response as:

∆p = Magg ·

 Ě
[
∆dj

]︸ ︷︷ ︸
average demand shock

+
χ

1 + χ
(p− p̄) ˇCov (Ei,∆di)︸ ︷︷ ︸

average elasticity composition

 . (IA.26)
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A.4 Exogenous change in the baseline elasticity

Last, we consider a change in investors’ baseline elasticity ∆E i. We start with the relative
change in aggregate demand:

∆D

S
= −(p− p̄)

∫
∆EiDi/S − Eagg∆p (IA.27)

= −(p− p̄)Ě [E i] + χ(p− p̄)∆Eagg − Eagg∆p (IA.28)

We use market clearing to get ∆D/S = 0:

∆p = − 1

Eagg
(
(p− p̄)Ě [∆E i]− χ∆Eagg

)
. (IA.29)

The change in aggregate elasticity in the case of changes in baseline elasticities is different
than in the previous cases:

∆Eagg =

∫
∆ (EiDi/S) =

∫
∆E iDi/S − χ∆Eagg +

∫
Ei∆Di/S (IA.30)

=

∫
∆E iDi/S − χ∆Eagg − (p− p̄)

∫
Ei∆EiDi/S −∆p

∫
E2
i Di/S (IA.31)

= Ě [∆E i]− χ∆Eagg − (p− p̄)Ě [Ei∆E i] + χ(p− p̄)Eagg∆Eagg −∆pĚ
[
E2
i

]
(IA.32)

After rearranging the terms and plugging in the expression for the change in the price, we
find:(

1 + χ+ χ(p− p̄)V̌ar[Ei]
Eagg

)
∆Eagg =

(
1 + (p− p̄)V̌ar [Ei]

Eagg

)
Ě [∆E i]− (p− p̄) ˇCov

(
Ei,∆Ēi

)
(IA.33)

Plugging back into the change in the price we have:

∆p = −Magg
p− p̄
1 + χ

(
Ě [∆E i] + (p− p̄) ˇCov (Ei,∆E i)

)
(IA.34)
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B Model of Information Acquisition

B.1 Setup

There is one period and one asset, and a continuum of agents indexed by i ∈ [0, 1]. Each
agent has CARA preferences with risk aversion ρi:

Ui = Ei[−e−ρiWi ], (IA.35)

and initial wealth Wi. The gross risk-free rate is 1, and the (random) asset payoff is f . The
asset is in noisy supply x̄+ x with x̄ an exogenous fixed parameter and x ∼ N (0, σ2

x).
Each agent has a prior that f ∼ N (µi, σ

2
i ). Following Veldkamp (2011), agents start

with a flat prior on f and receive signal µi such that the signal is distributed µi ∼ N (f, σ2
i ).

Each agent can acquire a private signal ηi ∼ N (f, σ2
i,η) at cost ci(σ

−2
i + σ−2

i,η ), with ci(.)
a non-decreasing positive function. That is, obtaining more precise signals is more costly.
The signal being private implies in particular that signal realizations are uncorrelated across
agents conditional on the fundamental f .

We focus on rational expectations equilibria, and among those linear equilibria specifi-
cally. These are equilibria in which the price takes the form:

p = A+Bf + Cx. (IA.36)

An equilibrium is a set of coefficient (A,B,C), information choices σ2
i,η, demand curves

Di(p|ηi) such that:

(a) Each demand function and information choice maximizes expected utility, taking as
given the price function.

(b) The market for the asset clears: x̄+ x =
∫
Di(p|ηi)di.

To solve the model, we process in three steps: first we solve for the price given information
decisions; then we will maximize utility within the model with respect to the information
choice, keeping separation between information decision and portfolio allocation.

B.2 Solving Prices given Information

We are going to solve for the price function p = A+Bf +Cx. First we solve for allocations
given the information choice and finally we use market clearing to pin down the price.

Agents form posterior on the fundamental f based on their prior µi, signal ηi, and from
prices. The signal agents can extract from prices about f is:

s(p) =
p− A
B

= f +
C

B
x. (IA.37)

Given the three signals, we are able to derive the posterior belief about f which will be
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distributed as N (µ̂i, σ̂
2
i ) as follows:

σ̂−2
i = σ−2

i + σ−2
iη +

B2

C2
σ−2
x (IA.38)

µ̂i = σ̂2
i

(
σ−2
i µi + σ−2

iη ηi +
B2

C2
σ−2
x s(p)

)
(IA.39)

Asset Demand. Abstracting from the cost of acquiring information, the utility function
is for a given asset holding qi:

Ui(qi) = −E [exp (−ρi (fqi − pqi))] (IA.40)

= − exp

(
−ρiqi (E[f ]− p) +

ρ2

2
q2
i Var[f ]

)
. (IA.41)

The first order condition with respect to qi gives us immediately:

− ρi (E[f ]− p) + ρ2qi Var[f ] = 0

⇐⇒ qi =
1

ρi Var[f ]
(E[f ]− p)

⇐⇒ qi =
1

ρi
σ̂−2
i (µ̂i − p) (IA.42)

Market Clearing. The market clearing condition reads:∫
qidi = x̄+ x. (IA.43)

Given asset demand this translates into:∫
1

ρi
σ̂−2
i (µ̂i − p) di = x̄+ x (IA.44)

The goal now is to find (A,B,C), which we identify directly from the market clearing con-
dition. First we replace the expressions for the price function and the posteriors mean and
variances in the market clearing equation:∫

1

ρi
σ̂−2
i

[
f +

B

C

σ̂2
i

σ2
x

x

]
di−

∫
1

ρi
σ̂−2
i [A+Bf + Cx] di = x̄+ x (IA.45)
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First, we identify all the terms that are linear in f and find that B = 1. Next, we group the
terms that are linear in x we have:∫

1

ρi

1

C
σ−2
x di−

∫
1

ρi
σ̂−2
i Cdi = 1

⇐⇒
∫

1

ρi

[
1

C
σ−2
x − Cσ̂−2

i − Cσ−2
iη −

1

C
σ−2
x

]
di = 1

⇐⇒ C = −
[∫

1

ρi

(
σ−2
i + σ−2

iη

)
di

]−1

. (IA.46)

Where we used the expression of the posterior found above to substitute into the second
equation. Last we gather the constant terms to find A and

