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Abstract

Collateral is often viewed as a low-cost mechanism to mitigate external financing frictions.
However, we find that firms face a substantial cost to pledge collateral. Exploiting a regulatory
quirk of the disaster loan program of the Small Business Administration (SBA), we estimate
that the cost of collateral is equivalent to 6%-9% of the loan value for small businesses. The
magnitude of the collateral cost depends on the type of the collateral requirements (fixed
lien vs. floating lien), business sectors, and collateral laws. Our finding suggests that a
pecking order between secured and unsecured borrowing may not hold. Instead, the secured
borrowing decision may be best characterized by a trade-off theory. The collateral trade-off
has important implications for firms’ financing decisions, the financial accelerator mechanism,
and the design of government lending programs.
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1 Introduction

Collateral is often viewed as a low-cost mechanism to mitigate conflicts of interest and enforcement

frictions in lending (DeMarzo, 2019). Since the seminal work of Myers and Majluf (1984), it is long

believed that there exists a pecking order between collateralized and uncollateralized borrowing:

firms should first issue collateralized debt, and then, after exhausting such claims, issue uncol-

lateralized debt (Benmelech, Kumar, and Rajan, 2020a). Empirically, collateralized debt usually

entails substantially lower interest rates than uncollateralized one, which seems to be consistent

with this view.

Pledging collateral, however, could impose hidden costs for firms. First, firms may lose oper-

ational flexibility because encumbered assets cannot be sold to a third party, moved to a different

location, used for another purpose, refurbished, and transformed without the protection or con-

sent of the lender (Mello and Ruckes, 2017).1 Firms could also lose financial flexibility because

high asset encumbrance makes it harder to obtain unsecured financing (Donaldson, Gromb, and

Piacentino, 2020) or access liquidity through an asset sale (Donaldson, Gromb, and Piacentino,

2019).2 Finally, firms may lose bargaining power in financial distress as secured creditors may not

be interested in restructuring the debt payment (Benmelech, Kumar, and Rajan, 2020a). Although

the aforementioned theoretical literature has advanced our understanding of the role of collateral,

there is still a lack of evidence on whether the collateral cost is empirically relevant for firms’

financing decisions.

The lack of empirical evidence could be partly attributed to the fact that, unlike the interest

cost, the cost of pledging collateral is largely a shadow cost. To address this challenge, we use

a revealed preference approach to infer the collateral cost from firms’ choice of loan contracts.

Specifically, we exploit a regulatory quirk of the disaster loan program provided by the Small

1In a series of interviews with practitioners conducted by Mann (1996), a CFO attributes his company’s aversion
to secured debt to “a question of flexibility and having to deal with it”. He further explains that “in a secured loan,
you just don’t have the same flexibility of dealing with your properties as if you owned them unencumbered.”

2For instance, according to S&P RatingsDirect, “In the real estate industry, where companies have substantial
unencumbered assets, this can be a critical source of financial flexibility, given the very large and liquid market for
property-specific mortgages.”
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Business Administration (SBA). This program provides secured loans to firms affected by natural

disasters, but collateral is exempted if the loan size is below a certain threshold. We observe a

significant number of firms bunch at the collateral threshold, as shown in Figure 1. This bunching

pattern provides prima facie evidence that firms are averse to pledging collateral and would rather

accept a smaller loan amount than they would naturally desire. The extent of bunching could

reveal the collateral cost. If many firms avoid pledging collateral by bunching at the threshold,

the collateral cost is likely to be high. On the contrary, if only a few firms bunch, the collateral

cost is likely to be low.

We use a simple model to formalize the intuition and guide the estimation. In the model, firms

have different desired loan sizes, which follows a smooth distribution in the absence of regulatory

distortion. The collateral requirement creates a discontinuity in firms’ payoff. Firms respond

to the collateral threshold differently based on how far away their desired loan size is above the

threshold. Firms just above the threshold choose to bunch at the threshold to avoid pledging

collateral. Firms far away from the threshold choose not to bunch because they would have to

forgo too much funding, which reduces their profits. Finally, there exists a marginal firm that is

indifferent between bunching and no bunching. The funding that the marginal firm is willing to

give up to avoid pledging collateral reveals the shadow cost of collateral.

We adapt the bunching estimation technique developed in the public finance and labor lit-

erature (Saez, 2010; Kleven and Waseem, 2013; Chetty, Friedman, Olsen, and Pistaferri, 2011)

to estimate the collateral cost. Firms’ bunching creates an excess mass at the threshold and a

missing mass above it. The desired loan size of a marginal firm is identified when the missing

mass equals the excess mass. Applying the bunching estimator to the Business Physical Disaster

Loan (BPDL) program, we find that the collateral cost is equivalent to an interest of 9% for the

sample firms. In terms of the dollar value, the shadow cost of collateral amounts to $2,300 for a

loan of $25,000. The estimated collateral cost is an order of magnitude larger than the direct cost

associated with pledging collateral, such as the appraisal fee or filing fee, which is only $100 as of

2020. The estimated collateral cost is in the same order of magnitude as the secured-unsecured
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interest spreads faced by small firms. This result suggests that a pecking order between secured

and unsecured borrowing may not hold. Instead, the secured borrowing decision may be best

characterized by a trade-off theory in which firms balance the benefit of collateral against the cost.

This new perspective has important implications for corporate capital structure.

We further explore how the collateral cost depends on collateral types, business sectors, and

collateral laws. There are two broad categories of collateral requirements: a fixed lien or a floating

lien. Under a fixed lien, fixed assets, such as real estate property, machinery, or fixtures, are

pledged to secure the repayment of a loan. Under a floating lien, current assets such as inventory

and accounts receivables are pledged. We exploit a unique change in collateral requirement from a

fixed lien to a floating lien in the COVID-19 pandemic to study the relationship between collateral

type and collateral cost. We find that the estimated collateral cost decreases by around 30% after

changing to a floating lien, suggesting that firms are more averse to pledging fixed assets. We also

find that the collateral cost varies significantly across business sectors. For example, agriculture,

accommodation, and food sectors have higher collateral costs, while retail trade and real estate

sectors have lower collateral costs. Finally, we find that the collateral cost depends on collateral

laws. Exploiting the staggered adoption of the Uniform Voidable Transactions Act (UTVA), which

weakens secured creditor rights, we find that the take-up of secured loans increases significantly

after the law change. The estimated collateral cost appears to be lower in states with weaker

secured creditor rights.

We conduct various robustness checks for our results. The validity of the bunching estimator

relies on a key assumption that the counterfactual distribution is smooth in the absence of the

discontinuity of collateral requirement. Consistent with the identification assumption, we find no

excess mass around the thresholds in the sample periods before these thresholds are introduced.

Furthermore, placebo tests correctly indicate null results on factitious thresholds. We also show

that our results are robust to alternative specifications of the bunching estimator, such as the

degree of polynomials and the bin size to estimate the counterfactual distribution.

One may worry that the estimated collateral cost could reflect the scarcity of the collateral
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rather than the cost of pledging it. In other words, if some firms do not have collateral in the

first place, they will not have the option to pledge it. However, a careful examination of the

institutional setting suggests that collateral scarcity is unlikely to be an issue for our estimation.

For the BPDL program, the loans are used to repair or replace damaged property, which typically

serves as collateral. For the COVID EIDL program, general business assets which are broadly

available can be used as collateral. In addition, the SBA does not require the collateral value to

cover the loan amount fully. Instead, it only requires firms to pledge what is available. Therefore,

the estimated collateral cost is more likely to reflect the aversion to pledge collateral rather than

the scarcity of the collateral.

Another alternative explanation is that firms may want to use the collateral to secure another

loan from the private sector when the disaster hits them. In this case, the collateral cost may reflect

their desire to maximize the total external financing rather than the aversion to losing flexibility

and bargaining power. This alternative explanation is unlikely to be applicable in our setting for

two reasons. First, firms that participate in the SBA disaster lending programs generally lack

access to private financing. Second, even if they have access to private funding, the rates that

they can get are much higher than those offered by the SBA. Given that the loans taken by the

bunching firms are far below the maximum loan size cap of the SBA, firms could have got more

funding from the SBA at a below-market rate if they wanted to do so. It seems suboptimal to give

up subsidized public financing to get more expensive private financing.

Although our setting sheds light on the shadow cost of collateral, which is otherwise difficult to

observe, there are a few caveats to these results. First, the estimated collateral costs are pertinent

to small businesses. These firms play an important role in the process of creative destruction and

aggregate employment so it is crucial to understand their financing frictions (Krishnan, Nandy,

and Puri, 2015). However, small firms could differ from large firms in many aspects, so the specific

estimate may not be transportable. Nevertheless, the general economic lesson—the collateral cost is

crucial for secured borrowing decisions—is likely to remain valid. Second, the lender of our setting is

a government agency, which may not pursue the collateral with the same vigor as private lenders. If
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that is the case, the estimates may be a lower bound of the true collateral cost. Nevertheless, unlike

the Paycheck Protection Program (PPP), the SBA disaster loan program is not a grant. The SBA

tries to use collateral to increase recovery upon defaults, and the liquidation procedure is similar

to those of private lenders, alleviating such concerns.3 Despite these caveats, our setting offers

many advantages over typical datasets on corporate borrowings. First, in typical settings, only

the equilibrium outcome of borrower-lender negotiation is observed by econometricians, making it

difficult to separate lenders’ preferences from borrowers’. In contrast, in our setting, the potential

choice set of borrowers can be observed, allowing us to analyze the trade-off faced by borrowers.

Second, the secured and unsecured markets are usually segmented, with different lenders being

active in different markets. In contrast, the same lender provides both the unsecured and secured

loans in our setting, which provides a clean setting to study firms’ choices.

We explore the implications of a substantial collateral cost for macro-finance analyses. An

implicit assumption in standard financial acceleration models is that firms do not incur any cost

to post collateral. Therefore, firms always borrow up the limit allowed by the collateral constraint.

We relax this assumption by introducing the collateral cost to the standard model of Kiyotaki and

Moore (1997). Instead of borrowing up the collateral limit, firms now face a trade-off between the

investment return and collateral cost. We find that this collateral trade-off introduces a new am-

plification mechanism. When a large negative productivity shock drives investment returns below

the collateral cost, firms may endogenously reduce collateralized borrowing, depressing collateral

prices. The falling asset prices further decrease borrowers’ net worth, amplifying the negative

shock. The effect is highly non-linear: a small shock may not necessarily change the relative

magnitude of investment return, and collateral costs thus may have a substantially weaker ef-

fect. We also find that the collateral trade-off can make the financial amplification mechanism

state-dependent. The aggregate investment is more sensitive to asset price fluctuations in a high

productivity state as more firms borrow up to the collateral limit. In contrast, the opposite is true

when the productivity is low as few firms borrow up to the collateral limit.

