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Abstract

We propose an easy-to-use search friction in the goods markets in medium-sized New Key-

nesian models. This friction allows increases in measured productivity in response to increases in

expenditures via higher search effort from households. As a result markups can become procyclical

and labor share countercyclical. Unlike in models that pose variable capital utilization and fixed

costs to generate procyclical productivity, firms do not have to spend more to achieve it. We

estimate the model matching impulse responses with Bayesian techniques and show superior per-

formance of models with search frictions relative to the state of the art alternative models in the

literature. Our estimates also display low fixed costs of production and lower Frisch elasticities.
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1. Introduction

The impulse response functions of demand shocks such as monetary shocks display procyclical labor

productivity and countercyclical labor share. New Keynesian models, which are close relatives of neo-

classical models, face an uphill battle to deliver these properties. The most commonly used modeling

device to get around these problems in medium-sized models (models that have capital and hence

decreasing returns to labor) is variable capital utilization (yet, Christiano et al. (2005) with a nearly

flat rate cost of capital utilization, only get less than one half of the movements in labor productivity).

Such a feature postulates missmeasured capital inputs of production, inputs that have to be paid for,

and that will not reduce marginal costs which makes it difficult to generate procyclical labor produc-

tivity or countercyclical labor share (in fact Cantore et al. (2021) show that matching countercyclical

labor share without hurting other parts of the model is impossible with the commonly used features in

medium-scale DSGE models).1

Motivated by this inconsistency between theory and evidence, we propose an extension of the

standard New Keynesian model in which procyclical labor productivity, markups, wages and inflation

are possible as well as countercyclical labor share even when the expansion is demand induced. Such

an extension is based on the notion that consumers (or, in general, purchasers of goods and services)

perform a productive role and that their contribution, which requires effort, goes up in demand-induced

expansions when consumers squeeze more output out of the economy. The gist of our theory makes

households responsible for transforming firms’ activities into products that can be used for consumption

in a way that requires effort (a disutility) to do so. When expenditures go up, consumers exert more

effort, extracting more output from any given amount of firms activities which effectively looks like

higher productivity. Central to this notion is that firms enjoy the productivity increase in the sense

that they do not pay for it. Moreover, when firms set prices, they understand that their productivity

is also affected, which results in an incentive to charge higher markups in expansions. As a result, the

properties of economies with these features include not only those standard in New Keynesian models

but also procyclical labor productivity and countercyclical labor share.

This paper has two main contributions. The first one is theoretical: we pose a directed search

friction in the product markets on top of an otherwise standard New Keynesian model to obtain both

endogenously procyclical TFP and desired markups (the markups that would occur in the absence of

price adjustment frictions). Technically, we combine for the first time directed search in the product

markets (Huo and Ŕıos-Rull (2015); Bai et al. (2019)) with multiple varieties (Huo and Ŕıos-Rull

1 Choi and Ŕıos-Rull (2009), Choi and Ŕıos-Rull (2020) and Ŕıos-Rull and Santaeulàlia-Llopis (2010) have pointed to
associated difficulties in neoclassical models.
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(2014, 2020a)). In our environment households with taste for consuming different varieties of goods

have to exert search effort to find them. Higher expenditures translate into more varieties and more

consumption of each variety. More varieties translate into higher occupancy rates for firms resulting

in higher productivity. Higher occupancy rates induce firms to increase their markups, not because

of higher costs but because of less price competition. The endogenous change in TFP is neither a

mismeasurement of inputs nor a costly choice of the firms, while the endogenous desired markup allows

inflation to be procyclical even if the real marginal cost of production is not. The standard New

Keynesian model becomes a special case of our search model when endogenous movements in TFP are

absent so model comparison becomes straightforward.

Our second contribution is empirical. We estimate various alternative medium-scale New Keynesian

models with and without our proposed extension and variable capital utilization. We find overwhelming

support for our search friction in terms of both the goodness of fit and the plausibility of the parameter

estimates.

We use a version of Christiano et al. (2016) and the Bayesian impulse response matching method

developed in Christiano et al. (2010). Our estimation targets include the 9 standard variables under

3 structural shocks used in the baseline model of Christiano et al. (2016), and we also include labor

productivity and labor share as explicit additional targets to highlight the main advantages of our

extension.

Our benchmark economy, that includes both our proposed extension and variable capital utilization

performs best with search frictions playing a more central role in shaping the outcomes. The two

parameters that capture the endogeneity of TFP and of endogenous desired markups are well identified

in the sense that their posterior distributions are much tighter than their priors. Conditional on the

Federal Funds Rate shocks, labor productivity and labor share in the model are close to the target

impulse responses in the structural VAR regression. The values of the parameters that we estimate are

all reasonable.

But the true value of our theoretical extension shows up when comparing the estimation results

across economies. Relative to the economy without the search frictions, this is, the standard New

Keynesian model, the overall fit is much better (as measured by the log marginal likelihood) and we

obtain parameter estimates that we think are much more reasonable: lower fixed costs of production

(3% vs. 39%), lower Frisch elasticity of labor supply (1.6 vs. 9.1) and lower size of productivity shocks

(0.22 vs. 0.32). A look at the impulse response (i.e. the eyeball metric) also confirms these results (if

we may say that). Markups are decidedly procyclical. Further, if we impose a much lower size of fixed
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costs (13%) on the model without search frictions,2 the difference in terms of fit becomes much larger.

The model with search frictions but not variable capacity utilization also does much better than the

standard New Keynesian model. The log marginal likelihood is much larger. The parameter estimates

are also more reasonable (lower fixed costs of production (0.14 vs 0.39)) lower Frisch elasticity of labor

supply (1.9 vs. 9.1) and lower size of productivity shocks (0.19 vs. 0.32).

Two additional findings, documented in our robustness section, further support our views. First,

qualitatively, the advantage of search frictions over variable capital utilization does not depend on

whether we target labor productivity and labor share, or on how exactly we perform the accounting

of the costs of variable capital utilization. Second, the implied correlation between markups and log

GDP conditional on Federal Funds Rate shocks increases from nearly zero to above 0.7 in all of our

estimation results when our search friction is turned on.

Why is search friction more powerful than variable capital utilization (Taubman and Wilkinson

(1970), Greenwood et al. (1988))? The gist is who pays for the implied increase in productivity. Under

variable capital utilization, firms pay for the costly additional capital services. Such a mechanism can at

best remove all decreasing returns to scale induced by slow moving capital, yet firms do not have at all

higher productivity. In contrast, the search friction directly increases the occupancy rate or production

capacity at the cost of household disutility, inducing truly higher productivity from the point of view

of the firm and hence higher profit margins. Moreover, higher desired markups help the lower marginal

cost of production associated with higher productivity to avoid deflation.

Is there any direct evidence of our mechanism? Indeed there is. With respect to procyclical

consumer search, Petrosky-Nadeau et al. (2016) document facts about procyclical shopping time and

that the unemployed have larger drops of shopping time during the Great Recession and Bai et al. (2019)

report that the fall in shopping effort during and after the Great Recession was due to the unusually

large and sustained fall in consumption. With respect to procyclical number of varieties, Michelacci

et al. (2021) document that about half of the changes in U.S. non-durable consumption is due to adding

varieties to basket and Li (2021) also provides evidence of more consumption inducing more varieties.

Stroebel and Vavra (2019) find explicit empirical evidence of a strong interaction between household

shopping behavior and firm price setting that supports the mechanism in this paper. Moreover, recent

empirical findings about productivity and markups using firm level data suggest that firms increase real

output much faster than employment during demand expansions (Gottfries et al. (2021)) and that net

profit margins are procyclical conditional on demand shocks (Anderson et al. (2020)) which we take as

asking for a direct channel from increased expenditures.3

2 Abraham et al. (2021) find that fixed costs amount to 23.4% of sales.
3 There is a literature that emphasizes composition effects as a mechanism that affects productivity, labor share and
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Are markups procyclical conditional on demand shocks? As we have stated, Nekarda and Ramey

(2020), Stroebel and Vavra (2019) and Anderson et al. (2020) suggest that they are.4 A potential

criticism from Kudlyak (2014) and Basu and House (2016) emphasizes that the marginal cost of labor

may be much more procyclical than its average cost, so that the markup measures based on labor

cost would be strongly biased towards procyclical markups. Yet, more recent empirical and theoretical

findings in Gertler et al. (2020), Grigsby et al. (2021) and Fukui (2020) are not in favor of this

criticism. Our reading of the evidence is that on the whole, empirical evidence supports procyclical

markups conditional on demand shocks.

The main mechanism that makes labor productivity procyclical and labor share countercyclical in

this paper is the variable effort made by shoppers in squeezing output out of a given production capacity

via search frictions. This idea was developed in Bai et al. (2019) using search for goods to show how

demand shocks may look like productivity shocks. Among theory papers, Lehmann and Van der Linden

(2010) have frictions in the goods market to study the steady state relation between inflation and output

or employment. Michaillat and Saez (2015) also connect product market frictions to idle occupancy

and unemployment and argue that under fixed prices, which leaves out any search equilibrium condition,

tightness is the variable that clears the goods markets allowing for unemployment; Huo and Ŕıos-Rull

(2015) in a quantitative model with heterogeneous agents show how increases in savings arising from

a financial shock trigger a recession via a reduction in the consumption of goods that are subject to

search frictions reducing productivity and output. This is exacerbated because poorer households are

more adversely affected. They further model fixed prices in a competitive search environment and show

how price rigidities amplify the recession. Huo and Ŕıos-Rull (2014) and Huo and Ŕıos-Rull (2020a)

introduced search for varieties as a means to have negative wealth effects to generate recessions both

in heterogeneous and in representative agent models. They use undirected search which implies that

firms cannot affect their own productivity via pricing decisions.

There are other models in the literature that have endogenous productivity or markups. As for

endogenous productivity, Fagnart et al. (1999) pose monopolistic firms with putty-clay technology that

display fluctuations in capacity utilization and hence in productivity, Swanson (2006) shows that relative

productivities across sectors can cause procyclical aggregate productivity, and Gottfries et al. (2021)

use labor reallocation from production to non-production activities to generate a faster adjustment of

output than that of employment. As for endogenous markups, Kaplan and Menzio (2016) model how

markups (e.g. Kaplan and Zoch (2020), Anderson et al. (2020), Meier and Reinelt (2021), and Baqaee et al. (2021)).
We abstract from this margin.

4 Bils et al. (2018), Hong (2017) and Burstein et al. (2020) find evidence supporting countercyclical markups in industry
or firm level data. Their cyclicality results are unconditional, and hence do not reject procyclical markups conditional
on demand shocks.
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more price picking behavior of the unemployed in recessions drives down firms’ markup, Bertoletti and

Etro (2017) extend the standard Dixit-Stiglitz aggregator to make the elasticity of substitution between

goods varieties and hence desired markups depend on income, and Hyun et al. (2021) study how a

translog production function, a form of procyclical returns to scale, helps get procyclical markups.

Jaimovich (2007) and Floetotto and Jaimovich (2008) have fluctuations in the number which causes

movements in both markups and Solow residuals.

Section 2 has a one period model version of our ideas that include the core of the message. In

fact, the main theoretical contribution is in Section 2.1. A dynamic version of the model is imposed

on top of the static one in Section 3 and estimated in Section 4 to assess the empirical relevance of

the theoretical possibilities described. We perform some robustness tests in Section 5. We discuss

the role of the mechanisms in our estimation in Section 6. Appendix A provides various algebraic

derivations while Appendix B provides optional technical materials for the interested reader to replicate

our computations.

2. A Simple Model with Search Frictions Generating Procyclical TFP, In-

flation, and Markups

We now pose a one-period model with exogenous expenditures but with all the necessary ingredients to

discuss how directed search generates procyclical TFP and markups in response to a demand increase

such as that induced by a monetary expansion in New Keynesian environments. The main features of

this model are (1) preferences of the Dixit-Stiglitz love-for-varieties class but where finding varieties

requires search effort, (2) pricing decisions that affect how many customers show up, i.e. the occupancy

rate, (3) price-setting costs à la Rotemberg faced by firms, and (4) wage-setting frictions à la Calvo

faced by unions.

We start with a very basic version of the model with neither search frictions nor wage movements

to illustrate the difficulties of standard new Keynesian models to generate procyclical TFP and markups

(Section 2.1). Next, we pose on top of this environment search frictions in the product markets that

constitute the core of this paper to show how directed search overcomes these difficulties (Section 2.2).

The endogenous determination of nominal wages given monetary policy (taken to be a nominal GDP

target here) is in Section 2.3.

2.1. The Difficulties of Standard New Keynesian Models in Moving TFP or Markups

In standard New Keynesian models technology is either constant or decreasing returns to scale and

movements in TFP can only occur due to mismeasurement in inputs (more on this later in Section 6).

6



We now turn to look formally at the relation between markups, real wages and inflation in a simple

one-period New Keynesian model.

Consider standard Dixit-Stiglitz preferences:5 goods produced come in differentiated varieties i ∈
[0, 1] with a constant elasticity of substitution. Each variety i is produced by a single firm with monopoly

power that sets a price pi and produces whatever is demanded in the market.

Observing prices {pi}i∈[0,1], the representative household has nominal spending e to allocate opti-

mally across all varieties i ∈ [0, 1] and solves:

v(e, {pi}) = max
{ci}

U

[(∫ 1

0

c
1
ρ

i di

)ρ]
, (1)

s.t. e ≥
∫ 1

0

pi ci di . (2)

where ρ > 1. The solution is c i (e,P , pi) =
(
pi
P

)− ρ
ρ−1 e

P
, where P ≡

(∫ 1

0
p

1
1−ρ

j dj

)1−ρ

.

Firm i sets price pi optimally subject to the households’ demand, linear technology yi = ni , a

competitive labor market with nominal wage W , and a Rotemberg style price adjustment cost that we

assume proportional to expenditures for simplicity,6 χ (pi/p
−) e (where χ(.) is non-negative, convex

and satisfies χ(1) = χp(1) = 0, χpp(1) > 0), to solve

Ω(e,W ,P , p−) = max
pi

(pi −W )
(pi
P

)− ρ
ρ−1 e

P
− χ

(
pi
p−

)
e, (3)

with first order condition

1

ρ− 1

(
ρ
W

pi
− 1

)(pi
P

)− 1
ρ−1

=
pi
p−

χp

(
pi
p−

)
. (4)

In the absence of adjustment costs, the solution, pi(e,W ,P , p−), satisfies pi
W

= ρ. An equilibrium

given nominal wages W , nominal expenditures e, and inherited prices p− is an allocation c∗ and a price

p∗ such that households and firms choose optimally c∗ and p∗ when they face P = p∗.

By construction, the model has constant TFP. To see what happens to markups, we can look

at the log-linearized equilibrium condition evaluated at the price that does not change in equilibrium

5 Other types of preferences (see for instance the summary in Arkolakis and Morlacco (2017)) do not change our results
qualitatively.

6 Adjustment costs proportional to nominal expenditures guarantee that increases in nominal expenditures translate into
increases in real output and not into increases in prices. Eliminating expenditures from the price adjustment costs
changes this statement but not in a relevant manner.

7



p∗ = pi(e,W , p∗, p∗), (analogous in this static model to the steady state in a dynamic model)

d ln(p∗) =
1

1 + (ρ− 1)χpp(1)
d ln(W ). (5)

Here we can take the change in log nominal wages as either exogenous or as the labor market response

to attract the labor needed to increase real output. Equation (5) shows that while prices are not

affected directly by changes in nominal spending they still change via the increase of nominal wages.

Prices move in the same direction but less than nominal wages. Consequently, an increase in nominal

wages moves the gross markup p∗/W down, inflation p∗/p− up, and the real wage W /p∗ up.

To summarize, two limitations prevent procyclical markups: gross markups and real wages are the

inverse of each other due to the lack of movement in labor productivity and inflation is completely cost

driven, which means higher inflation must be associated with higher marginal cost of production and

hence lower markup. As a result, getting procyclical real wages or procyclical inflation rules out the

possibility of procyclical markups. The search friction in the goods market with households contributing

to productivity removes these two limitations by allowing endogenous variations in TFP and in desired

markups.

2.2. Directed Search: Endogenous TFP and Endogenous Desired Markup

We turn to add a shopping friction to the goods markets in the basic model described above. Now

households need to exert effort to find varieties and they will choose not to consume all available

varieties. Because there is a large number of households and varieties, all firms end up having the same

occupancy rate which, as we will see, is the same as productivity. Suitably chosen preferences ensure

that increases in spending imply both an increase in the quantity of varieties and in the consumption of

each variety, or, in other words, both in productivity and in labor. Firms can attract consumers either

with lower prices or with lower market tightness and an appropriately chosen matching function ensures

that as the occupancy rate increases, firms have less incentives to engage in price competition, leading

to higher desired markups.

