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Abstract

We separately identify the role of risk preferences and frictions in portfolio choice. Stan-
dard cross-sectional moments, such as the life cycle of participation in the stock market, can-
not distinguish between the two: agents may choose not to participate because of non-standard
preferences (e.g. loss aversion) or frictions impacting their choices (e.g. participation costs).
We overcome this identification problem by using variation in the default asset allocation of
401(k) plans and estimate that, absent frictions, 95% of investors would prefer holding stocks
in their retirement account with an equity share of retirement wealth that declines over the life
cycle, which differs markedly from their observed choices. We use this variation to structurally
estimate a life cycle portfolio choice model and find the evidence consistent with a relative risk
aversion of 3.1. This estimate is significantly lower than most estimates in the life cycle port-
folio choice literature and highlights how choice frictions can hamper the identification of risk
preferences.
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Many households do not participate in the stock market, including households with significant
financial wealth (Mankiw and Zeldes 1991; Guiso, Haliassos, and Jappelli 2002; Campbell 2006).
This limited participation in the stock market is difficult to reconcile with standard economic the-
ory, which predicts that all investors should hold at least a small amount of stocks in the presence
of a positive equity premium (e.g. Merton 1969; Campbell and Viceira 2001).1 In principle, an in-
vestor may choose to not allocate their financial wealth to the stock market for two reasons. First,
this investor may prefer holding safe assets over stocks (e.g. due to loss aversion, ambiguity aver-
sion, or pessimistic beliefs about returns). Alternatively, this investor may prefer holding stocks
over safe assets, but not participate due to frictions. These frictions could include the real costs
of setting up and maintaining a brokerage account or the cognitive cost of making a financial plan
and paying attention. Although these two explanations have similar predictions for this investor’s
participation in the stock market, distinguishing between them has important normative implica-
tions. For example, interventions designed to encourage more stock market participation may be
more desirable if non-participation is due to high participation costs rather than a preference for
safe assets.

In this paper, we propose and implement a new empirical approach to recover investor prefer-
ences in the presence of frictions. We begin by illustrating the difficulty of achieving identification
with commonly-used cross-sectional moments. Using a standard life cycle portfolio choice model,
we show that the life cycle profile of participation in the Survey of Consumer Finances is consis-
tent with two very different calibrations of the model: (i) a risk aversion below 2 and an extremely
high adjustment or participation cost and (ii) a risk-aversion above 30 and a lower adjustment or
participation cost. This result illustrates the challenge in separately identifying investors’ risk pref-
erences and choice frictions using cross-sectional moments commonly used to estimate life cycle
portfolio choice models.

Next, we overcome this identification problem using quasi-experimental variation in the default
asset allocation of 401(k) plans. An ideal experiment for separating between preference- and
friction-based explanations for non-participation would be to randomly give investors who are
not participating in the stock market an investment account with stocks, thereby removing any
one-time costs associated with participation. If these investors dislike holding risky assets (for
instance, due to loss aversion) they should sell the stocks and move their holdings toward safer
assets. Alternatively, if frictions were responsible for these investors not participating beforehand,
we would expect them to keep the stocks, durably switching from stock-market non-participation
to participation as a consequence of the treatment.

1The intuition is that with strictly increasing and differentiable utility, agents should be risk-neutral over small risk
(Rabin 2000).
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To approximate this ideal experiment, we rely on account-level data from a large 401(k) plan
provider. Such employer-sponsored retirement savings accounts are available to two-thirds of U.S.
civilian employees (Myers and Topoleski 2020) and are the main vehicle American households
use to participate in the stock market and invest in financial products.2 Our identification strategy
exploits changes in the default asset allocation of retirement plans. Our treatment group con-
sists of investors hired right after the default asset allocation was changed to a Target Date Fund
(TDF), which has significant equity exposure. By default, these investors are participating in the
stock market, but can choose to opt-out and move their retirement savings toward safer assets. We
consider two control groups of investors hired right before the policy change: (i) investors auto-
matically enrolled into a money market fund (with no equity exposure); (ii) investors hired under
an opt-in regime. Investors in both control groups are, by default, not holding any stocks in their
retirement account and must make an active decision in order to participate. We find that more
than 90% of investors defaulted into stocks maintain a positive equity share of retirement wealth
throughout their tenure, whereas investors defaulted into a money market fund (or hired under an
opt-in regime) progressively move away from their zero-stock default option and toward higher
equity exposure. The fact that most investors move away from the default when it is a safe asset
but stay invested in the default when it’s equity suggests, absent any one-time adjustment costs,
these investors prefer holding risky assets.

To translate this variation into estimates of preferences, we apply a framework developed by
Goldin and Reck (2020). Under a set of assumptions, most importantly that treatment is randomly
assigned, we can non-parametrically bound the fraction of investors who would prefer holding
stocks inside their retirement account absent frictions. Empirically, 42% of investors who were
defaulted into a money market opted out of the default within one year and moved toward stock
market participation. Intuitively, these investors have revealed their preference for stocks by ac-
tively moving away of the money market default and, therefore, there must be at least 42% of
investors who prefer stock market participation. Conversely, 5% of investors who were defaulted
into holding stocks made an active decision to opt-out of stock market participation, thus revealing
their preference for stock non-participation inside the retirement account. Thus, the upper bound
for stock market participation in the retirement account absent any friction should be 95%. We can
also bound the average preferred stock share of retirement wealth from below at 39%.

Under additional assumptions about the differences in preferences between investors who make

2Among individuals eligible to contribute to a retirement account in the SCF, on average 85% (99.5% at the
median) of their financial investment products (defined as stocks, bonds, money and non-money market mutual funds,
trusts, and CDs) are held inside a retirement account. Overall, only 5% of households participate in the stock market
exclusively outside of a retirement account. See Section 2.2 for additional details.
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active choices and those who do not, we can non-parametrically obtain point estimates for pref-
erences absent friction. We estimate that 94% of investors in our sample prefer stock market par-
ticipation in their retirement accounts with an average preferred stock share of retirement wealth
of 76%. Moreover, we estimate preferences for participation are flat over the life cycle, while the
average preferred stock share of retirement wealth increases slightly between ages 20 and 30, but
decreases after 30 at a level and rate roughly consistent with normative models of life cycle port-
folio choice (e.g. Merton 1969; Cocco, Gomes, and Maenhout 2005). Crucially, our estimates of
preferences differ substantially from observed choices – average participation and stock shares of
retirement wealth are substantially lower and increase over the life cycle.

We view these new quasi-experimental moments as better calibration or estimation targets for
both standard and behavioral models of portfolio choice. On the one hand, models abstracting
from frictions could directly target our friction-free estimates of participation and equity shares of
retirement wealth over the life cycle to obtain better identified preference estimates. On the other
hand, richer models featuring choice frictions could exploit the difference in behavior across the
treatment and control group to separately identify the size of the friction from preference estimates.
To illustrate these points, we build a rich life cycle portfolio choice model and estimate it using the
variation from our quasi-experiments. This model has three key features that are required to match
our quasi-experimental evidence. First, investors can choose different asset allocations for existing
wealth and new contributions in their retirement account. Second, investors are subject to default
effects when making portfolio choice and savings decisions. Finally, investors face uncertainty
about future earnings and employment status that creates value to delaying adjustments in portfolio
and savings decisions away from their defaults.

Within this model, we conduct an experiment analogous to the first quasi-experiment in our data
by randomizing the default asset allocation of investors when they change jobs. We then struc-
turally estimate investors’ preferences and the magnitude of the frictions they face by matching
the results of the experiment in the model to our empirical results. In our estimation, we find the
model closely matches our quasi-experimental evidence with a coefficient of relative risk aversion
of 3.1 and a portfolio adjustment cost of $444. This estimate of risk aversion is lower than most
estimates in the life cycle portfolio choice literature (surveyd by Gomes 2020; Gomes, Haliassos,
and Ramadorai 2020). A notable exception is Briggs, Cesarini, Lindqvist, and Östling (2021),
who use quasi-experimental variation from lottery-winnings in Sweden and estimate a relative risk
aversion of around 2.7.3 Collectively, these results highlight how frictions distort the mapping be-
tween observed portfolio choices and risk preferences, and how quasi-experimental variation can

3See also Beutel and Weber (2022), who find the portfolio responses of investors to information treatments are
consistent with a coefficient of relative risk aversion of 4.1 in a Merton (1969) model with margin constraints.
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help overcome this identification problem.

Related literature. This paper makes several contributions to existing literature. First, this pa-
per relates to the extensive literature on limited household stock market participation by offering
a way to distinguish between two leading classes of explanations for this fact. The first category,
which we call “preference-based” explanations, argues investors prefer holding safe over risky as-
sets for reasons not captured by standard models (e.g. due to non-standard preferences or beliefs).
For example, investors’ preferences might exhibit first-order risk aversion that makes risky assets
unattractive, despite their positive expected return. This occurs in theories of loss-aversion with re-
spect to wealth or news (Gomes 2005; Pagel 2018), narrow-framing (Barberis, Huang, and Thaler
2006), rank-dependence (Chapman and Polkovnichenko 2009), disappointment-aversion (Chap-
man and Polkovnichenko 2009), or ambiguity-aversion (Epstein and Wang 1994). In addition,
households may perceive risky assets to have a less attractive return due to background risk (Ben-
zoni, Collin-Dufresne, and Goldstein 2007; Catherine 2022), disaster risk (Fagereng, Gottlieb, and
Guiso 2017), overly pessimistic beliefs (Briggs et al. 2021), or lack of trust in the financial sector
(Guiso, Sapienza, and Zingales 2008).

The second category of explanations for limited stock market participation, which we call
“friction-based”, argues households prefer risky assets, but do not invest in them because of fric-
tions associated with doing so. Such frictions could be one-time participation or transaction costs
(Haliassos and Michaelides 2003; Gomes and Michaelides 2005; Abel, Eberly, and Panageas 2013;
Gomes, Fugazza, and Campanale 2015), in addition to per-period participation costs (Vissing-
Jørgensen 2002; Fagereng et al. 2017; Briggs et al. 2021; Gomes and Smirnova 2021). These costs
could be real, such as the cost of opening a brokerage account or paying a financial advisor, or
psychological, such as the hassle cost of deviating from a default asset allocation or engaging in
financial planning. A major challenge in this literature is empirically identifying the size of these
frictions, as they cannot be measured directly in the data. Our identification strategy allows us to
identify the size of the these frictions (separately from risk-preferences) and our results suggest
that choice frictions, rather than preferences or beliefs, are the main reason investors do not hold
equity in their retirement account. Within the class of models with frictions, we find support for
those with one-time participation or fixed adjustment costs as opposed to per-period participation
costs. In the presence of large enough per-period participation costs workers who are automatically
enrolled into a stock fund should opt-out and move their savings away from equity, which is not
what we observe in the data.

This paper’s second contribution is to the literature on life cycle portfolio choice, initiated by
Merton (1969) and surveyed by Campbell and Viceira (2001), Gomes (2020), and Gomes et al.
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(2020). We take advantage of quasi-experimental variation to provide estimates for two key pa-
rameters governing life cycle portfolio decisions: the coefficient of relative risk-aversion and the
size of portfolio adjustment costs. These estimates are particularly relevant for the growing litera-
ture on target date funds (e.g. Parker, Schoar, and Sun 2020; Duarte, Fonseca, Parker, and Good-
man 2021; Gomes, Michaelides, and Zhang 2021; Massa, Moussawi, and Simonov 2021; Parker,
Schoar, Cole, and Simester 2022). Estimating the size of portfolio adjustment frictions is key to
quantifying the welfare gains associated with TDF adoption, in particular the benefits associated
with automatic re-balancing.

Finally, this paper contributes more broadly to the literature on behavioral welfare economics
(e.g. Bernheim and Rangel 2009; Allcott and Taubinsky 2015; Choukhmane 2021). Most related
is the framework we apply for inferring preferences in the presence of framing effects developed
by Goldin and Reck (2020). Our results caution against structurally estimating behavioral models
using cross-sectional moments, as choice frictions can break the mapping from observed choices
to underlying preferences. More constructively, this paper illustrates how quasi-experimental vari-
ation can provide useful variation for distinguishing between different behavioral theories (see also
Briggs et al. 2021; Choukhmane 2021).

Outline. Section 1 illustrates the identification problem in separating preferences and frictions
using standard cross-sectional moments. Section 2 describes our data and quasi-experimental vari-
ation, while Section 3 uses this variation to non-parametrically estimate investors’ risk preferences.
Section 4 describes our life cycle model and our estimation results. Section 5 concludes. An Ap-
pendix containing additional results, model solution and estimation details, and derivations.

1 The Identification Problem

In this section, we illustrate how cross-sectional moments cannot separately identify risk prefer-
ences and frictions. We first discuss the lack of consensus in the existing literature about estimates
of risk aversion in life-cycle portfolio choice models. Next we show the difficulty in separating the
two in a standard life cycle portfolio choice model.
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1.1 Risk Preferences in Life Cycle Portfolio Choice

There is little consensus in the existing literature that studies models of life cycle portfolio choice
on the specification of investors’ preferences, in particular the coefficient of relative risk aversion.
In Figure 1, we show the values of relative risk aversion calibrated or estimated from papers that
solve a dynamic life cycle portfolio choice model with standard preferences.4

Figure 1. Estimates of Relative Risk Aversion in Life Cycle Portfolio Choice

Notes: This figure plots the coefficient of relative risk aversion that is calibrated or estimated in papers that solve dynamic life cycle portfolio choice
models with CRRA or Epstein-Zin preferences. We also include the type of the friction associated with stock market participation in the model,
distinguishing between one-time and per-period costs. If the paper has multiple estimations, we include the paper’s main estimates. An exception
is Calvet, Campbell, Gomes, and Sodini (2019) who estimate risk-aversion across investors; we include their average estimate. Merton Share refers
to the portfolio share implied by the Merton (1969) model with a risk-premium of 5.5% and standard deviation of 16%.

The results in this figure illustrate two points. First, there is substantial variation in estimates of
relative risk aversion in life cycle portfolio choice models, from around 3 in Briggs et al. (2021)
to around 14 in Fagereng et al. (2017) and Dahlquist, Setty, and Vestman (2018). Secondly, the
average value of relative risk aversion in Figure 1 is around 8, which is higher than estimates
obtained in other literature. For example, evidence on life cycle consumption-savings decisions is
consistent with a relative risk aversion of around 2 or 3 (Gourinchas and Parker 2002; De Nardi,
French, and Jones 2016), while the relatively low estimated labor supply elasticities suggest an
upper bound of around 1 (Chetty 2006).

In sum, the evidence from existing literature suggests that auxiliary assumptions (for instance
4We only include papers that use time-separable CRRA or recursive Epstein-Zin preferences because in these

models relative risk-aversion is independent of wealth.
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about the specification and size of participation and adjustment frictions) can lead to widely dif-
ferent estimates of risk-preferences in life cycle portfolio choice models. In the next section, we
formalize this point using a simple life cycle portfolio choice model.

1.2 The Difficulty in Separating Preferences and Frictions

1.2.1 Simple Life Cycle Model

We consider a standard life cycle portfolio choice model in the spirit of Cocco et al. (2005),
which we describe in more detail in Appendix B. Investors in the model have time-separable pref-
erences with discount factor β and a CRRA preferences over flow consumption with risk aversion
σ . Each period investors earn exogenous stochastic labor income while they are working and re-
tirement benefits while retired. In addition to making consumption and savings decisions, investors
choose the fraction of their wealth invested in a risky stock, θt , with the remaining fraction of their
wealth, 1−θt , invested in a risk-free bond. We assume a risk-free rate of 2% and a equity risk
premium of 4.5%; the rest of the parameters are given in Appendix B.

We introduce two frictions into the model that affect investors portfolio choice decisions. First,
there is a per-period participation cost p, which is incurred as a utility cost if θt > 0 (e.g. Vissing-
Jørgensen 2002; Fagereng et al. 2017; Catherine 2022; Briggs et al. 2021). This cost is designed
to capture the costs associated with maintaining an account to invest in the risky asset, in addition
to any related hassle costs. Secondly, investors must pay a one-time cost to adjust their portfolio
(e.g. Haliassos and Michaelides 2003; Gomes and Michaelides 2005; Abel et al. 2013), which is
designed to capture the real and psychological costs associated with making an active decision to
change one’s portfolio allocation. Specifically, investors are required to pay a utility cost f in order
to choose an asset allocation θt ≠ θd,t , where

θd,t = θt−1∗
Rt

(1−θt−1)R f +θt−1Rt
, (1)

The term θd,t captures the asset allocation absent any adjustment decision (i.e.under passive port-
folio re-balancing): it is equal to the asset allocation from the prior period, after adjusting for return
realizations. We also assume θd,0 = 0 to capture the fact that the default for most investors when
they begin working is non-participation in the stock market.