Finally, we study the implications of collateral cost for designing government lending programs

3See 13 CFR § 120.545. for SBA’s policies concerning the liquidation of collateral.
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in counterfactual policy experiments. While collateral is often viewed as an essential tool to protect

taxpayers’ money in government lending programs, our findings suggest two potential downsides

associated with such requirements. First, requiring collateral would impose substantial costs on

participating firms as they lose operational and financial flexibility. Second, because firms may

strategically respond to the collateral threshold, such requirements may significantly reduce the

program’s take-up and social welfare. We show that the optimal program could be quite different

depending on whether these costs are considered.

This article contributes to a vast literature in economics and law on collateral. Collateral

can mitigate enforcement frictions between borrowers and creditors (Tirole, 2010), complete the

contract space (Dubey, Geanakoplos, and Shubik, 2005), and prevent debt dilution (DeMarzo, 2019;

Donaldson, Gromb, and Piacentino, 2020). Collateral has important implications for corporate

decisions, such as investments, production, and dynamic optimal capital structure (Gan, 2007;

Chaney, Sraer, and Thesmar, 2012; Adelino, Schoar, and Severino, 2015; DeMarzo, 2019; DeMarzo

and He, 2021). A large body of work shows that collateralized borrowing reduces the interest

cost for borrowers (Berger and Udell, 1990; Rauh and Sufi, 2010; Benmelech and Bergman, 2009;

Benmelech et al., 2020b). However, the existing literature leaves the puzzle of why firms do not

always borrow secured debt given the low interest rates (Rampini and Viswanathan, 2020). A

contribution of this paper is to show that recognizing the sizable collateral cost is the key to

resolving this puzzle. Our work complements Collier, Ellis, and Keys (2021), which is the first

study to examine how housing collateral impacts consumers’ borrowing behavior and default rates.

They similarly exploit the SBA program’s collateral thresholds in a bunching estimation and find

that the median consumer in their sample is willing to give up 40% of the loan amount to avoid

placing a lien on their home. They also find that collateral reduces default rates by 35% using an

instrumental variables (IV) estimation. Our paper studies the shadow cost of collateral for firms

rather than consumers. Given the crucial role of collateral in firms’ operations, investments, and

financing, it is important to understand the collateral cost for firms. We also document interesting

heterogeneity in the collateral costs across collateral types, business sectors, and collateral laws.

We also show that the collateral cost has important implications for the financial acceleration
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mechanism and the design of government-subsidized business lending programs.

This article also contributes to a large body of literature on the financial accelerator mech-

anism, which shows that collateral is an important reason why financial frictions affect macroe-

conomic dynamics (Kiyotaki and Moore, 1997; Bernanke, Gertler, and Gilchrist, 1999; Mendoza,

2010). This literature assumes that firms incur no cost to pledge collateral, so the collateral con-

straint is always binding. We introduce the collateral trade-off to the standard model of Kiyotaki

and Moore (1997) and show that it can generate rich implications for the financial accelerator

mechanism. This article also speaks to the extensive empirical research that has been devoted to

investigating the magnitude of the financial accelerator mechanism (Lian and Ma, 2021; Cather-

ine, Chaney, Huang, Sraer, and Thesmar, 2018). This literature often finds that the sensitivity of

firm-level investment to collateral values is well below the magnitude predicted by the standard

Kiyotaki and Moore (1997) model.4 While the low sensitivity is typically rationalized by low asset

pledgability, we suggest that the substantial collateral cost could be another reason why the asset

price-investment sensitivity is low. Because firms may choose not to pledge collateral to avoid the

collateral cost, fluctuations in asset prices would naturally have lower impacts than those implied

by models without collateral cost.

This article also adds to the literature on the efficiency of the government-supported lending

program (Smith, 1983; Gale, 1991; Lucas, 2016; Bachas et al., 2021). This literature has grown

rapidly since the COVID-19 pandemic as numerous government lending programs are installed.

Recent studies show that the pre-crisis banking relationship, bank market power, and racial bi-

ases of loan officers could significantly affect the access to government lending programs (Fairlie

and Fossen, 2021; Bartik, Cullen, Glaeser, Luca, Stanton, and Sunderam, 2020; Humphries, Neil-

son, and Ulyssea, 2020; Granja, Makridis, Yannelis, and Zwick, 2020; Chernenko and Scharfstein,

2021). This paper shows that collateral requirements intended to protect taxpayers’ money could

inadvertently reduce the take-up of the program. The optimal collateral requirement should trade

off these costs against the benefits of reducing the expected default loss.

4In Kiyotaki and Moore (1997), the sensitivity of investment to collateral prices is 1. In contrast, Catherine
et al. (2018) estimate this sensitivity to be 0.06.
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Finally, this article adds to a growing literature that applies the bunching estimation to

finance topics, including mortgage (DeFusco and Paciorek, 2017; DeFusco, Johnson, and Mon-

dragon, 2020), small business lending (Bachas, Kim, and Yannelis, 2021), municipal bond issuance

(Dagostino, 2018), bankruptcy fees (Antill, 2020), banks (Alvero, Ando, and Xiao, 2020), and

public firms (Ewens, Xiao, and Xu, 2020). Our paper is related to Bachas, Kim, and Yannelis

(2021), who study the SBA 7(a) loan program in which banks’ credit supply strategically responds

to government loan guarantee thresholds. We study a different lending program by the SBA,

the disaster loan program, in which the government agency directly dispenses the loans without

the involvement of private banks. This feature allows us to hold the supply side constant when

analyzing the demand.

2 Institutional Background and Data

2.1 SBA Disaster Loans

The U.S. Small Business Administration (SBA) provides low-interest, long-term loans to businesses

and private nonprofits after a disaster. There are two major loan programs: Business Physical

Disaster Loans (BPDL) and Economic Injury Disaster Loan (EIDL).5

Business Physical Disaster Loans (BPDL)

The first main category is the Business Physical Disaster Loans (BPDL), which assists busi-

nesses that experienced physical damages in declared disaster areas to cover the verifiable and

uninsured portion of damages to their real estate property, machinery, equipment, and fixture.

Firms are required to provide available collateral such as a lien on the damaged or replacement

property, a security interest in business property, or both unless the loan amount is below a certain

threshold ($25,000 as of 2020). It is worth noting that the SBA does not require the collateral value

5More details about the rules of the disaster loan programs can be found in Code of Federal Regulations, Title
13 - Business Credit and Assistance Chapter I - Small Business Administration, Part 123 - Disaster Loan Program.
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to cover the loan amount fully. Neither will the SBA deny a loan solely for insufficient collateral.

Instead, the SBA only requires the business to pledge what is available. Furthermore, the SBA

holds the interest rate fixed regardless of the loan amount and whether a firm pledges collateral or

not. This feature provides a clean setting to isolate how the collateral requirement affects firms’

borrowing behavior.

Many government lending programs for small businesses, such as the SBA 7(a) program and

the Paycheck Protection Program, are dispensed by private lending institutions. In contrast, the

disaster loan program is dispensed by the SBA itself. Firms can apply directly to SBA at no

cost.6 This feature allows us to avoid the concern that market power or racial biases of private

lending institutions may affect firms’ access to government lending programs (Bachas et al., 2021;

Chernenko and Scharfstein, 2021).

Economic Injury Disaster Loan (EIDL)

The second main category of the SBA disaster loans is the Economic Injury Disaster Loans

(EIDL) program. Unlike the BPDL program, the EIDL program assists businesses broadly affected

by declared disasters to meet their necessary working capitals like the continuation of health care

benefits, rent, utilities, and fixed debt payments. However, the regular EIDL program has similar

features as the BPDL program: (1) it also uses a fixed lien with real estate assets being the

preferred collateral; (2) firms are exempted from the collateral requirement if the loan size is below

a threshold ($25,000 as of 2020); (3) the interest rate is fixed regardless of the loan size and

collateral; (4) the loans are distributed directly by the SBA.

In addition to the regular EIDL program, we also study the COVID-19 EIDL program, intro-

duced by the Coronavirus Aid, Relief, and Economic Security (CARES) Act in 2020. Unlike the

previous disaster loan programs (BPDL and regular EIDL), which use a fixed lien, the COVID

EIDL program allows a floating lien: firms can post floating assets, such as inventory and accounts

receivables, as collateral.

6The application website is DisasterLoan.sba.gov.
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2.2 Data

We obtain the disaster loan data from the SBA. The data contain firm location, loan amount,

disaster information, verified losses (BPDL), and firm names (COVID EIDL). The geographic

coverage of our data is quite broad. 88% of the ZIP codes are covered by at least one of the

programs. Table 1 provides the summary statistics of our sample. The median loan amounts are

$66,300, $30,200, and $26,000 for BPDL, regular EIDLs, and COVID EIDLs, respectively. The

total number of loans is around 14,000 for the BPDLs, 11,000 for regular EIDLs, and 3,617,000

for COVID EIDLs. The total number of loans is much larger in the COVID EIDL sample because

of its broader geographical coverage. We exclude loans for nonprofit businesses, which represent

0.4 percent of total loans. The whole sample covers 3,681,475 loans with a total value of $188.70

billion. The empirical analysis focuses on loan amounts ranging between $0 to $65,000 because

there are insufficient observations to estimate density for loan size beyond $65,000.

We further collect interest rate information from the US Federal Register. The SBA announces

a single fixed interest rate to all the businesses in one disaster. The majority of the regular

disaster loans (58.54% for BPDLs and 62.36% for regular EIDLs) are offered an interest rate of

4%. Consequently, we will use loans with 4% interest rates as our baseline sample for regular

disaster loans. All of the COVID EIDLs have a fixed interest rate of 3.75%.