A = −x̄
[∫

1

ρi
σ̂−2
i di

]−1

(IA.47)

B.3 Optimal Information

Computing Expected Utility Conditional on the signal and the price, expected utility
is:

Ui(qi) = −E [exp (−ρi (fqi − pqi)) |p, η] (IA.48)

= − exp

(
−ρiqi (E[f |p, η]− p) +

ρ2

2
q2
i Var[f |p, η]

)
(IA.49)

= − exp

(
−1

2

(E[f |p, η]− p)2

Var[f |p, η]

)
, (IA.50)

where the last line is derived using standard properties of quadratic functions.44

We can write:

E[f |p, η]− p = (E[f |p, η]− E[f |p])︸ ︷︷ ︸
z

+ (E[f |p]− p) (IA.51)

Conditional on p, z has mean 0 and its variance σ2
z can be obtained from:

f − E[f |p]︸ ︷︷ ︸
variance: (σ−2

i +σ−2
x /C2)−1

= (f − E[f |p, η])︸ ︷︷ ︸
variance: σ̂2

i

+z (IA.52)

44For a function f(x) = ax2 + bx, the maximum is reached for x∗ = −b/(2a) and its value is f(x∗) =
−b2/(4a).
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Using equation (7.32) in Veldkamp (2011), this maps to:45

F = −1

2

1

σ̂2
i

(IA.53)

G = − (E[f |p]− p) 1

σ̂2
i

(IA.54)

H = −1

2
(E[f |p]− p)2 1

σ̂2
i

(IA.55)

So expected utility conditional on the price is:

U0|p = −(1− 2σ2
zF )−1/2 exp

(
1

2
G2
(
1− 2σ2

zF
)−1

σ2
z +H

)
= −(1 +

σ2
z

σ̂2
i

)−1/2 exp

(
1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1 1

σ̂2
i

σ2
z − 1

])

= −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1(
1

σ̂2
i

σ2
z − 1− σ2

z

σ̂2
i

)

])

= −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
−1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1

])

U0|p = −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
−1

2

(E[f |p]− p)2

σ̂i
2 + σ2

z

)
. (IA.56)

Expected utility is:

E [U0|p] = −(1 +
σ2
z

σ̂2
i

)−1/2E exp

(
−1

2

(E[f |p]− p)2

σ̂i
2 + σ2

z

)

= −

[
σ−2
i + σ−2

x /C2

σ−2
i + σ−2

iη + σ−2
x /C2

]1/2

· E

[
exp

(
−1

2

(E[f |p]− p)2

(σ−2
i + σ−2

x /C2)−1

)]
(IA.57)

where we use (IA.52) in the second equality.

Optimal information. To derive the optimal information choice, we trade off utility with
the cost of acquiring information which translates in utility terms:

U
(c)
0 = U0 · exp

(
ρici(σ

−2
i + σ−2

iη )
)

(IA.58)

45There is a general formula for the mean of the exponential of the quadratic of a normal variable. If we
take the multivariate normal z ∼ N (0,Σ):

E [exp(z′Fz +G′z +H)] = |I − 2ΣF |−1/2 exp

(
1

2
G′(I − 2ΣF )−1ΣG+H

)
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ci(·) is a function that is increasing in the signal precision and can depend on the i. The
first order condition that determines the information choice is (maximizing − log(−U)):

max
σ−2
iη

− log(−U0)− ρici(σ−2
i + σ−2

iη )

⇐⇒ max
σ−2
iη

− log(−U0)− ρici(ρiEi)

⇐⇒ 1

2

1

σ−2
i + σ−2

iη + σ−2
x /C2

= ρic
′
i(σ
−2
i + σ−2

iη ).

⇐⇒ 1

2

1

ρiEi + E2
aggσ

−2
x

= ρic
′
i(ρiEi). (IA.59)

Example 1: linear cost function. We consider the case of a constant marginal cost for
any information acquired past the initial endowment: ci(x) = c1,i max

(
x− σ−2

i , 0
)
. Note

that in this case not all agents acquire information since σ−2
iη > 0, so the actual precision is:

σ−2
iη = max

(
1

2ρic1,i

− σ−2
i − C−2σ−2

x , 0

)
(IA.60)

This demand for information and the formula for the coefficient C characterizes the equilib-
rium. We recall that:

C−2 =

[∫
1

ρj
(σ−2

j + σ−2
jη )dj

]2

(IA.61)

Example 2: linear response to aggregate elasticity. To relate to the model of Sec-
tion 2, we ask if there is a reasonable family of cost functions that give rise exactly to
equation (4). We are looking for a cost function such that Ei = α−βEagg. Equivalently, this
corresponds to Eagg = 1

β
(α− Ei). Plugging in the first order condition, this gives:

2ρ2
i c
′
i(ρiEi) =

1

Ei + σ−2
x

ρiβ2 (α− Ei)2
(IA.62)

=def c̃
′
i(Ei) =

1

σ−2
x

ρiβ2E2
i +

(
1− 2ασ

−2
x

ρiβ2

)
Ei + α2σ−2

x

ρiβ2

(IA.63)

The denominator of the righ-hand-side is a second degree polynomial, we solve for its
roots. The discriminant is:

∆ =

(
1− 2

ασ−2
x

ρiβ2

)2

− 4
σ−2
x

ρiβ2

α2σ−2
x

ρiβ2
(IA.64)

= 1− 4
ασ−2

x

ρiβ2
(IA.65)

Let us assume ∆ < 0. This is equivalent to ρiβ
2 < 4ασ−2

x . In this case, we have, using

69



standard results on the primitive of the inverse of a polynomial:

c̃i(Ei) =

2 arctan

2
σ−2
x
ρiβ

2 Ei+
(

1−2
ασ−2
x

ρiβ
2

)
√

4
ασ−2
x

ρiβ
2 −1


√

4ασ
−2
x

ρiβ2 − 1
+K (IA.66)

The cost function is convex as long as the argument of the arctangent is negative, so:

Ei ≤ α− ρiβ
2

2σ−2
x

. (IA.67)

We can see that if the right-hand-side of this condition is positive, the condition of ∆ < 0 is
automatically satisfied.