We solve the model numerically for different values of σ , f , and p. Investors’ asset alloca-
tion decisions θ∗(⋅) are determined by four state variables: age, wealth, income, and θd,t . We
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simulate the choices of investors and calculate in our simulated sample the average stock market
participation rate over the life cycle.

1.2.2 Cross-Sectional Moments Don’t Separate Preferences and Frictions

In Figure 2, we plot the life-cycle of participation for four different parameterizations of the
model: (i) high σ and low f ; (ii) low σ and high f ; (iii) high σ and low p; (iv) low σ and high p.
As illustrated in the figure, these lines are essentially on top of each other. Figure 2 also plots the
life-cycle of participation from the 1989-2019 Survey of Consumer Finances, estimated using the
approach in Deaton and Paxson (1994). Comparing the simulated life cycle of participation from
the model with the that from the SCF, we find models with coefficient of relative risk aversion of
2.5 and 50 fit the data equivalently well5, depending on how large participation or adjustment costs
are.

Figure 2. Age Profile of Participation in Simple Model versus SCF

Notes: This figure plots the life cycle of participation for different parameterizations of the model in Appendix B, using a discount factor of β = 0.96
in all simulations. σ denotes relative risk aversion, f denotes the one-time adjustment cost in dollars, and p denotes the per-period participation cost
in dollars. We also plot the age profile of participation from the SCF 1989-2019, identified using the methodology in Deaton and Paxson (1994),
with 95% confidence intervals. Each model simulation consists of 10,000 investors.

The results in Figure 2 illustrate that cross-sectional moments, such as the life-cycle of participa-

5We are assessing model fit entirely on the life-cycle of participation or stock shares because we are interested in
preferences over risk. However, because investors have time-separable CRRA preferences, these models will have
drastically different implications for wealth accumulation, as σ controls the EIS.
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tion, do not separately identify preferences and frictions. We believe that this intuition extends to
a richer set of models: the specification with implausibly high coefficient of relative risk-aversion
and smaller frictions can be thought of as a reduced-form for models with first-order risk-aversion
in preferences, additional risks, or pessimistic beliefs. These results imply that separately identi-
fying risk preferences and frictions requires additional variation beyond standard cross-sectional
moments.

2 Data and Quasi-Experimental Variation

Section 1 shows cross-sectional moments can’t separately identify investors’ risk preferences
from choice frictions. In this section, we describe the data and quasi-experimental variation we
use to separately identify these two, which do using a theoretical framework in Section 3.

2.1 The Ideal Experiment

The ideal experiment for identifying preferences in the presence of frictions would be to ran-
domly give some investors an investment account with risky assets. By randomly assigning ac-
counts to investors, we would effectively remove any one-time participation (or adjustment) costs.
Ideally, we would also remove any per-period costs associated with participation in the stock mar-
ket, such as paying for the investment account, possibly by paying them for the investor.

In this ideal experiment, there are two potential outcomes with respect to stock market partici-
pation. First, if investors sell the risky assets, this would suggest they prefer safe assets over risky
assets (e.g. due to loss aversion). Second, if investors kept the risky assets, this would suggest
a preference for risky assets that is obscured by one-time or per-period participation costs. With
respect to stock shares, there are more potential outcomes. However, by observing the fraction of
risky assets investors sell, we would be able to infer their preferred stock share.

2.2 Institutional Setting and 401(k) Administrative Data

In order to approximate the ideal experiment described above, we use data from a panel of
employer-sponsored retirement savings plans. Nearly two thirds of U.S. civilian workers (and 75%
of full-time private sector employees) have access to an employer-sponsored retirement savings
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plans such as a 401(k) or a 403(b) plan (Myers and Topoleski 2020). These accounts are partic-
ularly advantageous saving vehicles because assets accumulate tax-free, contributions can be tax-
deferred, and 86% of these plans offer an employer matching contribution (Arnoud, Choukhmane,
Colmenares, O’Dea, and Parvathaneni 2021).

Our data are provided by a large U.S. 401(k) record-keeper and contains detailed administrative
records for 4 million employees in more than 600 401(k) plans between December 2006 to Decem-
ber 2017. For each employee (to whom we refer to interchangeably as an investor) in each year,
we observe demographic characteristics, participation status in a 401(k) plan, 401(k) balances in
dollars, and employee and employer contribution rates. We also observe monthly allocations to
different assets by CUSIP, employer plan features, and default asset allocations. While these data
offer detailed information on investors’ saving and asset allocation behavior as well as the details
of the plan design, they have two potential limitations.

First, our sample of 401(k) plans is not randomly selected and not necessarily representative of
the U.S. workforce. In Table 1, we provide summary statistics on our data. Our estimate of the
median income in our sample increased from $27,320 in 2006 to $35,731 in 2017, which is broadly
in line with the $24,892 to $31,561 increase in median net compensation per worker in the U.S.
population from the Social Security Administration. Additionally, the median age among investors
in our sample is 41.6 years old, which is similar to the median age of 41.7 for the U.S. labor force
reported by the Bureau of Labor Statistics. Collectively, these results suggest our investors are
indeed representative of the broader sample of U.S. retirement investors.

Table 1. Summary Statistics

Our Sample 2006-2017

N = 18,398,750

Mean Median

Age 41.59 41.00
Wage Income 33,854.40
401(k) Balance 69,658.18 19,758.30
Stock Market Participation in 401(k) 0.68 1.00
Stock Share in 401(k) 0.53 0.73

Notes: This table displays summary statistics on the full set of retirement investors and years within our sample. We do not observe income directly
in our data, but impute it by dividing the retirement contribution amount (in dollars) by the contribution rate (which is as a percentage of salary).
We can only impute the compensation of employees with a positive contribution rate. To obtain an estimate of the median income in our sample,
we assume that all non-participating investors have below-median earnings. Note that this implies our median income measure is therefore a lower
bound for the actual median income in our sample. When calculating stock shares, we include both U.S. and international stocks. We use the
portfolio allocations of the funds provided by the financial institution from which we obtained the data to convert holdings of mutual funds that
include mixed allocations into stock share using the CUSIP of the mutual fund. When calculating the mean and median retirement wealth, we
condition on the 401(k) balance being positive.

A second limitation of our data is that we do not observe investors’ saving and investment
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behavior outside of their current employer 401(k) plans. In light of this data limitation, the life
cycle portfolio choice model introduced in Section 4 has separate accounts for assets held inside the
current employer’s retirement account, retirement assets accumulated at previous employers, and
non-retirement liquid savings. Nevertheless, we believe that behavior inside retirement accounts
offers a good indication of individuals attitudes toward risky assets. Due to their advantageous
tax properties and widespread availability, Defined Contribution accounts are the main instrument
used by American workers to invest in financial products: for individuals eligible to contribute to
a retirement savings account in the SCF 2007-2016 waves, on average 85% (99.5% at the median)
of their financial investment products (defined as stocks, bonds, money and non-money market
mutual funds, trusts, and CDs) are held inside a retirement account. Additionally, only 5% of
households in the SCF participate in the stock market exclusively outside of a retirement account.

2.3 Our Quasi-Experiments: Changes in 401(k) Default Asset Allocations

We use two quasi-experiments motivated by the ideal experiment described above. In the first
quasi-experiment, we compare the portfolio choices of investors hired within 12 months before
and 12 months after 6 firms change the default asset allocation in their auto-enrollment 401(k)
plans. The control group is 1,086 investors hired before the change, who are defaulted into a
money market fund (i.e. no stock market exposure), and the treatment group are 1,321 investors
hired at the same firms after the change, who are defaulted into a TDF (i.e. has stock market
exposure). We call this the "money market to TDF" sample.6 Under the assumption that investors
hired before and after the changes are similar (and other assumptions formalized in the Section 3),
this quasi-experiment provides a close approximation to the ideal experiment: some employees are
quasi-randomly assigned a retirement account with positive stock exposure (i.e. the TDF default),
while others are quasi-randomly assigned a retirement account with safe assets (i.e. money market
fund). An advantage of this 401(k) setting is that there are no explicit per-period costs associated
with maintaining or managing the account, in contrast to a brokerage account.7

In our second quasi-experiment, we compare the portfolio choices of investors hired within 12
months before and after 191 firms change their 401(k) plans from an opt-in regime to automatic-
enrollment with a TDF as the default asset allocation. The control group is 40,337 investors hired
before the change under the opt-in regime, while the treatment group is 52,400 investors hired

6All six of these firms change their default asset allocation in 2007 following the passage of the Pension Protection
Act of 2006.

7There could of course still be per-period psychological costs, such as the cost of paying attention to managing the
portfolio.
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after the change and automatically-enrolled into a TDF. Figure A3 displays the percent of the total
number of firms that change their default in each year, which illustrates this variation is relatively
evenly distributed between 2006 and 2017. We call this the "opt-in to TDF" sample.

Relative to the money market to TDF sample, the opt-in to TDF sample has the advantage of a
much larger sample of firms and investors. However, an important difference is that in the opt-in to
TDF sample is that the treatment and control groups differ both in terms of the frictions they face
to adjust their retirement asset allocation and the frictions they face in order to contribute to the
401(k) plan. This implies that in the opt-in control group, investors face a larger friction to hold
stocks in their retirement account (i.e. they need to first select a positive contribution rate and then
choose an asset allocation with positive equity exposure).

In Panels A and B of Figure 3, we plot the variation we use in both quasi-experiments. For
the money market to TDF sample, Panel A plots 401(k) participation, money market participation,
and stock market participation inside the 401(k) for investors in their first year of tenure based
on their hiring month relative to the policy change. Investors in the left-half of each graph are in
the control group (hired before the change), while investors in the right-half are in the treatment
group (hired after the change). Consistent with a large literature on default effects (e.g. Madrian
and Shea 2001; Blumenstock, Callen, and Ghani 2018; Beshears, Choi, Laibson, Madrian, and
Skimmyhorn 2018), we find participation in the money market fund decreases discontinuously
while stock market participation inside the 401(k) plan increases discontinuously for workers in
the treatment group (i.e. hired right after the change in the default). In contrast, 401(k) participation
remains unchanged. Panel B shows the analogous plot for the opt-in to TDF sample, in which we
observe a discontinuous increase in 401(k) participation and stock market participation inside the
401(k) plan for investors in the treatment group.8

8In Figure A4, we show that the observable characteristics of employees (i.e. age and income) are similar across
the control and treatment groups, and do not shift around the policy change.
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Figure 3. Identifying Variation
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Notes: This figure plots the variation in our two quasi-experiments. In Panel A, we compare the portfolio choices and 401(k) participation of
investors hired within 12 months before and 12 months after 6 firms change the default asset allocation in their auto-enrollment 401(k) plans. The
control group is 1,086 investors hired before the change, who are defaulted into a money market fund (i.e. no stock market exposure), and the
treatment group are 1,321 investors hired at the same firms after the change, who are defaulted into a TDF (i.e. has stock market exposure). In Panel
B, we compare the portfolio choices and 401(k) participation of investors hired within 12 months before and after 191 firms change their 401(k)
plans from an opt-in regime to automatic-enrollment with a TDF as the default asset allocation. The control group is 40,337 investors hired before
the change under the opt-in regime, while the treatment group is 52,400 investors hired after the change and automatically-enrolled into a TDF. In
both figures, we observe choices at the end of December for employees with less than 12 months of tenure. We define 401(k) participation based
on whether an employee has a positive balance in a 401(k) plan.
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2.4 Results from Quasi-Experiments

2.4.1 Investors Defaulted into Non-Participation Re-balance into Equity and Investors De-
faulted into TDFs Maintain a High Stock Share

Figure 4 plots the results from our two quasi-experiments in separate panels.9 In each panel,
we plot the fraction of investors participating in the stock market and their average stock share
of retirement wealth τ years after they have been hired, where τ = 0 corresponds to their choice
immediately upon being hired. In both samples, we find almost all of the investors in the treatment
group (≈ 95%) maintain positive stock market exposure in their 401(k). In contrast, investors in the
control groups gradually move away from the default and into holding stocks inside their retirement
account. In both samples, we also observe that investors in the treatment group maintain a relatively
high stock share of retirement wealth of around 80%, while the investors in the control groups start
with a lower stock share of retirement wealth and converge toward the treatment group. Table 2
shows the treatment group has a stock market participation rate inside the 401(k) plan that is 19-27
percentage points higher than the control group on average, with a stock share of retirement wealth
that is between 21-24 percentage points higher.

2.4.2 Robustness

We conduct several robustness checks on these results in Appendix G.

Spillover and peer effects. A potential concern is that our control groups of employees hired
right before the adoption of the TDF default option may also be (indirectly) affected by the policy
change. For instance, peer effects from colleagues automatically enrolled into a TDF may lead
employees in our control groups to increase the equity share inside their retirement account. Sim-
ilarly, employer may start advertising and encouraging higher equity allocation after the policy
change. To address this concern, we show in Panel A of Figure A5 that the behavior of employees
hired right before the policy change is similar to that of employees, in the same firms, hired sev-
eral years before the policy adoption (who likely are not affected by peer effects stemming from a
policy adopted several years later).

Survivorship bias. We do not observe investors after they separate from their employer. This
implies that the selection into our sample is different tenure levels. A potential concern is that the

9For the rest of the analysis, we only focus on portfolio choices made within 10 years of being hired. We drop
choices after that since there are few investors who remain at the firm for that long.
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Figure 4. Observed Portfolio Choice Response

Panel A: Money Market to TDF Sample
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Panel B: Opt-In to TDF Sample
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Notes: This figure plots the observed portfolio responses for employees who are defaulted into two groups. In Panel A, we compare employees
automatically enrolled into a money market fund and employees automatically enrolled into a Target Date Fund (TDF). Panel B does the same
comparison between investors hired under an opt-in regime and those automatically enrolled into a Target Date Fund.
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Table 2. Observed Portfolio Choice Response: Regression

Panel A: Money Market to TDF Sample

Stock Market Participation in 401(k): Yit Stock Share in 401(k): θit

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 56.58 56.35 57.81 56.95 37.40 37.21 38.88 38.28
(11.61) (10.57) (8.988) (8.600) (10.07) (9.392) (8.329) (8.004)

Default Has Stocks: Di 19.92 20.06 19.12 19.68 21.50 21.62 20.55 20.93
(5.661) (5.596) (5.486) (5.795) (5.229) (5.239) (5.039) (5.215)

Tenure Fixed Effects ✓ ✓ ✓ ✓
Firm Fixed Effects ✓ ✓ ✓ ✓
Firm and Year Clustering ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Total Observations 12650 12650 12650 12650 12650 12650 12650 12650
Adjusted R-Squared 0.0898 0.124 0.120 0.149 0.114 0.130 0.133 0.146

Panel B: Opt-In to TDF Sample

Stock Market Participation in 401(k): Yit Stock Share in 401(k): θit

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 65.72 65.28 68.12 66.97 54.63 54.30 56.31 55.46
(3.641) (3.113) (2.122) (1.688) (3.045) (2.648) (1.630) (1.337)

Default Has Stocks: Di 29.35 30.13 25.10 27.12 25.11 25.70 22.14 23.65
(3.692) (2.822) (2.855) (2.798) (2.998) (2.344) (2.292) (2.256)

Tenure Fixed Effects ✓ ✓ ✓ ✓
Firm Fixed Effects ✓ ✓ ✓ ✓
Firm and Year Clustering ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Total Observations 263061 263061 263061 263061 263061 263061 263061 263061
Adjusted R-Squared 0.145 0.230 0.267 0.323 0.134 0.197 0.248 0.290

Notes: This table displays the regression results that complement Figure 4, in which we regress investors’ observed choices onto an indicator for
whether they are in the treatment group and thus have a default asset allocation with stock market exposure. Panel A displays the results comparing
investors defaulted into an automatic-enrollment 401(k) plan with a money market fund default and those with a TDF default. Panel B displays
analogous results comparing investors defaulted into an opt-in 401(k) plan with those defaulted into an automatic enrollment 401(k) plan with a
TDF as the default asset. In both panels, two-way clustered standard errors by firm and year are shown in parenthesis.
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convergence between the treatment and control groups over tenure may be driven by survivorship
bias: those who remain with the firm over a long tenure horizon may be more likely to make similar
allocation decisions. In Panel B of Figure A5, we show the responses of investors in the control
group are similar regardless of when the investor separate from their employer, which indicates
that the increased stock market of the control group over time is not driven by a change in the
composition of employees remaining at the firm.

