Procyclical Productivity in New Keynesian Models

Zhesheng Qiu José-Víctor Ríos-Rull
City University of Hong Kong University of Pennsylvania, UCL, CAERP

July 14, 2022

NBER Summer Institute 2022 Impulse and Propagation Mechanisms

Research Question

- In the data, labor productivity is procyclical conditional on demand shocks.
 Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

Key Ingredients of the Mechanism

- · Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

A Brief Description of the Search Friction

- Each firm, as a variety producer, operates a continuum of locations, each of which has its own preinstalled inputs and identical production technology.
- A directed search protocol coordinates the matches of production locations with search effort in active markets indexed by price and tightness $\{p, q\}$.
- A CRS matching function $\psi(J(p,q),D(p,q))$ between firms J and search effort D in each market $\{p,q\}$. Market tightness is defined as $q=\frac{D(p,q)}{J(p,q)}$.
- Matching probabilities per unit of search effort and per firm are $\psi^h(q) \equiv \frac{\psi(J(p,q),D(p,q))}{D(p,q)}$ and

$$\psi^f(q) \equiv \frac{\psi(J(p,q),D(p,q))}{J(p,q)}$$
 (occupancy rate is TFP).

A Glimpse of a Simple Static Model with Exogenous Expenditures and Wages

- Consider a Single Goods Market $\{p, q\}$.
- Household's utility displays love for varieties \mathcal{I} and distaste of search effort d:

$$u\left(\int_0^{\mathcal{I}} c_i^{\frac{1}{\rho}} di, d\right)$$
 with $\rho > 1$.

• The varieties found depend on search effort d, and market tightness q:

$$\mathcal{I}=d\;\psi^h(q).$$

 When the only market available has price p, we get the budget constraint with nominal spending e

$$e \geq p \int_0^{\mathcal{I}} c_i \ di = p \ \mathcal{I} \ c.$$

• The household chooses \mathcal{I} , d, and $\{c_i\}$ to maximize utility.

Determination of Available Markets (Technical)

- Define an interim object that determines firm problem.
 - Let $\Phi(e, \overline{v})$ as the set of markets or pairs $\{p, q\}$, in which the household attains utility \overline{v} when spending e.
 - $\Phi(e, \overline{v})$ implicitly defines a one-to-one mapping from price p to tightness q that we denote as $\widetilde{q}(e, \overline{v}, p)$.
 - Associated to these markets, the household's optimal purchase of goods for each variety is denoted as \$\tilde{c}(e, \overline{v}, p)\$.
- These two objects are what firms take as given when solving their problem.

Firms' Choice

 \bullet For firms in each location, output occurs only when households show up. Consequently, the actual output is ψ^f times the potential output.

• Firms take as given nominal wages W, functions $\widetilde{c}(e, \overline{v}, p)$ and $\widetilde{q}(e, \overline{v}, p)$, and a Rotemberg style price adjustment cost $\chi(p)$ e to maximize profits:

$$\Omega(e, W, \overline{v}) = \max_{p} \left(p \, \psi^{f}(\widetilde{q}(e, \overline{v}, p)) - W \right) \, \, \widetilde{c}(e, \overline{v}, p) - \chi(p) \, e,$$

Equilibrium is a pair $\{P^*, Q^*\}$

where households optimize

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f(Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utility) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- ullet and firms also optimize $\left({\cal E}({\it q}) \equiv {{\it d \, {\rm ln} \, \psi^f(q)}\over {\it d \, {\rm ln} \, q}} \right)$

$$\chi_{\rho}(\mathbf{P}^*) \; \mathbf{P}^* = \frac{\rho}{\rho - 1} \; \left[\frac{W}{\mathbf{P}^* \; \psi^f(\mathbf{Q}^*)} - \frac{1}{\rho \; (1 - \mathcal{E}(\mathbf{Q}^*))} \right].$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue.
- Marginal cost is the real wage noting that the firm is not fully occupied.
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy $\psi^f(Q^*) = 1 \& \mathcal{E}(Q^*) = 0$. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{\rho}(\textbf{\textit{P}}^{*}) \ \textbf{\textit{P}}^{*} = \frac{\rho}{\rho - 1} \ \left[\frac{W}{\textbf{\textit{P}}^{*} \ \cdot \ \mathbf{1}} - \frac{1}{\rho \ (\mathbf{1} - \ \mathbf{0} \)} \right].$$