Now the details. Assume that each firm or variety producer operates a continuum of locations,

each one with its own preinstalled inputs and identical production technology. All locations of a firm go

to one and only one submarket indexed by price and tightness {p, q} and each location is matched with

at most one household.7 The total number of matches in each submarket is given by a constant returns

to scale (CRS) matching function ψ[J(p, q),D(p, q)], where market tightness is the ratio of J(p, q)

7 We avoid the standard label of competitive search due to both monopolistic competition and the fact that what is
searched for are not goods but varieties.
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the measure of firms, and D(p, q) total shopping effort in submarket {p, q}, q = D(p,q)
J(p,q)

. Matching

probabilities per firm and per unit of search are ψf (q) ≡ ψ[J(p,q),D(p,q)]
J(p,q)

and ψh(q) ≡ ψ[J(p,q),D(p,q)]
D(p,q)

. Note

that ψf is the probability that a location can be found and also the fraction of production capacity

that is used. We can interpret ψf as TFP because total output equals total occupied labor, which is

total labor times ψf . It is an endogenous variable that is increased by household effort without costing

anything to the firm (a crucial difference with variable capital utilization models).

Households choose how much shopping effort d to exert in each submarket {p, q} ∈ Φ where Φ

denotes the set of available markets (this is, markets where firms are willing to go to), and hence we

say they choose d(p, q). They value both the number of varieties and the quantity consumed of each

variety according to utility function U(cA, dA), with arguments

cA ≡
(∫

Φ

d(p, q) ψh(q) c(p, q)
1
ρ dp dq

)ρ
(6)

dA ≡
∫

Φ

d(p, q) dp dq, (7)

where cA is the utility-relevant aggregate of consumption of all varieties found and dA is aggregate

search effort.

Let’s further specialize our environment to preferences à la Greenwood et al. (1988) (GHH pref-

erences) in consumption and search effort (abusing notation in the process by referring to both the

general utility function and the GHH utility function by U): U(cA, dA) = U
(
cA − ζ (dA)1+ν

1+ν

)
for some

strictly concave and increasing U . There are two advantages of these preferences: they imply that

higher expenditures imply higher effort (proof in Appendix A.1), a necessary feature to have demand

shocks increase productivity, and they are easy to characterize using a simple relation between the

consumption and the search aggregates

cA =
ζ

ρ− 1
· (dA)1+ν , (8)

allowing us to write U(cA, dA) = U
(

2+ν−ρ
1+ν

· ζ
ρ−1
· (dA)1+ν

)
or U(cA, dA) = U

(
2+ν−ρ

1+ν
· cA
)
.

We now pose the problem of the household given expenditures to show how to characterize the

set of markets that guarantees a certain level of utility (Section 2.2.1). Firms maximize their profits

restricted to go to one of those markets (Section 2.2.2). Given nominal expenditures and nominal wages

equilibrium requires consistency with the utility achieved by households. At this stage we characterize

equilibrium given exogenous changes in nominal expenditures and nominal wages and discuss what it

takes to generate procyclical TFP and markups (Section 2.2.3).
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2.2.1. Household Problem for a Given Set of Available Markets

Consider the problem of a household that can only search in a particular subset of markets, Φ, that

specifies pairs of available prices and market tightnesses

v(e, Φ) = max
{c(p,q),d(p,q)}≥0

U
(
cA, dA

)
, (9)

s.t. e =

∫
Φ

d(p, q) ψh(q) p c(p, q) dp dq, (10)

and the definition of aggregates (6-7).

Taking first order conditions for c(p, q) in any market where there is positive search, we get (a proof

in Appendix A.2)

c(p, q) =
( p

PA

)− ρ
ρ−1

cA, (11)

where we use price aggregate

PA =

(∫
Φ

d(p, q) ψh(q) p
1

1−ρ dp dq

)1−ρ

. (12)

Note that PA depends on households’ decisions. We denote PA(e, Φ) as the value of PA for opti-

mal decisions. Note also that even though we cannot say which markets the household searches in,

Equation (11) tells us how much is bought of any variety that is found. Furthermore, we can use the

equation in the budget constraint to obtain

e = PA · cA. (13)

A very useful property of price aggregate in optimal decisions PA(e, Φ) (a proof in Appendix A.3) is

that it satisfies

PA(e, Φ) = min
{p,q}∈Φ

{PA|dA = dA(e, Φ)} = dA(e, Φ)1−ρ · min
{p,q}∈Φ

{
ψh(q)1−ρ p

}
. (14)

which means that it can be substituted in Equations (8) and (13) to find optimal consumption and

search aggregates.
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Consequently, we can obtain the indirect utility function v(e, Φ) directly

v(e, Φ) = U

(
2 + ν − ρ

1 + ν
·
(

ζ

ρ− 1

)− ρ−1
2+ν−ρ

(
e

min{p,q}∈Φ {ψh(q)1−ρ p}

) 1+ν
2+ν−ρ

)
.

We can also obtain the set of markets Φ(e, v) that yields utility v by inverting v(e, Φ) = v getting

min
{p,q}∈Φ

{
ψh(q)1−ρ p

}
=

(
ζ

ρ− 1

)− ρ−1
1+ν
(

1 + ν

2 + ν − ρ
U−1(v)

)− 2+ν−ρ
1+ν

e.

The market tightness q for each price p that solves the condition above and hence stays on the boundary

of Φ(e, v) can be obtained using the inverse of the function that yields the probability of a location

finding a customer

q̃(e, v , p) = (ψh)−1

((
ζ

ρ− 1

) 1
1+ν
(

1 + ν

2 + ν − ρ
U−1(v)

) 2+ν−ρ
(1+ν)(ρ−1) (p

e

) 1
ρ−1

)
. (15)

Using Equations (11) and (13) derived before, and the same logic we can obtain the variety specific

demand conditional on expenditures, a utility level and a price:

c̃(e, v , p) =

(
1 + ν

2 + ν − ρ
U−1(v)

)− 1
ρ−1 (p

e

)− ρ
ρ−1

. (16)

Functions (15) and (16) are the objects that will enter the firm problem, the counterparts to the

variety specific demand functions in the standard model. Note that throughout the derivation, the only

functional assumption we impose is GHH utility.

2.2.2. Firms Problem Conditional on Utility Level

A firm that knows it has to guarantee households a certain utility level v given expenditures, e, nominal

wages, W , and previous period’s price, p−, and chooses price p understanding that the market that it

has to go has tightness q = q̃(e, v , p) and quantity demanded c̃(e, v , p). We can write its problem as

Ω(e,W , v , p−) = max
p

(
p ψf[q̃(e, v , p)]−W

)
c̃(e, v , p)− χ

(
p

p−

)
e.

Using shorthand notation (i.e. omitting the arguments in functions) the first order condition is

0 =
(
ψf + p · ψf

q · q̃p
)
· c̃ +

(
p · ψf −W

)
· c̃p − χp

e

p−
.
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We can rewrite this condition in terms of the elasticities of functions {ψf , q̃, c̃}8

0 =

(
ψf +

q̃ ψf
q

ψf
· p q̃p

q̃
· ψf +

p c̃p
c̃
· ψf − W

p
· p c̃p

c̃

)
c̃ − χp

e

p−
.

We denote the elasticity of the probability of firms finding a customer (or TFP) by E(q) ≡ q ψf
q(q)

ψf (q)
=

d ln(ψf (q))
d ln(q)

, which because of the constant returns to scale in the matching technology is between 0 and

1 and satisfies
q ψh

q(q)

ψh(q)
=

q ψf
q(q)

ψf (q)
− 1 = E(q)− 1.

If we evaluate function ψh at the value of q̃(·) given by Equation (15) and take log partial derivatives

for p on both sides we get

∂ ln(ψh(q̃(e, v , p)))

∂ ln(p)
=
∂ ln(ψh)

∂ ln(q̃)

∂ ln(q̃)

∂ ln(p)
=

q̃ ψh
q

ψh
· p q̃p

q̃
=

1

ρ− 1
> 0.

Hence, the elasticity of function q̃(·) with respect to p is

p q̃p
q̃

= − 1

(ρ− 1)[1− E(q̃)]
. (17)

We can also use Equation (16) to get the elasticity of c̃(·)

p c̃p
c̃

= − ρ

ρ− 1
. (18)

Substituting these elasticities back to the first order condition yields

0 =
1

ρ− 1

[
ρ
W

p
− ψf (q̃(e, v , p))

1− E(q̃(e, v , p))

]
p c̃(e, v , p)

e
− χp

(
p

p−

)
p

p−
.

Note that absent price rigidity, the actual markup equals the desired markup

p ψf

W
− 1 = ρ (1− E)− 1,

which is affected by the elasticity of TFP to market tightness which may not be constant. We denote

Γ ≡ p ψf

W
as the gross markup for later use.

8 In a model with random search instead of directed search as in Huo and Ŕıos-Rull (2020a), households do not know
the price when shopping, and hence firms’ pricing decisions will not affect the market tightness for them. As a result,

q̃p = 0, in the firms’ first order condition (not elsewhere). It is equivalent to have the term
q̃ ψf

q

ψf (not the ψf elsewhere)
replaced by 0.
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2.2.3. Equilibrium Given Nominal Wages and Expenditures

It is at this stage that we impose the equilibrium conditions given expenditures e and nominal wage

W , which is just that the set of markets Φ(e, v) for utility level v will induce households’ shopping

effort and firms’ pricing decisions consistent with Φ(e, v). We also impose the standard representative

agent condition for households and firms so we use capital letters to refer to aggregate prices using P−

for the price inherited from the past that is common to all firms and using P∗ and Q∗ for equilibrium

prices and tightness. We then summarize the equilibrium conditions by a pair of equations

1

ρ− 1

[
ρ

W

P∗ ψf (Q∗)
− 1

1− E(Q∗)

]
= χp

(
P∗

P−

)
P∗

P−
, (19)

ζ

ρ− 1

(Q∗)1+ν

ψf (Q∗)ρ−1
=

e

P∗
. (20)

Equation (19) is the first order condition of firms while Equation (20) imposes optimality of the

household and the consistency of market tightness with total search effort.

Notice that we can use these two equilibrium objects P∗(e,W ,P−) and Q∗(e,W ,P−) directly in

the problem of the household ignoring the cumbersome derivation of which markets are available, an

approach that we will follow in Section 3. Formally,

max
{cA,dA}≥0

U
(
cA, dA

)
s.t. e = cA

(
dA ψh[Q∗(e,W ,P−)]

)1−ρ
P∗(e,W ,P−).

To further the analysis we proceed by log-linearizing the equilibrium conditions, which requires us

to choose a reference point. As before, the natural such point is when there is no need to adjust

the price, i.e. P∗ = P−. We refer to this point as the steady state because in a dynamic version of

this economy this is what it would be. We start by grouping parameters in each equation to highlight

the role of directed search, and then characterize how large is the endogenous response of TFP that

is needed to obtain procyclical markups. We also want to characterize what is needed for procyclical

inflation, and real wages. While the more procyclical TFP is the more procyclical markups are, too

strong a procyclicality of TFP will make inflation and real wages countercyclical. Consequently, we

want to characterize the range of the elasticity of endogenous TFP that makes markups, inflation and

real wages all procyclical.

13



Endogenous TFP and its elasticity Ψ̃ Log-linearizing both sides of condition (20) around what

we have called the steady state yields

(1 + ν) d ln(Q∗)− (ρ− 1) d ln[ψf (Q∗)] = d ln (e/P∗) .

We now use the elasticity of TFP with respect to market tightness around the steady state Qss ,

E(Qss) ≡ d ln(ψf (q))
d ln(q)

∣∣∣
q=Qss

, to obtain Equation (21) that describes how endogenous TFP is affected

directly by exogenous changes in nominal spending e and indirectly by the equilibrium price P∗

d ln(ψf (Q∗)) = Ψ̃ ·

d ln(e)− d ln(P∗)︸ ︷︷ ︸
real spending

 , (21)

where we have denoted by Ψ̃ the grouping of parameters that capture the corresponding elasticity:

Ψ̃ ≡
(

1 + ν

E(Qss)
+ 1− ρ

)−1

=

(
1 + ν

1− Γss

ρ

+ 1− ρ

)−1

.

The range of parameter values that we can use have to satisfy 1 < ρ < 2 + ν (so GHH preferences are

increasing in its argument) and Γss ≥ 1 (non-negative steady state markups). These two properties by

themselves imply that 0 < Ψ̃ < 1 (note that Ψ̃−1 ≥ 1+ν
1− 1

ρ

+ 1−ρ > 1+ν
1− 1

2+ν

+ 1− (2 +ν) = 1). In words,

an increase in real spending translates always into a less than proportional increase in TFP.

Static Phillips Curve and its slope κ̃ In the standard model the slope of the Phillips curve is

the relation between the change in prices and the change in real wages. Here we can also obtain

such relation, but the final effect in prices is also affected (and in exactly the same amount) by the

endogenous changes in TFP and in the desired markup. To see this, differentiate both sides of the first

order condition of firms (19) at the steady state to obtain

1

(ρ− 1)[1− E(Qss)]
d ln

[
W

P∗
1− E(Q∗)

ψf (Q∗)

]
− χpp(1) d ln(P∗) = 0.

We rewrite this equation to separate the roles of changes in the real wage, productivity and the desired

markup (equal to ρ(1− E)− 1)

d ln(P∗) = κ̃ ·

d ln(W )− d ln(P∗)︸ ︷︷ ︸
real wage

− d ln[ψf (Q∗)]︸ ︷︷ ︸
TFP

+ d ln[1− E(Q∗)]︸ ︷︷ ︸
desired markup

 .
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where the grouped parameter κ̃ satisfies

κ̃ ≡ 1

(ρ− 1)(1− E(Qss))χpp(1)
=

ρ
ρ−1

Γss · χpp(1)
,

in which ρ
ρ−1

is the elasticity of substitution between varieties and χpp(1) is the curvature of the price

adjustment cost. Since χpp(1) can take any positive value, so can κ̃. Note that κ̃ depends on the

search frictions only through the steady-state gross markup Γss .

Notice how the response of inflation is shaped by the response of the real wage net of the endogenous

response of TFP and that the desired markup. In fact, search frictions could move inflation in either

direction, depending on how much TFP and the desired markup move.

Endogenous desired markup and its elasticity γ̃ To merge the contribution of TFP and the

desired markup on inflation into a net effect of directed search it is useful to define one more grouped

parameter, the elasticity of the desired markup with respect to endogenous TFP:

γ̃ ≡ d ln(1− E(q))

d ln(ψf (q))

∣∣∣∣
q=Qss

.

Note that
[

1 + d ln(1−E(q))
d ln(ψf (q))

]−1

is the elasticity of substitution between the measure of production loca-

tions J and total shopping effort D in the constant returns to scale matching function ψ(J ,D) (proof

in Appendix A.4). When γ̃ is constant, the matching function has a constant elasticity of substitution

(CES), and we obtain ψf (q) = B(1−ϕ+ϕq−γ̃)−
1
γ̃ , for some B > 0, and some ϕ ∈ (0, 1). Moreover,

for a Cobb-Douglas matching function γ̃ = 0.

In principle, γ̃ can take any value greater than or equal to −1, given a non-negative elasticity of

substitution. In our environment, we only look for γ̃ ≥ 0 such that for any κ̃ ∈ (0, +∞) and Ψ̃ ∈ (0, 1)

TFP is strictly increasing in nominal spending e (proof in Appendix A.5).

Using this grouped parameter γ̃, the relation between inflation and real wages (what we refer to

as the Phillips Curve) has a more compact form that only depends on the real wage and the induced

movement in TFP,

d ln(P∗) = κ̃ ·

d ln(W )− d ln(P∗)︸ ︷︷ ︸
real wage

− (1− γ̃)d ln[ψf (Q∗)]︸ ︷︷ ︸
directed search

 . (22)
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Necessary and Sufficient Conditions for Procyclical Markups, Inflation, and Real Wages

The three grouped parameters {Ψ̃, κ̃, γ̃} in the log-linearized versions of the equilibrium conditions

Equations (19) and (20) yield Equations (21) and (22) that allow us to solve for the partial derivatives

of log prices and log TFP with respect to log nominal expenditures and wages, ln(e) and ln(W ), which

describes how equilibrium changes in response to changes in the nominal spending and nominal wage

separately.

To discuss cyclicality in a straightforward way, we will treat nominal spending e still as an exogenous

variable, but the nominal wage W as a function of e with certain elasticity d ln(W (e))
d ln(e)

> 0. This allows

us to use total derivatives with respect to ln(e) to describe the necessary and sufficient conditions to

obtain procyclical markups, inflation, and real wages around the steady state. Equations (23) to (25)

display the total responses of our variables of interest to a change in log nominal expenditures taken

into account the effect of the latter on nominal wages:

Markup:
d ln

(
P∗(e,W (e),p−) ψf (Q∗(e,W (e),p−)

W (e)

)
d ln(e)

=
(1 + κ̃γ̃)Ψ̃ − (1 + κ̃γ̃Ψ̃) · d ln(W (e))

d ln(e)

1 + κ̃[1 + (γ̃ − 1)Ψ̃]
> 0, (23)

Inflation:
d ln(P∗(e,W (e), p−))

d ln(e)
= κ̃ ·

(γ̃ − 1)Ψ̃ + d ln(W (e))
d ln(e)

1 + κ̃[1 + (γ̃ − 1)Ψ̃]
> 0, (24)

Real Wage:
d ln

(
W (e)

P∗(e,W (e),p−)

)
d ln(e)

=
−κ̃(γ̃ − 1)Ψ̃ + [1 + κ̃(γ̃ − 1)Ψ̃] · d ln(W (e))

d ln(e)

1 + κ̃[1 + (γ̃ − 1)Ψ̃]
> 0. (25)

Recall that we have established that we are looking at environments where κ̃ > 0, 0 < Ψ̃ < 1, and

γ̃ ≥ 0 which in turn implies that 1 + κ̃[1 + (γ̃ − 1)Ψ̃] > 0 and (1 + κ̃γ̃Ψ̃) > (1 + κ̃γ̃)Ψ̃ > 0.