Passive re-balancing. A third concern is that the evolution (and convergence) of equity shares in
the retirement account are driven by passive re-balancing. In Figure A6 we show that the evolution
of the asset allocations of new 401(k) contributions over tenure is similar to that of retirement
balances shown in Figure 4. The equity share of new contributions only reflects allocation decision
and is not subject to portfolio drift. These results suggest that the dynamic responses of portfolio
shares in Figure 4 are primarily driven by investors’ active portfolio decisions rather than passive
changes in portfolio allocations as returns are realized.

2.4.3 Implications for Investors’ Preferences

In sum, these results suggest most investors like to participate in the stock market inside their
retirement account, given the treatment group maintains their stock market exposure and the con-
trol group makes active decisions to move into stocks. The difference in participation between the
treatment and the control group indicates the existence of one-time adjustment costs associated
with changing one’s asset allocation, which could be real or psychological. In order to make pre-
cise statements about investors’ preferences, we need to place more structure on the responses to
different default asset allocations in Figure 4. In the next section, we apply a theoretical framework
developed by Goldin and Reck (2020) that allows us to map the results in Figure 4 into estimates
of investors’ preferences, taking into account the fact that frictions may affect investors’ choices
such that revealed preference fails.

3 Identifying Risk Preferences Using 401(k) Default Switches

In this section, we describe and apply a framework developed by Goldin and Reck (2020) to
identify investors’ average preferences for stock market participation and stock shares inside re-
tirement accounts. For additional details on the framework, in addition to derivations of results,
see Appendix C.
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3.1 Framework

Consider investors by i that are hired by an employer at time t = 0 and make asset allocation
choices at t = 0, ...,T . Denote Yit ∈ {0,1} and θit ∈ [0,1] as investor i’s participation and stock share
of retirement wealth at time t respectively, where Yit = 1 corresponds to participating in the stock
market. We refer to t as investors’ tenure, since it captures the length of time since the investor
was hired. Each investor’s participation and stock share decisions are subject to a time-invariant
frame denoted by Di ∈ {0,1}, where Di = 1 corresponds to an investor working for an employer
with an auto-enrollment and a TDF as the default asset allocation (i.e. the treatment groups in both
quasi-experiments) and Di = 0 otherwise (i.e. the control groups). Throughout, we refer to Di as
the frame or default interchangeably. We also denote θ d

i (Di) as the default asset allocation faced
by investor i, given frame Di.

Each investor’s preferred options at each tenure are denoted by Y∗
it ∈ {0,1} and θ∗it ∈ [0,1], which

is not observed, while choices, denoted by Yit and θit , are observed. Our ultimate goal is to estimate
the average values of these preferences in our sample. Investors are characterized by a set of poten-
tial outcomes, {Yit(d),θit(d)}d∈{0,1}, which we assume generate their observe choices according
to:10

Yit =Yit(d),θit = θit(d) if Di = d.

If an investor’s participation or stock share decision is independent of the frame, we follow Goldin
and Reck (2020) and call that investor consistent with respect to that decision. Formally, we denote
consistency by CY

it and Cθ
it , where

CY
it =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if Yit(0) =Yit(1),
0 else.

Cθ
it =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if θit(0) = θit(1),
0 else.

In this framework, there are thus two possible types of investors for each decision: (i) consistent
investors, whose choices are unaffected by frictions associated with the default; (ii) inconsistent
investors, whose preferences are affected by frictions associated with the default.

10By writing choices as a function of potential outcomes, we are implicitly making a stable unit treatment value
assumption (e.g. Rubin 1978) that investor i is not affected by the treatments of investors j ≠ i. This is supported by
the evidence in Panel A of Figure A5.
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In what follows, we focus on identifying average preferences in the population at different
tenures. Denote E(⋅) and Eτ(⋅) = E(⋅ ∣ t = τ) as the expectation across the entire population and
the conditional expectation across all investor at tenure t = τ , respectively.

3.2 Bounding Average Preferences

3.2.1 Stock Market Participation Inside 401(k) Accounts

We begin by making the following assumptions, as in Goldin and Reck (2020).

Assumption 1 (Frame Separability). For all i and t, (Y∗
it ,θ

∗
it ) is independent of Di.

Assumption 2 (Frame Exogeneity). Di is independent of (Yit(0),Yit(1),θit(0),θit(1)).

Assumption 3 (Frame Monotonicity). For all i and t,

Yit(1) ≥Yit(0), θit(1) ≥ θit(0).

Assumption 4 (Consistency Principle). For all i and t,

CY
it = 1 Ô⇒ Yit =Y∗

it , Cθ
it = 1 Ô⇒ θit = θ

∗
it

Intuitively, frame separability, requires investors’ preferences to be independent of whether
which default (or frame) they are given. This assumption results out the possibility that investors
view the default as providing information and prefer to participate more when the default is partic-
ipation.11 Frame exogeneity requires the choice of default to be independent of investors’ prefer-
ences, or equivalently that investors in the treatment and control group have the same preferences.
This is a natural assumption in our setting, given the default is chosen by the firm. In the case of
participation, frame monotonicity requires that there are no investors who always choose the oppo-
site of the default, which we view as reasonable given the literature on default effects. Finally, the
consistency principle requires that consistent investors reveal their preferences. For example, if an
investor choose to participate regardless of the default asset allocation, we assume the investor’s
preference is indeed to participate.

11Informally, the partial-identification results we present below are robust to allowing the frame to affect preferences
monotonically. However, once preferences depend on frames, identification of preferences is no longer a well-defined
problem because investors do not have an underlying stable preference relation.
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Under the previous assumptions, the following result from Goldin and Reck (2020) allows us to
bound the preferences for stock market participation inside retirement accounts for the population
of investors in our sample.

Proposition 1. Under Assumptions 1-4, the average population preference for stock market par-

ticipation inside retirement accounts among investors with tenure t = τ is partially-identified:

Eτ (Y∗
it ) ∈ [Eτ (Yit ∣ Di = 0) ,Eτ (Yit ∣ Di = 1)] . (2)

The intuition for this result is as follows. The average preference for participation is the weighted-
average of the preferences of consistent and inconsistent investors. Since Assumption 4 implies
the preferences of consistent investors are revealed by their choices, we just need to bound the
preferences of inconsistent investors to bound the population average preference. The bounds in
(2) comes from considering the “worst-case” scenario, in which inconsistent investors preferences
align with their defaults, in which case the bound is (2).

According to Proposition 1, the results in the left panel of Figure 4 provide the required in-
formation to bound average preferences for stock market participation inside retirement accounts.
By (2), average preferences for participation among all investors in our population lie somewhere
between the choices of the treatment and control groups, which is illustrated in the left panel of
Figure 5 for the money market to TDF sample.12 For example, after investors have been at the firm
for 3 years (τ = 3), we can bound the fraction of investors who prefer holding stocks in their 401(k)
plan between 78% and 95%. This bound, which is strictly higher than average participation in our
sample of 68% (Table 1), illustrates that one-time adjustment costs are driving a wedge between
observed choices and underlying preferences. As tenure increases, more investors in the control
group become consistent and reveal their preferences, resulting in a tighter bound.

3.2.2 Stock Shares in 401(k) Plans

We now turn to identification of investors’ preferences for stock shares of retirement wealth.
Unlike the previous section, Assumptions 1-4 are not sufficient to place meaningful bounds on
the average preferences because stock shares are continuous variables. To see why this poses a
problem, consider a hypothetical investor with 0 < θiτ(0) < θiτ(1) < 1, for some τ ≥ 0. This investor
is by definition inconsistent at τ , implying we cannot infer anything about his preferences from his
observed choices under Assumptions 1-4. For example, this investor may have θ∗iτ ∈ (0,θiτ(0)).

12As evident from Figure 4, we find similar results across both samples.
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Figure 5. Bounding Population Preferences: Money Market to TDF Sample
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Notes: This figure plots the same data as Figure 4 with the non-parametric bounds on average preferences given in Propositions 1 and 2. The bounds
for average preferences for stock market participation within 401(k) plans in our sample are valid under Assumptions 1-4. The lower bound for the
average preferred stock share of retirement wealth is valid under Assumptions 1-3 and 5.

The possible presence of such an investor renders the analogous bound to Proposition 1 for stock
shares invalid, since we would have Eτ(θ∗it ) <Eτ(θit ∣ Di = 0) in a world with investors of this type.

The prior counter-example illustrates the need to place more structure on the choices of inconsis-
tent investors because investors can be inconsistent in an infinite number of ways with a continuous
choice (unlike in the case of participation, which is a binary decision). To address this, we make
the following assumption.

Assumption 5. For all i, t and d, θit(d) ≠ θ d
i (d) Ô⇒ Cθ

it = 1.

This assumption requires that all investors deviating from the default asset allocation are consis-
tent. Economically, this assumption is consistent with a large class of models of default effects in
which investors’ preferences can be represented as-if deviating from a default requires incurring a
one-time adjustment cost (see Masatlioglu and Ok 2005, for an axiomatization). However, this as-
sumption is violated in some models, such as those with convex adjustment costs or where default
effects are driven by limited attention or cognitive uncertainty (e.g. Gabaix 2019; Enke and Grae-
ber 2020).13 Under this assumption, the following result shows we can place a lower bound on
bound population preferences for stock shares of retirement wealth analogously to the participation
lower bound in Proposition 1.

13The lower bound on the average preferred stock share of retirement wealth we derive below is robust to some
relaxations of this assumption. Given that θ

d
i (0) = 0, we could allow any model that could be represented as θit(d) =

mθ
∗

it +(1−m)θ d
i (d).
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Proposition 2. Under Assumptions 1-3 and 5, the average population preferred stock share among

investors with tenure t = τ is bounded from below:

Eτ (θ
∗
it ) ≥ Eτ (θit ∣ Di = 0) . (3)

Proposition 2 shows the results in the right panel of Figure 4 allow us to bound average prefer-
ences for stock shares, as illustrated in the right panel of Figure 5. After investors have been at the
firm for three years, we can bound the average preferred stock share of retirement wealth among
all investors in our sample from below at 59% (in the money market to TDF sample). Note that
this lower bound on the average preferred stock share is higher than the average stock share in the
SCF of around 23% (Table 1) and the average stock share in our sample of 53%, illustrating how
frictions can drive a wedge between choices and preferences.

3.3 Estimating the Preferences of Consistent Investors

The previous section shows how we can bound the average preferences in the population us-
ing our quasi-experimental variation. These average preferences are the weighted-average of the
preferences of consistent and inconsistent investors. In this section, we recover point-estimates of
consistent investors’ preferences. To do this, we use the following result.

Proposition 3. Under Assumptions 1-4,

Eτ(Y∗
it ∣CY

it = 1) = Eτ(Yit ∣Yit ≠Di). (4)

Under Assumptions 1-3, and 5,

Eτ(θ
∗
it ∣Cθ

it = 1) = Eτ(θit ∣ θit ≠ θ
d
i (Di)). (5)

Proposition 3 states that we can recover an estimate of the average preference for participation
and stock shares among consistent investors by simply looking at the choices of investors who
deviate from the defaults. Intuitively, we can do this because the consistency principle implies
consistent investors choices reveal their preferences. Although not all consistent investors deviate
from the default, the fact that Di is set by the firm and uncorrelated with investors’ preferences (by
frame exogeneity) ensures the preferences of those who do deviate are similar to those who don’t.

Figure 6 plots our estimate of the preferences of consistent investors. In both samples, after
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three years of tenure, we find about 94% of consistent investors prefer holding stocks inside their
retirement accounts with an average stock share of retirement wealth around 76%.14 Consistent
with our population bounds, these both are quite high, suggesting these consistent investors indeed
like stocks but face one-time frictions associated with participation. The fact that our estimates
are similar across the two samples provides support for the consistency principle: even though
consistent investors face frictions of different sizes in the two samples, when overcoming they
reveal similar preferences.

We can also use Proposition 3 to estimate the fraction of consistent investors by looking at the
fraction of investors who deviate from the default. Figure A7 plots how this varies with age. We
find the fraction of consistent investors is slightly increasing over the life cycle, which is consistent
with a one-time real adjustment cost which younger investors (who have less wealth) are less
likely to pay.15 Figure A7 also shows that a 40 year-old investor (the average in our sample) is
more likely to be consistent in the money market to TDF sample than in the opt-in to TDF sample.
This is consistent with the fact that the frictions the control group needs to overcome in the latter
sample are likely large, due to a need to change both the default asset allocation and opt-in to a
401(k) account to begin with. In Figure A8, we plot how the fraction of consistent investors varies
by default: investors are less likely to be consistent when they are defaulted into a TDF.

3.4 Estimating Average Preferences

In this section, we estimate the average preferences among investors in the population. Without
any additional assumptions, we can derive expressions for the relationship between the preferences
consistent investors and the preferences of the population:

Eτ(Y∗
it ) = Eτ (Y∗

it ∣CY
it = 1)− 1

Eτ(CY
it )

covτ (Y∗
it ,C

Y
it )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
selection bias

, (6)

Eτ(θ
∗
it ) = Eτ (θ

∗
it ∣Cθ

it = 1)− 1
Eτ(Cθ

it )
covτ (θ

∗
it ,C

θ
it )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
selection bias

. (7)

Proposition 3 shows the first two terms in (6) and (7) are identified, which we estimated in Fig-
ure 6. However, the second term in both expressions is not identified. Intuitively, it represents a

14Figure A9 plots estimates of these preferences based on what default consistent investors were given. For stock
shares, we find consistent investors reveal similar preferences regardless of the default, which supports Assumption 5.

15The fact that consistency increases over the life cycle is also consistent with theories of financial literacy accumu-
lation (e.g. Lusardi, Michaud, and Mitchell 2017).
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Figure 6. Preferences of Consistent Investors

Panel A: Money Market to TDF Sample
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Panel B: Opt-In to TDF Sample
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Notes: This figure plots the same data as Figure 4, but includes our point estimates for the consistent investors under Assumptions 1-4 for stock
market participation inside 401(k) plans and Assumptions 1-3 and 5 for the stock share of retirement wealth. Under Assumption 6, this provides an
estimate of the preferences of the entire population.
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form of selection bias that arises if consistent investors have different preferences from inconsis-
tent investors. In general, this selection bias is unbounded without placing further restrictions on
investor decision-making. For example, in our structural model described in Section 4, we could
compute this directly.

To point-estimate average population preferences, we begin by making the following identifying
assumption.

Assumption 6. For all i and τ ,

covτ(Y∗
it ,C

Y
it ) = covτ(θ

∗
it ,C

θ
it ) = 0.

This assumption states that once we condition on an investor’s tenure, whether they are consistent
is uncorrelated with their preferences. Under Assumption 6, the preferences of the population
at each tenure are given by the preferences of consistent investors in Figure 6: at tenure τ = 3,
the average preference for stock market participation in their retirement accounts is 94% and the
average preferred stock share of retirement wealth is 76%.

Assumption 6 is a strong assumption: it requires, at a given tenure, consistent (active) and incon-
sistent (passive) investors to have similar preferences over risky assets in their retirement accounts.
This assumption cannot be directly tested since we do not observe the preferences of inconsistent
individuals. However, we can take advantage of the fact that over time more investors make active
decisions and reveal their preferences. We can thus obtain an indirect proxy for covτ(Y∗

it ,C
Y
it ) by

comparing the allocation decisions of investors who are quick to make an active decisions (more
consistent) to that of investors who waited several years before deviating from the default (less
consistent). In Figure A10, we find that the stock market participation and average stock share in-
side the retirement account are very similar for investors who deviated right away from the default
and those who waited up to 8 years to make an active decisions consistent with Assumption 6.

3.5 Estimating Preferences over the Life Cycle

Assumption 6 is relatively strong in that it rules out the possibility that consistency and prefer-
ences might both vary with age (conditional on tenure). This is restrictive given the the stock of
human capital, the central driver of portfolio choice in most life cycle models, decreases with age,
while there are natural reasons to believe consistency might vary with age as well (e.g. older in-
vestors have a lower option value of delaying adjustment). We thus relax Assumption 6 by making
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the following assumption.