After rescaling, 2ρici(ρiEi) = c̃i(Ei), or equivalently ci(x) = 1
2ρi
c̃i(x/ρi) we have:

ci(x) =
1

ρi

1√
2αβ̃ − 1

arctan

 β̃ x
ρi

+ (1− αβ̃)√
2αβ̃ − 1

+ K̃ (IA.68)

with β̃ = 2σ−2
x /(ρiβ

2), and the condition α − ρiβ2/(2σ−x 2) ≥ 0 becomes αβ̃ ≥ 1. We can
collect these results in a proposition.

Proposition 2. For any a > 0 and b > 0 so that ab > 1, assume the information cost
follows the function:

ci(x) = 0, if x < 0,

ci(x) =
1

ρi

1√
2ab− 1

arctan

(
b x
ρi

+ (1− ab)
√

2ab− 1

)
+K, if 0 ≤ x/ρi ≤ a− b−1

ci(x) = +∞, if x/ρi ≥ a− b−1, (IA.69)

where K is such that ci(0) = 0. This cost function is increasing and convex. Then the
optimal elasticity is:

Ei = E0,i − χEagg, (IA.70)

with E0,i = a and χ =
√

(2σ−2
x )/(ρib).
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B.4 Demand Elasticity

We recall the demand schedule for agent i:

qi =
1

ρi
σ̂−2
i (µ̂i − p)

=
1

ρi
σ̂−2
i

(
σ̂2
i

[
σ−2
i µi + σ−2

iη ηi + C−2σ−2
x s(p)

]
− p
)

=
1

ρi

(
σ−2
i µi + σ−2

iη ηi + C−2σ−2
x (p− A)− σ̂−2

i p
)

=
1

ρi

(
σ−2
i µi + σ−2

iη ηi +
(
C−2σ−2

x − σ̂−2
i

)
p− C−2σ−2

x A
)
. (IA.71)

We can read the demand elasticity as:

Ei = −dqi
dp

= − 1

ρi

(
C−2σ−2

x − σ̂−2
i

)
=

1

ρi

(
σ−2
i + σ−2

iη

)
. (IA.72)

In the model the regression of qi on p would not give us the proper elasticity. There is a
bias in the regression because p is correlated with µi and ηi. It is still possible to recover
the elasticty using an instrument; for example the supply shock x covaries with p but is
uncorrelated with µi and ηi.

We can express the equilibrium in terms of demand elasticities. We define the aggregate
demand elasticity as:

E =

∫
Ejdj = −C−1. (IA.73)

We can rewrite the choice of information as a choice elasticity:

Ek =
1

2ρ2
i c1,i︸ ︷︷ ︸

Investor characteristics

−σ
−2
x

ρi
E2︸︷︷︸

market elasticity

(IA.74)

B.5 Flexibility in Information Acquisition

We turn to the study of flexibility in the acquisition of information. First we look at how
σiη changes as we vary the aggregate elasticity C−2 We take (IA.59) and using the implicit
function theorem:

2

ρi

(
σ−2
i + σ−2

iη + C−2σ−2
x

)
− 1

c′i(σ
−2
iη )

= 0

χ = −
dσ−2

iη

dC−2
=

2/ρiσ
−2
x

2/ρi + c′′i /c
′2
i

=
σ−2
x

1 + ρi
2

c′′i
c′2i

(IA.75)

The response depends on the curvature of the information acquisition cost function. If the
curvature is zero (as is the case in our linear cost example), then the response is highest.
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Whereas a large curvature will elicit a weaker response.

B.6 Price Informativeness

We define price informativeness for investor i as the ratio of the precision of their belief
about the fundamental when they condition on their private information and on the price
and the precision of their belief using private information only:

Ii =
Var(f |µi, ηi, p)−1

Var(f |µi, ηi)−1
=
σ−2
i + σ−2

iη + E2
agg σ

−2
x

σ−2
i + σ−2

iη

(IA.76)

= 1 + Eagg
Eagg
ρiEi

σ−2
x

We also define the absolute price informativeness of the price as

Iabs = Var(f |p)−1 = E2
aggσ

−2
x . (IA.77)
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C Other foundations for competition χ

C.1 Learning from Prices

We consider a model in which agents can learn from prices which highlights a distinct
mechanism from that of the previous section. Two main assumptions differ: agents cannot
acquire information, and there is residual uncertainty about the asset payoff that cannot be
learned. This setting leads to a new determinant of demand elasticity, beyond risk aversion
and prior information. When many traders are aggressive, prices are more informative. How
should one react? On the one hand, the extra information implies that price variation are
less indicative of future return, and that pushes the investor to trade less aggressively. On
the other hand, the extra information implies that returns appear less risky, and that pushes
the investor to trade more aggressively. Increased price informativeness reveals relatively
more about the fundamental than the payoff risk, exactly because of the presence of residual
uncertainty.46 Therefore the first effect dominates: the investor responds by being less
aggressive, χ > 0. This response is stronger when residual uncertainty is higher.

C.1.1 Setup

The asset trades at endogenous price p and pays off f + ε, with ε ∼ N (0, σ2
ε ). There is a

continuum of mass 1 of agents indexed by i. Each agent has CARA preferences with risk
aversion ρi. Each agent has a flat prior on f and receives an independent signal µi such that
µi ∼ N (f, σ2

i ). The asset is in noisy supply x̄+ x with x̄ a constant and x ∼ N (0, σ2
x).

We look for a rational expectations equilibrium, with:

p = A+Bf + Cx (IA.78)

C.1.2 Equilibrium

Learning from the price. After observing the price, agent i’s posterior belief about the
fundamental f is N (µ̂i, σ̂

2
i ), with:

σ̂−2
i = σ−2

i +
B2

C2
σ−2
x (IA.79)

µ̂i = σ̂2
i

(
σ−2
i µi +

B2

C2
σ−2
x s(p)

)
(IA.80)

where the signal from the price is:

s(p) =
p− A
B

= f +
C

B
x (IA.81)

Taking the average over agents of type i (we will use a law of large numbers in the

46In the model of the previous section, the two effects exactly cancelled out. The response was coming
from changes in information acquired, which is shut down here.
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population), we have

Ei [µ̂i] = σ̂2
i

(
σ−2
i f +

B2

C2
σ−2
x

[
f +

C

B
x

])
(IA.82)

= f +
B

C

σ̂i
2

σ2
x

x (IA.83)