Then for markups to be procyclical, a necessary condition required for (23) to hold is that the

percentage increase in nominal wages is smaller than that of nominal expenditures, d ln(W (e))
d ln(e)

< 1. As

we will see in Section 2.3 this is a reasonable property to have. In addition, a tighter lower bound for

Ψ̃ is needed. Isolating Ψ̃ in Condition (23) we obtain

Ψ̃ =

(
1 + ν

1− Γss

ρ

+ 1− ρ

)−1

>

d ln(W (e))
d ln(e)

1 + κ̃ · γ̃ ·
(

1− d ln(W (e))
d ln(e)

) .

The love for varieties parameter ρ must be sufficiently large relative to the search disutility parameter

ν. Because κ̃ > 0 and γ̃ > 0, higher κ̃ (e.g. less price rigidity) and higher γ̃ (lower elasticity

of substitution in the matching function) both relax the constraint for Ψ̃. This constraint becomes

tightest (Ψ̃ > d ln(W (e))
d ln(e)

) when either κ̃ → 0 (fully rigid prices) or γ̃ = 0 (Cobb-Douglas matching
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function), and disappears (Ψ̃ > 0) when κ̃ · γ̃ → +∞ (either fully flexible prices or a Leontief matching

function).

For procyclical inflation and procyclical real wage, we discuss conditions (24) and (25) jointly.

When γ̃ = 1 (an elasticity of substitution in the matching function of 0.5), the effect of directed search

in Equation (22) is exactly zero. Conditions (24) and (25) always hold regardless of {κ̃, Ψ̃} as if there

is no search like in Section 2.1.

When γ̃ < 1 (elasticity of substitution > 1/2 in matching function), Condition (25) (procyclical

real wages) always holds, but Condition (24) (procyclical inflation) imposes an upper bound

Ψ̃ <

d ln(W (e))
d ln(e)

1− γ̃
.

This upper bound is tighter when γ̃ gets smaller. It becomes tightest when γ̃ = 0 (Cobb-Douglas).

Then, Ψ̃ < d ln(W (e))
d ln(e)

becomes the condition for procyclical inflation but Ψ̃ > d ln(W (e))
d ln(e)

for procyclical

markups, which are incompatible.

When γ̃ > 1 (elasticity of substitution < 1/2 in matching function), Condition (24) (procyclical

inflation) always holds, but Condition (25) (procyclical real wages) imposes an upper bound

Ψ̃ <

d ln(W (e))
d ln(e)

κ̃ · (γ̃ − 1) ·
(

1− d ln(W (e))
d ln(e)

) .

Higher κ̃ (e.g. less price rigidity) and higher γ̃ (lower elasticity of substitution in matching function)

both make this constraint tighter. It becomes tightest when κ̃ · (γ̃ − 1)→ +∞ (fully flexible prices or

Leontief matching function), which yields an impossible condition Ψ̃ < 0.

We can combine all three conditions in one constraint

d ln(W (e))
d ln(e)

1 + κ̃γ̃
(

1− d ln(W (e))
d ln(e)

)
︸ ︷︷ ︸

procyclical markups

< Ψ̃ < min


2 · d ln(W (e))

d ln(e)

1− γ̃ + |1− γ̃|
,

2 · d ln(W (e))
d ln(e)

κ̃(γ̃ − 1 + |γ̃ − 1|) ·
(

1− d ln(W (e))
d ln(e)

)
︸ ︷︷ ︸

procyclical inflation and procyclical real wages


.

We can verify that the set of Ψ̃ ∈ (0, 1) that satisfies this constraint is not empty as long as γ̃ > 0,

i.e., desired markup is procyclical. The upper bound constraint is easier to satisfy when γ̃ gets closer

to 1 and when κ̃ is smaller (e.g. more price rigidity) given γ̃ > 1, while the lower bound constraint is
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easier to satisfy when γ̃ gets larger (more procyclical desired markup) and when κ̃ gets larger (e.g. less

price rigidity) conditional on γ̃ ≥ 0.

To summarize, all three variables can be procyclical, but do not need to be. Estimation of the

model in Section 4 will tell us what the data calls for.

2.3. Endogenous Nominal Spending and Nominal Wages

Obviously, both nominal expenditures and nominal wages are endogenous and we now provide a brief

discussion of how a monetary expansion could translate into increases in nominal expenditures and in

nominal wages in a way that the increase in nominal wages is only a fraction (and a constant fraction

at that) of the increase in nominal expenditures.

Consider a version of the static economy described where in addition to having a price P− inherited

from the past, there is also a previous nominal wage W−. In this economy a monetary injection will

immediately increase nominal expenditures, which gives d ln(E ) as the result of policy. One way of

thinking about this is to have a monetary authority aiming for a certain level of nominal GDP. What

matters at this stage, however, is not the origin of the increase in nominal expenditures but that when

it happens it triggers a partial response of nominal wages. In Section 3 we use a noisy Taylor rule, the

standard mechanism for monetary policy in New Keynesian models.

The details of the labor market are as follows. There is a set of labor varieties with elasticity of

substitution, ρw
ρw−1

each of which is represented by a union that posts nominal wages in a Calvo fashion

this is, only a fraction of wages can actually change. Each household has a continuum of members,

each one of them providing a different labor variety. Households have some disutility from the work of

its members but they provide as much labor as told by the unions.9 This makes their nominal income e

predetermined and equal to aggregate income or expenditures E , inducing a problem identical to that

in Section 2.2 (note that here we are starting to use the convention of capital letters for aggregate

variables and small ones for individual variables, except for wages and rental prices in a dynamic model).

We use the notion of an aggregate state which here includes nominal expenditures, the inherited

wages and the inherited prices S = {E ,W−,P−}. Given S , and a yet to be determined aggregate

wage index, W (S), firms choose aggregate labor ˜̀(S ,W (S), p−) and give back to the households

aggregate profits Π̃f (S ,W (S), p−) as in Section 2.2. We also have the equilibrium product markets

objects {P∗(S ,W (S), p−),Q∗(S ,W (S), p−)} exactly as we did in Section 2.2. For the purpose of

determining the wage, firms also choose quantities of each labor variety j with wage Wj given W (S),

9 We are ignoring the possibility that households may not want to work at those wages, an issue raised by Huo and
Ŕıos-Rull (2020b).
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which can be shown to be `dj (Wj , S ,W (S), p−) =
(

Wj

W (S)

)− ρw
ρw−1 ˜̀(S ,W (S), p−).

Unions For each labor variety j ∈ [0, 1], there is a labor union that sets the nominal wage Wj on

behalf of all households. Union j requires household i to supply `ij units of labor and the households

obey, yielding aggregate labor of variety j supplied `j =
∫ 1

0
`ij di . Unions that did not get to change

wages (a fraction θw ) keep the predetermined nominal wage Wj = W−, while the rest of the unions

set a new nominal wage Wj to maximize the utility of their members taking into account the labor

disutility, that we assume linear. This implies maximizing marginal utility of the nominal labor income

provided by variety j net of the disutility cost using their monopolistic power. Their implied first order

condition is

0 = − 1

ρw − 1
`j · ve +

ρw
ρw − 1

`j
Wj

=⇒ Wj =
ρw
ve

.

To simplify, we pose a logarithmic utility function that keeps the marginal indirect utility ve quite simple.

Then, we have ve(E , Φ) = 1+ν
2+ν−ρ ·

1
E

. That is to say, the optimal adjusted wage W#(S) of all labor

varieties that can change wages should satisfy W#(S) = ρw · 2+ν−ρ
1+ν

· E , which implies that the wage

aggregator is W (S) =
[
θw (W−)−

1
ρw−1 + (1− θw )W#(S)−

1
ρw−1

]−(ρw−1)

. Moreover, loglinearization

yields

∂ ln(W (S))

∂ ln(E )
= 1− θw .

In words, the response of log wages to an increase in log nominal GDP is equal to the fraction of firms

that can adjust wages, which gives large possibilities for inflation, real wages and markups to respond

positively to monetary impulses.

An issue that we have to deal with before we turn to the dynamic version is whether the structure

that we have built based on love for varieties in consumption with search frictions extends to a dynamic

environment with investment. Indeed, it does as shown in Appendix A.6 that displays an environment

where households purchase the same varieties as for consumption and aggregate them with the same

elasticity of substitution to generate an investment good. We show how in this environment households

face the same type of problem as the one in Section 2.2 with a slightly different utility function.

Obviously, the presence of habits just makes the problem identical provided we adjust the form of the

objective function U .
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3. A Dynamic Model with Search Frictions Suitable for Estimation

We now develop a dynamic environment on top of the one described in Section 2.3. It has all the bells

and whistles commonly used in medium-scale New Keynesian models for the purpose of estimation,

as described for instance in the “Calvo wage” version of Christiano et al. (2016) for the purposes of

estimation. Of particular importance is endogenous variable capital utilization, a feature that could

be confused with our endogenous productivity via a search friction. Endogenous variable capacity

utilization means that the intensity with which factors of production are used is a choice resulting in

mismeasurement of inputs, which allows for TFP to seemingly move. This is different from our product

markets frictions. In endogenous variable capital utilization models firms have to pay for the increased

capital utilization while with frictions in product markets firms get for free the increased TFP because

it is due to the increased search effort of buyers.

The features that we pose are (internal) consumption habits, convex investment adjustment costs,

variable capital utilization, nominal wages set à la Calvo, fixed costs of production, costly working

capital loans, and a noisy Taylor Rule with interest rate smoothing. We have two minor differences

from the canonical version in Christiano et al. (2016). We use Rotemberg pricing instead of Calvo

pricing for the goods markets as it makes for an easier implementation of the search friction and we

abstract from fiscal variables.

To pose all these relative standard features on top of the search frictions, we find it easier to use

recursive language. We also abstract from the stochastic trend in the layout of this section as if all

technology processes are stationary. We deal with non-stationarity at the estimation stage.

3.1. Production

There are a few items to deal with in the dynamic version of the model with respect to production

relative to the version in Section 2. Issues related to variable capital utilization and adjustment costs

are placed in the household problem where we pose the management of capital. Infinitely lived firms

just hire labor and capital services each period and produce goods via a CRS Cobb-Douglas production

function subject to fixed costs, shocks to productivity and the need to finance working capital. Their

dynamic concerns are only about the costly price adjustment. Firms choose prices given a demand that

has three components, consumption from households, investment also from households, both of which

subject to search frictions, and purchases of intermediate goods from other firms not subject to search

frictions in order to pay for price changing adjustment costs.

With this specification of the details, we can write the problem of the firm recursively with the
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arguments being the aggregate state S , yet to be determined, and the inherited price p−. Because of

the absence of a stock market we can write the dynamic programming problem of the firm excluding

fixed costs even though we have to include them when calculating dividends. We skip the steps of

deriving how demand and tightness respond to price for a firm, and have

Ω(S , p−) = max
p

{
ψf [q̃(S , p)] p −MC (S)

}
ỹ(S , p) + [p −MC (S)] χ̃(S , p)

− χ(S , p, p−) + E {M(S , S ′) Ω(S ′, p)} . (26)

Here q̃(S , p) is the equilibrium tightness associated to price p if the firm were to choose it, MC (S) is

the equilibrium marginal cost of inputs that, because of constant returns to scale, is independent of

the quantity produced. The household produces for consumption and investment ỹ(S , p) and for other

firms price changing costs, χ̃(S , p) quantities that depend on its choice of price. The firm also faces

costs of changing prices χ(S , p, p−). The term M(S , S ′) is the stochastic discount factor in nominal

terms that depends on households’ relative marginal utility of one dollar across time.

To get more analytical insights we specify the production technology as being a Cobb-Douglas

function with fixed costs ϑ:

ỹ + χ̃ = F (k s , n) = A (k s)α(zn n)1−α − ϑ,

in which A is a normalization constant, k s are rented capital services, n is the labor composite, and

zn is a neutral technology level. Marginal cost of inputs is MC (S) = 1
A

(
Rk (S)
α

)α (
RB(S)W (S)/zn(S)

1−α

)1−α

where RB(S) is the nominal gross interest associated to having to prepay wages W (S) and Rk(S) is the

rental price of capital services. The factor composition of production satisfies ks

n
= α

1−α
RB(S)W (S)/zn(S)

Rk (S)
.

To compute the dividend in each period, those fixed costs have to be taken into account which amount

ϑ · MC (S). The output lost due to the fixed cost ϑ amounts to ψf [q̃(S , p)] · ϑ. We refer to ψf as

endogenous TFP because the quantities sold are ψf F (k s , n).

The first order condition of Equation (26) after defining ω(S , p,P−) ≡ χ(S , p,P−) − [p −
MC (S)] χ̃(S , p) to make the algebra more compact and taking into account the elasticity of TFP

with respect to tightness becomes (eluding the arguments of the functions)

ωp

ỹ
=

1

ρ− 1
·
(
ρ · MC

p
− ψf

1− E

)
+ E

[
M′ ·

(
−
ω′p−

ỹ

)∣∣∣∣ S] .

which is the counterpart of Equation (19) in Section 2.2.2 when equilibrium conditions are imposed.
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3.2. Households

Households choose how much to spend in consumption and investment (the details of the search are as

above given total expenditures), plus the amount of capital services to extract from its stock of capital

(where increasing capital utilization accelerates depreciation) and how many bonds to buy. The rates

of return of these three forms of investment are not yet realized at the time when choices are made.

As stated, we pose internal habits and a constant Frisch elasticity of labor in preferences. We also

assume a GHH structure between consumption and search effort but an additively separable one with

labor supply. Formally, U
(
cA − ζ (dA)1+ν

1+ν
− ςh

)
− η `

1+ξ
t

1+ξ
, where h = cA− − ζ (dA−)1+ν

1+ν
is the stock of

habits. Parameter ς captures the degree of habit persistence, ξ is the inverse of the Frisch elasticity of

labor, ζ and η capture the slopes of the shopping and working disutilities.

Households purchase goods of various varieties and aggregate them into either a consumption good

or an investment good with the same elasticity of substitution ρ
ρ−1

. They add the investment good

to their stock of capital subject to adjustment costs that depend on the investment of the previous

period. The details of the shopping process are as before so we omit them. Because it is the union

that chooses labor, we can eliminate the labor choice from the households’ problem.

The individual state of a household is given by its habits, h, its stock of capital, k , its previous

period investment net of the maintenance done because of non unitary capital utilization, xk− and its

stock of bonds in real terms, b. Its problem is

v(S , h, xk−, k , b) = max
cA, dA, b′, k ′

u, xA, xk

U

(
cA − ζ (dA)1+ν

1 + ν
− ςh

)
+ β E

{
v(S ′, cA − ζdA, xk , k ′, b′)

}
(27)

s.t. xk = xA − δ̃(u) k , (28)

k ′ = (1− δ)k +
[
1−A

(
xk−, xk

)]
xk , (29)

[dA · ψh(q(S))]1−ρ
(
cA +

xA

zx

)
+ b′ = w(S)L(S) + r k(S) u k +

R−(S)

Π(S)
b + T (S). (30)

Here zx is an investment-specific technology shock that determines how many investment units can be

obtained from one composite unit of the good used for consumption.

Households’ objective (27) is standard, and the constraints describe the three means to save into the

future. Equation (28) shows that increasing capital utilization requires additional maintenance expen-

ditures given by δ̃(u). This particular form of maintenance does not affect the investment adjustment

22



cost.10 Function A poses the adjustment costs to changing the level of investment, so A(x , x) = 0,

and is convex in the investment growth. We write it as a function of two variables because it is easier

to write its derivatives, A1 and A2, separately. Equation (29) shows how investment increases capital

tomorrow taking into account adjustment costs. Finally, (30) is the budget constraint in real terms

that shows how the purchase of bonds yields resources the following period. The first term of the

budget constraint describes expenditures in consumption and investment (measured in consumption

units). It uses the price aggregate defined in (12) and the fact that the budget constraint is defined in

real terms so the price P is normalized to 1 to substitute prices for a function of aggregate search effort

and market tightness. Funds are also used to purchase bonds measured in real terms. The sources of

income include labor income, capital income at real rental price r k(S) with the household being able

to extract more services from its stock by pumping up capital utilization, bonds that pay the promised

interest rate plus the innovation of the interest rate policy, the government lump sum transfers that

close the gap between the realized interest rate and the one promised by firms when borrowing, and

the firms’ transfer of profits.