Assumption 7. For all i, τ , and A ∈ A,

covτ(Y∗
it ,C

Y
it ∣ ageit = A) = covτ(θ

∗
it ,C

θ
it ∣ ageit = A) = 0.

Assumption 7 is a weaker version of Assumption 6 in that it conditions on age in addition to
tenure. Under Assumption 7, we can identify how preferences vary over the life cycle. In particular,
we can apply the law of iterated expectations to (6) and (7) to obtain:

Eτ(Y∗
it ∣ ageit = A) = Eτ (Y∗

it ∣CY
it = 1,ageit = A) ,

Eτ(θ
∗
it ∣ ageit = A) = Eτ (θ

∗
it ∣Cθ

it = 1,ageit = A) .

Applying Proposition 3 conditionally then gives the following life cycles of preferences for in-
vestors of tenure t = τ:

Eτ(Y∗
it ∣ ageit = A) = Eτ (Yit ∣Yit ≠Di,ageit = A) , (8)

Eτ(θ
∗
it ∣ ageit = A) = Eτ (θit ∣ θit ≠ θ

d
i (Di),ageit = A) . (9)

The left panel of Figure 7 plots the fraction of investors’ with a positive stock share both in our
sample of retirement assets in 2007 and for total financial wealth in the SCF 2007 wave. Consistent
with typical findings in the life cycle portfolio choice literature, we find participation is upward-
sloping over the life cycle. The right panel shows our estimate of investors’ preferences for stock
market participation using (8), averaging across all tenures.16 In contrast to the left panel, where
observed participation is increasing over the life cycle and is strictly below 70%, we estimate over
90% of investors prefer holding stocks in their 401(k) plan and this share is relatively flat over
the life cycle. Our estimates are statistically indistinguishable across our two quasi-experiments,
which provides support for our identifying assumptions.

In Figure 8, we show analogous results for stock shares of retirement wealth. The left panel
shows investors stock shares of retirement wealth are relatively hump-shaped over the life-cycle
(as in Ameriks and Zeldes 2004) and are strictly below 60%. In contrast, the right panel shows is
significantly higher, above 60% at all ages, and is mostly decreasing over the life cycle. This life
cycle of preferences is consistent with standard predictions from life cycle portfolio choice models
with risky labor income that is uncorrelated with stock returns (Campbell and Viceira 2001; Cocco

16Figure A11 shows our estimates of investors’ preferences of the life cycle, conditional on different tenures. We
find similar results across different tenures and hence omit these results from the main text.

27



Figure 7. Stock Market Participation in 401(k) Plans over the Life Cycle: Choices vs. Preferences
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Notes: This figure plots our estimate of investors’ preferences for stock market participation in the right panel in comparison to their observed
choices in the left panel. In the left panel, we plot the fraction of investors with a positive stock share in our sample of retirement accounts in 2007
and for total financial wealth in the SCF 2007 wave. Ages are binned into groups of 3 years. The right panel plots our estimate of the average
preferences for stock market participation inside the retirement account over the life cycle under Assumptions 1-4 and 7. The right panel shows our
point estimates from our two quasi-experiments along with 90% confidence intervals based on standard errors clustered by investors for our first
quasi-experiment and by firm for our second quasi-experiment.

et al. 2005). However, we do find some evidence of investors’ preferred stock shares increasing
before age 35, consistent with theories of fixed participation costs and some co-integration between
stock returns and labor income shocks (Benzoni et al. 2007; Catherine 2022; Gomes and Smirnova
2021). Notably, our estimates of preferences differ from that of a TDF, which is flat at 90%
before age 35. This preference of younger investors for a lower stock share is also evident from
Figure A14: consistent investors defaulted into a TDF choose a lower stock shares at all ages, but
this is especially true for younger investors.

Collectively, these results suggest that in the absence of one-time adjustment costs, investors in
our sample prefer to hold stocks in their retirement accounts with reasonably high stock shares
of retirement wealth. The stark difference between observed choices and estimated preferences
in Figures 7 and 8, further highlighted in Figure 9, emphasizes the importance of distinguishing
between the two in the presence of choice frictions.

These findings have implications for the large literature studying limited household stock mar-
ket participation. If investors in our sample had preferences that exhibited first-order risk-aversion,
had pessimistic beliefs, or faced large per-period participation costs, our estimation would have
recovered a low preference for participation. The fact that, after taking into account choice fric-
tions, we estimate investors prefer positive equity shares provides support for models with real or
psychological participation and adjustment costs.
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Figure 8. Stock Share in 401(k) Plans over the Life Cycle: Choices vs. Preferences
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Notes: This figure plots our estimate of investors’ preferences for stock shares of retirement wealth in the right panel in comparison to their observed
choices in the left panel. In the left panel, we plot the average stock share of retirement wealth among all investors in our data in 2007 across different
ages, where ages are binned into groups of 3 years. The left panel also plots the analogous results from the 2007 SCF for comparison, where equity
shares are calculated based on financial wealth. The right panel plots our estimate of the average preferences for stock shares of retirement wealth
over the life cycle under Assumptions 1-4, 5, and 7. The right panel shows our point estimates from our two quasi-experiments along with 90%
confidence intervals based on standard errors clustered by investors for our first quasi-experiment and by firm for our second quasi-experiment.

Figure 9. Preference Estimates vs. Observed Choices
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Notes: This figure compares our estimates of preferences to observed choices for retirement wealth stock market participation in the left plot and
unconditional stock shares of retirement wealth in the right plot. The first bar, SCF 2007-2016, plots the averages in the SCF 2007, 2010, 2013,
and 2016 waves, adjusted for survey weights and weighing each year equally and calculating stock market participation and stock shares based on
retirement wealth. Not-Auto-Enrolled refers to the averages among the investors in our sample who are not auto-enrolled into a 401(k) plan. Auto-
Enrolled into Money Market Fund and TDF refers to the averages among investors in our sample that are hired under auto-enrollment into a 401(k)
plan, but defaulted into a money market fund or target date fund, respectively. The final column represents our estimate of investors’ preferences
using the methodology described in Section 3.5, where the values plotted come from taking weighted-averages of the results in Figures 7 and 8
across ages.
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3.6 Additional Results and Robustness

Preference heterogeneity. In Figure A12, we explore preference heterogeneity17 over the life
cycle by plotting the distribution of preferred stock shares by consistent investors for three different
age groups: 20-34, 35-49, and over 50. These three groups are roughly evenly-spaced terciles. We
find preference heterogeneity increases over the life-cycle: most investors in the lowest age group
prefer a stock share of over 80%, while there is much more dispersion in preferred stock shares
among the highest age group. Notably, this is qualitatively consistent with the setup of many life
cycle models, in which heterogeneity increases over the life cycle due to greater cross-sectional
variance in the model’s state variables.

Year, cohort, and firm effects. Because age, time and cohort effects are co-linear, it is impossi-
ble to separately identify the three effects in a linear model (Deaton and Paxson 1994). Using the
SCF and retirement account data similar to ours, Ameriks and Zeldes (2004) show the life cycle
profile of equity shares is sensitive to the inclusion of either year or cohort effects: it is increasing
with age in the presence of cohort dummies and flat or decreasing with age when year dummies are
included.18 In the left panel Figure 10, we replicate this finding in our data: the life cycle profile of
the equity share of retirement wealth is more upward sloping when including year instead of year
dummies. In contrast, the right panel of Figure 10 shows that our identification approach, described
in Section 3.5, is less sensitive to the inclusion of either time or cohort dummies. In particular, our
estimated age-profile of investors’ preferred equity share of retirement wealth is very similar under
our baseline specification (with no cohort or time effects), and under the specifications including
either year or cohort effects.19 Additionally, in Figure A13 we show our estimates of preferences
are robust to including firm fixed effects.

Conditioning on income. In our data, we observe the salary investors receive from their em-
ployer for the subset of investors who contribute to their 401(k) plans. Thus, we can estimate
average preferences under a weaker version of Assumption 7, where we assume that consistency
and preferences are uncorrelated conditional on age, tenure, and income. In Figure A15, we plot
estimates of preferences over the life cycle at different tenures using this weaker assumption. The
results show that our estimates of preferences are unaffected. In Figure A16, we plot our esti-
mates of preferences over the life cycle by income quartiles, after integrating over tenure. The

17We use the term preference heterogeneity loosely, as these could also reflect heterogeneity in beliefs as in
Meeuwis, Parker, Schoar, and Simester (2020) and Giglio, Maggiori, Stroebel, and Utkus (2021).

18Parker et al. (2022) replicate this finding in recent data using rich retirement account data also similar to ours.
19In Figure 10 right panel, we show the evidence using our second quasi-experiment (with the opt-in control group).

Results are similar our first quasi-experiment and available upon request.
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Figure 10. Cohort and Year Effects in Choices vs. Preferences: Stock Share in 401(k) Plans
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Notes: The left panel of this figure plots the age profile of stock shares of retirement wealth across all investors and years in our sample for two
specifications: one with cohort effects and without year effects and the other without year effects and with cohort effects. The right panel of this
figure shows our estimates of investors’ preferred stock share of retirement wealth over the life cycle from our second quasi-experiment following
the methodology used to make Figure 8 with and without controlling for cohort and year effects respectively. For both panels, we obtain the
predicted values by adding the median cohort and year coefficient, respectively, to each age coefficient.

results show our estimates our preferences are mostly similar across income quartiles, consistent
with the results in Figure A15. However, we find some evidence that investors in the bottom in-
come quartile like stocks slightly less than those in the top three quartiles. This could be driven
by many explanations, but it is consistent with other evidence that suggests non-homotheticity in
preferences (Brunnermeier and Nagel 2008; Straub 2019; Meeuwis 2020).

4 Life Cycle Portfolio Choice Model

In this section, we describe a rich life cycle portfolio choice model and estimate it using the
variation from our quasi-experiments. In this model, investors choose a level of consumption, re-
tirement wealth, liquid wealth, and the portfolio allocation in their retirement wealth. This model,
which builds on Choukhmane (2021), has three key features that are required to match our quasi-
experimental evidence. First, investors can choose different asset allocations for existing wealth
and new contributions in their retirement account. Second, investors are required to pay separate
opt-out costs to deviate from the default contribution rate in their retirement account and the default
portfolio allocation. When agents are hired, these defaults are employer-specified; in later periods,
choices from the prior period are the current period’s default. Finally, investors face uncertainty
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about future earnings and employment status at their current employer that creates value for in-
vestors to delaying portfolio adjustments and savings decisions from their defaults. Appendix A
provides a summary of the model parameters.

4.1 Model Description

4.1.1 Demographics and Preferences

Investors are born at t = 0 and work T w periods with their first retirement period at t = T w. Each
period corresponds to one year. Investors die with certainty at t = T , at which point all of their
resources are bequested, such that investor’s last period in which they can consume is t = T −1.
Before their certain death, investors survival probability is time-varying and denoted mt , which is
taken from the SSA. Denote investor’s age as at = t +a0, where a0 is the age at which investors are
born.

Investors have time-separable expected utility preferences with a CRRA Bernoulli utility func-
tion over consumption. Denote investors’ annualized time discount factor as β and their coefficient
of relative risk aversion (or equivalently inverse of elasticity of intertemporal substitution) as σ .
Per-period flow utility is adjusted for an equivalence scale such that it is equal to

ut(c) = nt ∗
(c/nt)1−σ

1−σ
.

4.1.2 Labor Income

There is a continuum of employers indexed by e for which investors can work. At any point in
time, an investor’s employment status, denoted empt , is in one of four states: E = employed in the
current and prior period; JJ = employed in a different job in the current period from prior period;
U = unemployed in the current period; Ret = retired. When investors are employed, we also keep
track of their tenure, denoted by tent .

The current state of employment determines the income process investors receive in the current
period in addition to the transition probabilities across states in the next period. We now describe
these different income processes in turn.

Employment: empt = E. While working, investors supply one unit of labor inelastically and
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earn an income wt that is stochastic and exogenous. This income consists of a deterministic com-
ponent that is cubic in age and a stochastic component that follows an AR(1) process with normal
innovations:

lnwt =δ0+δ1at +δ2a2
t +δ3a3

t +ηt , ηt = ρηt−1+ξ
E
t , (10)

ξ
E
0 ∼N(0,σ2

ξ0
), ξ

E
t ∼N(0,σ2

ξ
) ∀t > 0.

Investors’ tenure status evolves according to tent = tent−1 +1. Investors do not receive any labor
income in the event that they die in the current period. Additionally, when investors are born at
t = 0, the distribution of ηE

t is different to account for heterogeneity in the initial period income
shock.

Job transition: empt = JJ. In each period, investors can switch jobs. We model these transitions
separately because of the fact that retirements are employer-specific, so we need to account for
when investors change jobs. If they do so, their income evolves according to :

lnwt = δ0+δ1at +δ2a2
t +δ3a3

t +ηt , ηt = ρηt−1+ξ
JJ
t , ξ

JJ
t ∼N(µ

JJ,σ2
ξ
). (11)

This earnings process captures a wage premium associated with switching jobs. Investors’ tenure
is reset to tent = 0 during a job transition.

Unemployment: empt =U . When investors are unemployed, they receive unemployment ben-
efits equal to uit = ui(ηt), where ui(ηt) is described below. If investors become employed at t +1
after being unemployed in period t, income at t +1 evolves according to

lnwt+1 = δ0+δ1at+1+δ2a2
t+1+δ3a3

t+1+ηt+1, ηt+1 = ρηt +ξ
U
t+1, ξ

U
t+1 ∼N(µ

UE ,σ2
ξ
). (12)

This earnings process captures a wage reduction from switching jobs. Investors’ tenure is irrelevant
in this state.

Retirement: empt = Ret. When t ∈ [T w,T −1], investors are retired and earn retirement benefits
denoted by sst , which are described below. Note that investors do not earn any retirement benefits
at the time of death. Investors’ tenure is irrelevant in this state.

State transitions. Investors’ employment status, empt , evolves according to a first-order Markov
chain. States are ordered as follows: E,JJ,U,Ret. The state transition matrix, which is tenure and
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age-dependent, is:20

⎛
⎜⎜⎜⎜⎜⎜
⎝

1−πJJ(t,tent)−πEU(t,tent) πJJ(t,tent) πEU(t,tent) 0
1−πJJ(t,tent)−πEU(t,tent) πJJ(t,tent) πEU(t,tent) 0

0 πUE(t) 1−πUE(t) 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

4.1.3 Financial Assets

There are three financial assets in the model. First, there is a risk-free bond that has a constant
gross return of RB

t = R f per year. Second, there is a risky asset, a stock, that corresponding to a
diversified market index and pays a stochastic IID gross return of RS

t = Rt per year, where

lnRS
t = lnR f +µs+εt , εt ∼N(0,σ2

s ). (13)

Finally, investors have access to a liquid risk-free asset that has a constant gross return of 1+ r per
year. This corresponds to the interest paid on short-term checking and savings accounts.

4.1.4 Savings Accounts

The asset side of investors’ balance sheets are comprised of two savings accounts, which we
now describe in turn.

Liquid savings account. When investors are born at t = 0, they are endowed with zero liquid
wealth and a liquid savings account. Investors can only use this liquid savings account to invest
into a liquid riskless asset. The balance of this account, denoted by Lt , evolves according to:

Lt+1 = (Lt + sl
t)[1+ r] , L0 = 0, (14)

where sl
t is the net savings the investor places in this account.21

Defined-contribution retirement savings accounts. Each time an investor is matched with an
employer for the first time, they are given access to a savings account specific to that employer.
This savings account is the counterpart in our model to a defined-contribution 401(k) retirement

20Entry i- j of this matrix corresponds to the probability of transitioning from the i-th state at t to the j-th state at
t +1

21Since in the estimation below we set the net return on the liquid riskless asset is zero, we ignore capital taxation.
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savings plan. Investors use this savings account to buy and sell any combination of the bond and
the stock, subject to the restriction of no margin trading (i.e. no leveraged purchases or short-sales).
Investors cannot use this account to purchase the liquid risk-free asset or borrow. Returns earned
in this account are tax free.