The solid red line of Figure 1a shows the loan size distribution of BPDLs in 2014-2020.7 We

observe a sharp spike at the $25,000 collateral threshold. The spike at the $25,000 is not present

in earlier sample periods such as 2008-2013 or 2003-2007, in which different collateral thresholds

are in place. Instead, the spikes of the earlier samples are located at $14,000 or $10,000, which

correspond to the collateral thresholds in earlier samples. A similar bunching pattern is observed

for regular EIDL and COVID EIDL, as shown in Figures 1b and 1c. It is worth noting that

the loan size distribution of the COVID EIDL program displays additional mass points at round

7Note that a small fraction of the BPDLs (general disaster BPDLs) changes the threshold from $14,000 to
$25,000 in 2016 rather than in 2014. In the following analysis, we remove the observations affected by the delayed
change (general disaster BPDLs in 2014-2015) from the 2014-2020 sample so that all observations have $25,000 as
the threshold.
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numbers that are not collateral thresholds, such as $15,000 and $20,000. Such round-number

bunching is often a consequence of people using salient round numbers as the behavioral reference

point.8 Nevertheless, the excess mass at the $25,000 collateral threshold is larger than other similar

round numbers such as $15,000 and $20,000, suggesting firms are still strategically avoiding the

collateral requirements.

In addition to the spikes in the loan size distribution, the verified losses incurred by the

businesses for BPDLs provide further evidence for borrowing amount bunching. Unlike the loan

amount chosen by the firms, the verified losses are exogenously determined by the severity of the

disaster and the value of the properties. The left panels of Figure 2 plot the verified losses against

the BPDL amount. Many observations are at the 45-degree line, suggesting that many firms

simply choose a loan amount to cover the losses in the disaster. However, a substantial fraction of

firms choose a loan amount exactly at the collateral thresholds even if their losses are substantially

greater, suggesting some firms avoid pledging collateral deliberately. The right panels of Figure 2

plot the distribution of the verified losses due to the disaster, together with the loan amount of

BPDLs. Indeed, we do not see any bunching in the distribution of the verified loss at the collateral

thresholds.

These bunching patterns provide visual evidence that firms are averse to pledge collateral

so that they would reduce their loan amount instead. Intuitively, more firms bunching at the

collateral threshold implies that the collateral cost perceived by firms is higher. In the following

analysis, we will formalize this intuition to estimate the collateral costs from the extent of bunching

at the collateral threshold using a simple theoretical framework.

8A possible explanation for the round-number bunching in COVID EIDLs is that large uncertainty during the
pandemic makes it difficult to determine a precise loan amount. As a result, firms use behavioral reference points
to calibrate a rough loan amount.
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3 Theoretical Model

This section proposes a theoretical framework to guide our estimation. Suppose there is a set of

firms with Cobb-Douglas production function. Firms borrow K unit of capital to produce AKα

unit of output, where A is the productivity, and α is the curvature of the production function.

A is heterogeneous across firms. We can broadly interpret A as any non-regulatory factor that

affects firms’ desired loan size. Firms are offered a menu of loans with different sizes but a constant

interest rate, R. In the absence of collateral requirement, firms’ payoff function is given by:

AKα −RK. (1)

The optimal loan size without collateral requirement, Z, is given by the first-order condition:

Z =

(
αA

R

) 1
1−α

. (2)

One can interpret Z as the desired loan amount in the absence of the collateral requirement. Z is

heterogeneous across firms, which follows a distribution f0. In the following discussion, we use Z

to index the firms.

Suppose firms now face a collateral requirement if their loan size K exceeds a threshold K.

Firms incur a cost of λZ when pledging collateral. We define the collateral cost as proportional

to the loan size because λ can be intuitively interpreted as a shadow interest rate. We scale the

collateral cost with the undistorted loan size to capture the idea that the dollar value of collateral

cost should be different for firms with different sizes.9 The collateral cost can be motivated by a

loss of operational and financial flexibility or a loss of bargaining power. Firms’ payoff function in

9If we assume the collateral cost is a fixed dollar value, then the collateral cost becomes trivial mechanically
when the loan size becomes bigger. We discuss the robustness of our results to this assumption in Section 4.3.3. It
is worth noting that the collateral threshold remains a notch point even if it is a proportional cost because firms
incur the cost for the entire loan amount rather than the incremental value above the threshold.
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the presence of the collateral requirement is given by

Π(K|Z) = A(Z)Kα −RK − λZ1K>K , (3)

where A(Z) is the productivity of firm Z. A(Z) can be solved from equation (2).

Firms with undistorted loan sizes above the threshold face the following trade-off. Firms could

either: (1) borrow Z, and bear collateral cost, or (2) reduce their borrowing amount to K and

avoid any collateral commitment, which reduces the output. Firms’ optimal choice depends on

how far away their undistorted loan size is above the threshold, as illustrated in Figure 3. We

plot firms’ payoff Π(K|Z) as a function of the loan size K. Firms whose undistorted loan size is

just above the threshold will find it optimal to bunch at the threshold because they only need to

shrink their loan size by a small amount, as shown by Figure 3b. Firms that are far above the

threshold will find it too costly to bunch at the threshold, as shown by Figure 3a. There exists a

marginal buncher that is indifferent between bunching and no bunching, as shown by Figure 3c.

Denote the undistorted loan size of the marginal buncher as Z = K. The indifference condition of

the marginal buncher is given by

Π(K|K) = Π(K|K), (4)

Firms’ optimal choices are given by

K∗ =


K if Z ∈ [K,K]

Z if Z /∈ [K,K].

(5)

Define the distortion ratio, θ, as the percentage changes in loan size for the marginal firm to

bunch at the threshold,

θ = (K −K)/K. (6)
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Using the indifference condition (4), we can derive the collateral aversion as:

λ =

(
1

α
(1− (1− θ)α)− θ

)
R. (7)

In the next section, we will use the distribution of the loan size to estimate the marginal

buncher, which further allows us to calculate the implied collateral aversion, λ, using equation (7).

4 Empirical Analysis

4.1 Bunching estimation

As discussed in Section 3, the critical parameter to estimate a borrower’s implied collateral cost

is the loan size of the marginal buncher (K). For this purpose, we use the bunching estimation

approach developed by Kleven and Waseem (2013). Specifically, the collateral threshold induces

firms whose preferred loan size in [K,K] to bunch at the threshold, K. Therefore, the actual

probability density function, f(K), should display some excess mass at the threshold relative to

the smooth counterfactual density function, f0(K). We define the excess mass as B ≡
∫ K
KL

(f(K)−

f0(K))dK, where KL is set to K.10 Since firms whose preferred loan size in [K,K] choose to

bunch at K, there is also some missing mass above the threshold, which is defined as M(K) ≡∫ K
K

(f0(K)− f(K))dK. The bunching mass should equal to the missing mass:

B = M(K). (8)

Note that the missing mass M is a function of the marginal buncher, K. So we can solve the

marginal buncher using the above equation.

To measure the excess mass and missing mass, we estimate the counterfactual loan size dis-

10KL can be set to a value slightly below K if there is a diffusion of the bunching mass.
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tribution, f0, i.e., the distribution in the absence of the collateral requirement. We estimate the

counterfactual distribution by fitting a polynomial function to the observed distribution, excluding

observations in the collateral requirement affected range [KL, KU ] around the collateral threshold

K. The lower bound of the excluded region, KL, equals the collateral threshold, K, which is

known. The upper bound of the excluded region, KU , equals the marginal buncher, K, which is

unknown ex-ante. We will use an iterative procedure introduced by Kleven and Waseem (2013) to

determine this bound, which we will describe later.

We group our data sample into $500 bins and fit the binned data by the following regression

model:

Nj =
P∑
p=0

βp(Kj)
p +

KU∑
i=KL

γi · 1(Kj = i) +
∑

r∈{5000,10000}

δr1(Kj/r ∈ N) + εj. (9)

where Nj denotes the number of observations in bin j. Kj is the loan amount within bin j using

the midpoint of the bin. P is the degree of the polynomial, which we set as five in our baseline.

[KL, KU ] is the excluded region. In our data, loan sizes corresponding to round numbers such

as $5,000 and $10,000 tend to appear more frequently than other values. Since the collateral

thresholds are themselves located at salient round numbers, using the total excess mass at the

collateral threshold would overstate the strategic response to the collateral requirements. We

follow Kleven and Waseem (2013) to include a set of dummies, δr, for multiples of the round

numbers to absorb the round-number bunching.11 Intuitively, this approach controls for round-

number bunching at the collateral thresholds by using excess bunching at “similar round numbers”

that are not regulatory thresholds as counterfactuals.

The counterfactual number of observations in bin j, N̂j, is estimated as the predicted values

from equation (9) subtracting the contribution of the exclusion region dummies:

N̂j =
P∑
p=0

β̂p(Kj)
p +

∑
i∈{5000,10000}

δ̂r1(Kj/r ∈ N). (10)

11In the COVID EIDL data, the extent of round-number bunching appears to vary across the loan size. To
reflect this pattern, we add an interaction term between round number dummies and the loan size, Kj1(Kj/r ∈ N)
following Antill (2020). In addition, there is also bunching at numbers that are $1,000 below multiples of $5,000. For
instance, the number of observations tends to be higher at $14,000 than other values. We include “pre-round-number
dummies” to absorb the excess mass $1,000 below round numbers.
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We estimate the excess mass B̂ and the missing mass M̂ respectively, the differences between

the observed and counterfactual bin count in regions before and after the collateral requirement.

More specifically, we calculate excess mass and missing mass as following:

B̂ =
1

N

K∑
j=KL

(Nj − N̂j), (11)

M̂ =
1

N

KU∑
j>K

(N̂j −Nj), (12)

where N is the total number of observations in the sample.

To identify the upper limit KU , we follow the iterative procedure introduced by Kleven and

Waseem (2013). Specifically, we start the estimation by setting KU to be one bin right above K,

and we calculate B̂ − M̂(KU). We repeat such process by keeping adding one bin size further as

long as B̂ − M̂(KU) > 0. We derive KU to be the bin satisfies that

B̂ = M̂(KU). (13)

The value of KU that satisfies the above convergence condition is the marginal buncher, K. We

then plug the marginal buncher into equations (6) and (7) to solve the collateral cost. The interest

rate, R, is set to the observed gross interest rates of the loans. The curvature of the production

function, α, is set to the standard value 1
3
.