3.2.1. Households First Order Conditions

To characterize the solution of this problem, it helps to define marginal utility of income or expenditures

as Υ(S , s) =
[
dA(S , s) · ψh(q(S))

]ρ−1 (
UcA − βς E{U ′cA}

)
, where we use the compact notation s =

{h, xk−, k , b} to describe the individual state vector. Notice how marginal utility of expenditures

involves the disutility generated by search11 in addition to the more standard habit formation term.

Search versus Expenditures The simple static condition implied by the GHH structure between

consumption and search effort is

dA(S , s) =
ρ− 1

ζ

(
cA(S , s) + xA(S , s)

)
. (31)

Optimality Condition for Bonds This is the standard dynamic Euler equation and it tells us that

marginal utility of spending today equals expected discounted marginal utility of spending tomorrow

times the expected real return of bonds:

Υ(S , s) = β E
{
R(S , εR)

Π(S ′)
Υ(S ′, s ′)

}
. (32)

10 In Section 5 we consider two alternative types of specifications of capital utilization that differ in how to deal with
NIPA accounting and investment adjustment cost. Here we follow Christiano et al. (2016).

11 With a GHH utility function, the search disutility affects marginal utility only through the arguments of UcA(·).
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Optimality Condition for Capital Utilization Increasing the intensity of capital utilization yields

r k units of the good per unit of capital, yet it costs [dA·ψh]1−ρ

zx
δ̃u so

r k(S) =
[dA(S , s) · ψh(q(S))]1−ρ

zx
δ̃u(u(S , s)), (33)

To simplify the algebra, we define pk(S , s) ≡ [dA(S,s)·ψh(q(S))]1−ρ

zx
.

Optimality Condition for investment The type of adjustment costs used here (on the change of

investment) makes the investment first order condition a little bit contrived. It is best to proceed (as

in the literature) by using Tobin’s q or marginal cost of installing capital. Formally, it is the ratio of

the Lagrange multipliers of Equation (29) and Equation (30). In this way we make Tobin’s q, qk(S , s)

a choice variable with Euler equation

qk(S , s) = β E
{

Υ(S ′, s ′)

Υ(S , s)

[
(1− δ) qk(S ′, s) + r k(S ′) u′(S ′, s)− pk(S ′, s ′) δ̃(u(S ′, s ′))

]}
, (34)

and use it to pose the first order condition for investment which becomes

pk(S , s) = qk(S , s) · [1−A(x(S , s), x−)− x(S , s) A1(x(S , s), x−)]

− β E
{

Υ(S ′, s ′)

Υ(S , s)
· qk(S ′, s) · x(S ′, s ′) A2(x(S ′, s ′), x(S , s))

}
. (35)

Note that in the absence of investment adjustment cost, Tobin’s q is just pk(S , s).

3.3. Wage Setting by Unions with a Calvo Friction

As in the static setting there are unions in each labor variety that set the wage monopolistically. Because

the wage can only be reset with probability 1− θw the union has to take the evolution of the economy

into account. We write the value for a union of having real wage w when the aggregate state (that

includes aggregate inherited aggregate nominal wage W−) is S because the union is small relative to

the labor force. For this let’s denote by Υ(S) marginal utility of the numeraire (above we used Υ(S , s)

to denote marginal utility of a household while here we are using marginal utility of a representative

household where s equals the relevant parts of S). Because we keep track of real wages, the actual

wage needs to be deflated by gross inflation Π(S ′).
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The value for the union of labor variety j of having today real wage wj in state S , is

U(S ,wj) = Υ(S) · wj `
d
j (S ,wj)− η ·

`dj (S ,wj)
1+ξ

1 + ξ
+ θw · β E {U(S ′,wj/Π(S ′))} ,

s.t. `dj (S ,wj) =

(
wj

w(S)

)− ρw
ρw−1

L(S).

Note that the union values the household utility the way it can affect it, via the wage income it provides

taking into account the disutility of the necessary work. When given the opportunity to set the wage,

the union maximizes U(S ,Wj) with respect to the wage. It is easier to solve this problem if we separate

U into a marginal utility of real income component and a marginal disutility of working component:

H1(S) = Υ(S) · L(S) · w(S)
ρw

ρw−1 + θw · βE
[

Π(S ′)
1

ρw−1 · H1(S ′)
]

=

Υ(S) · `dj (S ,wj) · w
ρw

ρw−1

j + θw · βE
[

Π(S ′)
1

ρw−1 · H1(S ′)
]

. (36)

H2(S) = η · [L(S) · w(S)
ρw

ρw−1 ]1+ξ + θw · β E
[

Π(S ′)
ρw

ρw−1
(1+ξ) · H2(S ′)

]
=

η · [`dj (S ,wj) · w
ρw

ρw−1

j ]1+ξ + θw · β E
[

Π(S ′)
ρw

ρw−1
(1+ξ) · H2(S ′)

]
. (37)

So we obtain U(S ,wj) = w
−1

ρw−1

j H1(S)−w
−ρw
ρw−1

(1+ξ)

j H2(S), that can be easily maximized and yields the

value to which the newly updated wages are set

w#(S) =

(
ρ · H

2(S)

H1(S)

) 1
1+

ρw
ρw−1 ξ

. (38)

The update of inherited real wage aggregate w(S) depending on the newly set wages w#(S) is given

by a CES aggregator

w(S ′) =

[
θw ·

(
w(S)

Π(S ′)

) 1
1−ρw

+ (1− θw ) · w#(S ′)
1

1−ρw

]1−ρw

. (39)

These four equations fully characterize the wage setting block of our model.

3.4. Monetary Policy

Monetary policy follows a Taylor Rule that sets the nominal interest rate. As in Christiano et al. (2016)

the shock in any period happens too late to affect that period’s choices and it is implemented via

an innovation in the interest rate paid to bond holders. Such innovation εR is paid to households
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the following period via the use of lump-sum taxes or subsidies. The interest rate that includes such

innovation is what informs the new interest rate set by the central bank via a Taylor rule. Formally, we

use R(S , εR) to denote the gross Federal Funds Rate that is the realized rate paid to bondholders and

is given by

R(S , εR) = ρR · ln
(
R−(S)

Rss

)
+ (1− ρR) ·

[
φπ · ln

(
Π(S)

Πss

)
+ φy · ln

(
Y (S)

Yss

)]
+ εR , (40)

where R−(S) = R
(
S−, εR−

)
is last period’s Federal Funds rate, Rss is the steady state gross Federal

Funds rate, Πss is the steady state gross inflation and Yss is the steady-state GDP. The i.i.d. innovation

is Gaussian, εR ∼ N (0,σR), with σR capturing the size of monetary policy shocks. The rate at which

firms borrow from households is RB(S) = E{R(S , εR)|S}. It is also the expected rate at which

households lend.

The timing of the loan payments is such that firms retain the funds needed to pay the working capital

loans including interest at rate RB(S) times loan positions when transferring profits to the households.

They pay these funds at the beginning of the following period. Households receive R(S , εR) for their

loans with the difference made up by lump-sum taxes or subsidies that in this model are part of monetary

policy.

3.5. States

It is now the turn to specify the aggregate state vector S . It includes technology shocks zn and zx ,

inherited wages and prices, W− and P−, the realized interest rate of the previous period, R−, this is,

the interest rate that results from the previous period market including the innovation εR− (and hence

we can write R−(S)). Note that under this convention R−(S) = RB(S−) + εR−. The previous period

innovation to monetary policy, εR−, does not need to be included as part of the state given its i.i.d

nature. The aggregate state also includes the aggregate counterparts to the individual state vector,

this is, the stock of habits, H , last period investment to determine adjustment costs X k−, the stock of

capital, K and bonds, B . Summarizing, S = (zn, zx ,W−,P−,R−,H ,X k−,K ,B).

3.6. Equilibrium

Equilibrium is standard. Agents maximize; the search friction is resolved as described in Section 2.2.3,

capital services and bonds markets clear and the government balances its budget and follows the noisy

Taylor rule.
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3.7. National Income and Products Accounts

In this economy national accounting has a couple of differences with the standard measurements.

Aggregate consumption as measured is not CA, which is what matters for the agents, but C ≡
ψf (q) c̃ = ψf (q)1−ρ cA. The difference comes from the aggregation of varieties and the search. In

the same fashion, investment becomes I = ψf (q)1−ρ xk . It is important to note that maintenance

investment is NOT part of GDP as it is counted as an intermediate input.

To see the details it is best to consider the steady state, let’s start with a notion of potential GDP

that is what could be produced if all households used all varieties (recall that they are normalized to

one)

Potential Steady State GDP = Y P
ss = A (uss Kss)

α L1−α
ss − ϑ.

A few comments are in order. A is a units parameter. Kss and Lss are steady state observed quantities

of inputs. We are normalizing the steady state utilization rate uss to 1, so there is no outside the books

depreciation. Resources are used before getting any output (which we have referred to as fixed costs of

production), with ϑ denoting the implied amount of potential output that is not generated. The costs

of price adjustments are set to zero at the steady state inflation and this is why they do not show up

above. It is useful to normalize steady state GDP, Yss , to 1 by means of a suitable choice of A.

The relation of GDP to potential GDP is given by search and is equal to potential GDP times the

number of varieties that we have labeled as ψf
ss . We are now ready to define actual GDP not necessarily

in steady state as

Y = ψf
[
A (u K )α (znL)1−α − ϑ− price adjustment terms

]
− (ψf )1−ρ

zx
δ̃(u) K .

Note the two new terms that appears relative to the steady state. The first one represents the resources

used for price adjustments. The last term is the additional depreciation that comes from using variable

capital utilization differing from the steady state value, where zx is the relative price of investment and

δ̃(u) is a depreciation function with the property that δ̃(1) = 0.12

As is conventional in the literature we use the household relevant price index as the measure of

inflation and not the indices actually used (CPI, GDP deflator), Π ≡ P
P−

. The same goes for wages.

12 This specification of GDP implies accounting rules that allow firms to account for the additional depreciation due
to utilization as intermediate goods. In Section 5 we explore the implications of more rigid rules that imply that
expenditures used to maintain the stock of capital when utilization differs from its steady state value are counted as
investment.
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When taking the model to data, we still map them to the GDP deflator and hourly wage rate in the

data. Finally, labor productivity is just GDP divided by total hours and labor share is the ratio of labor

income (defined as hourly wages times hours in a narrow scope) to GDP.

4. Mapping the Model to Data

While we have developed theory that allows procyclical TFP and markups conditional on demand

shocks, we still have to see how it stands to macroeconomic data. Moreover, we want to know how it

compares with state of the art New Keynesian Models with a variety of features designed to fare well

when estimated. This is specially the case of capital utilization where the quantity of inputs, specifically

capital, is allowed to vary in an unobservable way to increase output in periods of high demand which

may look, as our theory does, as increased productivity. It does so by having costs increase when

utilization is increased (otherwise why not push it to the max). We proceed then to estimate a variety

of models where we compare the performance of our search friction and that of endogenous capacity

utilization. In fact, we look at economies that have both features or only one of them.

To this end, we adopt the Bayesian impulse response matching approach for estimation as in

Christiano et al. (2010) Christiano et al. (2016), which is particularly convenient for isolating the

impact of Federal Funds Rate shocks. All the models that we estimate are calibrated to target the

same steady-state composition of GDP and estimated to target the same SVAR impulse responses of

standard observable aggregate variables.

Our findings are sharp: search outperforms variable capital utilization, when modeling separately and

the best performance of the model is when both mechanisms are present. We start with explaining our

procedure of structural VAR regression in Section 4.1. Section 4.2 turns first to how to accommodate

secular growth and then specify the steady state before we proceed with the estimation in Section 4.3.

4.1. Structural VAR

Our structural VAR regression follows the procedure of Christiano et al. (2016) but with a different

emphasis. We remove the 5 labor market variables in their regression that are not our focus. We pose

labor productivity and labor share as additional targets, even though they are redundant (see below),

to increase the weight of data information towards the properties that interest us.

We first collect time series over the period 1951Q1-2008Q4 for the following 9 variables: Nominal

GDP (BEA: A191RC), Nominal Consumption ( BEA: DNDGRC + DDURRC + DSERRC), Nominal

Investment (BEA: A006RC), Nonfarm Weekly Hours (BLS: PRS85006023), Capacity Utilization (Fed

Board: G.17, CAPUTL.B00004.S), Relative Price of Investment (BEA: B006RG), Nonfarm Nominal
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Hourly Wage (BLS: PRS85006103), GDP Deflator (BEA: A191RD), Federal Funds Rate (Fed Board:

H.15 (TB3MS for early sample)). We then transform the data to achieve stationarity through linear

combinations and transformation of the the original time series obtaining

Y VAR =



∆ ln(relative price of investment)

∆ ln(real GDP/hours)

∆ ln(GDP deflator)

ln(capacity utilization)

ln(hours)

ln(real GDP/hours)− ln(real wage)

ln(nominal C/nominal GDP)

ln(nominal I/nominal GDP)

Federal Funds Rate


.

Denote by Ŷ VAR
t the period t values of stationary vector Y VAR after removing quadratic trends. We then

run a reduced-form VAR regression with two lags Ŷ VAR
t = A1Ŷ

VAR
t−1 +A2Ŷ

VAR
t−2 + eVARt . As in Christiano

et al. (2010, 2016), the three structural shocks are defined as linear combinations of all elements in

eVARt , among which the Federal Funds rate shock induces no contemporaneous movements in the first

8 elements of Ŷ VAR
t (short-run restriction). The neutral technology shock and the investment-specific

technology shock induce nonzero accumulation of the second element in Ŷ VAR
t in the long run (long-run

restriction), and the investment-specific technology shock induces nonzero accumulation of the first

element in Ŷ VAR
t in the long run (long-run restriction). For convenience, we denote IRFVAR

h (j) as the

h period ahead impulse response of the jth element in Ŷ VAR
t . We then pose the following impulse

responses as the target for the estimation.

Note that the bottom two targets (labor productivity and labor share) are redundant in the sense

that the information embodied in those series is already used in the previous 9 series. Its use empha-

sizes the two particular linear combinations of the other targets that we are interested in. We look at

labor productivity because our theory of frictional goods markets provides a rationale for its endoge-

nous movements. The reason to add labor share is the fact that it is closely related to markups13

and its behavior presents a serious challenge to New Keynesian and neoclassic business cycle models.

In Section 5 we also look at the set of variables that are conventionally used as well as various other

specifications.

13 Loecker et al. (2020) and Nekarda and Ramey (2020) measure markups based on inverse factor shares which is
consistent with variations in TFP. Measures based on the price difference between finished goods and processed goods
as in Kaplan and Zoch (2020) do not provide a direct link between labor share and markups.
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Table 1: Constructing Estimation Targets from Stationary Variables

Targets Sources from IRFVAR
h

Real GDP
∑h

τ=0 IRF
VAR
τ (2) + IRFVAR

h (5)

Real consumption
∑h

τ=0 IRF
VAR
τ (2) + IRFVAR

h (5) + IRFVAR
h (7)

Real investment
∑h

τ=0 IRF
VAR
τ (2) + IRFVAR

h (5) + IRFVAR
h (8)−

∑h
τ=0 IRF

VAR
τ (1)

Hours IRFVAR(5)
Capacity utilization IRFVAR(4)

Relative price of investment
∑h

τ=0 IRF
VAR
τ (1)

Real wage
∑h

τ=0 IRF
VAR
τ (2)− IRFVAR

h (6)
Inflation IRFVAR

h (3)
Federal Funds Rate IRFVAR

h (9)

Labor productivity
∑h

τ=0 IRF
VAR
τ (2)

Labor share −IRFVAR
h (6)

4.2. Calibration

4.2.1. Functional Forms

In Sections 3.3 and 3.4 we have already posed the functional form for the working disutility, for the

aggregators of varieties, for the production function and for the Taylor Rule.

Preferences We use log over a GHH structure of consumption and search effort with an internal

habit, and an additively separable working disutility with constant Frisch elasticity 1/ξ:

U(cA, dA, h) = ln

(
cA − ζ (dA)1+ν

1 + ν
− ςh

)
− η `

1+ξ

1 + ξ
, with h′ = cA − ζ (dA)1+ν

1 + ν
,

with cA being the aggregate over varieties and dA is an aggregate of search effort in all available

markets. They are defined in (6) and (7).

Variable Capital Utilization The following function tells us how capital utilization affects the de-

preciation of existing capital in addition to that coming from a constant rate δ.

δ̃(u) ≡ σaσb/2 · (u − 1)2 + σb · (u − 1).

Note that δ̃(1) = 0, that σb = δ̃u(1) which captures the marginal cost of utilization in steady state

and that σa = 1 · δ̃uu(1)/δ̃u(1) captures the elasticity of the marginal utilization cost in steady state

with respect to capital utilization rate u. Note also that variable capital utilization is not capacity
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utilization. Consistent with the definition of capacity provided by the Board of Governors of the Federal

Reserve System, “the highest level of output a plant can sustain within the confines of its resources”, we

define capacity utilization in the model as util ≡ ψf ·(uα·AKαL1−α−ϑ)
AKαL1−α−ϑ . Under log-linearization, d ln(util) =

d ln(ψf ) + (1 + ϑψf
ss)α · d ln(u).