The balance of this savings account, denoted by At , evolves according to:

At+1 = At × ∑
j∈{B,S}

Θ
j
t R j

t+1+wt ×Me(sdc
t+1,t,tent ,empt)× ∑

j∈{B,S}
θ

j
t R j

t+1, (15)

Me(s,t,tent ,empt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s+ϒe(t,tent)×matche×min{s,cape} if empt ∈ {E,JJ},
s else,

with the initial condition A0 = 0. In these expressions, sdc
t is the net savings rate (including possi-

ble withdrawals) the investor places in this account, Me(⋅) is an employer-specific function that
determines how savings is mapped into account contributions, {ΘB

t ,Θ
S
t } are the portfolio shares

of existing assets in stocks and bonds respectively chosen at time t, and {θ B
t ,θ

S
t } are analogous

portfolio shares for new contributions. The form ofMe(⋅) captures the fact that when placing s

into the retirement account, investors benefit from employer-specific matching, which is charac-
terized by a match rate, matche, and a threshold contribution rate, cape. Additionally, we adjust
these employer matches by a factor ϒe(⋅) ≤ 1 to capture the possible loss of employer matches if
investors separate from the employer before vesting is complete.

Importantly, the balance of this savings accounts depends on two portfolio choice decisions: (i)
their portfolio allocation of existing contributions and (ii) their portfolio allocation of new contri-
butions. This distinction, which matches the institutional features of 401k asset allocation deci-
sions, is important in our model because investors are subject to default effects (described in Sec-
tion 4.1.5). Without the presence of such default effects, these two decisions could be collapsed
into one portfolio choice decision. For notational convenience, denote Ξt as the four-dimensional
vector of portfolio choices for the two assets.

4.1.5 Default Effects

An investor’s portfolio allocation and savings decisions in the defined-contribution account are
both subject to default effects. We first describe the value of these defaults and then how they
impact the investor’s choices.

Default asset allocation for new DC contributions. When an investor begins working for
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employer e at time t, the default asset share of contributions to the defined-contribution savings
account invested in asset j is θ

j
e. Later in the worker’s tenure, the default asset allocation for

contributions corresponds to the allocation chosen in the prior period. Formally, for j ∈ {B,S},

θ
j

d,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ
j
e if empt = JJ,

θ
j

t−1 else.
(16)

Default portfolio allocation for existing DC contributions. When choosing the portfolio allo-
cations of existing assets, the default allocation for each asset is equal to the amount of old contri-
butions in that asset, adjusted for realized returns, plus the amount of new contributions allocated
to that asset. Formally, for j ∈ {B,S},

Θ
j
d,t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

At−1Θ
j
t−1R j

t +Me(sdc
t−1)θ

j
t−1R j

t

At−1∑ j Θ
j
t−1R j

t +Me(sdc
t−1)∑ j θ

j
t−1R j

t
if sdc

t−1 > 0,

At−1Θ
j
t−1R j

t

At−1∑ j Θ
j
t−1R j

t
else,

(17)

Note that specification embeds the assumption that when investors dis-save out of their DC ac-
count, they sell assets in proportion to their current portfolio allocations. Additionally, we set
Θ

j
d,0 = 0, since investors are born with no assets.

Default contribution rate in DC account. When an investor begins working for employer e at
time t, the default contribution rate their defined-contribution savings account is sdc

e . Later in the
worker’s tenure, the default contribution rate is equal to the contribution rate from the prior period.
Formally,

sd,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sdc
e if empt = JJ,

sdc
t−1 else.

(18)

Effect of defaults. Investors in our model are subject to default effects when making portfolio
choice decisions and savings decisions in the defined-contribution account. Recall Ξt denotes the
vector of investor’s portfolio allocations in the defined-contribution account. If an investor chooses
Ξt ≠Ξd,t , where

Ξd,t = (Θ
B
d,t ,Θ

S
d,t ,θ

B
d,t ,θ

S
d,t) ,

the investor incurs a utility cost kθ . This cost is designed to capture any physical or physiological
costs associated with making portfolio choice decisions. Similarly, choosing sdc

t ≠ sd,t requires
incurring a utility cost of ks.
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4.1.6 Government

Income taxes. Investors face a non-linear income tax schedule taxi(wt). Contributions to the
DC retirement account are not subject to income taxation, while withdrawals (in either unemploy-
ment or retirement) increase taxable income by the withdrawal amount.22

Unemployment benefits. Investors receive an unemployment benefit of ui(ηt) when uncom-
pleted. This benefit depends on labor productivity, ηt , from the last period in which the agent was
employed. Any withdrawals from the DC retirement account are treated as compensation and thus
may offset unemployment benefits.

Retirement benefits. After retirement, investors receive benefits modeled after Social Security,
denoted by sst = ss(aeT w), where aeT w is the investor’s average lifetime earnings at the time of
retirement, which evolves according to:

aet+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt+1+at∗aet
at+1 , if t < T w,

aeT w else.

Medicare premiums. During retirement, investors pay Medicare premiums denoted that are
directly reduced from investors’ social security benefits.

4.1.7 Recursive Formulation

Investors face a dynamic optimization problem with 12 state variables: at = age; ηt = labor pro-
ductivity, empt = employment status; e = employer; tent = tenure; aet = average lifetime income;
At = DC retirement savings; Lt = liquid savings; Ξd,t ∈R4 = default portfolio shares; sd,t = default
contribution to DC account. Using the fact that portfolio shares sum to one, this can be reduced to
a problem with 10 state variables by dropping the portfolio shares in the bond. Denote the vector
of these state variables as Xt .

In this optimization problem, investors have 7 controls: ct = consumption; Ξt ∈ R4 = portfolio
shares; sdc

t = defined-contribution savings rate; sl
t = liquid savings. As above, this can be reduced

to 4 controls given portfolio shares sum to one and consumption is pinned down by the budget
constraint. In choosing these controls, investors are restricted from borrowing and engaging in any

22The DC account in our model is modeled after the traditional tax-deferred DC model rather than the Roth-401(k)
model.

37



margin trading (i.e. no short-selling or leveraged positions):

At ≥ 0, Lt ≥ 0, Θ
j
t ∈ [0,1], θ

j
t ∈ [0,1], ∑

j
Θ

j
t =∑

j
θ

j
t = 1. (19)

We now characterize the value function of an investor, V(⋅), separately for the four states of
employment empt .

Retirement: empt = Ret. There are two sources of uncertainty when decisions are made at time
t: mortality occurring with probability mt+1; asset return shocks, εt+1. An investor’s value function
is thus characterized by the following recursive equation:

V(Xt) = max
sdc
t ,sl

t ,Ξt

⎧⎪⎪⎨⎪⎪⎩
ut (ct −kθ ∗1{Ξt ≠Ξd,t})+(1−mt+1)βE [V(Xt+1) ∣ Xt]

⎫⎪⎪⎬⎪⎪⎭
,

subject to: (13), (14), (15), (16), (17), (19), and

sl
t = sst − sdc

t ∗wt −ct ,

V(aT , ⋅) = 0,

sdc
t ≤ 0.

Working-life: empt ∈ {E,JJ}. There are five sources of uncertainty when decisions are made
at time t: mortality occurring with probability = mt+1; asset return shocks, εt+1; employment risk
based on the state transition matrix; labor income shocks based on ξ E

t+1 or ξ JJ
t+1; the type of future

employer after a job change, e. An investor’s value function is thus characterized by the following
recursive equation:

V(Xt) = max
sdc
t ,sl

t ,Ξt

⎧⎪⎪⎨⎪⎪⎩
ut (ct −kθ ∗1{Ξt ≠Ξd,t}−ks∗1{sdc

t ≠ sd,t})+(1−mt+1)βE [V(Xt+1) ∣ Xt]
⎫⎪⎪⎬⎪⎪⎭
,

subject to: (10), (11), (13), (14), (15), (16), (17), (19), and

sdc
t ∗wt + sl

t =wt −ct ,

0 ≤ sdc
t ≤ limite,t .

Unemployment: empt = U . There are five sources of uncertainty when decisions are made
at time t: mortality occurring with probability = mt+1; asset return shocks, εt+1; possibility of
becoming employed based on transition matrix; next-period labor income shocks conditional on
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becoming employed = ηU
t+1; the type of future employer after a job change, e.

V(Xt) = max
sdc
t ,sl

t ,Ξt

⎧⎪⎪⎨⎪⎪⎩
ut (ct −kθ ∗1{Ξt ≠Ξd,t})+(1−mt+1)βE [V(Xt+1) ∣ Xt]

⎫⎪⎪⎬⎪⎪⎭
,

subject to: (12), (13), (14), (16), (17), (18), (19), and

sl
t = uit −ct − sdc

t ∗wt ∗(1− pene,t),
sdc
t ≤ 0.

We solve this model using standard numerical discrete-time dynamic programming techniques.
For additional details, see Appendix D.

4.2 Estimation

We estimate the model parameters in two stages, as is common practice in life cycle models
(e.g. Gourinchas and Parker 2002; Cocco et al. 2005). The first-stage consists of setting parame-
ters outside of the model based on auxiliary estimation, institutional details, and prior literature.
Additional details on this first-stage estimation are provided in Appendix E. The second stage con-
sists of using Simulated Method of Moments to estimate the model’s four preference parameters:
the intertemporal discount factor (β ), risk-aversion (σ ), and the two adjustment costs (kθ and ks).

4.2.1 First-Stage Parameter Estimation

Demographics. We set the length of one period in the model to one year and set a0 = 22, T w = 43,
and T = 68, such that workers are born at 22, retire at 64, and live their final year of life at 89. For
each age, we take survival probabilities from the 2015 U.S. Social Security Actuarial Life Tables.
We use the equivalence scale estimated in Lusardi et al. (2017) to capture changes in household
composition over the life cycle.

Labor income process. We use data from the Survey of Income Programs and Participation
(SIPP) to estimate parameters of the labor income process and transition probabilities at the annual
frequency. This income process has several components. First, we estimate an earnings process
for workers staying in the same job, which corresponds to (10), which contains a deterministic
and stochastic component. We allow for measurement error and use a standard two-step mini-
mum distance approach (e.g. Guvenen 2009). Our estimates (provided in Table A1) are consistent
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with prior literature, in particular our estimate of a relatively high persistence of permanent in-
come shocks. Secondly, we use data on employment transitions from SIPP to directly estimate the
median increase in salary when transitioning to new jobs, µJJ , and the median decrease in salary
when transitioning from employment to unemployment, −µEU . Thirdly, we use SIPP micro-data
to estimate the three transition probabilities across our three employment states. Finally, we set
the initial unemployment rate equal to 22%, which is share of unemployed individuals in SIPP
at age 22, and calibrate average annual earnings to be $37,000, which matches the average net
compensation per worker in the 2006 SSA National Average Wage Index.

Assets returns. We set the risk-free rate, R f , to be constant at 2% to match the annualized
geometric average return of the money market provided by our data provider after subtracting
the expense ratio.23 We set the equity premium, RS

t −R f , of 4.5%, which is the average of the
calibrations in Cocco et al. (2005) and Catherine (2022). Following Catherine (2022), we use a
standard deviation of log returns, σs, of 19%. We assume asset returns are uncorrelated with shocks
to labor income and employment transition probabilities. We set the net return on the liquid asset,
r, equal to zero.

Defined-contribution savings accounts. For all employers, we set the employer matching rate,
matche, equal to 50% and the threshold contribution rate for the maximum employer match, cape,
equal to 6% These values are chosen because they are the most common matching parameters both
in our second-stage estimation sample and in nationally representative data of 401(k) and 403(b)
plans (Arnoud et al. 2021).

Vesting schedule. If an investor separates from her employer before the end of the vesting pe-
riod, she may lose part (or all) of the employer matching contribution. To account for this, we
adjust the level of employer matching contribution to equal the certainty equivalent given an in-
vestor age and tenure specific separation probabilities. On average, 52% of matching contributions
in our estimation sample are vested immediately and the vested percentage increases with tenure.

Taxes and benefit system. Taxable income is defined as the sum of labor earnings, social secu-
rity, unemployment benefits, and DC withdrawals, less contributions to the DC retirement account.
Investors’ tax liability is calculated according to the 2006 U.S. Federal Income Tax Schedule. We
calculate Social Security benefits according to the 2006 formula with a Supplemental Security
Income program floor. Unemployment benefits are computed using a replacement rate of 40%,
which was the average across U.S. states as of 2018. During retirement, investors pay Medicare
Part B and Part D premiums based on the 2006 Supplementary Medical Insurance formula. These

23In reality, the return on this fund is not constant, but it’s volatility is extremely low. The worst 3-month return
since inception is above 0.45% and the best is below 1.25%.
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medicare payments are directly reduced from investors’ social security benefits.

4.2.2 Second-Stage Parameter Estimation

The four second-stage parameters are estimated using the Simulated Method of Moments (SMM),
which minimizes the (weighted) distance between model-simulated and data moments.

Empirical moments. In our baseline estimation, we use 36 empirical moments in total. First,
we use the stock market participation rates and stock shares inside retirement accounts between
tenures of 0 and 6 years for the control and treatment groups in our first quasi-experiment. This
gives the 28 moments from Panel A of Figure 4: 14 in the left panel and 14 in the right panel.
Second, we use the distribution of contribution rates among investors in our sample during their
first year of tenure. Specifically, we use the 34 401(k) plans in our sample for which the exact
date of auto-enrollment is available that have a 3% initial auto-enrollment default contribution
rate with no auto-escalation feature and a 50% employer match contribution up to 6% of income,
which matches the structure of 401(k) plans in our model exactly. We then calculate the fraction of
workers that during their first-year of tenure contribute one of the following four fractions of their
income: 0%, 3%, 6%, or 10% and above. We do this for two samples of investors: investors hired
under the opt-in regime within 12 months prior to the change to auto-enrollment and investors hired
within 12 months after the change. This gives us a total of 4×2=8 moments, which (as described
below) is necessary to identify time preferences and the contribution adjustment cost.

Model simulation experiments. In order to estimate our four preference parameters with SMM,
we need to construct moments within our model that are analogous to the 36 empirical moments
we picked above. We do this by running the following two simulations from our model, which are
designed to match our empirical variation as closely as possible. We begin by simulating income
processes and job transitions for 1500 investors according to the income process estimated in the
prior section.24 Next, for each investor i, we randomly select one period denoted by τi from all
of the periods in which investor i experienced a job transition, empt = JJ, or a transition from
unemployment to employment, empt−1 =U and empt = E.

Using these values of τi, we simulate the choices of each investor i over their life cycle using the
model’s policy functions in two different experiments. In both experiments, investors are placed
into an opt-in regime prior to τi, which corresponds to sdc

e = 0%. However, starting at τi we make
a change to investors’ defined-contribution savings accounts. In the first experiment, investors are

24We choose a simulation size of 1500 to match the sample size of our first quasi-experiment.
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placed into a 3% auto-enrollment regime with the risk-free as the default asset, which corresponds
to sdc

e = 3%, θ
B
e = 1, and θ

S
e = 0. This corresponds to the control group in our first quasi-experiment

above. In the second experiment, investors are placed into a 3% auto-enrollment regime with an
age-dependent mixed allocation between the risky and risk-free asset as the default asset, which
corresponds to sdc

e = 3%, θ
S
e = Gθ(t), and θ

B
e = 1−Gθ(t). We set Gθ(t) to match the glide-path of

the TDF provided by our data provider so that this second experiment corresponds to the treatment
sample in our first quasi-experiment.25 In both experiments, we choose a 3% default contribution
rate to match the 401(k) plans of firms that we use to calculate the distribution of contribution
rates.26

Model moments. After running these two simulations from our model, we calculate the share
of investors with a positive equity share in their current employer’s retirement account in the first
and second experiments separately at t = τi, ...,τi + 6, in addition to the average stock share in
this retirement account across all investors. This gives 28 moments analogous to our empirical
moments in Panel A of Figure 4. We then calculate the distribution of contribution rates across the
same four bins as we did for our empirical moments above separately among investors at t = τi−1
and investors in the second experiment at t = τi, which gives 8 moments.

Estimation procedure. We estimate the four preference parameters in our model using SMM,
which corresponds to finding the parameter values that minimize the weighted squared distance
between the model and empirical moments described above. We use the inverse diagonal of the
empirical covariance matrix as a weighting matrix in our baseline estimation due to its preferable
finite sample properties (Altonji and Segal 1996). We calculate the covariance matrix of our empir-
ical moments by covarying the influence functions of these moments (Erickson and Whited 2002)
to avoid the large finite-sample bias associated with bootstrapping weight matrices discussed in
Horowitz (2001).27 For additional details, see Appendix F.