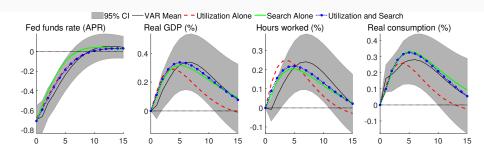
The Impact of Expenditures *e* in the New Mechanism

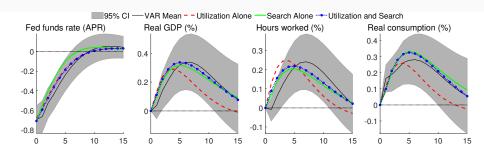
Perturbation of the equilibrium conditions yields

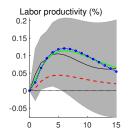
$$\begin{split} d\ln(\psi^f(Q^*)) &= \widetilde{\Psi} \cdot \left[d\ln(e) - d\ln(P^*) \right], \\ d\ln(P^*) &= \widetilde{\kappa} \cdot \left[d\ln(W) - d\ln(P^*) + (\widetilde{\gamma} - 1) \ d\ln(\psi^f(Q^*)) \right]. \end{split}$$

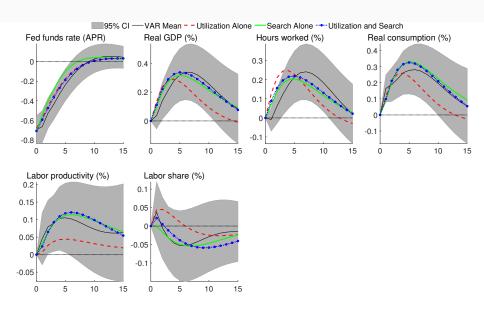
- $(\widetilde{\Psi}, \widetilde{\gamma}, \widetilde{\kappa})$ are functions of deep parameters. They have to satisfy certain restrictions to ensure procyclical markups, inflation and real wages.
- $(\widetilde{\Psi}, \widetilde{\gamma})$ are new.
 - ullet captures the elasticity of occupancy rate $\psi^f(Q^*)$ w.r.t. real spending e/P^* ,
 - $\widetilde{\gamma}$ captures the elasticity of gross desired markup ρ $(1-\mathcal{E}(Q^*))$ w.r.t. occupancy rate $\psi^f(Q^*)$ (just an algebraic connection).

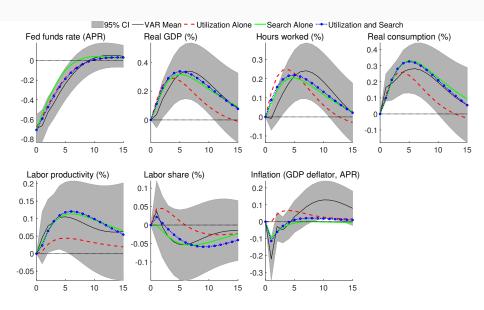
Putting These Ideas to Work

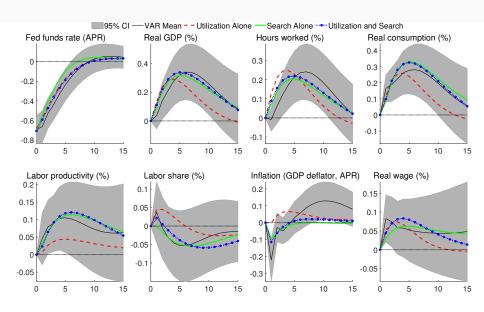

- We embed this variable number of varieties with the search friction in a version of the medium-scale NK model in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - Capital utilization alone: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - 2. Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters $\widetilde{\Psi}$ and $\widetilde{\gamma}$ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)


Estimation via Impulse Response Matching


- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.


Important Numbers from the Estimation Results


0.25 0.14	0.14 0.03
0.14	0.02
	0.03
1.01	1.56
0.76	0.96
117.1	167.1
∞	0.36
0.42	0.39
0.42	0.79
	0.42 0.27



Conclusion

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

References i

- Cantore, C., F. Ferroni, and M. A. León-Ledesma (2021): "The Missing Link: Labor Share and Monetary Policy,"

 Journal of the European Economic Association. Accepted.
- Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005): "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, 113, 1-45.
- Christiano, L. J., M. S. Eichenbaum, and M. Trabandt (2016): "Unemployment and Business Cycles," Econometrica, 84, 1523–1569.
- Nekarda, C. J. and V. A. Ramey (2020): "The Cyclicality of the Price-Cost Markup," Journal of Money, Credit, and Banking: 50th Anniversary Issue. 52, 319-353.