Capital Accumulation Investment goods are an aggregate of varieties purchased by the household

and allocated for investment purposes:

xA =

(∫
Φ

d(p, q) ψh(q)x(p, q)
1
ρdp dq

)ρ
,

All varieties are used for both consumption and investment. The same search effort applies to both

consumption and investment.

Matching Function We pose a CRS–CES matching function. It can be specified directly in terms

of varieties and locations or simply in terms of market tightness

M(J ,D) = M(q) = B · [(1− ϕ)J−γ + ϕD−γ]−
1
γ = B · [(1− ϕ) + ϕq−γ]−

1
γ ,

for some parameters {B ,ϕ, γ}.

Technological Progress While we have described the model as if it were stationary to avoid cum-

bersome notation, there is both secular technological progress and shocks. Following Christiano

et al. (2016) we pose stochastic processes for a labor neutral technology level denoted zn, and for

the investment-specific technology level denoted zx . Their gross growth rates µn ≡ zn/zn− and

µn = zx/zx− are assumed stationary and are described by processes

ln(µn)− ln(µn
ss) = σn · εn,

ln(µx)− ln(µx
ss) = ρx · [ln(µx−)− ln(µx

ss)] + σx · εx .

Both innovations εn and εx are i.i.d. normalized Gaussian.

Adjustment Costs to Investment Christiano et al. (2016) pose

A
(

xk

xk−

)
≡ 1/2 ·

{
exp

[√
Ã
(

xk

xk−
− µk

ss

)]
+ exp

[
−
√
Ã
(

xk

xk−
− µk

ss

)]}
− 1,
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for some parameter Ã. Note that the first and second derivatives of this function are

A1

(
xk

xk−

)
= 1/2 ·

√
Ã
{

exp

[√
Ã
(

xk

xk−
− µk

ss

)]
− exp

[
−
√
Ã
(

xk

xk−
− µk

ss

)]}
,

A2

(
xk

xk−

)
= 1/2 · Ã

{
exp

[√
Ã
(

xk

xk−
− µk

ss

)]
+ exp

[
−
√
Ã
(

xk

xk−
− µk

ss

)]}
.

In steady-state, xk

xk−
= (µx

ss)
1

1−αµy
ss , so we have A1

(
(µx

ss)
1

1−αµy
ss

)
= 0 and A2

(
(µx

ss)
1

1−αµy
ss

)
= Ã.

Because of log-linearization, Ã is the only parameter to be estimated.

Adjustment Costs of Goods Prices The cost of changing the nominal price of a good is

χ(S , p, p−) =
κ

2
·
(

p

p−
− Πss

)2

· P(S) · ψf (Q(S)) · ỹ(S ,P(S)).

where ỹ(S ,P(S)) is the quantity sold for consumption and investment purposes (not as intermediate

goods for price changing adjustment costs), and P(S) ·ψf [Q(S)] · ỹ [S ,P(S)] is a nominal expenditure

term as in Section 2. A one percent of quarterly inflation above its steady state value implies that the

costs of price adjusting is κ/20000 times GDP.

Of the parameters listed above, ν (curvature of search effort in the utility function) and ϕ (curvature

of search effort in the matching function) cannot be separately identified since what matters is the

marginal disutility in terms of additional varieties found. We pose ν = 0 and make ϕ embody the

curvature.

4.2.2. Steady State Calibration Targets

There are a total of 28 parameters to be specified. We proceed by setting 13 targets that the model

has to satisfy exactly and we estimate by Bayesian methods the rest. Specifically, for any 15 parameters

set by the estimation routines we solve a system of 13 equations and 13 unknown parameters that we

require the model to satisfy. We choose the 13 parameters to be those that are traditionally linked to

the calibration targets themselves. Some of those parameters are uniquely determined by the calibration

target (e.g. the discount rate β and the steady state interest rate), but many others depend not only

on the calibration targets but also on the 15 estimated parameters (e.g. the fixed cost ϑ). Table 2

reports the values of the calibration targets along with the parameter values typically associated to

them (although as we have said such association may not always be meaningful).
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Table 2: List and Values of Quarterly Calibrated Parameters in Benchmark Economy

Parameter Symbol Value Moment Value

Depreciation Mean of Utilization σb 0.037 St–St Utilization Rate 1.0
Units in Production Function A 1.17 St–St Output 1.0
Weight of labor in utility η 0.69 Average Labor 1.0
Weight of Search in utility ζ 0.55 St–St Search 1.0
Mean Growth of Neutral Technology Factor µn

ss 1.004 Per Capita Output Growth 1.7%
Mean Growth of Relative Price of Investment µx

ss 1.003 Per Capita Capital Growth 2.9%
Discount Rate β 0.997 Interest Rate 3.0%
St St Depreciation Rate δ 0.027 Depreciation Share 17.3%
Fixed Costs of Production ϑ 0.042 Investment Share 21.9%
Coefficient of Capital in Production Function α 0.264 Labor Share 66.7%
Mean Efficiency of Matching Function B 0.78 Occupancy Rate 78.0%
Elasticity of Substitution for Labor ρw 1.20 Wage Markup 20.0%
Probability of not Changing the Wage θw 0.75 Duration Wages (years) 1.0

Normalization of Units: 4 We choose to measure some variables in units that yield steady state

values of one. These are output, labor, units of search and capital utilization rate.

Secular Growth: 2 Annual average growth rates of real GDP and real investment per capita are

1.7% and 2.9%. To implement the balanced growth path note that the growth of investment (or

capital) is the sum of the two rates of technological growth: 2.9% = ln(µy
ss) + ln(µx

ss) , while the

growth rate of output depends on the rates of technological improvement via the production function,

1.7% = α
1−α ln(µx

ss) + ln(µn
ss).

Interest Rate and Output Shares: 4 We set the real interest rate to 3%. We target the share

of output that goes to depreciation (the share of the difference between gross and net output), the

investment share of output and the labor share of GDP. We target values of 17.3%, 21.9%, and

66.7%, respectively. We have adjusted the sample means of 1951-Q1 to 2008-Q4 of depreciation and

investment by a factor of 1.25 to accommodate the fact that we abstract from public expenditures.14

Average Occupancy Rate (Search Related Target): 1 We target a steady-state matching prob-

ability or average capacity of 78% based on an average notion of occupancy.15

Labor Market Targets: 2 We choose a gross wage markup of 20% and average wage changes of

one year (see Christiano et al. (2016) for a discussion).

14 In this partition we have treated durable goods as consumption to stay consistent with NIPA.
15 See Bai et al. (2019) for a discussion.
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Average Markup While we have targeted either observables (shares of output for instance) or fea-

tures that we consider to be relatively uncontroversial (job market frictions), there are other steady

state properties that are unobservable and that are jointly determined by the parameters that we esti-

mate and the steady state targets that we impose. The most important among this is the steady state

markup, which is determined by how the steady state parameters adapt to the other estimates. We

will pay a strong attention to this variable. In our benchmark estimation, its value is 14%.

4.3. Estimation

There are 15 more parameters to be specified and we obtain their values by estimation, matching the

impulse responses of the various time series to the three shocks that we have posed. The crucial feature

of these shocks is that conditional on the model they can be observed and therefore we can construct

their impulse responses in the model and compare them to their counterpart in the data.16

We estimate 11 parameters directly and 4 indirectly, this is, by using other regressors and computing

afterwards the implied value of these four parameters. The 11 directly estimated parameters are standard

and not directly related to the search friction, so we choose the same prior distributions as Christiano

et al. (2016). The other four parameters are the effort share and the elasticity of substitution, {ϕ, γ},
of the matching function, the love for variety, ρ and the price adjustment cost, κ. It turns out that

these four parameters jointly determine the 4 equilibrium elasticities related to search frictions, so we

choose to estimate these elasticities directly and then we recover these 4 deep parameters using the

elasticities. We find it easier to think of priors over those elasticities than over deep parameters due

to the lack of prior evidence for these 4 deep parameters. Moreover, three of the elasticities that we

estimate directly are the grouped parameters discussed in Section 2, while one is related to the fixed

cost of production but also affected by our search friction.

We estimate the elasticity of the matching probability of the firm locations or TFP with respect to

aggregate real spending, Ψ̃, which is perhaps the key item in this paper. It depends on both the effort

share parameters and the love for variety, ϕ and ρ. The first is a “new” parameter and the second,

while standard, cannot be separately identified in our model from the curvature of search in the utility

function, and also cannot be directly chosen to target the steady-state markup due to the “directed”

nature of search. Therefore, we choose to estimate Ψ̃ directly instead. In the models with no search,

Ψ̃ = 0. In the models with search, we pose priors for Ψ̃ with a uniform distribution between 0.0 and

0.5 making them identical, uninformative, and never binding.

16 See Christiano et al. (2016) for additional details as what we estimate is essentially the “Calvo wage” model in
Christiano et al. (2016) with slight differences in the steady-state calibration and in the facts that we use Rotemberg
pricing, have no government purchases and have added the impulse response of labor productivity and labor share.
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We also estimate directly the elasticity of the desired gross markup with respect to endogenous TFP,

γ̃. It turns out that with a CES matching function, γ̃ equals γ, with 1/(1 + γ) being the elasticity of

substitution. Therefore, in this special case, γ is essentially estimated directly. Like for Ψ̃, we impose a

uniform prior distribution, this time between 0.0 and 2.0 for all models in which the endogenous desired

markup is active.

The third elasticity that we estimate, κ̃, is that of the inflation gap with respect to the real marginal

cost of production, holding the effects of search constant. Recall that this is also the slope of the New

Keynesian Phillips Curve. This elasticity or grouped parameter depends on three of the deep parameters

{ϕ, ρ,κ}. We impose a uniform prior distribution for κ̃ such that its 95% credible set coincides with

the corresponding one induced by the prior of the Calvo pricing parameter in Christiano et al. (2016).

The fourth grouped parameter that we estimate is the steady state gross markup, Γ̃ = ρ(1 − ϕ).

We impose a uniform distribution that is dispersed enough but still ensures that the lower bound implies

non-negative fixed cost of production and the upper bound is consistent with the highest implied fixed

cost of production from the point estimates among all estimated models in Christiano et al. (2016).

We think of this parameter as an elasticity because it determines the returns to scale of the production

function via its role in determining the calibrated parameter ϑ.17

We estimate four models for this specification of NIPA in the model and for the 3 sets of impulse

responses over 11 variables. The “Benchmark” or “u and Search” economy is the one that we have

described where both search via a CES matching function and capital utilization coexist. We then

estimate a model with only search frictions and no variable capacity utilization (“Search Alone”). We

also estimate two models without search frictions. One with the prior distribution of the steady state

gross markup that allows all point estimates in Christiano et al. (2016) as we described above (“Standard

u Alone”). Because this specification without search yields an implied fixed cost of production of 39%

of GDP that we deem to be too large, we also add a capacity utilization alone economy estimated with

a tighter prior (uniform on [1.1,1.25]) (”Tighter Prior u Alone”).18

The estimation results are summarized in Table 3 and the plots of the impulse responses to the three

17 Recall that hours and GDP are normalized to 1 while the occupancy rate is set to be 78%, making GDP satisfy
1 = .78(AKα − ϑ), or AKα = 1

.78 + ϑ. The markup is marginal revenue divided by marginal cost, which because of

constant returns to scale after the fixed cost of production satisfies wL+ rkK = 0.78 A Kα

Γ̃
. The coefficient of labor in

the production function equals the ratio of labor costs to total costs, 1 − α = wL
wL+rkK

. Using the definition of labor

share and its target value of 2/3 we get 3
2 (1− α) = 1

wL+rkK
= Γ̃

1+.78 ϑ , which can be readily solved for ϑ.
18 We choose this threshold because is almost equal to that estimated for the steady state gross markup in the ”Calvo

wage model” of Christiano et al. (2016). We have also used the values estimated by Abraham et al. (2021). The
relevant results for this alternative are a Log marginal likelihood of -97.3, a Frisch elasticity of 10.0 and a standard
deviation of the neutral technology shocks of 0.33.
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Table 3: Benchmark Estimation Targeting 11 observable series with Three Shocks

Benchmark Standard Tighter Prior
u and Search Search Alone u Alone u Alone***

Prior Distribution. Posterior Distribution*

D,Mode,[2.5-97.5%] Mode,[2.5-97.5%]

Elast. of TFP wrt real spending, Ψ̃ U ,0.25,[0.01-0.49] 0.39,[0.34-0.42] 0.42,[0.40-0.47] - -
Elast. of desired markup wrt TFP, γ̃ U ,1.00,[0.05-1.95] 0.79,[0.70-0.88] 0.27,[0.21-0.40] - -

Steady state gross markup, Γ̃ U ,1.32,[1.12-1.52] 1.14,[1.11-1.19] 1.25,[1.20-1.28] 1.53,[1.52-1.53] 1.25,[1.24-1.25]

Slope of NK Phillips Curve κ̃, U ,0.15,[0.03-0.27] 0.15,[0.09-0.21] 0.08,[0.06-0.11] 0.17,[0.08-0.21] 0.10,[0.05-0.15]

Implied search share in match func., ϕ 0.31 0.31 0.00 0.00
Implied preference for varieties, ρ 1.65 1.83 1.54 1.25
Implied price adjustment cost, κ/200** 0.08 0.11 0.06 0.20
Implied fixed cost of production, Bϑ 0.03 0.14 0.39 0.13

Implied weight of search in utility, ζ 0.55 0.67 - -
Implied weight of labor in utility, η 0.69 0.73 0.40 0.27
Implied units in production function, A 1.17 1.29 1.23 1.00

Capital utilization cost, σa G,0.32,[0.09-1.23] 0.36,[0.17-0.65] - 0.10,[0.08-0.21] 0.32,[0.20-0.42]

Internal consumption habit, ς B,0.50,[0.21-0.79] 0.82,[0.71-0.87] 0.22,[0.08-0.42] 0.79,[0.73-0.84] 0.77,[0.72-0.81]

Inverse Frisch elasticity, ξ G,0.94,[0.57-1.55] 0.64,[0.43-0.75] 0.99,[0.79-1.07] 0.11,[0.08-0.21] 0.11,[0.06-0.14]

Investment adj. cost, Ã G,7.50,[4.57-12.4] 8.64,[7.19-12.0] 5.63,[4.54-6.53] 6.64,[5.57-8.72] 5.21,[4.07-6.90]

Taylor rule: inflation, φπ G,1.69,[1.42-2.00] 2.21,[1.90-2.47] 2.80,[2.50-3.07] 2.09,[1.82-2.34] 1.97,[1.67-2.18]

Taylor rule: GDP, φy G,0.08,[0.03-0.22] 0.03,[0.02-0.04] 0.07,[0.06-0.07] 0.14,[0.11-0.20] 0.28,[0.18-0.36]

Taylor rule: smoothing, ρR B,0.76,[0.37-0.94] 0.76,[0.74-0.81] 0.67,[0.61-0.72] 0.86,[0.83-0.88] 0.86,[0.83-0.89]

Std. monetary policy, 400σR G,0.65,[0.56-0.75] 0.71,[0.60-0.75] 0.70,[0.64-0.79] 0.68,[0.61-0.75] 0.66,[0.60-0.74]

Std. neutral tech., 100σn G,0.08,[0.03-0.22] 0.22,[0.20-0.27] 0.19,[0.15-0.24] 0.32,[0.29-0.35] 0.35,[0.32-0.39]

Std. investment tech., 100σx G,0.08,[0.03-0.22] 0.12,[0.08-0.15] 0.06,[0.05-0.07] 0.14,[0.12-0.18] 0.15,[0.13-0.19]

AR(1) investment tech, ρx B,0.75,[0.53-0.92] 0.74,[0.66-0.84] 0.93,[0.91-0.95] 0.74,[0.65-0.78] 0.71,[0.63-0.77]

Log marginal likelihood - 167.1 117.1 3.8 -162.6
corr(markup, logGDP |εR) - 0.96 0.76 0.06 -0.01

* The posterior distribution is estimated using totally 1,000,000 draws for 10 MCMC chains with the first 50%
of each chain burned.

** The cost is evaluated when annualized inflation is 4% away from the steady-state inflation rate. The unit is
% of steady state GDP.