25The second experiment does not exactly match the treatment group in our first quasi-experiment because investors
in our model don’t have access to a TDF. Doing so would require introducing two additional choice and state variables
(one for new and existing assets), which we avoid doing for computational reasons. However, as discussed below, we
only target portfolio choices for six years following the change in default. We view it as reasonable to abstract from
changes in the equity share of a TDF over this period since they will be small.

26Four out of the 6 firms in the money market to TDF sample have default contribution rates of 3%.
27We assume the covariance between the 8 moments that characterize the distribution of contribution rates and the

remaining moments are zero, as these moments are calculated from a different sample.
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4.2.3 Identification of Second-Stage Preference Parameters

The four preference parameters in our model are jointly estimated. In what follows we provide
some brief intuition for which moments help identify the different parameters.

Risk preferences. Risk preferences in the model are governed by the coefficient of relative
risk aversion, σ . Relative risk aversion is identified from the levels of participation and the av-
erage stock share in treatment and control groups within our quasi-experiment. In the limit of
extremely high risk-aversion, we would expect few investors to participate in the stock market in
either groups, in addition to average stock shares being close to zero.

Portfolio adjustment cost. The portfolio adjustment cost, kθ , is identified by examining the
number of investors who deviate from the default asset allocation, in particular how this varies
with tenure. In the limit of an infinite adjustment cost, we would expect all investors to stick with
the default. Importantly, in the model there is an interaction between the portfolio adjustment
cost and the tenure-specific job transition risk in the income process. Even with a relatively small
adjustment cost, investors may choose not to adjust their portfolio allocation in early years of
tenure because they face the risk of switching employers next period.

Intertemporal discount factor. We estimate the level of intertemporal discounting, β , by tar-
geting the distribution of contribution rates in the two regimes. The average level of contribution
helps identify the level of patience in our population.

Contribution adjustment cost. The contribution adjustment cost, ks, is identified by exam-
ining the bunching of investors around the contribution rate into which they are defaulted, as in
Choukhmane (2021). Intuitively, if the contribution adjustment cost is zero, the distribution of con-
tribution rates should be identical across the the opt-in and auto-enrollment regime. Conversely,
if the contribution adjustment cost is extremely large, all workers should bunch at the default op-
tion (0% for the opt-in group and 3% for the auto-enrollment group). Thus, the extent to which
investors bunch at the default contribution rate identifies the size of this adjustment cost.

4.3 Estimation Results

Table 3 presents results from our baseline estimation. Our estimate of the (annualized) dis-
count factor is β = 0.965. This estimate of β similar to existing estimates that targets life cycle
consumption-savings profiles (e.g. Gourinchas and Parker 2002). However, this estimate is higher
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than estimates from the literature on life cycle portfolio choice, which typically needs a lower
value to slow down the decline of the human-to-financial wealth ratio with age in order to match
the relatively low equity shares of financial wealth.

Table 3 also shows our estimate of relative risk aversion is 3.1, which is lower than typical esti-
mates in existing literature (see Figure 1). This estimate highlights the value of quasi-experimental
variation using panel data to recover risk preferences in the presence of choice frictions, in contrast
to targeting cross-sectional averages of investors’ choices that could be driven by preferences or
frictions. Consistent with the presence of frictions impact portfolio decisions, we find estimate a
portfolio adjustment cost of $444, which is necessary to explain investors’ tendency to stick with
the default asset allocation. This estimate is relatively modest compared to typical calibrated values
in life cycle portfolio models (e.g. Gomes 2020; Catherine 2022).

Finally, we estimate a contribution adjustment cost of $333. This contribution cost is similar
to the portfolio adjustment cost, which suggests investors’ non-participation in stocks may also
be influenced by frictions associated with opting-in and opening a defined-contribution savings
account.

Table 3. Baseline Estimation Results

Discount Factor Relative Risk Aversion Portfolio Adj. Cost Contribution Adj. Cost
β σ kθ ks

Parameter Estimate 0.965 3.1 $444 $333
Standard Error (0.001) (0.046) ($29.52) ($13.39)

Notes: This table presents results from an SMM estimation of our four preference parameters in which we target the quasi-experimental moments
in Panel A of Figure 4 and the distribution of contribution rates under two regimes, described in the main text. The table shows our estimates in
addition to standard errors. This estimation is performed using the inverse of the diagonal of the empirical covariance matrix as a weighting matrix.
The fit of the model on the 36 target moments is presented in Figures 11 to 13. For additional details on our estimation procedure, see Appendix F.

4.4 Model Fit

Figures 11 and 12 shows how our model fits the results from our first quasi-experiment in Panel
A of Figure 4, which were targeted in the estimation. As evident from the figure, our model
fits the targeted variation in investors’ portfolio choices on the extensive and intensive margins
relatively well. The non-trivial portfolio adjustment cost allows us to match investors tendency to
slowly re-balance into stocks when the default has no stock market exposure, which most investors
prefer given our relatively low estimate of risk aversion. Additionally, the portfolio adjustment
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cost coupled with our estimate of risk aversion mean that relatively few investors re-balance out of
stocks when the default asset has stock market exposure.

Figure 11. Model Fit: Stock Market Participation in 401(k) from Quasi-Experiment #1
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Notes: This figure presents the fit of our model on the response of stock market participation inside the current employer retirement account for our
first quasi-experiment. The data moments in this figure correspond to the moments from our first quasi-experiment in the left half Figure 4 Panel A
for the first six years of tenure along with 95% confidence intervals. The model moments are from a simulation of this experiment within the model
described in the main text at our SMM estimates of preference parameters reported in Table 3.

Figure 12. Model Fit: Stock Share in 401(k) from Quasi-Experiment #1

0 1 2 3 4 5 6
Tenure (in Years)

0%

20%

40%

60%

80%

100%

St
oc

k 
Sh

ar
e 

of
 R

et
ire

m
en

t W
ea

lth
: 

S
>

0

Default = Money Market Fund ( S
e = 0%)

0 1 2 3 4 5 6
Tenure (in Years)

0%

20%

40%

60%

80%

100%

St
oc

k 
Sh

ar
e 

of
 R

et
ire

m
en

t W
ea

lth
: 

S
>

0

Default = TDF ( S
e = TDF Equity Share)

Model: = 0.965, = 3.1, ks = 333, k = 444
Data (95% CI)

Notes: This figure presents the fit of our model on the response of stock shares inside the current employer retirement account for our first quasi-
experiment. The data moments in this figure correspond to the moments from our first quasi-experiment in the right half Figure 4 Panel A for
the first six years of tenure along with 95% confidence intervals. The model moments are from a simulation of this experiment within the model
described in the main text at our SMM estimates of preference parameters reported in Table 3.

In Figure 13, we show how our model fits the distribution of contribution rates, which were
targeted moments in order to identify time preferences and the contribution adjustment cost. The
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presence of a contribution adjustment cost allows our model to generate bunching in savings rate
at the default in both the opt-in and auto-enrollment regimes that is consistent with the data. Con-
ditional on deviating from the default, our model is able to roughly match the distribution of con-
tribution rates through adjusting the discount factor.

Figure 13. Model Fit: Contribution Rates in 401(k)

0% 1%-2% 3% 4-5% 6% 7-9%  10%
Contribution Rate: sdc

0%

20%

40%

60%

80%

100%

Pe
rc

en
t o

f I
nv

es
to

rs

Default = Opt-In (sdc
e = 0%)

Data (95% CI)
Model: = 0.965, = 3.1, ks = 333, k = 444

0% 1%-2% 3% 4-5% 6% 7-9%  10%
Contribution Rate: sdc

0%

20%

40%

60%

80%

100%

Pe
rc

en
t o

f I
nv

es
to

rs

Default = AE at 3% (sdc
e = 3%)

Notes: This figure presents the fit of our model on the distribution of contribution rates in investors’ first-year of tenure. The amount of investors
at 0%, 3%, 6%, and greater than 10% is targeted in the estimation reported in Table 3 in order to identify time preferences and the contribution
adjustment cost. The left (right) figure show contribution rates of investors hired 12 months before (after) the introduction of auto-enrollment for
new hires, which we plot directly the data along with 95% confidence intervals. The model moments are from a simulation of this within the model
at our SMM estimates of preference parameters reported in Table 3.

Robustness. In Table A3, we present the results from three additional second-stage estimations.
In the two estimations, we do not target the response of stock shares to the change in the default
asset allocation and use both inverse diagonal and identity weighting matrices. The second esti-
mation targets the same moments as in Table 3 but uses an identity weighting matrix instead of a
inverse diagonal weighting matrix. In these three cases, we estimate similar values for all four of
our preference parameters. Figures A17 and A18 show the fit of our model from the first of these
additional estimations, in which we do not target the response of stock shares.

5 Conclusion

This paper identifies the risk preferences of retirement investors in the presence of choice fric-
tions. Although it is difficult to do so in general, separating preferences from frictions is important
for positive reasons, such as distinguishing between competing economic models, but also for nor-
mative reasons, such as assessing the impact of interventions designed to increase stock market
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participation on household welfare. For example, consider the Pension Protection Act of 2006,
which led to the rapid growth of target date funds as the default asset in retirement savings plans
(see Parker et al. 2022). If stock market non-participation inside retirement accounts is primar-
ily driven by frictions, then this trend is likely desirable for households. On the other hand, if
non-participation mostly reflects a preference for safe assets, then the welfare implications of this
policy evolution is more ambiguous.

This paper has two main results. First, we estimate that absent frictions, 95% of investors would
prefer holding stocks in their retirement account with a stock share of 76%, which declines over the
life cycle. Secondly, through the lens of a structurally-estimated life cycle portfolio choice model,
our results are consistent with a coefficient of relative risk aversion of 3.1 and moderately-sized
adjustment costs.

These results suggest that stock-market non-participation inside retirement accounts is mainly
driven by (real or behavioral) adjustment costs rather than a low preference for holding risky as-
sets. In particular, we find limited support in our setting for explanations based on first-order risk
aversion, pessimistic beliefs, or per-period participation costs.

More broadly, our analysis illustrates the challenge choice frictions pose for standard revealed
preference approaches. To the extent that frictions are present and impact choices, these fric-
tions will obscure the mapping between observed choices and agents’ underlying preferences.
More constructively, our paper highlights how quasi-experimental variation can help overcome
this identification problem and provide better targets for testing different economic theories of
investor behavior.
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INTERNET APPENDIX

This internet appendix contains the following additional materials.

• Appendix A: Table of parameters for the life cycle model presented in Section 4.

• Appendix B: Details on simple life cycle model presented in Section 1.

• Appendix C: Additional details, proofs, and derivations of results in Section 3.

• Appendix D: Details on solution algorithm for the model presented in Section 4.
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• Appendix F: Details on second stage estimation procedure for the model in Section 4.

• Appendix G: Additional results presented in tables and figures.



Appendix A. Life Cycle Model Parameters

Preference Parameters Assets
β Discount factor 1+ r Rate of return on liquid assets
σ Relative Risk Aversion R f Risk-free rate
ks Contribution adjustment cost RS(⋅) Return on risky assets
kθ Portfolio adjustment cost µs Log-risk premium

Utility σs S.D. of log risky asset returns
ut(⋅) Utility function Labor Market
V(⋅) Value function π

JJ(⋅) Job-to-job transition probability
State Variables π

EU(⋅) Unemployment transition probability
X Vector of all state variables π

UE(⋅) Out-of-unemployment transition probability
a Age {δi}3

i=0 Deterministic component of earnings
emp Employment status w Labor earnings
ten Tenure ρ Autocorrelation in earnings shocks
e Employer DC plan type ξ Earnings innovation if continuously employed
η Labor productivity σ

2
ξ0

Variance of the first earnings innovation

ae Average lifetime earnings σ
2
ξ

Variance of subsequent innovations

L Liquid assets ξ
JJ Earnings innovation after job-to-job transition

A DC wealth stock µ
JJ Avg. wage gain after a job-to-job transition

sd Default contribution rate ξ
U Earnings innovation out of unemployment

Θd Default allocation existing funds µ
UE Avg. wage loss out of unemployment

θd Default allocation new contributions ι Measurement error in earnings
Choices σ

2
ι Variance of measurement error

c Consumption φ Earnings innovation plus measurement error
sdc DC contribution rate Demographics
sl Savings in liquid assets T Maximum years of life
Θ Asset allocation for existing funds T w Number of working years
θ Asset allocation for new contributions mt Mortality risk

Defined Contribution Account nt Equivalence scale

θ
j
e Employer-specified default asset allocation Tax and Benefit System

sdc
e Employer-specified default contribution rate taxi(⋅) Tax on income

Me( ) Employer DC matching function limita Tax limit on DC contributions
matche Employer matching rate pena Tax penalty of early DC withdrawals
cape Threshold on employer matching ui(⋅) Unemployment insurance benefit
ϒe(⋅) Vesting risk-adjustment ss(⋅) Public pension income
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Appendix B. Simple Life Cycle Model Details

This section provides a description of the simple life cycle model we estimate in Section 1.

B.1 Demographics

Investors are born at t = 0 and work T w periods with their first retirement year at t = T w. Each
period corresponds to one year. Investors die with certainty at t = T , at which point all of their
resources are bequested, such that investor’s last period in which they can consume is t = T −1.
Before their certain death, investors survival probability is time-varying and denoted mt , which is
taken from the SSA. Denote investor’s age as at = t +a0, where a0 is the age at which investors are
born.

B.2 Preferences

Investors have time-separable expected utility preferences with a CRRA Bernoulli utility func-
tion over consumption. Denote investors’ annualized time discount factor as β and their coefficient
of relative risk aversion (or equivalently inverse of elasticity of intertemporal substitution) as σ .
Per-period flow utility is adjusted for an equivalence scale such that it is equal to

ut(c) = nt ∗
(c/nt)1−σ

1−σ
,

where nt is taken from Lusardi et al. (2017).

B.3 Labor Income

While working, investors supply labor inelastically and earn an income wt that is stochastic and
exogenous. This income consists of a deterministic component that is cubic in age and a stochastic
component that follows an AR(1) process with normal innovations:

lnwt = δ0+δ1at +δ2a2
t +δ3a3

t +ηt , ηt = ρηt−1+νt , νt ∼N(0,σ2
ν ). (20)
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Investors do not receive any labor income at the time of death. Additionally, when investors are
born at t = 0, the distribution of η is different to account for heterogeneity in the initial period
income shock.

When t ∈ [T w,T −1], investors are retired and earn retirement benefits denoted by sst , which are
set equal to 40% of the average annual wage among all working investors. Note that investors do
not earn any retirement benefits at the time of death.

B.4 Financial Assets

There are two assets: (i) a risk-free bond that has a constant gross return of R f per year; (ii) a
risky asset that pays a stochastic IID gross return of Rt per year, where

lnRt = lnR f +µs+εt , εt ∼N(0,σ2
s ). (21)

B.5 Savings Account

Investors have access to a liquid savings account in which they can invest any remaining labor
income after consuming into any combination of the two available assets. Denote the dollar amount
in this account as At . Investors choose the share of their wealth that is invested in the risky asset,
denoted by θt , resulting in 1−θt allocated to the risk-free bond.

B.6 Frictions

When making portfolio choice decisions, investors face two costs. First, there is a per-period
participation cost p, which is incurred when θt > 0 as a utility cost. This cost is designed to capture
the costs associated with maintaining an account to invest in the risky asset, in addition to any
hassle costs.

Secondly, investors must incur a utility cost f to change their portfolio, which is designed to
capture default effects in investor’s behavior. Specifically, if investors choose θt ≠ θd,t , where

θd,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if t = 0,

θt−1∗ Rt
(1−θt−1)R f+θt−1Rt

else.
(22)
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they are required to pay a cost f in consumption units that is designed to capture the physical
and opportunity costs associated with altering a portfolio allocation. We assume the default asset
allocation in the first period is entirely risk-free bonds to capture the fact that investors are generally
not born with exposure to stocks. Default asset allocations in later periods are equal to the asset
allocation from the prior period, adjusting for return realizations. Additionally, we assume neither
of these costs are incurred at time t if an investor dies at time t.