Asset Demand. Asset demand qi is given by the standard optimum portfolio choice:

qi =
1

ρi

E [f + ε|µi, p]− p
var [f + ε|µi, p]

(IA.84)

=
1

ρi

µ̂i − p
σ̂i

2 + σ2
ε

(IA.85)

Market Clearing. The total demand for the asset must equal its supply:∫
qidi = x̄+ x, (IA.86)∫

1

ρi

1

σ̂i
2 + σ2

ε

[
f +

B

C

σ̂i
2

σ2
x

x− A−Bf − Cx
]

= x̄+ x. (IA.87)

This gives:

B = 1, (terms in f) (IA.88)∫
1

ρi

1

σ̂i
2 + σ2

ε

[
B

C

σ̂i
2

σ2
x

− C
]
di = 1. (terms in x) (IA.89)

Plugging in the definition of σ̂i
2, we obtain∫

1

ρi

1

σ̂i
2 + σ2

ε

[
1

C2

σ̂i
2

σ2
x

− 1

]
di = C−1, (IA.90)∫

1

ρi

1

σ̂i
2 + σ2

ε

[
1

C2
σ−2
x

1

σ−2
i + 1

C2σ−2
x

− 1

]
di = C−1, (IA.91)∫

1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

[
1

C2
σ−2
x − σ−2

i −
1

C2
σ−2
x

]
di = C−1. (IA.92)

Therefore we have:

C−1 = −
∫

1

ρi

σ̂i
2

σ̂2
i + σ2

ε

1

σ2
i

di, (IA.93)

−C−1 =

∫
1

ρi

1

1 + σ2
ε

(
σ−2
i + 1

C2σ−2
x

) 1

σ2
i

di. (IA.94)
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Define C̃ = −C, which is positive. We can rewrite:

C̃−1 =

∫
1

ρi

1

1 + σ2
ε

(
σ−2
i + 1

C̃2σ
−2
x

) 1

σ2
i

di. (IA.95)

The left-hand-side of this equation is decreasing in C̃. The right-hand-side is increasing
in C̃. If C̃ → 0, the left-hand-side goes to ∞ and the right-hand-side goes to 0. If C̃ →∞,
the left-hand-side goes to 0 and the right-hand-side has a finite positive limit. Therefore,
there is a unique solution to the equation, and a unique linear equilibrium.

C.1.3 Equilibrium Elasticities

We now derive demand elasticities. We show how individual demand elasticities respond to
the aggregate elasticity. Demand is given by:

qi =
1

ρi

µ̂i − p
σ̂i

2 + σ2
ε

(IA.96)

=
1

ρi

σ̂2
i

(
σ−2
i µi + B2

C2σ
−2
x s(p)

)
− p

σ̂i
2 + σ2

ε

. (IA.97)

Therefore the slope of the demand curve is:

Ei = − 1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

(
1

C2
σ−2
x − σ̂i−2

)
(IA.98)

= − 1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

(
1

C2
σ−2
x − σ−2

i −
1

C2
σ−2
x

)
(IA.99)

=
1

ρi

σ̂2
i

σ̂i
2 + σ2

ε

1

σ2
i

. (IA.100)

Here, we observe clearly the intuition for the role of price informativeness. When prices
are more informative, low σ̂2

i , expected returns respond less to the price, the numerator of the
first fraction. However, the perceived risk of the asset also decreases, the denominator of the
first fraction. Because of residual uncertainty σ2

ε , the effect on the asset risk is weaker than
the effect on expected return: the ratio decreases and the trader becomes less aggressive.

More aggregate elasticity leads to more informative prices, so this mechanism will lead
to a negative response of individual elasticity to aggregate elasticity. Formally, note that∫
i
Ei = Eagg = C̃−1. Plugging in, we obtain:

Ei =
1

ρi

1

1 + σ2
ε

(
σ−2
i + E2

aggσ
−2
x

) 1

σ2
i

(IA.101)

=
1

ρi

1

σ2
i + σ2

ε + σ2
i σ

2
εσ
−2
x E2

agg

(IA.102)

Clearly, the individual elasticity Ei is decreasing in the aggregate elasticity Eagg. Lin-
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earizing this expression, we obtain the counterpart of competition χ > 0:

χ = − dEi
dEagg

(IA.103)

=
1

ρi

2σ2
i σ

2
εσ
−2
x Eagg(

σ2
i + σ2

ε + σ2
i σ

2
εσ
−2
x E2

agg

)2 . (IA.104)

C.2 Price Impact

We now consider a model in which investors have non-negligible price impact and take it into
account when making trading decisions in the style of Kyle (1989). This leads to a foundation
for a negative competition parameter χ. Intuitively, when other traders are aggressive, I face
a very elastic residual supply curve when sending orders to the market. This implies that
my trades will not have a large price impact, hence I can also trade aggressively.

C.2.1 Setup

There are I investors indexed by i. Each agent has CARA preferences with risk aversion ρi:

Ui = Ei[−e−ρiWi ], (IA.105)

and initial wealth Wi. The gross risk-free rate is 1, and the random asset payoff f is dis-
tributed N (µ, σ2). The asset is in noisy supply x̄ + x with x̄ an exogenous fixed parameter
and x ∼ N (0, σ2

x).
As in Kyle (1989) we are interested in rational expectation equilibria with imperfect

competition. We look for a linear pricing rule p = A + Cx. We solve for the individual
demand strategies and look for linear strategies of the form:

di = di − Eip (IA.106)

C.2.2 Solving for optimal demand strategies

Investor i maximizes their profit taking as given the residual demand from other investors’
demand schedule. We use market clearing to find the residual supply curve:∑

i

di = x̄+ x

di = x̄+ x−
∑
k 6=i

dk +

(∑
k 6=i

Ek

)
p

p(di) =

(∑
k 6=i

Ek

)−1

︸ ︷︷ ︸
λ−i

di +

(∑
k 6=i

Ek

)−1

·

(∑
k 6=i

dk − x̄− x

)
︸ ︷︷ ︸

p−i

. (IA.107)
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To find the optimal demand of investor i for the asset, we write their program47

max
d

E{f − p(d)|p−i}d−
ρi
2

Var{f − p(d)|p−i}d2 (IA.108)

max
d

(µ− p−i)d− λ−id2 − ρi
2
d2σ2.