*** The prior for the steady state gross markup Γ̃ instead of being a Uniform distribution over [1.11− 1.53] is now a
Uniform distribution over [1.11− 1.25].
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fundamental shocks are in Figures 1 to 3. The Table reports the priors and posteriors, the estimates,

the implied estimates for the deep parameters and for those calibrated parameters that change in order

to get the steady state targets, a measure of goodness of fit (the log marginal likelihood) and the

correlation between the markup and GDP conditional on the shocks being monetary to highlight that

we eliminate the difficulties that the recent work of Nekarda and Ramey (2020) has pointed to. Let’s

first comment on the rankings of fit. The model that does best is by far the one that has both search

and variable capital utilization, better than the one with only search and far better than the one with

search alone, especially if we reduce the fixed costs of production to a reasonable level (from 39% to

13% of GDP). Of All the priors with uniform distribution, the only one that binds in the estimation

is the steady state gross markup that goes to an already very high upper bound in the “u Alone”

economy. To see how much the model relies on the fixed cost of production to fit the data we also we

re-estimate it with a tighter prior.
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Figure 1: Response to 1 ST.DEV of Federal Funds Rate Shocks (Benchmark)

The actual estimates of our benchmark economy strongly support our search friction. Recall that

our benchmark model that has both variable capital utilization and search nests the standard model

with only variable capital utilization but no search as a special case. The grouped parameter Ψ̃, which

is the elasticity of TFP with respect to real spending, controls whether the search friction is turned on
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Figure 2: Response to 1 ST.DEV of Neutral Technology Shocks (Benchmark)

(Ψ̃ > 0) or off (Ψ̃ = 0). The grouped parameter γ̃ controls whether the variable desired markup is

turned on (γ̃ > 0) or off (γ̃ = 0) conditional on Ψ̃ > 0. Our estimation results are strongly in favor

of Ψ̃ > 0 and γ̃ > 0, in the sense that even though the priors of {Ψ̃, γ̃} are uniform distributions with

Ψ̃ = γ̃ = 0 in their supports, the posterior distributions are far away from zero. The point estimates

Ψ̃ = 0.39 and γ̃ = 0.79 show that the two elasticities of the search friction are sizable economically,

and hence we should expect the benchmark model with search to perform very differently from the

standard model.

The true value of our theoretical extension shows up when we compare our benchmark model with

the standard one that has only variable capital utilization but no search. First, our benchmark model is

far superior in terms of model fit, with a log Bayes factor (difference of log marginal likelihoods) of more

than 160 (Kass and Raftery (1995)). Second, our benchmark model has more reasonable19 estimated

parameters and associated implied moments. These include a much lower steady state markup (14% vs

53%), a much smaller Frisch elasticity of labor supply (1.6 vs 9.1), a much smaller reliance on neutral

technology shocks (0.22 vs 0.32), and a much stronger procyclicality of markups conditional on Federal

Funds Rate shocks (0.96 vs 0.06). Third, our benchmark model can fully match the procyclical labor

19 Or at least more frequently seen in the literature.
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Figure 3: Response to 1 ST.DEV of Investment-Specific Technology Shocks (Benchmark)

productivity and countercyclical labor share conditional on Federal Funds Rate shocks (Figure 1), while

the model with only variable capital utilization fails to do so. The advantage of our benchmark model

becomes even larger when we impose a tighter prior on the steady state markup. These results suggest

that our search friction can be a very useful modeling device for medium-scale DSGE models.

When comparing the model with only search friction but no variable capital utilization with the

standard one, all the advantages of benchmark remain. The log Bayes factor (110) is still large.

The steady state markups (0.25 vs 0.53), Frisch elasticity of labor supply (1.0 vs 9.1), and size of

neutral technology shocks (0.19 vs 0.32) are all still much smaller. The markups (0.76 vs 0.06) are

still more procyclical. The labor productivity and labor share can still match data very well. We

can therefore conclude that our search friction is a more useful modeling device for medium-scale

New Keynesian models than variable capital utilization. Further, because the size of the Bayes factor

between the benchmark and the variable capital utilization economies is much larger than that between

the benchmark and the search only economies, search frictions play a more central role in the benchmark

economy than variable capital utilization.

We can find where the model performance is improved from Figures 1 to 3. For the Federal Funds
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Rate and the neutral technology shocks, the two economies with search outperform the two without

it in almost every aspect, especially in replicating the impulse response of labor productivity and labor

share. For investment-specific technology shocks, the advantages are less clear.

Overall, we find that our search model does a much better job than the standard model, especially

when we use a tighter prior over the steady state markup and hence the size of the fixed costs. The

standard model wants huge increasing returns to scale so that higher productivity can be created along

with a reduction in labor share. We obtain these features naturally via the increased search effort.

5. Robustness

We now turn to look at alternative circumstances to ensure that our findings are not a fluke.

5.1. Targeted Impulse Responses

The first thing to check is that our explicit targeting of labor productivity and labor share does not

bias our findings. So we drop the impulse response functions of these variables and we reestimate the

parameters.

Table 4: Robustness Estimation Targeting 9 Observable Series with Three Shocks

Benchmark Standard Tighter Prior
u and Search Search Alone u Alone u Alone

Prior Distribution Posterior Distribution
D,Mode,[2.5-97.5%] Mode,[2.5-97.5%]

Elast. of TFP wrt real spending, Ψ̃ U ,0.25,[0.01-0.49] 0.42,[0.31-0.44] 0.49,[0.32-0.49] - -
Elast. of desired markup wrt TFP, γ̃ U ,1.00,[0.05-1.95] 0.72,[0.40-0.84] 0.42,[0.05-0.54] - -

Steady state gross markup, Γ̃ U ,1.32,[1.12-1.52] 1.12,[1.11-1.24] 1.12,[1.12-1.33] 1.53,[1.52-1.53] 1.25,[1.24-1.25]

Slope of NK Phillips Curve κ̃, U ,0.15,[0.03-0.27] 0.08,[0.03-0.20] 0.03,[0.03-0.21] 0.09,[0.05-0.14] 0.07,[0.05-0.13]

Implied search share in match func., ϕ 0.33 0.36 0.00 0.00
Implied preference for varieties, ρ 1.67 1.75 1.54 1.25
Implied price adjustment cost, κ/200** 0.14 0.34 0.10 0.27
Implied fixed cost of production, Bϑ 0.02 0.01 0.39 0.13

Capital utilization cost, σa G,0.32,[0.09-1.23] 1.13,[0.59-1.74] 0.30,[0.17-0.41] 0.34,[0.24-0.42]

Internal consumption habit, ς B,0.50,[0.21-0.79] 0.82,[0.74-0.89] 0.77,[0.19-0.87] 0.79,[0.73-0.83] 0.75,[0.70-0.79]

Inverse Frisch elasticity, ξ G,0.94,[0.57-1.55] 0.32,[0.24-0.43] 0.23,[0.19-0.49] 0.23,[0.17-0.27] 0.09,[0.05-0.12]

Investment adj. cost, Ã G,7.50,[4.57-12.4] 10.6,[8.81-14.3] 10.4,[9.94-15.8] 10.5,[7.93-12.9] 8.59,[6.06-10.1]

Log marginal likelihood - 108.3 103.8 30.9 -59.6
corr(markup, logGDP |εR) - 0.95 0.90 -0.05 -0.31
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Table 4 shows the estimates of the main parameters. It indicates that none of the previously

highlighted good properties of the search friction is qualitatively different. The two models with search

still perform much better than the two without it in therms of the log marginal likelihood even if the

differences across economies shrink somewhat. The estimated size of the fixed costs of production is

much lower than in the no search economies. There are no large differences in the rest of the parameter

estimates: the implied price adjustment costs and investment adjustment costs are uniformly a bit larger

in all economies; the Frisch elasticity is larger than before in the search economies. Therefore, we can

safely conclude that our search friction improves a lot the fit of the model either alone or in tandem

with variable capital utilization that now plays a much more diminished role even if the focus of study

is not labor productivity or labor share.

5.2. Alternative Measures of the Cost of Capital Utilization

Following Christiano et al. (2010), Christiano et al. (2016) and Beraja et al. (2019) we have treated

capital utilization costs as intermediate goods (e.g. replacing a tire for a truck) and hence those costs

are neither in investment nor in GDP. This is not the only way to think of these costs. They can be

explicitly treated as investment in NIPA and they can or cannot affect the investment adjustment costs.

Capital Utilization Costs are Part of Investment and Do Not Affect Adjustment Costs We

can think of this as replacing machines and increasing (or decreasing) the production of machines is

subject to adjustment costs (a truck breaks up and a new truck is purchased, with seamless incorporation

into the company).20

The estimates are in the top panel of Table 5. We have used the same 11 variables that in Table 3.

Again the search economies do much better even though the differences in terms of the log marginal

likelihood are smaller. The estimates are similar with some subtle differences. The elasticities of TFP

with respect to expenditures, Ψ̃, and of the desired markup with respect to TFP, γ̃, are now smaller

than before in the Benchmark economy (both variable capital utilization and search) while in the search

alone this is not the case, in fact the second elasticity is larger. The capital utilization costs are now

smaller for the no search economies, the Frisch elasticities are larger except for the large fixed costs

variable capital utilization, and the investment adjustment costs are uniformly larger. This last feature

is to be expected.

Capital Utilization Costs are Part of Investment and Do Affect Adjustment Costs We can

think of this as replacing machines but convex adjustment costs occur when the number of machines

20 Smets and Wouters (2007) and Christiano et al. (2014) have included them in GDP but not as part of investment or
consumption. This is close to our treatment, but inconsistent with NIPA.
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used differ across periods (a truck breaks up and a new truck is purchased, there are large adjustment

costs to change the number of trucks produced year to year).21 The estimates are in the bottom panel

of Table 5. Some differences arise with respect to the results in Table 3: in the Benchmark economy

the elasticity of the desired markup with respect to TFP is now smaller and the capital utilization cost

is mostly smaller (as more resources affect adjustment costs the actual costs per unit are naturally

smaller). But overall, again the search economies perform much better than the no search economies

and the estimates are close to those with the Benchmark accounting method.

6. Understanding the Mechanisms

We ask three further question to shed light on how our model works. First, why is the increase of labor

productivity during demand-induced expansions in search models more powerful than in costly variable

capital utilization models? (Section 6.1). Second, how is labor productivity related to labor share,

profit share, and markups? (Section 6.2). Third, are variable desired markups necessary to obtain

countercyclical labor shares? (Section 6.3).

6.1. Labor Productivity in Search and Capital Utilization Models

To compare search and variable capital utilization models, we look at a block of static equilibrium

conditions that take as given the capital stock K and the real wage w . This makes clear the power of

the search friction in affecting labor productivity. We perform our analysis treating the utilization cost

as a part of the investment that does not induce investment adjustment costs so as to maximize the

power of variable capital utilization in accounting for the data (see Section 5.2).

Using I to denote the number of varieties sold, which is equal to ψf (Q), real expenditures by

households Y satisfy

Y = I [A (u K )α L1−α − ϑ].

Taking capital K as fixed, output Y can be increased by either a higher matching probability I, more

intensive capital utilization u, or more employment L. Labor productivity, `p ≡ Y/L, can be higher if

L increases less than Y due to either I or u.

To understand how much I and u move endogenously when firms supply output Y , we start noting

that under GHH preferences, I = ψf (Q) = ψf
(

ρ
ζ−1
· Iρ−1 Y

)
, which determines the endogenous

movement of I in response to any movement in Y . Given that change in I, the pair of {u, L} that

21 This approach is common in models without a monetary policy shock (Fernández-Villaverde et al., 2015; Basu and
Bundick, 2017).
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Table 5: Additional Depreciation is Part of Investment

Treating Utilization Cost as Investment without Adjustment Cost

Benchmark Standard Tighter Prior
u and Search Search Alone u Alone u Alone

Prior Distribution Posterior Distribution
D,Mode,[2.5-97.5%] Mode,[2.5-97.5%]

Elast. of TFP wrt real spending, Ψ̃ U ,0.25,[0.01-0.49] 0.34,[0.24-0.38] 0.42,[0.39-0.45] - -
Elast. of desired markup wrt TFP, γ̃ U ,1.00,[0.05-1.95] 0.63,[0.46-0.81] 0.32,[0.18-0.39] - -

Steady state gross markup, Γ̃ U ,1.32,[1.12-1.52] 1.20,[1.12-1.31] 1.22,[1.19-1.30] 1.53,[1.51-1.53] 1.25,[1.24-1.25]

Slope of NK Phillips Curve κ̃, U ,0.15,[0.03-0.27] 0.13,[0.09-0.22] 0.08,[0.05-0.13] 0.10,[0.05-0.15] 0.05,[0.04-0.10]

Implied search share in match func., ϕ 0.28 0.32 0.00 0.00
Implied preference for varieties, ρ 1.66 1.78 1.54 1.25
Implied price adjustment cost, κ/200** 0.08 0.12 0.09 0.39
Implied fixed cost of production, Bϑ 0.09 0.10 0.39 0.13

Capital utilization cost, σa G,0.32,[0.09-1.23] 0.33,[0.05-0.51] 0.02,[0.00-0.05] 0.01,[0.00-0.02]

Internal consumption habit, ς B,0.50,[0.21-0.79] 0.76,[0.65-0.84] 0.54,[0.07-0.67] 0.76,[0.70-0.79] 0.74,[0.71-0.78]

Inverse Frisch elasticity, ξ G,0.94,[0.57-1.55] 0.87,[0.54-1.01] 0.55,[0.39-1.10] 1.00,[0.76-1.03] 1.08,[0.88-1.26]

Investment adj. cost, Ã G,7.50,[4.57-12.4] 11.5,[9.93-17.1] 9.86,[4.35-9.95] 13.7,[10.8-17.8] 13.8,[10.5-18.7]

Log marginal likelihood - 178.2 133.7 121.6 75.6
corr(markup, logGDP |εR) - 0.92 0.72 0.12 0.09

Additional Depreciation Contributes to Investment Adjustment Costs

Benchmark Standard Tighter Prior
u and Search Search Alone u Alone u Alone

Prior Distribution Posterior Distribution
D,Mode,[2.5-97.5%] Mode,[2.5-97.5%]

Elast. of TFP wrt real spending, Ψ̃ U ,0.25,[0.01-0.49] 0.39,[0.32-0.43] 0.44,[0.40-0.46] - -
Elast. of desired markup wrt TFP, γ̃ U ,1.00,[0.05-1.95] 0.34,[0.08-0.48] 0.27,[0.20-0.34] - -

Steady state gross markup, Γ̃ U ,1.32,[1.12-1.52] 1.19,[1.14-1.28] 1.25,[1.22-1.28] 1.53,[1.51-1.53] 1.25,[1.24-1.25]

Slope of NK Phillips Curve κ̃, U ,0.15,[0.03-0.27] 0.11,[0.03-0.24] 0.07,[0.06-0.09] 0.05,[0.03-0.10] 0.05,[0.03-0.07]

Implied search share in match func., ϕ 0.30 0.32 0.00 0.00
Implied preference for varieties, ρ 1.71 1.83 1.54 1.25
Implied price adjustment cost, κ/200** 0.09 0.13 0.17 0.42
Implied fixed cost of production, Bϑ 0.08 0.13 0.39 0.13

Capital utilization cost, σa G,0.32,[0.09-1.23] 2.97,[1.93-4.25] 0.03,[0.01-0.10] 0.02,[0.00-0.04]

Internal consumption habit, ς B,0.50,[0.21-0.79] 0.78,[0.64-0.86] 0.21,[0.09-0.46] 0.61,[0.54-0.71] 0.67,[0.57-0.70]

Inverse Frisch elasticity, ξ G,0.94,[0.57-1.55] 0.39,[0.28-0.55] 1.02,[0.86-1.06] 1.38,[0.84-1.52] 1.50,[1.00-1.65]

Investment adj. cost, Ã G,7.50,[4.57-12.4] 9.27,[7.35-11.8] 4.95,[4.11-5.08] 3.45,[3.08-5.24] 3.68,[2.73-5.26]

Log marginal likelihood - 121.9 114.6 1.4 -62.4
corr(markup, logGDP |εR) - 0.92 0.76 -0.94 -0.94
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is chosen must satisfy the optimal input allocation (recall that we are abstracting from movements in

either the wage or capital)

RBw L

1− α
=

r k u K

α
=
I1−ρ δ̃u(u) u K

α
.

As a result, an approximation under constant capital stock K and real wages w yields that an increase

in output Y induces changes in {I, u, L}, and hence in labor productivity that under log-linearization

satisfy

d ln(`p) =

[
1− 1 + σa

1 + (1− α)σa

1− Ψ̃

1 + ϑIss
+

α(ρ− 1)Ψ̃

1 + (1− α)σa

]
d ln(Y)+

α

1 + (1− α)σa
d ln(RB). (41)

We now look at the three economies that we have estimated, the Benchmark (”u and Search”), and

those with only one mechanism at play, ”Search Alone”, and ”u Alone”, all with a fixed cost of

production.

Variable Capital Utilization Alone (u Alone) Here, we have Ψ̃ = 0, and Iss = 1 to turn off

directed search, and σa → 0 to maximize the effect of variable capital utilization. As a result, Equa-

tion (41) becomes

d ln(`p) =
ϑ

1 + ϑ
· d ln(Y) + α · d ln(RB).

Note that ignoring the change in the real wage, variable capital utilization allows for the same capital

services to labor ratio, and, as a result, the economy is not subject to decreasing returns to scale

from slow moving capital. Then procyclical labor productivity can only come from the fixed cost of

production ϑ or from procyclical nominal interest rate that increases the cost of working capital (but

this latter effect goes in the wrong direction under an expansionary monetary policy), as the marginal

cost of labor RBw induces substitution between labor and capital. Consequently, large fixed costs are

needed for any meaningful increase in labor productivity. For instance, a fixed cost of production equal

to 43% of GDP (ϑ) is needed to increase labor productivity by 0.3%, when real GDP goes up by 1%.