B.7 Optimization Problem

Investors face a dynamic optimization problem with four state variables: at = age; wt = wage;
Wt = liquid wealth; θt−1 = prior-period portfolio share. Denote the vector of these variables as
Xt . There are two controls: ct = consumption and θt = stock share. In choosing these controls,
investors are restricted from borrowing and engaging in any margin trading (i.e. no short-selling
or leveraged positions):

Wt ≥ 0, θt ∈ [0,1]. (23)

We now characterize the value function of an investor, V(⋅) ∶R4
+ →R, in the two periods of their

life.

Retirement period. In retirement, there are two sources of uncertainty when decisions are made
at time t: εt+1 = asset return shocks; mortality occurring with probability mt+1. An investor’s value
function during retirement is thus characterized by the following recursive equation:

V(Xt) = max
ct>0,θt

⎧⎪⎪⎨⎪⎪⎩
ut (ct − f ∗1{θt ≠ θd,t}− p∗1{θt > 0})+(1−mt+1)βE [V(Xt+1) ∣ Xt]

⎫⎪⎪⎬⎪⎪⎭
,

subject to: (21), (22), (23), and

At =Wt + sst −ct ,

Wt = At−1 [(1−θt−1)R f +θt−1Rt] ,
V(aT , ⋅, ⋅, ⋅) = 0.

Working life. While working, there are three sources of uncertainty when decisions are made
at time t: ηt+1 = labor income shocks; εt+1 = asset return shocks; mortality occurring with proba-
bility mt+1. An investor’s value function during working-life is thus characterized by the following
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recursive equation:

V(Xt) = max
ct>0,θt

⎧⎪⎪⎨⎪⎪⎩
ut (ct − f ∗1{θt ≠ θd,t}− p∗1{θt > 0})+(1−mt+1)βE [V(Xt+1) ∣ Xt]

⎫⎪⎪⎬⎪⎪⎭
,

subject to: (20), (21), (22), (23), and

At =Wt +wt −ct ,

Wt = At−1 [(1−θt−1)R f +θt−1Rt] ,
A0 =W0 = 0.

B.8 Parameterization

For the income process parameters (ρ and σν ) we use the parameters estimated in Appendix E
for our full model for agents that are in empt = E (i.e. continuously employed). For demographic
parameters, we set a0 = 21, T w = 44 so agents retire deterministically at 65, and T = 79 so agents
die at 100. We take mt from the SSA as in Appendix E. We use the same parameters for asset
returns as in Section 4.
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Appendix C. Additional Details on Non-Parametric Estimation

This section presents derivations of the equations in the main text. We first introduce the formal
notation, which follows Goldin and Reck (2020), and then the derivations.

C.1 Details on Theoretical Framework

Consider a continuum of investors indexed by i are hired by an employer at time t = 0 and make
asset allocation choices at t = 0, ...,T . Denote Yit ∈ {0,1} and θit ∈ [0,1] as investor i’s participation
and stock share of retirement wealth at time t respectively, where Yit =1 corresponds to participating
in the stock market. We refer to t as investors’ tenure, since it captures the length of time since
the investor was hired. Each investor’s participation and stock share decisions are subject to a
time-invariant frame denoted by Di ∈ {0,1}, where Di = 1 corresponds to an investor working for
an employer with an auto-enrollment and a TDF as the default asset allocation (i.e. the treatment
groups in both quasi-experiments) and Di = 0 otherwise (i.e. the control groups). Throughout, we
refer to Di as the frame or default interchangeably. We also denote θ d

i (Di) as the default asset
allocation faced by investor i, given frame Di.

Each investor’s preferred options at each tenure are denoted by Y∗
it ∈ {0,1} and θ∗it ∈ [0,1], which

is not observed, while choices, denoted by Yit and θit , are observed. Investors are characterized by
a set of potential outcomes, {Yit(d),θit(d)}d∈{0,1}, which generate their observe choices according
to:28

Yit =Yit(d),θit = θit(d) if Di = d.

The primitives of this environment, {Yit(0),Yit(1),θit(0),θit(1),Y∗
it ,θ

∗
it ,Di}, are assumed to be

drawn from an identical population distribution with unrestricted dependence across i and t. As
econometricians, we observe a panel of (Yit ,θit ,Di,ageit), where ageit ∈ A denote an age group.

If an investor’s participation or stock share decision is independent of the frame, we call that
investor consistent with respect to that decision. Formally, we denote consistency by CY

it and Cθ
it ,

28By writing choices as a function of potential outcomes, we are implicitly making a stable unit treatment value
assumption (e.g. Rubin 1978) that investor i is not affected by the treatments of investors j ≠ i. This is supported by
the evidence in Panel A of Figure A5.
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where

CY
it =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if Yit(0) =Yit(1),
0 else.

Cθ
it =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if θit(0) = θit(1),
0 else.

In this framework, there are thus two possible types of investors for each decision: (i) consistent
investors, whose choices are unaffected by frictions associated with the default; (ii) inconsistent
investors, whose preferences are affected by frictions associated with the default.

C.2 Proofs and Derivations

Proof of Proposition 1. By the law of iterated expectations, we obtain

Eτ(Y∗
it ) = Eτ(Y∗

it ∣Cit = 1)Pτ(Cit = 1)+Eτ(Y∗
it ∣Cit = 0)Pτ(Cit = 0).

Using the fact that Y∗
it is bounded between zero and one, the previous equation implies

Eτ(Y∗
it ) ∈ [Eτ(Y∗

it ∣Cit = 1)Pτ(Cit = 1),Eτ(Y∗
it ∣Cit = 1)Pτ(Cit = 1)+Pτ(Cit = 0)] .

Note that

Eτ(Yit ∣ Di = 0) = Eτ(Yit ∣ Di = 0,Cit = 1)Pτ(Cit = 1 ∣ Di = 0)+Eτ(Yit ∣ Di = 0,Cit = 0)Pτ(Cit = 0 ∣ Di = 0)
= Eτ(Yit ∣ Di = 0,Cit = 1)Pτ(Cit = 1 ∣ Di = 0)
= Eτ(Yit ∣Cit = 1)Pτ(Cit = 1)
= Eτ(Y∗

it ∣Cit = 1)Pτ(Cit = 1),

where the first equality follows from the law of iterated expectations and frame separability, the
second equality follows from frame monotonicity, the third equality follows from frame exogene-
ity, and the fourth equality follows from the consistency principle. Analogously, it follows that

Eτ(Yit ∣ Di = 1) = Eτ(Y∗
it ∣Cit = 1)Pτ(Cit = 1)+Pτ(Cit = 0).

Combining the previous two equation and the bound above deliver the desired result.
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Proof of Proposition 2. Given θ d
i (0) = 0, Assumption 5 combined with the consistency principle

implies all investors deviating from the default reveal their preferences. Given we define prefer-
ences over the interval [0,1], the lowest possible value for the average preferred stock share would
occur when all inconsistent investors have θ∗it = 0. This corresponds to the lower bound given in
the proposition.

Proof of Proposition 3. By the consistency principle,

Eτ(Y∗
it ∣CY

it = 1) = Eτ(Yit ∣CY
it = 1).

By the law of iterated expectations,

Eτ(Yit ∣CY
it =1)=Eτ(Yit ∣CY

it =1,Yit =Di)Pτ(Yit =Di ∣CY
it =1)+Eτ(Yit ∣CY

it =1,Yit ≠Di)Pτ(Yit ≠Di ∣CY
it =1).

Frame exogeneity implies the two expectations on the right-hand side of the previous equation are
equal to Eτ(Yit ∣CY

it = 1), which delivers the desired result. An identical argument follows for stock
shares.

Derivation of (6) and (7). These expressions follow from the following identity, which applies
when W is binary:

cov(V,W) = E(VW)−E(V)E(W) = E(W)[E(V ∣W = 1)−E(V)] .
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Appendix D. Model Solution Details

Discretization of state variables. We have eight continuous state variables that need to be
place onto grids: labor productivity, tenure, average lifetime income, DC retirement wealth, liquid
wealth, two default portfolio shares, and the default contribution rate. We discretize labor produc-
tivity following Tauchen (1986) using 5 elements. We place tenure on a grid with 3 components.
We then place liquid assets and retirement assets on a grid that spaced according to a power func-
tion, where the gaps increase as the values of the variables increase. We place the default portfolio
shares and contribution rates on the grids that we choose below for the corresponding choices of
each variables.

Discretization of choice variables. We have 4 continuous choice variables. We place the
contribution rate on a grid with 10 evenly spaced values when agents are employed and con-
tributing to a retirement account. When agents are unemployed, we choose a grid for −sdc

t of
{0,1%,2%,5%,10%,15%,25%,55%,75%,100%}. When agents are retired, we choose an evenly
spaced grid with 30 grid points between zero and negative one. For stock shares, we choose the fol-
lowing grid {0%,30%,60%,70%,80%,90%,100%}, following the most common values in a TDF.
Consumption (or equivalently liquid savings) is not placed on a grid and we use a golden-section
search to find it’s optimal value.

Solution algorithm. The model has a finite horizon with a terminal condition and hence can
be solved using backward induction in age starting with the terminal condition in the final year
of life. In each period, we solve for the policy functions by performing a golden-section search
over liquid savings for each possible combination of the other three choice variables on the grids
described above. Performing this optimization requires interpolating the next-period value function
from the prior and integrating over the distribution of stock returns. We choose to interpolate the
value function first and then perform the integration. We use the quasi-interpolation scheme of
the value function proposed by Carroll (2012) to interpolate. This method substantially reduces
the interpolation approximation error (as shown by Carroll 2012), despite fairly coarse grids. To
integrate over the distribution of stock returns, we use a Gauss-Hermite quadrature with 7 nodes.

Software and hardware. The code to solve and estimate the model is compiled in Intel Fortran
2018. We parallelize each model solution across 14 CPUs on the MIT Sloan Engaging Cluster,
which takes around 10 days of CPU time for each solution. When we estimate the model using the
second-stage estimation procedure described in Appendix F, we parallelize estimation across 360
nodes using a total of over 5,000 CPUs.
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Appendix E. First-Stage Estimation Details

E.1 Demographics

Survival probabilities. Survival probabilities for each age are calibrated to the U.S. Social
Security 2015 Actuarial Life Tables.

Equivalence scale. Changes in household composition over the life cycle are captured by
an equivalence scale in the utility function. We use the equivalence scale by age estimated by
Lusardi et al. (2017). Using PSID data from 1984 to 2005, Lusardi et al. (2017) estimate z( jt ,kt) =
( jt +0.7kt)0.75 where jt and kt are, respectively, the average number of adults and children (under
18 years old) in a household with a head of age t. They normalize this measure by z(2,1)—the
composition of a household with 2 adults and 1 child—to get the equivalence scale at age t equal
to nt = z( jt ,kt)

z(2,1) . To estimate nt we use publicly available replication files from Lusardi et al. (2017)
and aggregate the data across education groups.

E.2 Assets and Savings Accounts

Assets. The properties for financial assets are described in the main text. We assume agents
cannot borrow at any age.

Parameters of defined-contribution savings account. For all employers, we set the employer
matching rate, matche, equal to 50%, and the threshold contribution rate for the maximum em-
ployer match, cape, equal to 6%. These values are set to match the parameters of the 401(k) plans
used in the sample used to construct the distribution of contribution rates. These are also the most
common parameters of the 401(k) plans in the money market to TDF sample, which we use to
construct our other target moments.

Vesting schedule. An investor who separates from her employer before the end of the vesting
period may lose part (or all) of the employer matching contribution. A vesting schedule, vste (⋅),
determines the percentage of employer contributions that an investor keeps if she separates at a
given tenure level. Modeling the vesting schedule explicitly would introduce an additional con-
tinuous state variable to the dynamic problem: the amount of non-vested of DC wealth. Instead,
we adjust employer contributions by a factor ϒe (t,ten) proportional to the risk of losing unvested
employer contributions. The adjustment factor ϒe (t,ten) is given in equation (24). It depends on
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both the cumulative job-separation probability and the vesting schedule. It is smaller than one and
increasing in tenure before the end of the vesting period, and equal to one afterward. Importantly,
this specification captures the fact that vesting matters more for investors who—based on their age
and tenure—are more likely to separate from their employer.

ϒe (t,ten) = 1−
T R−t
∑
j=0

⎛
⎝

j−1

∏
k=1

(1−π
EU
t+k,ten+k−π

JJ
t+k,ten+k)

⎞
⎠
(π

EU
t+ j,ten+ j +π

JJ
t+ j,ten+ j)(1−vste (ten+ j))

(24)

We set the vesting schedule, vste(⋅), for all firms to the average vesting schedule in the sample
34 401(k) plans that we use to construct the distribution of contribution rates, as in Choukhmane
(2021). On average, 52% of matching contribution are vested immediately and this share increases
over tenure. The average vested share reaches 70% by the end of the second year of tenure. We
assume that all matching contributions are fully vested starting from the 3rd year of tenure.

E.3 Taxes and Benefit System

Income taxation. Taxable income is defined as the sum of labor earnings, social security and
unemployment benefits, DC withdrawals, less contributions to the DC account:

ytax
t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wt − sdc
t ∗wt i f empt ∈ {E,JJ}

uit + sdc
t ∗wt i f empt =U

ss(aeT w)+ sdc
t ∗wt i f empt = Ret

Investors’ income tax liability is calculated according to the federal income tax schedule of
2006 (the first year of data and the base year for the calibration) for an investor filling as single
and claiming the standard deduction. The tax formula has 5 annual income brackets {κ̃τ

i }
5
i=1 =

{$5,150; $7,550; $30,650; $74,200; $154,800}.29 Quarterly tax brackets are defined as: κτ
i =

1
4 κ̃τ

i . The quarterly income tax liability is given in the following equation, which we aggregate to
an annual frequency by multiplying by four.

29Note that the first bracket correspond to the standard deduction amount in 2006.
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taxi
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f ytax ≤ κ
τ

1

0.10(ytax−κ
τ

1 ) i f κ
τ

2 ≥ ytax > κ
τ

1

0.10(κτ

2 −κ
τ

1 )+0.15(ytax−κ
τ

2 ) i f κ
τ

3 ≥ ytax > κ
τ

2

0.10(κτ

2 −κ
τ

1 )+0.15(κτ

3 −κ
τ

2 )+0.25(ytax−κ
τ

3 ) i f κ
τ

4 ≥ ytax > κ
τ

3

0.10(κτ

2 −κ
τ

1 )+0.15(κτ

3 −κ
τ

2 )+0.25(κτ

4 −κ
τ

3 )+0.28(ytax−κ
τ

4 ) i f κ
τ

5 ≥ ytax > κ
τ

4

0.10(κτ

2 −κ
τ

1 )+0.15(κτ

3 −κ
τ

2 )+0.25(κτ

4 −κ
τ

3 )+0.28(κτ

5 −κ
τ

4 )+0.33(ytax−κ
τ

5 ) i f ytax > κ
τ

5

Public pension. The amount of public pension benefit (ss) is computed according the 2006
Social Security formula at the full retirement age, with an income floor guaranteed by the Sup-
plemental Security Income program (with a monthly benefit si = $603). Annual public pension
benefits are equal to:

ss(aeT w) = 4×3×max{si ; s̃s(aeT w)}−medt

where s̃s, the monthly social security benefit, is increasing in average lifetime earnings aeT w up to
a maximum monthly benefit:

s̃s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.90× 1
3 aeT w i f 1

3 aeT w ≤ $656

0.90×$656+0.32×( 1
3 aeT w −$656) i f $3,955 > 1

3 aeT w > $655

min{0.90×$656+0.32×$3,299+(0.15× 1
3 aeT w −$3,299) ; $2,053} i f 1

3 aeT w > $3,955

and medt denotes medicare premiums described below.

Medicare premiums. During retirement, investors pay Medicare Part B and Part D premiums,
denoted by medt , based on the 2006 Medicare Supplementary Medical Insurance formula. We
choose the 2006 Medicare formula to match the calibration of other model elements to 2006. These
medicare payments are directly reduced from investors social security benefits, in accordance with
rules for Part B premiums. We deduct Part D premiums as well for simplicity. These payments are
annualized by multiplying by 12.