The first order condition gives us:

di =
µ− p

ρiσ2 + λ−i
. (IA.109)

We can already see that stronger λ−i leads to less aggressive trading because of a larger
price impact. Remember that λ−i is the aggregate of demand elasticities of other investors,
a quantity closely related to aggregate elasticity. We now close the equilibrium to show this
relation more clearly.

C.2.3 Solving for aggregate demand elasticity

Given our original demand di = di − Eip, we are able to identify the linear terms as:

di =
µ

ρiσ2 + λ−i
; Ei =

1

ρiσ2 + λ−i
=

1

ρiσ2 + (Eagg − Ei)−1 , (IA.110)

where we define the aggregate elasticity:

Eagg =
∑
i

Ei. (IA.111)

Next we show that there is a unique solution for the aggregate elasticity. From the expression
in equation (IA.110), we remark that Ei solves a quadratic. We rule out the larger of the
two roots and the solution is48

Ei =
1

2

 2

ρiσ2
+ Eagg −

√(
2

ρiσ2

)2

+ E2
agg

 (IA.112)

To show that there is a unique stable equilibrium we consider the fixed point problem
F (x) = x, with F defined by:

fi(x) =
1

2

 2

ρiσ2
+ x−

√(
2

ρiσ2

)2

+ x2

 , (IA.113)

F (x) =
∑
i

fi(x). (IA.114)

47Note that expectation and variances are conditional on the residual demand curve p−i which is equivalent
to conditioning on p

48The larger root is such that Ei > Eagg which violates
∑
i Ei = Eagg.

77



The function F is positive, increasing, and concave. Moreover F (0) = 0, F ′(0) = I/2, and
limx→+∞ F

′(x) = 0, we conclude that there is a unique non-zero solution for Eagg as long as
I ≥ 3.

The relation derived in (IA.112) between Ei and Eagg is not linear. We can approximate
this equation linearly by Ei = E i − χEagg with

χ = −1

2

1− Eagg√
E2
agg +

(
2

γiσ2

)2

 < 0 (IA.115)

This expression gives bounds on the value of χ: −1/2 ≤ χ < 0.

C.3 Imperfect Information

Assume your optimal elasticity is Ei = E i−χE [Eagg|Fi]. With perfect knowledge, you obtain:

Ei = Ēi−χEagg Assume the agent observes a signal Êagg = Eagg + ε (with σ2
ε ) and has a prior

Eagg ∼ N
(
Ē , σ2

)
. Then we have:

E
[
Eagg|Êagg

]
=

1
1
σ2
ε

+ 1
σ2

(
1

σ2
ε

Êagg +
1

σ2
Ē
)

(IA.116)

Therefore:

Ei = Ēi − χ
1

1
σ2
ε

+ 1
σ2

1

σ2
Ē − χ

1
σ2
ε

1
σ2
ε

+ 1
σ2

Êagg (IA.117)

C.4 Partial Equilibrium Thinking

We repeat the calculation on the rise in passive investing in Section 2.3 in a situation with
partial equilibrium thinking.

We assume that all investors are homogenous and their initial elasticity is Ei = E0. What
happens to the economy if a fraction 1−α of these investors become passive, their elasticity
reduces to zero. To model partial equilibrium thinking, we assume that active investors
only react to the effect of the switch to passive on aggregate elasticity and do not take into
account the collective response.

Because investors are infinitesimal, this corresponds to forecasting a change in elasticity
of ∆E forecast

agg = −(1− α)E0. This implies that each active investor changes her elasticity by

∆Ei = −χ∆E forecast
agg = χ(1− α)E0. (IA.118)

Aggregating across all investors, the new aggregate elasticity is:

EPETNEW = αE0 (1 + χ(1− α)) = αE0 + (1− α)χαE0. (IA.119)
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The new elasticity with partial equilibrium thinking is in contrast to our baseline model in
Section 2.3, ENEW :

EPETNEW − ENEW = (1− α)E0αχ
αχ

1 + αχ
. (IA.120)

The difference is positive when χ > 0. Because investors do not account for the response of
others, they overreact to the initial change in elasticity. This leads to a higher final level of
aggregate elasticity and is therefore akin to more competition.
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D Data Appendix

D.1 Institutional Holdings Data

TBD.

D.2 CRSP and Compustat

TBD

D.3 Identifying Passive Investing

Passive investors are insensitive to prices. Consequently, at each date we identify passive
investors as investors with elasticity close to zero in a Koijen and Yogo (2019) type demand
system:

log
wik
wi0
− pk = d0i + d′1itX

(d)
k − E

fixed
i pk + εik, (IA.121)

where X(d) contains log book equity. An investor is defined as passive if their fixed
elasticity is close to zero, i.e. Efixedi < κ, for small κ. We choose κ = 0.06 to calibrate
the level of passive investing, and define a stock’s passive share as the ownership-weighted
average of an indicator that is 1 if the investor is passive, and zero otherwise. That is,

|Activek| = 1−
∑
i

wikAi
exp(pk)︸ ︷︷ ︸

ownership share

1{Efixedi <0.06}. (IA.122)

Appendix Figure IA.8 shows the the cross-sectional median of |Activek| over time. We
validate our measure in the setting of Russell index switching. Specification (4) of Ap-
pendix Table IA.4 shows that our measure of passive investing in the cross-section strongly
responds to stocks switching between the Russell 1000 and 2000 indices, by about 4% of
total ownership.

D.4 Additional Data Definitions

TBD
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E Identification Strategy

E.1 Moment Conditions

We estimate the model using the method of moments. All of the moment conditions derive
from the identifying assumption of equation (25). We list these moments here:

E
[
εjk1{j=i}

]
= 0,∀i (IA.123)

E
[
εjkX

(d)
k 1{j=i}

]
= 0,∀i (IA.124)

E
[
εjkp̂k,i1{j=i}

]
= 0,∀i (IA.125)

E
[
εjkX

(e)
k p̂k,j1{j=i}

]
= 0,∀i (IA.126)

E
[
εjkÊagg,k

]
= 0 (IA.127)

E
[
εjkÊagg,kp̂k,j

]
= 0 (IA.128)

There are exactly as many moment conditions as model parameters.