To calculate the standard errors of our variables of interest, we use a bootstrap procedure

in which we generate 1,000 samples by random resampling observed residuals and replacing the

residuals in equation (9). For each generated data sample, we estimate its marginal buncher K,

distortion ratio θ, and collateral cost λ with the same approach as above. The standard error is

measured as the standard deviation of the 1000 estimates.
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4.2 Estimation results

4.2.1 Baseline estimates

Table 2 presents the bunching estimates in the BPDL 2014-2020 sample, which has a collateral

threshold of $25,000. Columns 1, 2, and 3 show the results with polynomial degrees 4, 5, and 6,

respectively. We find around 10% of firms bunch at the collateral threshold. The marginal firm’s

undistorted loan amount, K, is around $45,000, which implies a distortion ratio of around 45%.

The estimated shadow cost of collateral is around 9%. The estimates are robust to the polynomial

degree of the counterfactual distribution.

Figure 4 provides the visualization of the bunching estimates in the BPDL data. Each panel

plots the loan size distribution for each sub-sample, which features a different collateral threshold.

The solid black line demonstrates the observed distribution of loans, while the red dashed line

presents the counterfactual distribution of loans as determined according to equation (10). We

highlight KL and KU with dashed vertical lines. There is a visible bunch at the collateral thresholds

in the corresponding sample period. The counterfactual densities are higher than the actual density

of loans between the affected range [KL, KU ], which implies missing mass to the right of the

collateral thresholds. KU is the point at which the missing mass equals the bunching mass. The

region between KL and KU is excluded when estimating the counterfactual distribution because the

bins inside this range are affected by the collateral requirement. It is worth noting that the region

between KL and KU should have zero mass according to the simple model in Section 3 because all

firms in this region should strictly prefer bunching over not bunching. However, this dominated

region has a positive mass in our data. This pattern is common in many bunching settings and is

typically a result of optimization frictions (Kleven, 2016). In other words, a fraction of firms does

not respond to the discontinuity in the incentive due to frictions such as inattention and inertia.

The bunching estimator that we use is robust to optimization frictions, as shown by Kleven and

Waseem (2013).

The estimated collateral cost is in the same order of magnitude as the interest spread between
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unsecured and secured loans.12 As a result, firms face a meaningful trade-off between paying

lower interest and bearing the collateral cost when borrowing secured debt. Explicit transaction

costs associated with pledging collateral are unlikely to explain the collateral cost. For instance,

the estimated shadow cost of a fixed lien for a $25,000 loan is around $2,300, while firms only

need to pay a one-time $100 fee for filing a lien on business assets as of 2020. The majority of the

estimated collateral cost is more likely to reflect the concern on operational and financial flexibility

and bargaining power with creditors.

4.2.2 Collateral type

The cost of pledging collateral may differ depending on the type of collateral requirement. We

compare two broad types of collateral: fixed assets vs. floating assets. In theory, firms may be

more averse to pledging fixed assets than floating assets because fixed assets are typically less

fungible and are indispensable to firms’ operation. For instance, it could be detrimental for a

firm if its lender seizes its machinery used for production. To test this hypothesis, we exploit a

unique change in collateral requirement in the EIDL program during the COVID pandemic when

the SBA changed the collateral requirement from a fixed lien to a floating lien. Table 3 presents

the estimates in the COVID EIDL sample. We find that the implied shadow cost of collateral is

only around 6%, which is significantly lower than the estimates for the BPDLs. The estimates are

robust to the degree of polynomials for the counterfactual distribution.

One may worry that the difference in the estimated collateral cost may be driven by some

differences between the BPDL and EIDL programs. To address this concern, we compare the

COVID EIDLs with the regular EIDLs. Similar to the BPDLs, the regular EIDLs also use a fixed

lien. As shown in column 1 of Table 4, we find the shadow cost of collateral is around 9% for

the regular EIDLs, which is consistent with the BPDL estimates in Table 2. This result suggests

12The average interest rate of secured small business loans is around 7% from 2001 to 2020 based on RateWatch
data. The interest rate of unsecured small business loans for an average credit score borrower is around 14% based
on the quote from American Express (https://www.americanexpress.com/us/business/business-funding/).
For large syndicated loans, the difference between secured and unsecured loans is around 2% (Benmelech et al.,
2020a, Figure 1).
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that the difference in the estimated collateral cost is more likely to be driven by the differences in

collateral type rather than other differences in the loan programs.

Figures 5a and 5b provide the visualization of the bunching estimates in the regular and

COVID EIDL data, respectively. COVID EIDLs exhibit stronger round-number bunching, as

noted earlier. The flexible round-number dummies included in our estimation successfully capture

the strong round number bunching in this sample, as shown by the spikes at round numbers

in the counterfactual distribution. The excess mass at the $25,000 collateral threshold in the

actual distribution is significantly larger than the predicted value due to round-number bunching,

suggesting that the collateral threshold creates additional bunching mass. The estimated marginal

buncher in the COVID EIDL sample is much smaller than that in the BPDL and regular EIDL

samples, suggesting that the floating lien entails a lower collateral cost than the fixed lien.

4.2.3 Cross-industry heterogeneity

We also explore the heterogeneity of collateral cost across industries. Note that we can only do

this exercise in a subsample of COVID EIDLs for which the industry information is available.13

Table 5 shows that there are considerable variations in collateral cost across industries. Agriculture,

accommodation, and food sectors have higher collateral costs, while retail trade and real estate

sectors have lower collateral costs.

4.2.4 Secured creditor rights

The collateral cost may also depend on the rights of the secured creditors. If the statutes give

stronger rights to secured creditors, firms are likely to lose more flexibility and bargaining power

when pledging assets as collateral. Consequently, firms may be more averse to borrowing secured

debt.

13We obtain industry classification by matching the COVID EIDLs with PPP loans by firm names and zip codes.
The matched sample contains around 10% of the COVID EIDLs.
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To assess the relationship between secured creditor rights and the collateral cost, we explore

the staggered adoption of the Uniform Voidable Transactions Act (UVTA) across different states

in the U.S. The UVTA was proposed in 2014 as an amendment of the Uniform Fraudulent Transfer

Act (UFTA). Under the UVTA, strict foreclosure of UCC Article 9 security interests will no longer

be exempted from being treated as voidable transactions (UVTA § 8(e)(2)). Forster and Boughman

(2015) suggest that under the UVTA, “creditors with an Article 9 security interest can no longer

foreclose on the property and retain it without risking the transfer being avoided.” In other words,

secured creditors’ rights would be weakened as the collateral transfer becomes voidable under the

UVTA. It is worth noting that UVTA also contains other changes that affect both secured and

unsecured creditors.14 We isolate the effect of secured creditor rights by comparing firms with

verified losses above and below the collateral threshold. The idea is that firms with verified losses

above the collateral threshold are more likely to face the trade-off of borrowing secured versus

unsecured. In contrast, firms with verified losses below the threshold do not face this trade-off.

Because this test requires information on the verified losses, we restrict our sample to the BPDLs.

Table 7 shows the adoption year of UVTA of each state. Note that six states—Alaska, South

Carolina, Kentucky, Maryland, New York, and Virginia—used state-specific laws different from

the UFTA. We exclude these states to ensure that the adoption of the UVTA captures the same

change in the secured creditor rights. The sample period is from 2014, when the UVTA is first

introduced, to 2020, when the BPDL sample ends.

We examine whether borrowers become more willing to borrow secured loans after the law

change by estimating the following regression model in the sample of BPDLs:

Take-upi,t = β1Adoptioni,t × Loss > 25ki,t + β2Adoptioni,t + β3Loss>25ki,t + τt + τs + εi,t. (14)

The dependent variable, Take-upi,t, is defined as the ratio of the loan amount over the verified

14For instance, Ersahin et al. (2021) suggest that the UVTA could allow creditors to have “the power to undo
a much broader set of transactions than those that fall within the scope of fraud.” However, the Uniform Law
Commission, the commission which wrote this law, argues that the general purpose of the UTVA introduction is
to “address a few narrowly defined issues, ... not a comprehensive revision”. See “Uniform Voidable Transactions
Act: a Summary” by the Uniform Law Commission.
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losses. Adoptioni,t is a dummy variable that equals one if the state in which firm i locates has

adopted UVTA. This dummy captures the law changes that affect both secured and unsecured

debt. β1, the coefficient of the interaction of Adoptioni,t and the Loss>25ki,t dummy captures

the impact of the law change on firms that are more likely to borrow secured. Table 6 presents

the results. Before the law change, the take-up ratio of firms with losses above $25,000 is around

30% lower than those with losses below $25,000, consistent with our earlier evidence that firms

bunch to avoid pledging collateral. The take-up increases by around 10% after the law change,

consistent with the idea that weakened secured creditor rights reduce collateral costs. The increase

in take-up ratio accounts for a third of the take-up ratio gap between firms above and below the

$25,000 threshold.

We further verify our results by estimating the implied collateral cost in UVTA and UFTA

states using the bunching estimator. We can only do this exercise in the COVID EIDLs because the

BPDL sample does not have enough observations to construct densities for the bunching estimator.

Figure 9 illustrates each state’s collateral law as of 2021. Table 8 presents the estimated collateral

costs in the UVTA and UFTA states, respectively. Consistent with the results in Table 6, the

collateral cost is significantly lower in the UVTA states in which secured creditor rights are weaker.

4.3 Alternative interpretations and robustness checks

This section discusses alternative interpretations and robustness checks on our baseline results.

4.3.1 Collateral scarcity

A conceptual issue is that the high collateral cost may reflect the scarcity of collateral for the

sample firms rather than firms’ aversion to pledge it. To elaborate, our estimation assumes that

firms can choose whether to pledge collateral or not. One may worry that some firms may not

have any collateral, so they have to bunch at the threshold. So the high collateral cost may partly

reflect the scarcity of collateral, rather than firms’ aversion to pledge it. We do not think collateral
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scarcity is likely an issue in our setting. For the BPDL program, the loans are used to repair or

replace damaged property, which typically serves as collateral. For the COVID EIDL program,

general business assets, which are broadly available, can be used as collateral. Furthermore, the

SBA does not require the collateral value to cover the loan amount fully. Instead, it only requires

firms to pledge what is available. Therefore, the estimated collateral cost is more likely to reflect

the aversion to pledge collateral rather than the scarcity of the collateral.

4.3.2 Preserve collateral for loans from private lenders

One may also worry that firms may not have an intrinsic aversion to pledge collateral. Instead,

they need the collateral to secure another loan from a private lender to maximize the total external

financing.15 This alternative interpretation is unlikely to be applicable for two reasons. First, firms

that participated in the SBA disaster lending programs generally lack access to private financing.