Unemployment benefits. Unemployment insurance provides a constant replacement rate ω of
labor earnings implied by the labor productivity level in the last period of employment. Labor
productivity ηt stays constant during an unemployment spell. We set ω = 0.40, which is the av-
erage replacement rate across all U.S. states (U.S. Department of Labor, 2018). For simplicity,
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we assume that the employer contribution portion of an early withdrawal is always equal to the
employer match rate. This simplifying assumption is valid assuming participants contribute below
the matching threshold and contributions are fully vested. Adjusted unemployment benefits for an
investor unemployed since period t −x are given by:

uit =max{0; ωwt (ηt−x)− sdc
t ∗wt}

Asset taxation. In line with IRS rules for 2006, the maximum contribution limit for tax-deferred
retirement contributions (limita) is set equal to $15,000 annually for investors younger than 50
years old and $20,000 after that in 2006 dollars. The tax penalty for early DC withdrawals (pent)
is equal to 10% before age 55 and to zero afterwards30

E.4 Labor Market Parameters

We estimate our labor market parameters using the same data and estimation procedure as in
Choukhmane (2021), but perform the estimation at the annual instead of quarterly frequency.

Data. We use the Survey of Income and Programs and Participation (SIPP) to estimate of the
wage earnings process and labor market transitions probabilities. We use the 1996 panel of the
SIPP which contains data from December 1995 to February 2000 and aggregate the data at annual
frequency. We focus on an investor’s primary job (defined as the job where he worked the most
hours). We restrict the sample to investors aged 22 to 65 years old, and exclude full-time students
and business owners. We assign employment status based on investors’ responses in the first week
of each quarter. An investor is classified as employed if she reports having a job. We record a job-
to-job transition if the identity of an investor’s employer is different in two successive quarters. We
record a job separation if an investor is employed in the beginning of a quarter, and not employed in
the beginning of the subsequent quarter. Job separations include early retirement decisions, before
the age of 65.

Earnings process. We estimate the labor earnings process for workers staying in the same
job using a standard two-step minimum distance approach similar to Guvenen (2009) and Low,
Meghir, and Pistaferri (2010). The empirical income process is given in equation (25), which is
the empirical counterpart of the model earning process in equation (10) with one additional term:

30In the model, early withdrawals are only allowed in periods of unemployment. The tax code allows penalty-free
401(k) hardship withdrawals for unemployed people older than 55, which is earlier than the normal 591/2 eligibility
age for penalty-free withdrawals.
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serially uncorrelated measurement error ιi,t ∼N (0,σ2
ι ).

ln wi,t = δ 0+δ1ai,t +δ2a2
i,t +δ3a3

i,t + φi,t
¯

ηi,t+ιi,t

(25)

The estimation has two steps. In the first step, We estimate the parameters of the deterministic
component of earnings ({δ j}

3
j=0)—a cubic in age. In the second step, We use the residual from

regression (25) to estimate the five parameters governing the stochastic component of earnings: the
coefficient of autocorrelation in earnings shocks (ρ), the variances of the first earnings innovation
(σ2

ξ0
), the variance of subsequent innovations (σ2

ξ
), and the variance of measurement error (σ2

ι ).
We estimate these five parameters by minimizing the distance between the empirical variance-
covariance matrix of earnings residuals and its theoretical counterpart implied by the statistical
model. The resulting estimates are provided in Table A1.

Table A1. Earnings Process Estimates

This table shows quarterly earnings process estimated using a two-step minimum distance estimator on a panel of
workers continuously employed in the same job. Data source: U.S. Survey of Income and Program Participation,
aggregated to annual frequency.

Age component Stochastic component of earnings
δ0 δ1 δ2 δ3 ρ σ

2
ξ0

σ
2
ξ

σ
2
ι

2.813 0.121 −0.00183 6.91e−6 0.9332 0.1749 0.0298 0.0538

Earnings after a transition. We estimate the median change in log salary following a job-to-
job transition (µJJ) to be equal to 0.048. We estimate that job transitions following a period of
unemployment are associated with a loss in earnings. We estimate the median change in log salary
relative to the last salary prior to unemployment (µUE) to be equal to −0.078.

Numeraire. The average net compensation per worker in the U.S. was around $37,078 in 2006
(from the Social Security Administration national average wage index). This is also almost equal
to the median annual salary in the estimation sample ($37,998 in 2006 dollars). We thus calibrate
annual earnings to this numeraire.

Labor transition probabilities. We use SIPP micro-data to estimate annual job-to-job (πJJ) and
job to non-employment (πEU ) transition probabilities by age and tenure and job finding rates (πUE)
by age. The initial unemployment rate is set equal to 22%, which is the share not employed at age
22 in SIPP. The probability that an employed investor switches to another job (given in equation
(26)) or moves to non-employment (given in equation (27)) is the sum of an age component (i.e.
a sixth-order polynomial in age) and a tenure component (a set of dummies for investors in their

14



first 3 years of tenure):

π
JJ (a,ten) =

6
∑
k=1

α
JJ
k ak+

3
∑
j=1

ι
JJ
k 1{(ten = j)} (26)

π
EU (a,ten) =

6
∑
k=1

α
EU
k ak+

3
∑
j=1

ι
UE
k 1{(ten = j)} (27)

The probability that an unemployed investor finds a job, given in equation (28), is defined as a
sixth-order polynomial in age.

π
UE (a) =

6
∑
k=1

α
EU
k ak (28)

We estimate equations (26), (27), and (28) using a linear probability regression. Estimates for the
age component of labor market transitions are reported in Figure A1. Estimates for the tenure
component are reported in Figure A2.
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Figure A1. Age Component of Annual Labor Market Transitions
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Figure A2. Tenure Component of Annual Labor Market Transitions
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Appendix F. Second-Stage Estimation Details

This section describes how we estimate our four preference parameters, θ ≡ (β ,σ ,kθ ,ks), in
our second stage estimation by selecting the parameter values that generate moments which most
closely match their empirical counterparts.

F.1 Estimator: Simulated Method of Moments

We estimate our preference parameters using the Simulated Method of Moments (SMM). This
estimator minimizes the distance between moments from actual data and data simulated from a
model. Denote mN as the vector of moments from actual data calculated from N observations,
which vary across specifications in the text and are described in the main text. Denote m̂(θ) as the
moments generated from the model with parameters θ . We simulate the model S times to generate
an estimate of m̂(θ), which we calculate by averaging across the S simulations (specified in the
main text) and denote by m̂S(θ). The SMM criterion function is then

QN,S(θ) = (mN − m̂S(θ))′W (mN − m̂S(θ)) ,

for some positive definite weighting matrix W . The SMM estimate of θ is then given by

θ̂SMM = argmin
θ∈Θ

QN,S(θ),

where Θ is a compact parameter space that we specify.

F.2 Weighting Matrices

We use both the identity matrix and the inverse diagonal of the empirical covariance matrix as
weighting matrices in our estimation, due to their better finite sample properties Altonji and Segal
(1996). When we use the identity matrix, we scale mN − m̂S(θ) by mN so that the moments are
scale-independent. We calculate the covariance matrix of the empirical moments by covarying
the influence functions of our empirical moments, following Erickson and Whited (2002). This
approach has better finite-sample properties when the covariance matrix is used as a weighting
matrix in a second-stage estimation (Horowitz 2001).
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Formally, an influence function for an estimator θ̂ given data Xi is defined as a function φ(⋅)
such that

√
N(θ̂ −θ0) =

1√
N

N
∑
i=1

φ(Xi)+op(1).

Given a moment condition Eg(Xi,θ) = 0, standard arguments (mean value expansion of first-order
condition) imply the influence function for an GMM estimator with an optimal weighting matrix
of θ is (see e.g. Newey and McFadden 1994, for a derivation)

φGMM(Xi) = −[GΩG′]−1 GΩg(Xi,θ),

where G = ∂g
∂θ

∣θ=θ0 and Ω is the optimal weighting matrix. Since all of our moments are straightfor-
ward, we can derive these analytically for each of our moments. For each moment k, denote Φk as
the N-by-1 vector that stacks the corresponding influence function evaluated at each of the N data
points. Denote Ψ as the N by k vector that stacks the Φk’s column-wise. The sample covariance
matrix of our moments is then Ψ′ΨN−2, which we invert to obtain the optimal weighting matrix.

As described in the main text, our estimation moments sometimes come from different sam-
ples. When this is the case, we assume the covariance between moments across samples is zero
and construct our sample covariance matrix by forming a block-diagonal matrix using the sam-
ple covariance matrices calculated for each subset of moments within the same sample using the
procedure described above.

F.3 Optimization Algorithm

We discretize the parameter space, Θ, and perform a grid search over values in this space. Our
final SMM estimate is the value of θ that achieves the lowest value of QN,S(θ) of all parameter
combinations over which we searched. We perform this search in two steps. First, we search over
a wide grid of values for our preference parameters. Second, we use a narrower grid around the
point that minimized the SMM objective function in the first grid search. In our current estimation
results, none of the parameter values chosen we’re close to the grid over which we searched.
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F.4 Standard Errors

Denote the true value value of the parameters, θ , as θ0 ∈Θ. Under standard regularity conditions
(see e.g. McFadden 1989; Duffie and Singleton 1993),

√
N (θ̂SMM −θ0)

dÐ→N(0,V),

where
dÐ→ denotes convergence in distribution as N →∞ for a fixed S,

V = (1+ 1
S
)[GWG′]−1 GWΩWG′ [GWG′]−1

,

G = ∂ m̂(θ)
∂θ

, and Ω is the population variance matrix of the empirical moments. By the continuous
mapping theorem, V can be estimated by replacing population quantities with sample analogs. We
use our estimate of the covariance matrix of the empirical moments above from influence functions
to estimate Ω. We compute G using two-sided finite-differentiation where with step sizes equal
to 1% of the parameter value estimated in SMM, θ̂SMM, following the recommendation of Judd
(1998) (p. 281). Depending on the particular estimation, we use different values of W . We then
calculate standard errors by plugging each of these estimates into the formula above.
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Appendix G. Additional Results

Table A2. Summary Statistics: SCF 2007, 2010, 2013, and 2016

All Households Retirement Account Eligible
Mean Median Mean Median

Age 49.88 50.00 45.36 46.00
Wage Income 78,032.68 44,577.57 101,397.71 68,548.55
Retirement Wealth 102,806.99 1,234.41 148,518.61 24,249.45
Investable Wealth 219,251.84 5,307.97 264,527.83 30,634.47
Ratio of Retirement to Investable Wealth 0.76 1.00 0.85 1.00
Stock Share of Retirement Wealth 0.27 0.00 0.42 0.40
Ratio of Equity Holdings in Retirement to Total 0.38 0.00 0.62 0.96
Stock Market Participation in Retirement Wealth 0.46 0.00 0.73 1.00
Stock Market Participation Outside Retirement 0.15 0.00 0.16 0.00
Stock Market Participation Only Outside Retirement 0.05 0.00 0.03 0.00

Notes: This table provides summary statistics from the 2007, 2010, 2013, and 2016 SCF waves, where we adjust survey weights such that they
assign equal weights to each survey wave. We define SCF investors as being eligible for a retirement account if they report having access to a
retirement account and/or they report assets in one. Retirement wealth is in the SCF is defined as the sum of total quasi-liquid retirement accounts,
including IRAs, thrift accounts, future pensions, and currently received benefits. We define investable wealth following Parker et al. (2022) to
include money and non-money market mutual funds, all stocks and bonds held within and outside a retirement account, certificates of deposits, and
trusts. The ratio of retirement to investable wealth is computed for households with positive investable wealth. Wage income, investable wealth,
and retirement wealth from the SCF are divided by the number of adults in the household.
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Figure A3. Distribution of Treatment and Control Groups by Year: Opt-In to TDF Sample

0
5

10
15

Pe
rc

en
t o

f F
irm

s

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year of Change from Opt-In to TDF Default

Figure A4. Balance Checks: Money Market to TDF Sample

20
30

40
50

60

-12 -9 -6 -3 0 3 6 9 12
Month Hired Relative to Change in Default

(in First Year)
Median Age

$0

$1500

$3000

$4500

$6000

$7500

-12 -9 -6 -3 0 3 6 9 12
Month Hired Relative to Change in Default

(in First Year)
Median Monthly Salary

21



Figure A5. Robustness of Portfolio Choice Response: Money Market to TDF Sample
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Figure A6. Robustness of Portfolio Choice Response: Portfolio Choices for New Contributions to 401(k)

Panel A: Money Market to TDF Sample

0%

20%

40%

60%

80%

100%

Yit

0 2 4 6 8 10
Years After Hired (τ)

Di = 0 (Money Market) Di = 1 (TDF)

Stock Market Participation

0%

20%

40%

60%

80%

100%

θit

0 2 4 6 8 10
Years After Hired (τ)

Di = 0 (Money Market) Di = 1 (TDF)

Stock Share

Panel B: Opt-In to TDF Sample

0%

20%

40%

60%

80%

100%

Yit

0 2 4 6 8 10
Years After Hired (τ)

Di = 0 (Opt-In) Di = 1 (TDF)   

Stock Market Participation

0%

20%

40%

60%

80%

100%

θit

0 2 4 6 8 10
Years After Hired (τ)

Di = 0 (Opt-In) Di = 1 (TDF)   

Stock Share

23



Figure A7. Fraction of Consistent Investors by Age
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Figure A8. Fraction of Consistent Investors by Age and Default
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Figure A9. Preferences of Consistent Investors by Default
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Figure A10. Preferences of Consistent Investors by Tenure of Consistency: Opt-In to TDF Sample
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Figure A11. Estimated Preferences by Tenure: Opt-In to TDF Sample

Panel A: Stock Market Participation

0%

20%

40%

60%

80%

100%

E τ
(Y

it*  | 
Ag

e i
t)

20 25 30 35 40 45 50 55 60 65
Age (at τ Years After Hired)

τ = 1 τ = 2 τ = 3
τ = 4 τ = 5 τ = 6

Average Preference for Participation in 401(k) at τ

Panel B: Stock Share of Retirement Wealth

0%

20%

40%

60%

80%

100%

E τ
(θ

it*  | 
Ag

e i
t)

20 25 30 35 40 45 50 55 60 65
Age (at τ Years After Hired)

τ = 1 τ = 2 τ = 3
τ = 4 τ = 5 τ = 6

Average Preferred Stock Share in 401(k) at τ



Figure A12. Preference Heterogeneity among Consistent Investors
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Figure A13. Robustness of Preferences over the Life Cycle: Opt-In to TDF Sample
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Figure A14. Life Cycle Preferences of Consistent Investors Defaulted into TDF
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Figure A15. Estimated Preferences Under Weaker Identifying Assumption
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Figure A16. Preferences over the Life Cycle by Income Quartiles
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Table A3. Additional SMM Estimation Results

(1) (2) (3)

Discount Factor: β 0.9675 0.965 0.965
(0.001) (0.002) (0.001)

Relative Risk Aversion: σ 3.6 3.1 3.1
(0.045) (0.180) (0.172)

Portfolio Adj. Cost: kθ $222 $333 $444
($39.96) ($29.04) ($12.98)

Contribution Adj. Cost: ks $444 $444 $333
($9.25) ($64.16) ($29.30)

Weighting Matrix Inverse Diagonal Identity Identity
Moments Targeted:
Contribution Rates under Opt-In ✓ ✓ ✓
Contribution Rates under AE at 3% ✓ ✓ ✓
QE#1 Participation by Tenure ✓ ✓ ✓
QE#1 Stock Share by Tenure ✓
Number of Moments 22 22 36

Notes: This table presents results from an SMM estimation of our four preference parameters that serve as robustness checks for the results presented
in Table 3. The table shows our estimates in addition to standard errors. For additional details on our estimation procedure, see Appendix F.

Figure A17. Robustness of Model Fit: Stock Market Participation in 401(k) from Quasi-Experiment #1
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Notes: This figure presents the fit of our model on the response of stock market participation inside the current employer retirement account for our
first quasi-experiment. The data moments in this figure correspond to the moments from our first quasi-experiment in the left half Figure 4 Panel A
for the first six years of tenure along with 95% confidence intervals. The model moments are from a simulation of this experiment within the model
using the parameter estimates from column (1) of Table A3.
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Figure A18. Robustness of Model Fit: Contribution Rates in 401(k)
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Notes: This figure presents the fit of our model on the distribution of contribution rates in investors’ first-year of tenure. The amount of investors
at 0%, 3%, 6%, and greater than 10% is targeted in the estimation reported in Table 3 in order to identify time preferences and the contribution
adjustment cost. The left (right) figure show contribution rates of investors hired 12 months before (after) the introduction of auto-enrollment for
new hires, which we plot directly the data along with 95% confidence intervals. The model moments are from a simulation of this experiment within
the model using the parameter estimates from column (1) of Table A3.
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