E.2 Solving the Reflection Problem

One challenge for identification is the reflection problem. How can we separate the individ-
ual component of demand elasticity from the competitive response to other investors. We
show that the presence of variation in investor population across stocks allows to solve this
problem. To isolate this argument from other identification concerns, we assume that we
observe individual elasticities, Eik. For exposition purposes, we focus on a simplified version
of the model in which E i does not depend on asset characteristics.

We provide sufficient conditions for the uniqueness of a decomposition of the individual
elasticities into investor specific elasticities Ei and the competitive response controlled by χ.
After proving this result, we come back to the economic content and the empirical relevance
of these conditions.

Before stating the theorem, we introduce a few notations. We define the undirected graph
G of investor-stock connections. The vertices (the nodes) are the investors i and the stocks
k. There is an edge between i and k if and only if i ∈ Ik. There are no edges between two
investors or two stocks.

Theorem 3. A decomposition of demand elasticities {Eik}i,k into individual elasticities {E i}i
and the competition parameter χ is unique if:

(a) The graph G of investor-stock connections is connected.

(b) Position-weighted averages of demand elasticities are not constant across stocks: there
exists k and k′ such that

∑
i∈Ik wik/pkAiE i 6=

∑
i∈Ik′

wik′/pk′AiE i.

Proof. Let us assume that there exist two distinct decompositions ({E (1)
i }i, χ(1)) 6=

({E (2)
i }i, χ(2)) and the two conditions (a) and (b) hold. Each decomposition for l ∈ {1, 2}
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satisfies the two conditions of the elasticity layer

Eagg,k =
∑
i∈Ik

wikAi/pkEik, for all k ∈ K (IA.129)

Eik = E (l)
i − χ(l)Eagg,k, for all k ∈ K and i ∈ Ik. (IA.130)

We subtract the decomposition of Eik for l = 1 from the decomposition for l = 2 and obtain:(
χ(2) − χ(1)

)
Eagg,k = E (2)

i − E
(1)
i , for all k ∈ K and i ∈ Ik. (IA.131)

Here we see immediately that if χ(1) = χ(2), then for all i, E (1)
i = E (2)

i , thus violating the
initial assumption of distinct decompositions. Hence, we focus on the case of χ(1) 6= χ(2).

We define the function:

f(x) =

{
(χ(2) − χ(1))Eagg,x for x ∈ K
E (2)
x − E (1)

x for x ∈ I.
(IA.132)

We restate the equality of equation (IA.131) as:

f(x) = f(x′), if and only if there is an edge between x and x′ on G. (IA.133)

Therefore, since the graph G is connected: ∀x, x′, f(x) = f(x′), and f is a constant. We write
the constant f = a, and plug in the constant in the aggregation of individual elasticities:

Eagg,k =
∑
i∈Ik

wikAi/pkEik =
∑
i∈Ik

wikAi/pkE (1)
i − χ(1)

∑
wikAi/pkEagg,k (IA.134)

⇐⇒ (1 + χ(1))Eagg,k =
∑
i∈Ik

wikAi/pkE (1)
i (IA.135)

⇐⇒ (1 + χ(1))
a

χ(2) − χ(1)
=
∑
i∈Ik

wikAi/pkE (1)
i for all k, (IA.136)

where we use Eagg,k = a/(χ(2) − χ(1)). Equation (IA.136) violates assumption (b), which
concludes the proof.

The intuition behind theorem 3 is that identification relies on comparing the behavior of
one investor for two different stocks with different populations of investors. If this investor
trades less agressively when surrounded by more agressive investors, we conclude that com-
petition χ is positive. A challenge to implement this comparison is that we already need to
know the elasticity of these other investors. This is a chicken-and-egg question. The ability
to find a unique solution to this problem relies on being able to cycle through investors with
enough variation in composition: this is the essence of conditions (a) and (b).

To better understand why these conditions are important, we show examples of how
the model is not identified when either (a) or (b) is violated. Starting with (a), let us
consider the case where each stock has its own non-overlapping population of investors. In
this case, there is no identification. Because a given investor only invests in one stock, it
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is not possible to tell if this investor is agressive because of her own characteristics or in
response to the other investors. As an example that violates condition (b), consider the
case in which all investors have the same size and relative portfolio positions such that:
∀k, k′, wikAi/pk = wik′Ai/pk′ . Investor composition is the same for all stocks and therefore
there is no information in comparing different stocks. Relatedly, we could also consider a
violation of (b) where all individual elasticities are identical across investors: E i = E . Then,
for all k we have

∑
i∈Ik wik/pkAiE i = E : the aggregate elasticity for all stocks is identical.

Intuitively, even though there is variation in investor composition across stocks, all investors
behave the same way in terms of elasticity. This is equivalent to having a single investor,
and we cannot separate individual elasticities from the response to other investors.

How can we assess these conditions empirically? The graph G of investors-stocks connec-
tions can be observed directly in our data and we can assess immediately that condition (a)
is satisfied using known algorithms such as depth-first-search. Condition (b) is potentially
more challenging because it relies on parameter estimates E i. However, the inspecting the
condition shows it holds generically. Condition (b) stipulates the equality of K linear forms
applied to the vector (E i)i. It is violated if and only if (E i)i ∈

⋂
k>1(wk − w1)⊥, a set of

measure 0 for almost all combinations of wk. In addition, there is still the possibility of
verifying whether the condition is satisfied empirically, once the econometrician has found a
set of parameter estimates.

E.3 Numerical Procedure

The main numerical challenge is that we need to solve for the equilibrium elasticity Eagg,k at
the same time as we are estimating the model, and in particular the competition parameter
χ and the parameter ξ. We describe a tractable approach to do so. We solve a series of
nested problems.

Step 1. Given a guess for (χ, ξ) and {Eagg,k}k, we can estimate all remaining model pa-
rameters by two-stage least squares regression investor by investor. This corresponds to the
run for each investor i the regression:

log
wik
wi0
− pk − χ Eagg,k pk − ξ Eagg,k = d0i + d′1itX

(d)
k −

(
E0i + E ′1iX

(e)
k

)
pk + εik, (IA.137)

where pk and X
(e)
k pk are instrumented by p̂k,i and X

(e)
k p̂k,i. Running these regressions is

equivalent to solving moment conditions (IA.123) to (IA.126).