Second, even if they have access to private funding, the rates that they can get are much higher

than those offered by the SBA. Since the typical loan sizes of the bunching firms are much smaller

than the maximum loan size cap, $2 million, it would be suboptimal to give up the subsidized

public funding to obtain expensive private funding.

4.3.3 Fixed vs proportional costs

Our baseline estimation assumes that the collateral cost is proportional to loan size. This as-

sumption is natural because larger loans typically involve more collateral, and the economic costs

associated with the loss of control rights are likely to be greater. Nevertheless, we now examine

this assumption by exploiting the changes in the collateral thresholds. Specifically, the SBA has

changed the collateral threshold several times during our sample period, from $10,000 to $14,000

and $25,000. These changes allow us to identify the collateral costs for different marginal bunchers.

If the collateral cost is a fixed cost, we expect the dollar values estimated from different thresholds

15Note that this interpretation is different from the one that firms would like to keep assets unencumbered to
preserve financial flexibility for future contingencies.
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to be similar. If the collateral cost scales with the loan size, we expect the proportional cost to be

similar. Table 9 presents the results. We find the dollar collateral cost is considerably larger for

bigger marginal bunchers. It increases from $1,491 to $4,368 when the marginal buncher increases

from $17,500 to $45,500. However, if we express the collateral costs as a percentage of the loan

value, the magnitude is more similar across thresholds. This result suggests that the collateral

cost is unlikely to be fixed. Instead, it appears to scale proportionally with the loan size.

4.3.4 Placebo tests

We conduct a set of placebo tests by repeating the same estimation procedure on factitious thresh-

olds. Specifically, we use $25,000 as a factitious threshold in the 2008-2013 sample before the

$25,000 threshold was introduced. The results are reported in Table 10. The estimation correctly

indicates no excess mass in this sample at the $25,000 threshold. These placebo tests reaffirm our

confidence that our results are not driven by the $25,000 threshold being special for reasons that

are unrelated to the collateral requirement.

4.3.5 Sensitivity to bin size

In our baseline estimation, we set the bin size to $500. A smaller bin size pins down the density

at a more local level, but it could introduce noise when the sample size is small. Therefore, we

check the robustness of our results using alternative bin sizes in Table 11. We change the bin size

from 500 to 100 and 250 for both the BPDL and the COVID EIDL samples. The point estimates

stay mostly the same, while the standard errors vary modestly when the bin size varies.

5 Implications of Collateral Costs

This section discusses a set of robustness checks on our baseline results. We first conduct placebo

tests on the samples in which the thresholds have not been introduced. We then evaluate the
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sensitivity of our results to alternative specifications of the bunching estimator.

5.1 Capital structure decisions

Our results have important implications on the role of collateral in capital structure decisions.

Since the influential work by Myers and Majluf (1984), it is long believed that there exists a peck-

ing order between secured and unsecured borrowing: firms should first issue collateralized debt,

and then, after exhausting such claims, issue more junior claims like unsecured debt (Benmelech

et al., 2020a). This intuition seems consistent with the observation that collateralized debt usually

entails lower interest rates than uncollateralized debt. However, our results show that pledging col-

lateral imposes a considerable shadow cost on firms. Our result supports a more recent theoretical

literature that shows that pledging collateral could be costly because it limits firms’ operational

and financial flexibility and bargaining power (Mello and Ruckes, 2017; Rampini and Viswanathan,

2010; Donaldson et al., 2020; Benmelech et al., 2020a). Our estimates suggest these potential costs

are first-order and have important implications on firms’ capital structure decisions.

5.2 Financial acceleration

The estimated collateral cost has important macroeconomic implications. A large body of liter-

ature following the seminal work of Kiyotaki and Moore (1997) shows that collateral constraint

can amplify macroeconomic fluctuation via the feedback loop between collateral value and debt

capacity. Specifically, a negative shock to collateral value can tighten firms’ collateral constraints,

leading to a further decline in collateral value. The standard macro-finance model with collateral

constraints does not consider the collateral cost. Since firms incur no cost when pledging collateral,

they always borrow up to the collateral limit. We now examine the implications of our findings by

incorporating the collateral cost into the standard Kiyotaki and Moore (1997) model.

We consider a discrete-time, infinite-horizon economy with two goods: a durable land and a
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nondurable fruit, and two groups of agents: farmers and gatherers. We maintain the terminology

in Kiyotaki and Moore (1997). Still, it is worth noting that land and fruit can be interpreted as

capital and consumption goods, while farmers and gathers can be interpreted as firms and lenders.

There is no aggregate uncertainty in the model aside from an initial unanticipated shock, and so

given rational expectations, agents have perfect foresight. Following Kiyotaki and Moore (1997),

we assume that agents can only borrow secured debt. This can be viewed as a limiting case of

Rampini and Viswanathan (2020) that the implicit collateralizability of firms’ residual value is

zero. Our results still hold if agents can borrow unsecured as long as unsecured debt capacity is

lower than secured debt.

Farmers. We have a measure one of infinitely lived, risk-neutral farmers, and they maximize

the expected utility:

Et

(
+∞∑
s=0

βsxt+s

)
, (15)

where xt+s is the consumption of fruits at time t + s, and β is the discount rate. Each farmer

spends one period to produce the fruits with the following production function:

yt+1 = F (kt) = (a+ c) kt, (16)

where kt denotes the farmer’s landholding at the end of time t, akt is the tradable output, while

the c is non-tradable and can only be consumed by the farmer.

Gatherers. There is a measure one of infinitely lived, risk neutral gatherers. Their expected

utility at time t is

Et

(
+∞∑
s=0

(β′)
s
x′t+s

)
, (17)

where x′t+s is the consumption of fruits at time t+s, and β′ is the discount rate. We assume β′ > β

so that farmers are relatively impatient and do not want to postpone production.

Each gatherer has an identical production function to use land k′t to produce y′t+1 tradable
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fruits at t+ 1 that exhibits decreasing returns to scale

y′t+1 = G (k′t) (18)

where G′ > 0, G′′ < 0 and G′ (0) > aR > G′
(
K̄
)

to ensure that both farmers and gatherers are

producing in the neighborhood of a steady-state equilibrium.

Collateral Constraints. In period t, if the farmer has land kt then she can borrow bt in

total, as long as the repayment does not exceed the market value of land (net of depreciation) at

t+ 1:

Rbt ≤ qt+1 (1− δ) kt. (19)

Markets. There is a competitive spot market in which land is exchanged for fruits at a price

qt at each time t. The only other market is a one-period credit market in which one unit of fruit at

time t can be exchanged for a claim to Rt units of fruits at date t+ 1. In equilibrium, as farmers

are more impatient, they borrow from gatherers, and thus the rate of interest is always determined

by gatherers’ time preferences Rt = 1
β′

= R.

We introduce the collateral cost to the model. Agents incur the collateral cost, λbt1bt>0, if

they borrow a positive amount of debt. Each farmer and each gatherer’s budget constraint in each

period t can then be summarized as

qt (kt − (1− δ) kt−1) +Rbt−1 + xt + λbt−11bt−1>0 = (a+ c)kt−1 + bt (20)

qt
(
k′t − (1− δ) k′t−1

)
+Rb′t−1 + x′t + λb′t−11b′t−1>0 = G

(
k′t−1

)
+ b′t (21)

Farmers’ Behavior. Farmers prefer to invest in land and consuming no more than their

current output of non-tradable fruits,

xt = ckt−1. (22)
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Define the net investment return as tradable and non-tradable fruits subtracting the user cost,

µt ≡ a+ c− ut, (23)

where the user cost equals the change in the depreciation-adjusted land value:

ut = qt −
1− δ
R

qt+1. (24)

Farmers determine the borrowing amount based on whether the net investment return exceeds

the collateral cost. When the investment return exceeds the collateral cost, farmers borrow to the

collateral limit. When the investment return falls below the collateral cost, farmers do not borrow.

Formally, farmers’ borrowing amount is given by

bt =
1− δ
R

qt+1kt1µt>λ. (25)

Substituting in equation (25) into equation (20), a farmer’s land holding is given by

kt =
1

ut

[
(a+ qt(1− δ))kt−1 −Rbt−1 − λbt−11µt>λ +

1− δ
R

qt+1kt(1µt>λ − 1).

]
(26)

We can aggregate across farmers, and the dynamics of aggregate borrowing of farmers and

landholding of the farmer section are:

Bt =
1− δ
R

qt+1Kt1µt>λ, (27)

Kt =
1

ut

[
(a+ qt(1− δ))Kt−1 −RBt−1 − λBt−11µt>λ +

1− δ
R

qt+1Kt(1µt>λ − 1)

]
. (28)

Gatherers’ Behavior. As the gatherer is not credit constrained, her demand for land is

determined so the present value of the marginal product of land is equal to the user cost of holding
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land, ut:

1

R
G′ (k′t) = ut. (29)

Market clearing. Since all the gatherers have identical production functions, their aggregate

demand for land is given by K ′t. The sum of the aggregate demands for land by the farmers and

gatherers is equal to the total supply; that is, Kt + K ′t = K. Thus, the land market equilibrium

condition is

ut = u(Kt) ≡
1

R
G′
(
K̄ −Kt

)
, (30)

where u(K) expresses the user cost in each period as an increasing function of farmers’ aggregate

land holding.

We can express the land price as the present value of user costs,

qt =
+∞∑
s=0

(
1− δ
R

)s
u(Kt+s). (31)

Steady State. The nature of the steady state depends on the relative magnitude of the

investment return and the collateral cost. In a high productivity steady state where the net

investment return exceeds the collateral cost at the steady state µ ≥ λ, we have:

(
1− 1− δ

R
(1− λ)

)
q = a, (32)

B =
1− δ
R

qK, (33)

1

R
G′
(
K̄ −K

)
= u, (34)

u =

(
1− 1− δ

R

)
q. (35)

In a low productivity steady state where the net investment return is below the collateral cost
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in the steady state µ < λ, we can characterize the steady state as the following:

δq = a, (36)

B = 0, (37)

1

R
G′
(
K̄ −K

)
= u, (38)

u =

(
1− 1− δ

R

)
q. (39)

State-dependency. Suppose at t − 1 the economy is in a steady state. We consider the

impulse response to an unexpected aggregate shock to farmers’ productivity at t, which changes

the productivity of the tradable goods by ∆a. The production technologies then revert to the

steady-state level a.