Search Alone Economy In this case, we have Ψ̃ > 0, Iss < 1 to turn on directed search and

σa → +∞ to turn off variable capital utilization. As a result, Equation (41) becomes

d ln(`p) =
Ψ̃+ϑIss
1+ϑIss − α

1− α
· d ln(Y).
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Procyclical labor productivity comes from the search friction Ψ̃ and the fixed cost of production ϑ.

There is a negative term (−α) due to the decreasing returns to scale and the lack of variable capital

utilization. This implies that a minimum size of the search friction or fixed costs of production is required

to ensure procyclical labor productivity. Working capital costs due to RB no longer play a role because

there is no trade-off between capital and labor given that capital services cannot be adjusted. The

extent to which the search friction alone can generate a procyclical labor productivity is a quantitative

issue. For instance, to get an increase of labor productivity of 0.3% out of a 1% increase in real GDP,

a value of the elasticity of TFP with respect to expenditures (grouped parameter Ψ̃) equal to 0.48 is

needed in the absence of fixed costs of production and a value of 0.38 is needed under 20% fixed costs

to GDP ratio (ϑIss = 0.2).

Both Search and Variable Capacity Utilization We have Ψ̃ > 0, Iss < 1 and to maximize the

role of variable capacity utilization we pose σa → 0. Equation (41) becomes

d ln(`p) =

[
Ψ̃ + ϑIss
1 + ϑIss

+ α(ρ− 1)Ψ̃

]
· d ln(Y) + α · d ln(RB).

In this economy both mechanisms are at work, which makes it a lot easier to achieve procyclical labor

productivity. The negative term −α that showed up before is no longer there due to the variable

capacity utilization and a new term appears that further increases the possibility of labor productivity

being positively affected by total expenditures. But even ignoring this new term, to get the 0.3 value

discussed above, we need Ψ̃ = 0.30 with no fixed costs or Ψ̃ = 0.16 with fixed costs being 20% of

GDP, which is a lot easier than before.

6.2. Labor Productivity, Labor Share, Profit Share, and Markups

What about the other variables that we are interested in? Under constant {K ,w} as before and

log-linearization, labor share, profit share, and markup satisfy

d ln(`s) = d ln(w)− ln(`p),

d ln(Πf /Y) = − 1
Γss

1+ϑIss − 1
·
[
d ln(`s) + d ln(RB)

]
,

d ln(Γ) = − ϑIss
1 + ϑIss

(1− Ψ̃) · d ln(Y)−
[
d ln(`s) + d ln(RB)

]
.

There are a few takeaways from these results. First, labor share is just the mirror image of labor
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Figure 4: Response to 1 ST.DEV of Federal Funds Rate Shocks (the Role of γ̃)

productivity when the real wage is given, hence labor productivity and labor share must be explained

jointly. Second, under countercyclical costs of working capital, the profit share must be procyclical when

labor share is countercyclical. Third, a procyclical markup is sufficient but not necessary for a procyclical

profit share, because the fixed cost of production can make profit share procyclical without a procyclical

markup. We cannot measure profit shares or markups easily but the behavior of the labor share informs

us about the behavior of the other variables through the lens of the model. Since profit shares and

markups are closely related to labor share, and labor share is closely related to labor productivity, we

can expect that search models are likely to generate countercyclical labor share, procyclical profit share,

and procyclical markups more easily because they can easily generate procyclical labor productivity.

6.3. Procyclical Desired Markups for Countercyclical Labor Share

One of the key features of the directed search friction is the endogenous desired markup captured by

parameter γ̃ (γ̃ = γ in the CES matching function). In the necessary and sufficient conditions derived

in Section 2.2.3, γ̃ > 0 plays a crucial role in making procyclical markups compatible with procyclical

inflation. In quantitative models, more mechanisms may pollute the results but we would like to see
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if γ̃ > 0 is still necessary. Therefore, we re-estimate both the ”u and Search” model and the ”Search

Alone” model with γ̃ = 0 and compare them to those with γ̃ > 0 in Figure 4. We can see that despite

the similar performance of real GDP, hours worked, Federal Funds Rate, and labor productivity, labor

share moves very little and the initial response of inflation is muted when γ = 0. These results are

consistent with our theoretical findings about the tension between procyclical markups (closely related

to labor share) and procyclical inflation if desired markup is constant (γ̃ = 0).

7. Conclusion

We have proposed a new mechanism to add to medium-sized New Keynesian models suitable for

estimation. It is based on the notion that expenditures increase productivity temporarily due to increased

search effort of households. We have shown how to implement it, using directed search in the space of

varieties. It is very simple to use and can be added with very low cost to any model currently in play.

We have used it to estimate a version of the canonical Christiano et al. (2016) model and shown how it

is far superior in terms of fit to standard modeling approaches (e.g. variable capital utilization) and it

is best when used in combination of those approaches. This is especially the case for the performance

of labor productivity and labor share, both variables with a behavior that has proved to be hard to

replicate. Hence, we think search frictions in the goods markets should be considered as part of the

standard ingredients in medium-scale DSGE models.
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Appendix

A. Various Proofs

A.1. GHH Preferences Imply that More Expenditures Yield Both More Search and More

Consumption of Each Variety under the Same Set of Available Markets.

We start with deriving the F.O.C. of the consumers’ optimization problem in Section 2.2.1.

0 =
∂L

∂c(p, q)
= UcA · ρ · (cA)

ρ−1
ρ · d(p, q)ψh(q) · 1

ρ
· c(p, q)

1−ρ
ρ − λ · d(p, q)ψh(q) p,

0 =
∂L

∂d(p, q)
= UcA · ρ · (cA)

ρ−1
ρ · ψh(q)c(p, q)

1
ρ + UdA − λ · ψh(q) p c(p, q),

in which λ is the Lagrange multiplier. Rearranging the algebra to simplify the expressions above yields

0 = UcA ·
(

cA

c(p, q)

) ρ−1
ρ

− λ · p,

0 = ρ · UcA ·
(

cA

c(p, q)

) ρ−1
ρ

+
UdA

ψh(q)c(p, q)
− λ · p.

Combining the two conditions above to eliminate λ and rearranging the expression yields

0 = (ρ− 1) · d(p, q)ψh(q)

(
c(p, q)

cA

) 1
ρ

+
UdA

UcA
· d(p, q)

cA
.

Taking integral
∫

Φ
·dp dq on both sides of the condition above yields

0 = ρ− 1 +
UdA

UcA
· d

A

cA
.

To proceed with analytical results, use GHH utility function U(cA, dA) = U
(
cA − ζ (dA)1+ν

1+ν

)
to get

UdA

UcA
= −ζ · (dA)ν .

The two conditions above combined yield

cA =
ζ

ρ− 1
· (dA)1+ν .
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A.2. A Useful Price Aggregate PA for Directed Search

Note that without directed search, the useful price aggregate should be

P =

(∫ 1

0

p
1

1−ρ

j dj

)1−ρ

.

With directed search, we start with a first order condition derived in Appendix A.1

0 = UcA ·
(

cA

c(p, q)

) ρ−1
ρ

− λ · p.

We would like to have a price aggregate PA such that

0 = UcA − λ · PA.

This will allow us to have a variety demand analogous to the version of model with no search

c(p, q) =
( p

PA

)− ρ
ρ−1

cA.

To see the exact formula of PA, rearrange the condition above to get

( p

PA

) 1
1−ρ

=

(
c(p, q)

cA

) 1
ρ

.

Multiplying both sides by d(p, q)ψh(q) yields

d(p, q)ψh(q)
( p

PA

) 1
1−ρ

= d(p, q)ψh(q)

(
c(p, q)

cA

) 1
ρ

.

Taking integral
∫

Φ
·dp dq on both sides of the condition above yields∫

Φ

d(p, q)ψh(q)
( p

PA

) 1
1−ρ

dpdq = 1.

Rearranging it to solve out pA yields

PA =

(∫
Φ

d(p, q) ψh(q)p
1

1−ρ dp dq

)1−ρ

.
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A.3. Using PA(e, Φ) to Summarize Optimal Shopping Effort Allocation

Recall Equations (8) and (13) derived in Appendix A.1 and Appendix A.2

cA =
ζ

ρ− 1
· (dA)1+ν ,

e = PA · cA.

The households’ problem can be simplified to

v(e, Φ) = max
{d(p,q)}≥0

U

(
2 + ν − ρ

1 + ν
· ζ

ρ− 1
·
(
dA
)1+ν

)
,

s.t. e =

(∫
Φ

d(p, q) ψh(q) p
1

1−ρ dp dq

)1−ρ

· ζ

ρ− 1
·
(
dA
)1+ν

,

in which dA =

∫
Φ

d(p, q) dp dq.

This problem essentially maximizes the total shopping effort dA subject to the budget constraint, which

requires d(p, q) = 0 for ∀{p, q} /∈ max{p,q}∈Φ

{
ψh(q) p

1
1−ρ

}
, which hence requires

PA =

(∫
Φ

d(p, q) max
{p,q}∈Φ

{
ψh(q) p

1
1−ρ

}
dp dq

)1−ρ

= (dA)1−ρ · min
{p,q}∈Φ

{
ψh(q)1−ρ p

}
.

Therefore, under optimal shopping effort allocation, we have

PA = min
{p,q}∈Φ

{
PA|dA = dA(e, Φ)

}
= dA(e, Φ)1−ρ · min

{p,q}∈Φ

{
ψh(q)1−ρ p

}
≡ PA(e, Φ).

This allows us to solve dA(e, Φ) from the budget

e = PA(e, Φ) · cA(e, Φ) =
ζ

ρ− 1
· dA(e, Φ)2+ν−ρ · min

{p,q}∈Φ

{
ψh(q)1−ρ p

}
.

Now, we can get

dA(e, Φ) =

(
ζ

ρ− 1

)− 1
2+ν−ρ

(
e

min{p,q}∈Φ {ψh(q)1−ρ p}

) 1
2+ν−ρ

,

cA(e, Φ) =

(
ζ

ρ− 1

)− ρ−1
2+ν−ρ

(
e

min{p,q}∈Φ {ψh(q)1−ρ p}

) 1+ν
2+ν−ρ

,

v(e, Φ) = U(cA(e, Φ), dA(e, Φ)).
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A.4. The Elasticity of Substitution Between Locations and Search Effort in the Matching

Function is 1
1+γ̃

Consider a CRS matching function ψ(J ,D) with ψf ≡ ψ/J and q ≡ D/J ,

JψJ + DψD = ψ =⇒ ψJ =
ψ − DψD

J
= ψf − q ψD =⇒ ψJ/ψD =

ψf

ψD
− q.

Also note that

ψD =
∂ψ

∂D
=
∂(ψ/J)

∂(D/J)
=
∂ψf

∂q
= ψf

q.

Denote the elasticity of substitution between D and J as εDJ , we have

1− εDJ

εDJ
=

d ln(ψJ/ψD)

d ln(D/J)
− 1 =

d ln(ψf /ψf
q − q)

d ln(q)
− 1 =

d ln(ψf /(qψf
q)− 1)

d ln(q)

=
d ln(1/E(q)− 1)

d ln(q)
=
E(q)d ln(1/E(q)− 1)

E(q)d ln(q)
=
E(q)[d ln(1− E(q))− d ln(E(q))]

d ln(ψf (q))

=
E(q)

[
− dE(q)

1−E(q)
− dE(q)
E(q)

]
d ln(ψf (q))

=
E(q)

[
d(1−E(q))

1−E(q)
+ d(1−E(q))

E(q)

]
d ln(ψf (q))

=
E(q)

[
d(1−E(q))

(1−E(q))E(q)

]
d ln(ψf (q))

=
d ln(1− E(q))

d ln(ψf (q))
.

Note that γ̃ = d ln(1−E(q))
d ln(ψf (q))

∣∣∣
q=Qss

. Hence, 1
1+γ̃

is the elasticity of substitution between J and D in the

matching function ψ evaluated at the steady state. We restrict our attention to matching functions in

which the complementarity between J and D is no less than that in Cobb-Douglas, which implies

0 <
1

1 + γ̃
≤ 1 ⇐⇒ γ̃ ≥ 0.

CES Example Consider the special case of CES matching function ψf (q) = B · (1− ϕ+ ϕq−γ)−
1
γ .

E(q) =
d ln(ψf (q))

d ln(q)
=
− 1
γ
· d ln(1− ϕ + ϕq−γ)

d ln(q)
=
− 1
γ
· −γ·ϕq−γ−1

1−ϕ+ϕq−γ dq
1
q
dq

=
ϕ · q−γ

1− ϕ + ϕ · q−γ

= 1− 1− ϕ
1− ϕ + ϕ · q−γ

= 1− (1− ϕ)[ψf (q)/B]γ.

Now it is clear that

d ln(1− E(q̃))

d ln(ψf (q̃))
= γ.
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A.5. Conditional on d ln(W )
d ln(e)

< 1, γ̃ ≥ 0 is the Necessary and Sufficient for Endogenous TFP

to Be Always Procyclical Given Any κ̃ ∈ (0, +∞) and Ψ̃ ∈ (0, 1).

The log-linearized solution of the endogenous TFP is

d ln(ψf (Q∗))

d ln(e)
=

(1 + κ̃)Ψ̃− κ̃Ψ̃ · d ln(W )
d ln(e)

1 + κ̃[1 + (γ̃ − 1)Ψ̃]
.

As we require d ln(W )
d ln(e)

< 1, the numerator satisfies

(1 + κ̃)Ψ̃− κ̃Ψ̃ · d ln(W )

d ln(e)
> 1 > 0.

Sufficiency: When γ̃ ≥ 0, the denominator satisfies

1 + κ̃[1 + (γ̃ − 1)Ψ̃] > 1 + κ̃(1− Ψ̃) > 1 > 0.

Necessity: For −1 < γ̃ < 0, let Ψ̃ = 1−γ̃/2
1−γ̃ and κ̃ = 4

γ̃
, then the denominator satisfies

1 + κ̃[1 + (γ̃ − 1)Ψ̃] = −1 < 0.

A.6. Households’ Search Problem with Investment and Saving

This appendix extends Section 2.2.1 by allowing the households to invest and save. Our goal is to show

that the elasticities of the tightness and demand functions taken as given in the firms’ pricing problem

remains unchanged, and hence can be applied in the dynamic model directly.

The representative household has an extra investment choice x(p, q) and a saving choice eb. It
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solves a more general search problem with objective function U(·).

v(e, Φ) = max
{c(p,q),x(p,q),d(p,q)}≥0, eb

U(cA, xA, dA, eb),

s.t. e ≥
∫

Φ

d(p, q) ψh(q) p c(p, q) dp dq +

∫
Φ

d(p, q) ψh(q) p x(p, q) dp dq + eb,

in which cA ≡
(∫

Φ

d(p, q) ψh(q) c(p, q)
1
ρ dp dq

)ρ
,

xA ≡
(∫

Φ

d(p, q) ψh(q) x(p, q)
1
ρ dp dq

)ρ
,

dA ≡
∫

Φ

d(p, q) dp dq.

The F.O.C.s w.r.t. {c(p, q), x(p, q), d(p, q), eb} are

0 =
∂L

∂c(p, q)
= UcA · ρ · (cA)

ρ−1
ρ · d(p, q)ψh(q) · 1

ρ
· c(p, q)

1−ρ
ρ − λ · d(p, q)ψh(q) p,

0 =
∂L

∂x(p, q)
= UxA · ρ · (xA)

ρ−1
ρ · d(p, q)ψh(q) · 1

ρ
· x(p, q)

1−ρ
ρ − λ · d(p, q)ψh(q) p,

0 =
∂L

∂d(p, q)
= UcA · ρ · (cA)

ρ−1
ρ · ψh(q) c(p, q)

1
ρ + UxA · ρ · (xA)

ρ−1
ρ · ψh(q) x(p, q)

1
ρ + UdA

− λ · ψh(q) p c(p, q)− λ · ψh(q) p x(p, q),

0 =
∂L
∂eb

= Ueb − λ.

Simplifying the expressions and eliminating λ yield

0 = UcA ·
(

cA

c(p, q)

) ρ−1
ρ

− Ueb · p, (42)

0 = UxA ·
(

xA

x(p, q)

) ρ−1
ρ

− Ueb · p, (43)

0 = ρ · UcA ·
(

cA

c(p, q)

) ρ−1
ρ

c(p, q) + ρ · UxA ·
(

xA

x(p, q)

) ρ−1
ρ

x(p, q) +
UdA

ψh(q)
− Ueb · p · [c(p, q) + x(p, q)].

Combining these conditions above to eliminate Ueb yields

0 = (ρ− 1) · UcA ·
(
c(p, q)

cA

) 1
ρ

cA + (ρ− 1) · UxA ·
(
x(p, q)

xA

) 1
ρ

xA +
UdA

ψh(q)
.
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Taking integral
∫

Φ
d(p, q)ψh(q) · dp dq on both sides of the condition above yields

0 = (ρ− 1) · (UcA · cA + UxA · xA) + UdA · dA. (44)

Define a price aggregate as in Section 2.2.1

pA ≡
(∫

Φ

d(p, q) ψh(q) p
1

1−ρ dp dq

)1−ρ

.