Step 2. Given a guess for (χ, ξ), we look for equilibrium values of {Eagg,k}k. We start
from the aggregate elasticities implied by the model of (Koijen and Yogo, 2019). We run
step 1 above. With the newly estimated E i and the parameter χ, we solve explicitly for the
equilibrium elasticity they imply by solving the linear system of equations (16) and (20). We
update our guessed aggregate elasticity by taking a weighted average of the previous iteration
and these new implied values with weights of 75% and 25%. We repeat this updating process
until the values of {Eagg,k}k converge. This step ensures that our estimated model satisfies
the 2-layer equilibrium.
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Step 3. We estimate χ and ξ. We start from a guess for (χ, ξ) and run step 2 to find
the aggregate elasticities it implies. With these values, we estimate the pooled regression of
equation (21):

log
wik
wi0
− pk = d0i + d′1itX

(d)
k + ξ Eagg,k −

(
E0i + E ′1iX

(e)
k − χ Eagg,k

)
pk + εik, (IA.138)

using two-stage least squares with all the instruments of the investor-level regression, Êagg,k
and Êagg,kp̂k,i. This is a very large scale regression with many fixed effects and investor-
specific coefficients. We speed up the estimation of this large-scale regression tremendously
by taking advantage of the Frisch-Waugh-Lovell theorem. We absorb all individual-level
variables using investor-specific regressions, and are left with only the coefficients χ and ξ
to estimate in the pooled data.

The pooled regression gives us a new guess for (χ, ξ). We use a bivariate quasi-Newton
method to find a fixed point for (χ, ξ). With such a fixed point, we are sure that our estimates
satisfy simultaneously all the moment conditions of Appendix Section E.1 and the 2-layer
equilibrium.
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F Additional Empirical Results

F.1 Trading big and small stocks

We investigate whether firms trade big and small stocks differently. Our estimates of elas-
ticities by stocks suggest that the demand for large stocks is more inelastic (see Figure 3).
To explain this result, one hypothesis is that large stocks mechanically tend to receive a
high portfolio weight and that investors are unwilling to adjust their largest positions. For
example, a 10% relative increase in portfolio weight would create much larger tracking error
to the index for large positions than for small positions. Also, the granular nature of large
stocks imply that they have fewer substitutes.

To complement our structural results and investigate this hypothesis, we compare the
trading activity of investors across the distribution of their portfolio. For a given investor-
quarter, we compute for each stock the squared relative change in the number of shares:

Trading Activityi,k,t =

[(
Ai,twik,t
pk,t

− Ai,t−1wik,t−1

pk,t−1

)
/
Ai,twik,t
pk,t

]2

(IA.139)

We sort positions by portfolio weights, and compute the ratio of the cumulative sum of
trading activity to the total sum. This gives us a relation between the percentile of portfolio
weight and the cumulative share of total trading activity. We average this relation within
size groups of investors and present our results in Figure IA.1 for various dates.

If trading activity for all portfolio weights, this curve should coincide with the 45 degree
line. Instead, we see the curve is always above the 45 degree line and particularly flat along
the largest investor positions. This implies there is relatively less trading activity for the
largest stocks. In addition, we observe that this pattern is more pronounced for the largest
investors (panel D) than for small investors (panel A). Because larger investors are more
important for the biggest stocks, this will amplify the lack of trading activity for the biggest
stocks.
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C. AUM quartile 3 D. AUM quartile 4 (largest institutions)
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Figure IA.1. Trading activity across portfolio positions. Figure IA.1 presents
the cumulative share of trading activity (defined in equation (IA.139)) by quantiles of
investor portfolio weights. We aggregate the statistics by date and quartiles of assets
under management.



G Appendix Tables

Table IA.1.
Estimates of competition χ under alternative specifications starting
2003Q3

Estimates for χ

Median 25th pct. 75th pct.

(1) Baseline Specification 2.21 1.85 2.75

(2) BE-weighted Instrument for Eagg 1.91 1.54 2.29
(3) Additional Controls 2.49 2.09 3.28
(4) AUM-weighted Regression 2.3 1.86 2.77
(5) Book-weighted Regression 2.24 1.77 2.68
(6) Investor-Type Grouping 2.46 1.96 2.93
(7) Constant χ 2.07

(8) No Instrument for Eagg 1.27 0.88 1.59
(9) No Instruments 1.01 0.73 1.41

Table IA.1 presents statistics of estimates of χ across dates (2003Q3 - 2020Q4) under various specifica-
tions. Our baseline specification (1) estimates χ given aggregate elasticities Eagg,k each period via the
regression:

log
wik
wi0
− pk = d0i + d′1iX

(d)
k + ξ Eagg,k −

(
E0i + E ′1iX

(e)
k − χ Eagg,k

)
pk + εik,

where X
(d)
k contains log book equity and log book equity squared. X

(e)
k is log book equity. Active

investors with fewer than 1,000 stock holdings are grouped together based on their assets under man-
agement such that each group on average contains 2,000 stock holdings. The regression is weighted such
that each group’s weights sum to the same constant. Specification (2) shows estimates of χ based on the

book-equity weighted instrument. Specification (3) adds additional characteristics to X
(d)
k ; profitabil-

ity, investment and dividends relative to book equity. Specification (4) value-weights the regression by
weighting investors by their AUM. Specification (5) similarly value-weights the regression by weighting
investors by their book assets. An investor’s book assets are determined as follows: A stock’s book equity
is first allocated to investors proportional to the number of shares they hold, and subsequently summed
up within investor across stocks to form an investor’s books assets. Specification (6) follows Koijen and
Yogo (2019) in grouping investors both by investor type and AUM. Institutional investors whose type
we cannot determine are bundled together in a separate group. Specification (7) imposes for χ to be
constant across time in the estimation, with each year receiving equal weight. Specification (8) reports
results without instrumenting for the aggregate elasticity Eagg. Specification (9) additionally removes the
instrument for prices.

87



88

Table IA.2.
Summary Statistics of Aggregate Elasticity Eagg with book-equity weighted in-
strument

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.504 0.428 0.482 0.569
Fixed elasticity 0.389 0.357 0.389 0.442

Panel B: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.