We first show that the collateral trade-off makes the impulse responses state-dependent. The

solid line in Figure 6 shows the impulse responses of farmers’ landholding to the productivity

shock when the economy was originally in a high productivity state. We assume that the negative

productivity shock is small such that the net investment return is still above the collateral cost,

µt > λ. Because the collateral constraint is binding before and after the shock hits the economy, a

temporary productivity shock leads to a large and persistent drop in landholding and asset prices.

The financial amplification comes from the fact that, on top of the direct productivity shock,

∆a, the depreciation in land prices further reduces farmers’ net worth. Because the land price is

forward-looking, the dynamic effect is much larger than the static effect due to the productivity

shock. Note that this case is equivalent to Kiyotaki and Moore (1997).

The solid line in Figure 6 shows the impulse responses of farmers’ landholding to the pro-

ductivity shock when the economy is originally in a low productivity state. The shock has a

limited impact on the economy because the collateral constraint is not binding. In other words,

the financial accelerator mechanism is muted when the economy is originally at a low productivity

state.
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This result speaks to the extensive empirical studies on the magnitude of the financial acceler-

ator mechanism (Lian and Ma, 2021; Catherine et al., 2018), which often finds that the sensitivity

of firm-level investment to collateral values is well below the magnitude predicted by the standard

Kiyotaki and Moore (1997) model. For instance, Catherine et al. (2018) find the sensitivity of

investment to asset prices is 0.06 while the standard Kiyotaki and Moore (1997) model implies

a sensitivity of 1. The existing literature often uses low asset plegibility to rationalize this dis-

crepancy. While asset plegibility is certainly a crucial factor, we suggest that the collateral cost

can also contribute to the low sensitivity. If the collateral cost is substantial, firms may choose

not to pledge their assets even if lenders are willing to accept them as collateral. Therefore, the

fluctuations in asset prices would have a smaller impact on firms’ investments.

Amplification due to collateral trade-off. Next, we show that embedding the collateral

trade-off into the standard financial accelerator model of Kiyotaki and Moore (1997) generates

a new amplification mechanism in which borrowers endogenously reduce the borrowing amount

below the debt capacity. We compare the impulse response of farmers’ capital in models with and

without the collateral trade-off. We assume that the economy is at a high productivity steady

state, and then a negative shock hits at time t.

Figure 7 compares the impulse responses of farmers’ capital at time t when the productivity

shock hits with and without the collateral trade-off for different shock sizes. When the shock size

is small, the impulse responses are almost identical. However, when the shock size is large, the

model with the collateral trade-off generates greater amplification. The intuition is that when the

net investment return falls below the collateral cost, µt < λ, farmers find it too costly to borrow

collateralized. Instead, they will pay the full price in cash to buy lands without borrowing. As a

result, the farmers’ demand for capital falls more than that in Kiyotaki and Moore (1997).
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5.3 Design of government lending program

The estimated collateral cost also has important implications for designing the government lending

program. To illustrate this point, we use our estimated model to conduct a set of counterfactual

policy experiments. We start by deriving the social welfare created by the lending program, which

is given by the output enabled by the loans, AK∗(Z)α, subtracting the expected default loss,

`K∗(Z), and the costs associated with pledging collateral. The optimal loan size chosen by firms,

K∗(Z), can be solved by equation (5). ` is the charge-off rate for uncollateralized loans. The

collateral requirement can lower the charge-off rate by β. However, it imposes a shadow cost λZ

on firms. Furthermore, the collateral requirement may distort the loan size choice from the desired

level, K∗(Z) ≤ Z. Finally, a fixed transaction cost is associated with the collateral requirement,

φ.

A fraction of firms does not respond to the collateral threshold in the data. Instead, they

always stick to their desired loan size Z, even if Z is in the dominated region above the threshold.

We refer to them as the non-optimizing firms following the terminology of Kleven and Waseem

(2013). We denote the fraction of non-optimizing firms as γ.

The total social welfare created by the lending program with a collateral threshold K is given

by:

W (K) = (1− γ)

∫
[AK∗(Z)α − `K∗(Z) + 1K∗>K(βK∗(Z)− λZ − φ)] f0(Z)dZ

+γ

∫
[AZα − `Z + 1Z>K(βZ − λZ − φ)] f0(Z)dZ.

(40)

The first and second terms are the welfare for optimizing and non-optimizing firms, respectively.

We first calibrate the model parameters to the corresponding moments in the data. First, the

collateral cost λ is set to 9% based on the estimates in Table 2. Second, the distribution of firms’

desired loan size f0 is calibrated using the estimated counterfactual distribution in equation (10)

in the 2014-2020 BPDL sample. Third, the charge-off rates of uncollateralized loans are calibrated

to 24% according to the Government Accountability Office (GAO) statistics.16 We calibrate the

16See “Small Business Administration: Physical Disaster Loan Performance Before and After Changes in Statu-
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reduction in the charge-off rate, β, to 9.6%, which is consistent with Collier et al. (2021) who find

collateral requirements reduce mortgage default rates by around 35%. Fourth, the fraction of the

non-optimizing firms γ is calibrated to the fraction of firms in the bunching range [K,K], which

is 0.63. Finally, the fixed transaction cost of pledging collateral φ is calibrated to $100.

We calculate the aggregate welfare for different values of collateral threshold, K. Figure 8a

shows the simplest case in which the shadow cost of collateral is set to zero, λ = 0. In this scenario,

the benefits of the collateral requirements—reducing the expected default loss βZ—dominate the

explicit transaction cost of collateral requirement φ. Therefore, the welfare is maximized when most

of the loans, except those tiny ones below $1,000, are subject to the collateral requirements.17

We then introduce the collateral costs into the welfare calculation. We assume that none of

the firms manipulate their loan size strategically in response to the collateral requirement, γ = 1.

Figure 8b shows that the optimal collateral threshold becomes a much larger value, $16,000, which

suggests that more loans should be exempted from the collateral requirements if the shadow cost

of collateral is taken into account.

Next, we allow a fraction of firms to respond strategically to the collateral threshold. We

calibrate the fraction of non-optimizing firms to the data, γ = 0.63. In other words, 37% of the firms

will manipulate their loan size in response to the collateral threshold. Introducing manipulation

significantly changes the trade-off, as shown in Figure 8c. The relation between welfare and

collateral threshold becomes a “V” shape—the social welfare is lower when the collateral threshold

is at intermediate values but is higher at the extreme values. The intuition for this result is that

an intermediate threshold value induces more manipulation, which is socially costly. In contrast,

an extremely low threshold makes manipulation very costly so that not many firms do it, and an

extremely high threshold makes manipulation unnecessary for most firms. In this case, the optimal

collateral threshold is at $1,000.

Finally, we consider a scenario in which the collateral requirement becomes less effective in

tory Collateral Requirements”.
17The tiny loans are exempted because the fixed transaction cost is large relative to the benefits of the collateral,

which is proportional to the loan size.
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reducing the charge-off rate. Specifically, we assume that the collateral requirement only reduces

the charge-off rate by 4.8%. Figure 8d shows that the optimal collateral threshold is at the

maximum loan size, which means that all loans should be exempted from the collateral requirement.

The intuition for this result is that the social benefits of collateral requirements become lower than

the shadow cost of collateral, so all firms should be exempted from the collateral requirements.

In summary, the counterfactual policy experiments show that the collateral cost has important

implications for the design of government lending programs. If one ignores the shadow cost of col-

lateral, the benefits of collateral requirements—reducing the expected default loss for taxpayers—

can easily dominate the explicit transaction costs associated with collateral requirements, which

are usually quite small in practice. However, if one incorporates the collateral cost, it becomes

unclear whether the collateral requirement is welfare improving or not. The counterfactual policy

experiments also show that firms’ strategic response to the collateral threshold is important for

policy design. As firms bunch below the threshold to avoid the collateral cost, the take-up of the

program will be significantly reduced. The strategic responses by firms limit policymakers’ ability

to use threshold-based policies to fine-tune the collateral requirements.

6 Conclusion

Collateral plays a crucial role in the economy. While the benefit of pledging collateral has received

extensive studies, the cost of pledging collateral is less well understood. This article empirically

estimates the shadow cost of collateral by exploiting a unique setting in which firms can be ex-

empted from collateral requirements if the loan amount is below a threshold. We find that the

implied shadow cost of collateral is equivalent to 6%-9% of the loan value.

Our results cast doubt on the conventional wisdom that the choice of collateralized and uncol-

lateralized debt follows a strict pecking order. Instead, firms face a trade-off between the shadow

cost to pledge collateral and the low-interest rate. This result is consistent with the recent the-

oretical literature that shows that pledging collateral could limit firms’ operational and financial
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flexibility and reduce their bargaining power if they enter financial distress. Moreover, we show

that the collateral cost depends on collateral types, business sectors, and collateral laws. These

results have important implications for understanding firms’ borrowing constraints, the financial

accelerator mechanism, and the design of government lending programs.
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Figure 1: Loan size distribution
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(c) COVID EIDL

1

2

3

4

5000 15000 25000 35000 45000 55000 65000
Loan Amount

P
er

ce
nt

ag
e 

of
 L

oa
ns

Collateralization Cut−off

$25000(2020)

Note: The figure shows the loan size distribution of BPDLs, regular EIDLs, and COVID EIDLs, respec-
tively. Data source: SBA.