Taking integral
∫

Φ
d(p, q)ψh(q) · dp dq on Equations (42) and (43) (to the power of 1

1−ρ) yields

UcA = UxA = Ueb · pA. (45)

Like Equation (11) in Section 2.2.1, putting Equation (45) back to Equations (42) and (43) yields

c(p, q)

cA
=

x(p, q)

xA
=

(
p

pA

)− ρ
ρ−1

. (46)

Like Equation (13) in Section 2.2.1, putting Equation (46) back to the budget (binding) yields

e = pA · (cA + xA) + eb. (47)

Sharper characterization of dA calls for a GHH utility on {cA, dA}. Let

U(cA, xA, dA, eb) ≡ Ũ

(
cA − ζ (dA)1+ν

1 + ν

)
+ Ṽ

(
cA − ζ (dA)1+ν

1 + ν
, xA, eb

)
,

in which Ũ(·) captures the direct utility for consumption aggregate cA and shopping aggregate dA,

while Ṽ (·) captures the effects of internal habit cA − ζ (dA)1+ν

1+ν
, investment aggregate xA, and bond

position eb in continuation values. Let Ṽ be general enough to accommodate the dynamic problem,

including also investment adjustment cost captured by Ṽ (·, xA, ·). This GHH utility allows us to simplify

Equation (44) for a counterpart of Equation (8) in Section 2.2.1.

cA + xA =
ζ

ρ− 1
· (dA)1+ν . (48)
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Using Equations (47) and (48), we can simplify the households’ problem to

v(e, Φ) = max
cA,xA,pA,dA,{d(p,q)}≥0

U
(
cA, xA, dA, e − pA(cA + xA)

)
s.t. pA =

(∫
Φ

d(p, q) ψh(q) p
1

1−ρ dp dq

)1−ρ

,

dA =

∫
Φ

d(p, q) dp dq,

dA =

[
ρ− 1

ζ
(cA + xA)

] 1
1+ν

.

As long as Ueb > 0, which is naturally true, households will choose the markets that minimize pA for

any given (cA, xA, dA). Hence, this problem can be further simplified to

v(e, Φ) = max
cA,xA,dA≥0

U

(
cA, xA, dA, e − (dA)1−ρ min

{p,q}∈Φ

{
ψh(q)1−ρ p

}
· (cA + xA)

)
in which dA =

[
ρ− 1

ζ
(cA + xA)

] 1
1+ν

.

Here, v(e, Φ) depends on Φ only through min{p,q}∈Φ

{
ψh(q)1−ρ p

}
. As Ueb > 0, v(e, Φ) is strictly

decreasing in min{p,q}∈Φ

{
ψh(q)1−ρ p

}
. As a result, for ∀v such that v(e, Φ) = v can hold under some

Φ, we can always invert it to solve for min{p,q}∈Φ

{
ψh(q)1−ρ p

}
as a function G (e, v).

min
{p,q}∈Φ

{
ψh(q)1−ρ p

}
= G (e, v).

Although we no longer have the analytical solution of G (e, v) like before, Φ(e, v) can be described by

a function q̃(e, v , p) solved by inverting the equation above like Equation (15) in Section 2.2.1.

q̃(e, v , p) = (ψh)−1

[(
p

G (e, v)

) 1
ρ−1

]
=⇒ p q̃p

q̃
= − 1

(ρ− 1)[1− E(q̃)]
.

When Φ = Φ(e, v), the variety demand like Equation (16) in Section 2.2.1 from Equation (46) becomes

c̃(e, v , p)

cA(e, Φ(e, v))
=

x̃(e, v , p)

xA(e, Φ(e, v))
=

(
p

pA(e, Φ(e, v))

)− ρ
ρ−1

,

ỹ(e, v , p) ≡ c̃(e, v , p) + x̃(e, v , p) =⇒ p ỹp
ỹ

= − ρ

ρ− 1
.
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B. A Toolkit of Using Our Model

B.1. All 35 Variables Needed to Solve the Model (Search Variables in Red)

Variable Symbol Trend
Aggregate hours L -
Real rental price of capital services r k (µx

ss)
−t

Real marginal cost of composite inputs mc (µy
ss)

t

Gross inflation rate Π -
Aggregate market tightness Q -
Aggregate real consumption C (µy

ss)
t

Variable capital utilization u -
Aggregate real investment (no utilization cost) X (µk

ss)
t

Aggregate capital stock K (µk
ss)

t

Tobin’s q qk (µx
ss)
−t

Recursive component for marginal utility of income H1 (µy
ss)

1
ρ−1
·t

Recursive component for marginal disutility of working H2 (µy
ss)

ρ
ρ−1

(1+ξ)·t

Optimal reset wage rate w# (µy
ss)

t

Real wage index w (µy
ss)

t

Real GDP Y (µy
ss)

t

Real gross output per match Ỹ (µy
ss)

t

Federal Funds Rate R -
Ex ante Federal Funds Rate RB -
Growing factor of neutral technology µn -
Growing factor of investment-specific technology µx -
Growing factor of output µy -
Growing factor of capital µk -
Number of matched varieties I -
Internal habit h (µy

ss)
t

Marginal utility of real consumption Υ (µy
ss)
−t

Stochastic discount factor M -
Growing factor of investment aggregate G x -
Investment adjustment cost A -
Marginal investment adjustment cost AG x -

Capital utilization cost δ̃ -

Marginal capital utilization cost δ̃u -
Price adjustment cost χ̃ (µy

ss)
t

Labor productivity `p (µy
ss)

t

Labor share `s -
Gross markup Γ -

Note: The last 13 of the 35 are auxiliary variables used to simplify the algebra.
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B.2. All 35 Detrended and Denominated Equations (Search Friction in Red)

1. Production technology (current capital is K−):

Ỹ + χ̃ = A

(
u K−

µk

)α
L1−α − ϑ. (49)

2. Optimality condition for capital-labor allocation:

r k u K−

α µk
=

RB w L

1− α
. (50)

3. Real marginal cost of composite inputs:

mc =

(
r k

α

)α(
RB w

1− α

)1−α

. (51)

4. New Keynesian Philips Curve with Directed Search:

Π (Π−1) = κ̃ · Γss

ρ

[
ρ ·mc

I
− (I/B)−γ

1− ϕ
+

χ̃

IỸ
· (ρ ·mc − 1)

]
+
I ′Ỹ ′

IỸ
M′ ·Π′ (Π′−1). (52)

5. Optimality condition for shopping effort:

Q =
ρ− 1

ζ
· IρỸ . (53)

6. Optimality condition for bonds:

1 =
M′

µy ′ ·
R

Π′
. (54)

7. Optimality condition capital utilization:

r k = I1−ρ · δ̃u. (55)

8. Optimality condition for investment:

I1−ρ = qk · (1−A−AG x · G x) +
M′

µy ′ ·
qk ′

µx ′ · A
′
G x · (G x ′)

2
. (56)
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9. Optimality condition capital:

1 =
M′

µy ′ ·
(1− δ) · qk ′ + r k ′ · u′ − I ′1−ρ · δ̃′

qk · µx ′ . (57)

10. Capital law of motion:

K = (1− δ) · K−/µk + (1−A) · Iρ−1X . (58)

11. Recursive component for Marginal utility of income:

H1 = Υ · L · w
ρw

ρw−1 + θw · β(µy ′Π′)
1

ρw−1 · H1′. (59)

12. Recursive component for marginal disutility of working:

H2 = η · (L · w
ρw

ρw−1 )1+ξ + θw · β(µy ′Π′)
ρw

ρw−1
(1+ξ) · H2′. (60)

13. Optimality condition for reset real wage:

(w#)1+ ρw
ρw−1

ξ = ρ · H2/H1. (61)

14. Wage aggregator:

w
1

1−ρw = θw · [w−/(µyΠ)]
1

1−ρw + (1− θw ) · (w#)
1

1−ρw . (62)

15. Definition of real GDP (capital utilization cost as intermediate inputs):

Y = C + X . (63)

16. Real gross output (capital utilization cost needs to be produced):

IỸ = C + X + I1−ρ δ̃ K−/µk . (64)

17. Taylor Rule with no noise:

ln(RB/Rss) = ρR · ln(R−/Rss) + (1− ρR) · [φπ · ln(Π/Πss) + φπ · ln(Y /Yss)]. (65)
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18. Realized Federal Funds Rate (current Federal Funds Rate is R ′ and current shock is εR
′
):

R = RB− − σR · εR . (66)

19. Neutral technology process:

ln(µn/µn
ss) = σn · εn. (67)

20. Investment-specific technology process:

ln(µx/µx
ss) = ρx · ln(µx−/µx

ss) + σx · εx . (68)

21. Composite technology for output:

lnµy =
α

1− α
lnµx + lnµn. (69)

22. Composite technology for capital:

lnµk = lnµx + lnµy . (70)

23. Number of matched varieties:

I ≡ B · (1− ϕ + ϕ Q−γ)−
1
γ . (71)

24. Internal habit (current habit is h−):

h ≡ Iρ−1C − ζ Z Q. (72)

25. Marginal utility of real consumption

Υ ≡ Iρ−1 ·
[
(h − ςh−/µy )−1 − βς · (h′µy ′ − ςh)−1

]
. (73)

26. Stochastic discount factor:

M′ ≡ β Υ′/Υ. (74)
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27. Growing factor of investment aggregate

G x ≡ (I/I−)ρ · (X/X−) · µk . (75)

28. Investment adjustment cost:

A ≡ 1/2 ·
{

exp
[√
Ã
(
G x − µk

ss

)]
+ exp

[
−
√
Ã
(
G x − µk

ss

)]}
− 1. (76)

29. Marginal investment adjustment cost:

AG k ≡ 1/2 ·
√
Ã
{

exp
[√
Ã
(
G x − µk

ss

)]
− exp

[
−
√
Ã
(
G x − µk

ss

)]}
. (77)

30. Capital utilization cost:

δ̃ ≡ σaσb/2 · (u − 1)2 + σb · (u − 1). (78)

31. Marginal capital utilization cost:

δ̃u ≡ σaσb · (u − 1) + σb. (79)

32. Price adjustment cost:

χ̃ ≡ ρ

2(ρ− 1)Γss · κ̃
· (Π/Πss − 1)2 · I Ỹ . (80)

33. Labor productivity:

`p ≡ Y /L. (81)

34. Labor share:

`s ≡ w L/Y . (82)

35. Gross markup:

Γ ≡ I/mc . (83)
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B.3. 35 Objects to Know in the Calibration and Solution of Steady State

Solve the Parameters for Targets and Some Variables as Byproduct The predetermined targets

include the steady state gross inflation Πss and another 13 objects in Table 2 below22

(
uss ,Yss , Lss ,Qss ,µ

y
ss ,µ

k
ss ,

Rss

Πss
, δ
Iρ−1
ss Kss

Yss
,
Xss

Yss
, `sss , Iss , wage markup, wage duration

)
.

The first 11 objects above are parts of or functions of the 35 variables needed to solve the model, while

the last two do not have such correspondence. We use the first 11 steady state objects above as targets

to solve for 11 parameters (marked in red below). As a byproduct, another 11 steady state variables are

also solved. Wage markup and duration directly determine the values of parameters {ρw , θw}, which

we will use together with the draw of our 15 estimated parameters as in Table 3 in the calibration and

steady state solving procedure. Now we have the 22 equations below as solutions for the 11 parameters

and 11 byproducts. Given Πss already known, we have now pinned down the values of 23 objects.

1. Given Iss , solve for the mean efficiency of matching function

B = Iss .

2. Given {µy
ss ,µ

k
ss}, solve for growing factor of investment-specific technology

µx
ss = µk

ss/µ
y
ss .

3. Given {µy
ss ,µ

x
ss}, solve for growing factor of investment-specific technology

µn
ss = µy

ss · (µx
ss)
− α

1−α .

4. Given {µy
ss ,Rss/Πss}, solve for the discount factor β

β = µy
ssΠss/Rss .

22 In our paper, we have imposed uss = Yss = Lss = Qss = 1 as is in Table 2. In fact, the steady state solution procedure
we use relies on uss = Qss = 1 but not on how we normalize Yss and Lss . These 14 objects have incorporated the
full information of the two variables {Rss ,Xss}, so that we can use them directly in our calibration and steady state
solving.
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5. Given {µk
ss ,Xss/Yss , δI1−ρ

ss Kss/Yss}, solve for the depreciation rate δ

δ =
µk
ss − 1

Xss/Yss

δI1−ρ
ss Kss/Yss

− 1
.

6. Given {β, δ,µk
ss}, solve for the marginal cost of utilization cost σb

σb = µk
ss/β − 1 + δ.

7. Given {β, δ,µk
ss ,µ

y
ss , `sss , δI1−ρ

ss Kss/Yss}, solve for the capital share α

α =

(
`sss

δI1−ρ
ss Kss/Yss

· δ
σb

+ 1

)−1

.

8. Given {α,B , `sss ,Yss}, solve for the fixed cost parameter ϑ

ϑ =

(
`sss

1− α
· Γ̃− 1

)
· Yss

Iss
.

9. Given {Ψ̃, Γ̃}, solve for the love for varieties ρ

ρ =

√
(2 + Γ̃− Ψ̃−1)2 + 4 (Ψ̃−1 − 1) + (2 + Γ̃− Ψ̃−1)

2
.

10. Given {ρ, Γ̃}, solve for the search share in matching function ϕ

ϕ = 1− Γ̃/ρ.

11. Given {σb, ρ, Iss}, solve for the real rental price of capital r kss

r kss = I1−ρ
ss · σb.

12. Given {`sss , Lss ,Yss}, solve for the real wage index wss

wss = `sss · (Yss/Lss).
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13. Given {Iss , Γ̃}, solve for the real marginal cost of inputs mcss

mcss = Iss/Γ̃.

14. Given {α, r kss ,Rss ,wss ,mcss}, solve for the units in production function A

A =

(
r kss
α

)α(
Rsswss

1− α

)1−α
1

mcss
.

15. Given {Xss ,Yss}, solve for the real consumption Css

Css = Yss − Xss .

16. Given {ρ, Iss ,Yss ,Qss = 1}, solve for the weight of search in utility ζ

ζ = (ρ− 1) Iρ−1
ss · Yss .

17. Given {ζ,Css , Iss ,Qss = 1}, get the interval habit term Hss

hss = Iρ−1
ss Css − ζ.

18. Given {β, ς,µy
ss , Iss , hss}, get the marginal utility of real consumption Υss

Υss ≡ Iρ−1
ss ·

(
µy
ss − ς

µy
ss − βς

hss

)−1

.

19. Given {asdf }, solve for the optimal reset wage rate w#
ss

w#
ss =

[
1− θw

1− θw (µy
ssΠss)

1
ρw−1

]ρw−1

wss .

20. Given {θw , ρw , β,µy
ss ,wss , Υss , Lss , Πss}, solve for the recursive component H1

H1
ss =

Υss · Lss · w
ρw

ρw−1
ss

1− θw · β(µy
ssΠss)

1
ρw−1

.
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21. Given {ξ, ρw ,w#
ss ,H1

ss}, solve for the recursive component H2

H2
ss = ρ−1

w · (w#
ss )1+ ρw

ρw−1
ξ · H1

ss .

22. Given {ξ, θw , ρw , β,µy
ss ,wss , Lss ,H

2
ss , Πss}, solve for the weight of labor in utility η

η =

[
1− θw · β(µy

ssΠss)
ρw

ρw−1
(1+ξ)

]
· H2

ss(
Lss · w

ρw
ρw−1
ss

)1+ξ
.

Note that the calibration of parameters {ϑ,A} depends on the draw of Γ̃, the calibration of ζ depends

on the draw of {Γ̃, Ψ̃}, and the calibration of η depends on the draw of {Ψ̃, ξ}.

Other Steady State Variables Other 12 remaining steady-state variables (35 objects to know in

total - 23 already known) can be obtained straightforwardly as below.

1. Obtain the capital stock from optimal input allocation

Kss =
α

1− α
· Rsswss

r kss
· Lss · µk

ss .

2. Obtain the Tobin’s q by imposing zero investment adjustment cost

qk
ss = I1−ρ

ss .

3. Real gross output per match = output / matches

Ỹss = Yss/Iss .

4. Ex ante Federal Funds Rate = the ex post one

RB
ss = Rss .

5. Stochastic discount factor = discount factor

Mss = β.
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6. Growing factor of investment aggregate = growth factor of investment

G x
ss = µk

ss .

7. Zero investment adjustment cost

Ass = 0.

8. Zero marginal investment adjustment cost

AG x ,ss = 0.

9. Zero capital utilization cost

δ̃ss = 0.

10. Constant market capital utilization cost

δ̃u,ss = σb.

11. Zero price adjustment cost

χ̃ss = 0.

12. Definition of labor productivity

`p = Yss/Lss .
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