Elasticity Eagg −0.111 −0.12 −0.104 −0.091
Fixed elasticity −0.0286 −0.0309 −0.0272 −0.0249

Panel C: Residual cross-sectional standard deviation of elasticity

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.0548 0.0438 0.05 0.0591
Fixed elasticity 0.0842 0.0739 0.0826 0.0917

Table IA.2 presents statistics of the aggregate elasticity Eagg(k, t). We estimate the elasticity in our model
accounting for competition χ and without competition as in Koijen and Yogo (2019) (denoted by fixed
elasticity). Panel A has summary statistics of the average elasticity by date. Panel B shows summary
statistics of the coefficient βt from the the regression Eagg(k, t) = αt + βtsizek,t + εk,t by date. Panel C
reports summary statistics of the cross-sectional standard deviation of the residual from the regression
described in Panel B. The sample period is 2001 to 2020.
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Table IA.3. Change in aggregate stock-level elasticity Eagg,k on the
active share using estimates from the model with a constant χ

Log Change in Elasticity

(1) (2) (3) (4) (5)

Change in Active share 0.321*** 0.462*** 0.441*** 0.412*** 0.428***
(0.058) (0.028) (0.026) (0.025) (0.049)

Date Fixed Effects Yes Yes Yes Yes
Stock Fixed Effects Yes
Controls Yes Yes

Estimator OLS OLS OLS OLS IV

N 50,292 50,292 49,661 50,292 10,619
R2 0.017 0.269 0.282 0.318 0.627
First-stage F statistic 9.444
First-stage p value 0.000

Table IA.3 reports a panel regression of annual log change in stock level elasticity Eagg,k on the annual log
change in the active share |Activek|. We use the estimates from the model with a constant value of χ over
time. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Column 4 uses date fixed effects
and controls for lagged book equity and annual log changes of log book equity. Column 5 instruments the
log change in the active share |Activek| between Q1 and Q2 in any given year by two indicator variables
corresponding to stocks switching between Russell 1000 and 2000 in either direction. It filters to stocks
with CRSP market capitalization ranked between 500 to 1500 as of the end of Q1 to maintain comparability
between stocks. The sample period is 2001-2020 for columns 1-4, and 2007-2020 for column 5. Standard
errors are 2-way clustered by date and stock for columns 1-4, and clustered by date for column 5.
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Table IA.4. Change in aggregate stock-level elasticity Eagg,k on the
active share around Russell index reconstitution

Log Change in Elasticity Log Change in Active share

(1) (2) (3) (4)

Log Change in Active share 0.389*** 0.431***
(0.066) (0.021)

Log Change in Book Equity -1.158*** -1.159*** -1.151*** 0.018
(0.049) (0.049) (0.050) (0.018)

Lagged Book Equity 0.005 0.005 0.007 0.003
(0.007) (0.007) (0.007) (0.002)

Switch from Russell 2000 to 1000 0.017*** 0.035***
(0.004) (0.008)

Switch from Russell 1000 to 2000 -0.011 -0.043***
(0.006) (0.012)

Date Fixed Effects Yes Yes Yes Yes

Estimator IV OLS OLS OLS

N 10,619 10,619 10,619 10,619
R2 0.748 0.748 0.670 0.090
First-stage F statistic 9.444
First-stage p value 0.000

Table IA.4 reports a panel regression of log change in stock level elasticity Eagg,k on the log change in the
active share |Activek| around Russell index reconstitution, in particular between end of Q2 and Q1, from
2007 to 2020. The panel filters to stocks with CRSP market capitalization ranked between 500 to 1500 as
of the end of Q1 to maintain comparability between stocks. The active share |Activek| is instrumented by
two indicator variables corresponding to stocks switching between Russell 1000 and 2000 in either direction.
We use the estimates for Eagg,k from the model with a variable value of χ over time. Column 2 and 3 show
the corresponding OLS and reduced-form regressions, respectively. Column 4 is the first-stage regression.
Standard errors are clustered by date.
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Figure IA.2. Effect of a Passive Change.
Figure IA.2 shows the time-series of the estimates for the competition parameter χ.
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Figure IA.3. Distribution of the estimates of competition χ across
dates. Figure IA.3 presents an histogram of our estimates of the competition
parameter χ for each date between 2001 and 2020. The median estimate over the
time-period is χ = 2.15 (dashed redline).
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Figure IA.4. Time-series of competition χ.
Figure IA.4 shows the time-series of the estimates for the competition parameter
χ.
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Figure IA.5. Estimates of χ using the book-equity weighted instru-
ment.
Figure IA.5 presents an histogram of our estimates of the competition parameter
χ where the instrument for aggregate elasticity weights portfolios by book equity,
for each date between 2001 and 2020. The median estimate over the time-period
is χ = 1.91 (dashed redline).
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Figure IA.6. Relevance condition for the the book-equity weighted
elasticity instrument.
Figure IA.6 shows the first-stage F-statistics (Kleibergen-Paap) for the instru-
ment of price times the aggregate elasticity when the instrument of the aggregate
elasticity is weighted by book equity.
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Figure IA.7. Net Assets of Passive and Active Funds.
Figure IA.7 shows the net assets of domestic mutual funds and ETFs in trillions of
dollars (year-end) for passive funds (black solid line) and active funds (blue dashed
line); Source ICI (2020).



96

2000Q4 2004Q4 2008Q4 2012Q4 2016Q4 2020Q4
0%

25%

50%

75%

59.5%

81.4%

Figure IA.8. Fraction of Active Investors.
Figure IA.8 reports the fraction of active investors according to our model. For
each stock, we compute the ratio of total position of active investors and the
market capitalization. We report the average across stocks.
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Figure IA.9. Distribution of individual-specific elasticities E ik.
Figure IA.9 shows the quantiles of the distribution of individual elasticities E ik
across investors for each stock and each date. We average the quantiles for each
date to plot their time series. The black bold line is the average across investors.
The two think grey lines represent the 25th and 75th percentiles. The two dashed
grey lines represent the 10th and 90th percentiles. And the solid blue line repre-
sent the average individual elasticities of the household investor.
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Figure IA.10. Decomposition of the change in aggregate elasticity for
the the book-equity weighted elasticity instrument.
Figure IA.10 shows the decomposition derived in equation (30) over time, based
on elasticities estimated from the book-equity weighted instrument for Eagg,k.
We compute each term of the decomposition for each date and accumulate the
changes over time.
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