39



Figure 2: Distributions for BPDLs: loan amounts vs. verified losses
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Note: The figure shows the verified loss and loan size distribution for BPDLs. The vertical lines indicate
the collateral thresholds. Data source: SBA.
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Figure 3: Bunching condition with collateral costs
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Figure 4: Counterfactual distribution and marginal buncher of BPDLs

(a) 2003 to 2007



0

2

4

6

5000 15000 25000 35000 45000 55000 65000
Loan Amount

P
er

ce
nt

ag
e 

of
 L

oa
ns

(b) 2008 to 2013



0.0

2.5

5.0

7.5

5000 15000 25000 35000 45000 55000 65000
Loan Amount

P
er

ce
nt

ag
e 

of
 L

oa
ns

(c) 2014 to 2020



0

3

6

9

5000 15000 25000 35000 45000 55000 65000
Loan Amount

P
er

ce
nt

ag
e 

of
 L

oa
ns

Note: This figure shows the observed (black) and counterfactual (red) percentage of loans in each bin.
The counterfactual is estimated for each sample separately by fitting a fifth-order polynomial with round
number dummies to the observed distribution using a bin size of $500 excluding data in the bunching
region. We set all estimation ranges to be from $0 to $65,000.
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Figure 5: Loan size distribution and marginal buncher of EIDLs

(a) Regular EIDL
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Note: This figure shows the observed (black) and counterfactual (red) percentage of loans in each bin.
The counterfactual is estimated for each sample separately by fitting a fifth-order polynomial with round
number dummies to the observed distribution using a bin size of $500 excluding data in the bunching
region. We set estimation ranges to be from $1000 to $65,000 for both regular EIDL and COVID EIDL.
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Figure 6: Impulse response functions in a Kiyotaki and Moore (1997) model with collateral cost
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Note: This figure shows the impulse response functions in a Kiyotaki and Moore (1997) model with
collateral cost. The vertical axis is the percentage deviation of farmers’ land from the steady state, K̂t.
The horizontal axis is time. Productivity of tradable goods a is set to 1. Productivity of non-tradable
goods c is set to 0.01. The collateral cost is set to 6%. The gross interest rate R is set to 1.01. The
depreciation rate δ is set to 0.05. The elasticity of the residual supply of land to the farmers to the user
cost at the steady state η is set to 1.5.
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Figure 7: Time-0 impulse responses in a Kiyotaki and Moore (1997) model with vs. without
collateral cost
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Note: This figure shows time-0 impulse response for shocks of different sizes in Kiyotaki and Moore
(1997) model with collateral cost. The vertical axis is the percentage deviation of farmers’ land at time
0 from the steady state, K̂0. The horizontal axis is the size of the productivity shock. Productivity of
tradable goods a is set to 1. Productivity of non-tradable goods c is set to 0.01. The collateral cost is set
to 6%. The gross interest rate R is set to 1.01. The depreciation rate δ is set to 0.05. The elasticity of
the residual supply of land to the farmers to the user cost at the steady state η is set to 1.5.
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Figure 8: Counterfactual policy simulation
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(b) With collateral cost, without manipulation
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(c) With collateral cost and manipulation
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(d) Lower benefit of collateral
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Note: This figure shows the social welfare for different values of the collateral threshold (K). The red
dashed lines indicate the optimal collateral threshold in each scenario.
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Figure 9: UVTA and UFTA status by state as of 2021

Note: This figure shows each state’s status for UVTA and UFTA as of 2021.
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Table 1: Summary statistics

This table reports summary statistics for the main variables. The first two columns report the mean
and the standard deviation, and the The third to fifth columns report the minimum, median, and
maximum, respectively. Panel A reports summary statistics for the full sample of the Business
Physical Disaster Loan (BPDL), panel B reports statistics for the full sample of the Economic
Inquiry Disaster Loan (EIDL), and panel C reports statistics for the full sample of the COVID
Economic Inquiry Disaster Loan (COVID EIDL). The loan amount is the approved loan amount
of a given loan in the sample. Interest rate is the SBA assigned interest rate for a particular
disaster. Verified loss is the total disaster physical damage losses associated with BPDLs. Loans
per disaster is the total number of disaster loans approved for a particular disaster. Loans per zip
code is the total number of disaster loans approved for a particular zip code region.

Panel A: BPDL (2003-2020)
Outcome Mean Std.Dev. Min Median Max Observations

Loan amount ($) 469,771 2,534,953 100 66,300 141,125,104 14,055
Interest rate (%) 3.59 0.46 2.75 4.00 4.00 14,125
Verified losses ($) 2,128,843 14,447,101 0 144,571 531,025,562 14,056
Loans per disaster 325.62 419.89 1 139 1,566 14,383
Loans per zip code 5.54 10.62 1 3 137 14,383

Panel B: EIDL (2003-2020)
Outcome Mean Std.Dev. Min Median Max Observations

Loan amount ($) 126,676 384,592 100 30,200 13,971,500 11,202
Interest rate (%) 3.55 0.46 2.75 3.67 4.00 11,185

Loans per disaster 364.72 441.21 1 173 1,566 11,600
Loans per zip code 5.80 9.97 1 4 137 11,600

Panel C: COVID EIDL (2020)
Outcome Mean Std.Dev. Min Median Max Observations

Loan amount ($) 53,255 58,315 100 26,000 713,900 3,616,791
Interest rate (%) 3.75 0.00 3.75 3.75 3.75 3,616,791

Loans per zip code 625.39 627.78 1 435 4,705 3,616,791
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Table 2: Bunching estimates for BPDLs: baseline

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for BPDLs between 2014 and 2020 at $25,000 collateral threshold. The sample contains loans with
loan amount between $0 and $65,000. The distortion ratio is calculated as θ = (K −K)/K. The
collateral cost λ is calculated as in equation (7). The bin size is set to $500 and the degree of the
polynomial is set to 4 in column 1, 5 in column 2 and 6 in column 3. Bootstrapped standard errors
are presented in parentheses.

BPDL

Estimates
Bin Size = 500

K = 25000 K = 25000 K = 25, 000
Collateral requirement Fixed lien Fixed lien Fixed lien

P = 4 P = 5 P = 6
(1) 2014-2020 (2) 2014-2020 (3) 2014-2020

Bunching mass (B) 9.57% 9.65% 9.64%
(0.13%) (0.15%) (0.15%)

Marginal buncher (K) 47,500 45,500 45,000
(2857.88) (2277.11) (2493.37)

Distortion ratio (θ) 46.81% 45.05% 44.44%
(3.34%) (2.73%) (3.07%)

Collateral cost (λ) 10.83% 9.60% 9.29%
(1.74%) (1.39%) (1.52%)
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Table 3: Bunching estimates for COVID EIDLs: baseline

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for COVID EIDLs at $25,000 collateral threshold. The sample contains loans with loan amount
between $1,000 and $65,000. The distortion ratio is calculated as θ = (K −K)/K. The collateral
cost λ is calculated as in equation (7). The bin size is set to $500 and the degree of the polynomial
is set to 4 in column 1, 5 in column 2 and 6 in column 3. Bootstrapped standard errors are
presented in parentheses.

COVID EIDL

Estimates
Bin Size = 500

K = 25000 K = 25000 K = 25, 000
Collateral requirement Floating lien Floating lien Floating lien

P = 4 P = 5 P = 6
(1) COVID EIDL (2) COVID EIDL (3) COVID EIDL

Bunching mass (B) 2.52% 2.58% 2.55%
(0.07%) (0.08%) (0.08%)

Marginal buncher (K) 40,000 40,000 40,000
(4432.43) (3635.17) (2868.36)

Distortion ratio (θ) 37.50% 37.50% 37.50%
(6.67%) (5.03%) (4.74%)

Collateral cost (λ) 6.23% 6.23% 6.23%
(2.60%) (2.18%) (1.67%)
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Table 4: Bunching estimates: regular vs. COVID EIDLs

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for EIDLs. Columns 1 and 2 report the regular and COVID EIDL sample respectively. The
collateral threshold are $25,000 for both samples. The sample contains loans with loan amount
between $1,000 and $65,000. The distortion ratio is calculated as θ = (K −K)/K. The collateral
cost λ is calculated as in equation (7). The bin size is set to $500 and the degree of the polynomial
is set to 5. Bootstrapped standard errors are presented in parentheses.

EIDL

Estimates
Bin Size = 500

K = 25, 000 K = 25, 000
Collateral requirement Fixed lien Floating lien

P = 5 P = 5
(1) Regular EIDL (2) COVID EIDL

Bunching mass (B) 8.74% 2.58%
(0.13%) (0.08%)

Marginal buncher (K) 45,000 40,000
(1673.92) (3635.17)

Distortion ratio (θ) 44.44% 37.50%
(2.18%) (5.03%)

Collateral cost (λ) 9.29% 6.23%
(1.02%) (2.18%)
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Table 5: Estimates by industry

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for different industry’s COVID-19 EIDLs at $25,000 collateral threshold. The sample contains loans
with loan amount between $1,000 and $65,000. The distortion ratio is calculated as θ = (K−K)/K.
The collateral cost λ is calculated as in equation (7). The degree of the polynomial is set to 5 and
the bin size is set to $500. Bootstrapped standard errors are presented in parentheses.

Sector NAICS B K Distortion ratio θ Collateral cost λ
Agriculture 11 6.38% 44,000 43.18% 8.66%

(0.23%) (2355.47) (3.40%) (1.42%)
Construction 23 5.40% 40,000 37.5% 6.23%

(0.15%) (2087.54) (3.04%) (1.26%)
Manufacturing 31-33 6.56% 40,000 37.5% 6.23%

(0.24%) (2345.25) (3.29%) (1.41%)
Wholesale Trade 42 6.00% 40,000 37.5% 6.23 %

(0.22%) (3151.03) (4.49%) (1.89%)
Retail Trade 44-45 4.23% 37,500 33.33% 4.76 %

(0.09%) (1813.46) (3.12%) (1.05%)
Transportation 48-49 4.23% 40,000 37.5% 6.23%

(0.07%) (1802.55) (2.71%) (1.08%)
Information 51 4.56% 40,000 37.5% 6.23%

(0.11%) 3871.54 (7.55%) (2.10%)
Finance and Insurance 52 6.02% 40,500 38.27% 6.53%

(0.17%) (2956.14) (3.92%) (1.80%)
Real Estate 53 2.98% 35,000 28.57% 3.38%

(0.10%) (2594.37) (4.93%) (1.43%)
Professional Services 54 5.69% 40,000 37.5% 6.23%

(0.11%) (1996.08) (2.93%) (1.20%)
Waste Management 56 4.80% 44,000 43.18% 8.66%

(0.10%) (3067.32) (4.88%) (1.81%)
Educational Services 61 6.17% 46,000 45.65% 9.88%

(0.79%) (5086.99%) (5.49%) (3.09%)
Health Care 62 5.02% 43,500 42.53% 8.35%

(0.16%) (2398.66) (3.28%) (1.46%)
Recreation 71 4.73% 40,000 37.5% 6.23%

(0.34%) (3978.92) (5.83%) (2.37%)
Accommodation and Food 72 5.11% 44,500 43.82% 8.96%

(0.18%) (2493.73) (3.27%) (1.52%)
Other Services 81 4.69% 40,000 37.5% 6.23%

(0.10%) (2036.33) (2.87%) (1.23%)
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Table 6: The effects of secured creditor rights on loan take-up

This table presents estimates of the loan level effects of the Uniform Voidable Transfer Act (UVTA)
state adoption on the BPDL loan take-up ratio between 2014 and 2020. The loan take-up ratio is
calculated as following: Take-up = Loan amount

Loss
. “Adoption” is the dummy variable that indicates

whether the state had adopted UVTA when the loan was issued: 1 is after the adoption, and 0
is before the adoption. “Loss > 25k” is the dummy variable that indicates whether the disaster
loan’s associated verified losses exceed $25,000: 1 is verified losses above $25,000, and 0 is verified
losses below or equal to $25,000. Column (1) reports the results without fixed effects. Column (2)
reports results with year-fixed effects. Column (3) reports results with state-fixed effects. Column
(4) reports results with both year and state fixed effects. All standard errors are clustered both at
the year level and the state level.

BPDL 2014-2020
Dependent variable: Take-up ratio

(1) (2) (3) (4)

Adoption × Loss>25k 0.100** 0.094** 0.085*** 0.084***
(0.029) (0.035) (0.015) (0.012)

Loss>25k -0.375*** -0.366*** -0.345*** -0.339***
(0.033) (0.031) (0.016) (0.008)

Adoption -0.019 -0.029 0.111 -0.013
(0.046) (0.082) (0.066) (0.046)

Constant 0.902*** 0.898*** 0.862*** 0.876***
(0.025) (0.013) (0.016) (0.001)

State fixed effects No No Yes Yes
Year fixed effects No Yes No Yes

Observations 581 581 575 575
Adjusted R2 0.203 0.233 0.238 0.251
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Table 7: UVTA Adoption status by state

State Acting adopted Uniform Act as of 2021 UFTA UVTA UVTA bill
Alabama Uniform Voidable Transaction Act 1990 2018 SB152
Alaska Non-Uniform
Arizona Uniform Fraudulent Transfer Act 1990
Arkansas Uniform Voidable Transactions Act 1987 2017 HB2139
California Uniform Voidable Transactions Act 1986 2015 SB161
Colorado Uniform Fraudulent Transfer Act 1991
Connecticut Uniform Fraudulent Transfer Act 1991
Delaware Uniform Fraudulent Transfer Act 1996
District of Columbia Uniform Fraudulent Transfer Act 1996
Florida Uniform Fraudulent Transfer Act 1988
Georgia Uniform Voidable Transactions Act 2002 2015 SB65
Hawaii Uniform Fraudulent Transfer Act 1985
Idaho Uniform Voidable Transactions Act 1987 2015 HB92
Illinois Uniform Fraudulent Transfer Act 1990
Indiana Uniform Voidable Transactions Act 1994 2017 SB316
Iowa Uniform Voidable Transactions Act 1995 2016 HF2400
Kansas Uniform Fraudulent Transfer Act 1999
Kentucky Uniform Voidable Transactions Act 2015 SB204
Louisiana Uniform Fraudulent Transfer Act 1985
Maine Uniform Fraudulent Transfer Act 1986
Maryland Uniform Fraudulent Conveyance Act
Massachusetts Uniform Fraudulent Transfer Act 1996
Michigan Uniform Voidable Transactions Act 1998 2017 SB982
Minnesota Uniform Voidable Transactions Act 1987 2015 HF1342 & SF1816
Mississippi Uniform Fraudulent Transfer Act 2006
Missouri Uniform Fraudulent Transfer Act 1992
Montana Uniform Fraudulent Transfer Act 1991
Nebraska Uniform Voidable Transactions Act 1980 2019 LB70
Nevada Uniform Fraudulent Transfer Act 1987
New Hampshire Uniform Fraudulent Transfer Act 1988
New Jersey Uniform Voidable Transactions Act 1989 2021 AB3384 & SB3171
New Mexico Uniform Voidable Transactions Act 1989 2015 HB85
New York Uniform Voidable Transactions Act 2019 AB5622
North Carolina Uniform Voidable Transactions Act 1997 2015 SB123
North Dakota Uniform Voidable Transactions Act 1985 2015 HB1135
Ohio Uniform Fraudulent Transfer Act 1990
Oklahoma Uniform Fraudulent Transfer Act 1986
Oregon Uniform Fraudulent Transfer Act 1986
Pennsylvania Uniform Voidable Transactions Act 1994 2017 SB629
Rhode Island Uniform Voidable Transactions Act 1986 2018 HB7334
South Carolina Non-Uniform
South Dakota Uniform Fraudulent Transfer Act 1987
Tennessee Uniform Fraudulent Transfer Act 2003
Texas Uniform Fraudulent Transfer Act 1987
Utah Uniform Voidable Transactions Act 1988 2017 SB58
Vermont Uniform Voidable Transactions Act 1996 2017 HB35
Virginia Non-Uniform
Washington Uniform Voidable Transactions Act 1988 2017 SB5085
West Virginia Uniform Voidable Transactions Act 1986 2018 HB4233
Wisconsin Uniform Fraudulent Transfer Act 1988
Wyoming Uniform Fraudulent Transfer Act 2006
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Table 8: Impact of secured creditor rights on collateral costs

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for sub-samples of COVID-19 EIDLs at $25,000 collateral threshold. The sample contains loans
between $1,000 and $65,000. The distortion ratio is calculated as θ = (K −K)/K. The collateral
cost λ is calculated as in equation (7). The degree of the polynomial is set to 5, and the bin size
is set to $500. Bootstrapped standard errors are presented in parentheses.

COVID EIDL
Bin Size = 500

Estimates K = 25000 K = 25, 000
P = 5 P = 5

(1) UVTA (2) UFTA

Bunching mass (B) 2.66% 2.51%
(0.12%) (0.06%)

Marginal buncher (K) 40,000 44,500
(3639.38) (3461.23)

Distortion ratio (θ) 37.50% 43.82%
(5.10%) (4.45%)

Collateral cost (λ) 6.23% 8.96%
(2.19%) (2.10%)
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Table 9: Bunching estimates for BPDL: alternative thresholds

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for BPDLs in multiple sample periods at different collateral thresholds. The sample contains loans
with loan amount between $0 and $65,000. The distortion ratio is calculated as θ = (K −K)/K.
The collateral cost λ is calculated as in equation (7). The bin size is set to $500 and the degree of
the polynomial is set to 5. Bootstrapped standard errors are presented in parentheses.

BPDL

Estimates
Bin Size = 500

K = 10, 000 K = 14, 000 K = 25, 000
Collateral requirement Fixed lien Fixed lien Fixed lien

P = 5 P = 5 P = 5
(1) 2003-2007 (2) 2008-2013 (3) 2014-2020

Bunching mass (B) 5.11% 7.34% 9.65%
(0.15%) (0.03%) (0.15%)

Marginal buncher (K) 17,500 22,000 45,500
(1169.03) (1536.63) (2277.11)

Distortion ratio (θ) 42.86% 36.36% 45.05%
(3.40%) (4.04%) (2.73%)

Proportional collateral cost (λ) 8.52% 5.82% 9.60%
(1.79%) (1.65%) (1.39%)

Dollar collateral cost (λK) 1,491 1,280 4,368
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Table 10: Placebo tests

This table reports the bunching estimation results on excess mass (B) and marginal buncher
(K) for BPDLs between 2008 and 2013 at a placebo $25,000 collateral threshold. The sample
contains loans with loan amount between $0 and $65,000. The distortion ratio is calculated as
θ = (K − K)/K. The collateral cost λ is calculated as in equation (7). The bin size is set to
$500 and the degree of the polynomial is set to 4 in column 1, 5 in column 2 and 6 in column 3.
Bootstrapped standard errors are presented in parentheses.

BPDL

Estimates
Bin Size = 500

K = 25000 K = 25000 K = 25, 000
Collateral requirement Fixed lien Fixed lien Fixed lien

P = 4 P = 5 P = 6
(1) 2008-2013 (2) 2008-2013 (3) 2008-2013

Bunching mass (B) 0.07% 0.19% 0.20%
(0.08%) (0.06%) (0.07%)

Marginal buncher (K) 25,000 25,000 25,000
(0.00) (199.25) (235.01)

Distortion ratio (θ) 0.00% 0.00% 0.00%
(0.00%) (0.76%) (0.90%)

Collateral cost (λ) 0.00% 0.00% 0.00%
(0.00%) (0.01%) (0.07%)
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Table 11: Robustness: alternative bin sizes

This table reports the bunching estimation results on excess mass (B) and marginal buncher (K)
for BPDLs between 2014 and 2020 at $25,000 collateral threshold. The sample contains loans with
loan amount between $0 and $65,000. The distortion ratio is calculated as θ = (K −K)/K. The
collateral cost λ is calculated as in equation (7). The degree of the polynomial is set to 5 and the
bin size is set to $100 in column 1, $250 in column 2 and $500 in column 3. Bootstrapped standard
errors are presented in parentheses.

BPDL

Estimates
Bin Size = 100 Bin Size = 250 Bin Size = 500
K = 25000 K = 25000 K = 25, 000

Collateral requirement Fixed lien Fixed lien Fixed lien
P = 5 P = 5 P = 5

(1) 2014-2020 (2) 2014-2020 (3) 2014-2020

Bunching mass (B) 9.58% 9.59% 9.65%
(0.07%) (0.11%) (0.15%)

Marginal buncher (K) 47,300 46,750 45,500
(2683.97) (1871.51) (2277.11)

Distortion ratio (θ) 47.14% 46.52% 45.05%
(2.83%) (1.88%) (2.73%)

Collateral cost (λ) 10.71% 10.37% 9.60%
(1.64%) (1.13%) (1.39%)

COVID EIDL

Estimates
Bin Size = 100 Bin Size = 250 Bin Size = 500
K = 25000 K = 25000 K = 25, 000

Collateral requirement Fixed lien Fixed lien Fixed lien
P = 5 P = 5 P = 5

(1) COVID EIDL (2) COVID EIDL (3) COVID EIDL

Bunching mass (B) 2.08% 2.41% 2.58%
(0.05%) (0.09%) (0.08%)

Marginal buncher (K) 40,000 40,000 40,000
(5307.12) (5343.94) (3635.17)

Distortion ratio (θ) 37.50% 37.50% 37.50%
(8.87%) (8.36%) (5.03%)

Collateral cost (λ) 6.23% 6.23% 6.23%
(3.04%) (3.12%) (2.18%)
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