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Introduction
Agenda Literature

Seasonality and identification

The X-11 filter and distortions to identification

Identification through seasonal heteroskedasticity

Estimation: A Bayesian Approach

Application: Supply and demand in U.S. labor markets
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A Taxonomy of Seasonality

Assume ns seasons per year (ns = 12 for monthly data)

Let yt be an n × 1 vector time series

yt = µ + st + ỹt

st repeats annually: st = st−ns

ỹt is a purely non-deterministic stochastic process

Deterministic seasonality: Captured by st

Stochastic seasonality: ỹt can have seasonal spectral peaks

X-11 seasonal adjustment has 2 main steps:

Estimate st and subtract it from yt

Apply a filter to ỹt to suppress seasonal spectral peaks
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An Overview of the X-11 Filter

Suppose (for now) yt has no deterministic terms (yt = ỹt)

Time domain: ysa
t ≡ ξ (L) yt

Freq. domain: fsa (ω) = Ξ (ω) f (ω), Ξ (ω) ≡ |ξ (exp {−iω})|2
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Structural Identification Framework

If yt is stationary, it has a reduced-form representation:

yt = ŷt + et

ŷt is the projection of yt on {yt−1, yt−2, . . .}

et is white noise with precision Q ≡ V [et ]−1

Assume that residuals are functions of structural shocks εt

et = Ψ−1εt for some invertible Ψ

Λ ≡ V [εt ]−1 where Λ is diagonal

An identification scheme is a mapping I : Q 7→ (Ψ,Λ) such
that Ψ′ΛΨ = Q whenever (Ψ,Λ) = I (Q)

Replace yt , ŷt , et , Q with ysa
t , ŷsa

t , esa
t ,Qsa. How does I (Qsa)

compare to I (Q)?
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A Conceptual Issue

Shocks extracted from the data

Using NSA series: εt = Ψet , where (Ψ,Λ) = I (Q)

Using SA series: εsa
t = Ψsaesa

t , where (Ψsa,Λsa) = I (Qsa)

Recall that ysa
t = ξ (L) yt , and ξ (L) is two-sided

esa
t (εsa

t ) synthesized using past, present, and future et (εt)

By construction, εsa
t ⊥

{
ysa

t−1, ysa
t−2, . . .

}
, but

εsa
t 6⊥ {yt−1, yt−2, . . .}
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A Quantitative Issue
Filtering and Structural Parameters

Kolmogorov’s formula:

|Q| = exp
{
− 1
2π

∫ π

−π
log (|2πf (ω)|) dω

}
with analogous relationship between Qsa and fsa (·)

When the dimension of yt is n:

|Qsa| = Dn |Q| , D ≡ exp
{
− 1
2π

∫ π

−π
log (Ξ (ω)) dω

}
For the X-11 filter shown earlier: D ≈ 2.83

Implication: I (Q) 6= I (Qsa) or I (Q) ∩ I (Qsa) = ∅

Example: With Cholesky identification, average log difference
between ∂yk,t

∂εk,t
and ∂ysa

k,t
∂εsa

k,t
is about .52 (≈ 68%)
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Example: Labor Supply and Demand
Based on Baumeister and Hamilton (Econometrica, 2015)

yt =
[

∆ log (real waget)
∆ log (personhourst)

]
, εt =

[
εd

t
εs

t

]
, Ψ =

[
−ηd 1
−ηs 1

]
Combine the above with reduced-form projection:

∆ log (personhourst) = ηd × ∆ log (real waget) + φd (L)′ yt + εd
t

∆ log (personhourst) = ηs × ∆ log (real waget) + φs (L)′ yt + εs
t

Identified Set:

I (Q) =
{

(Ψ,Λ)
∣∣∣Ψ =

[
−ηd 1
−ηs 1

]
, Λ =

[
λd 0
0 λs

]
,

Ψ′ΛΨ = Q
ηs , λd , λs > 0 > ηd

}
Maybe (λd , λs) = (λsa

d , λ
sa
s ), but then |η

sa
d |+|ηsa

s |
|ηd |+|ηs | = D ≈ 2.83

Maybe (ηd , ηs) = (ηsa
d , η

sa
s ), but then

(
λsa

d
λd

λsa
s
λs

) 1
2 = D ≈ 2.83
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Identification via Seasonal Heteroskedasticity

Allow V [εt ]−1 = Λt , where Λt = Λt′ if t mod ns= t ′

Precision of reduced-form residuals: Qt ≡ V [et ]−1 = Ψ′ΛtΨ

Standard ID through heteroskedasticity argument

Notice QtQ−1
t′ = Ψ′ΛtΛ−1

t′ Ψ′−1

If ΛtΛ−1
t′ has distinct diagonal elements, rows of Ψ are

(proportional to) eigenvectors of QtQ−1
t′

Rigobon (2003): “Probabilistic instruments”

Doppelt Seasonality and BVARs



Statistical Challenges in Seasonality
And Possible Bayesian Solutions

yt = µ + st + ỹt

Sample-size issue

50 years of monthly data: T = 600

Need to estimate January-specific mean with only 50 Januarys

Alternative: Fit a model to yt − yt−12

Need to check for up to 12 unit roots

Frequentist tests can pose practical challenges

Want: A prior for seasonal processes

Favor smoothness in st

Favor seasonal unit roots, or spectral peaks, in ỹt
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Why Not Seasonal Dummies?
Consider Bddt = µ + st for seasonal dummies dt
Consider the prior vec (Bd ) ∼ N

(
0, σ2

d I
)

Then: Eprior
[

1
T
∑

t s2
j,t

]
= ns−1

ns
σ2

d
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A Prior for Deterministic Seasonality

st = Bwt , where wt contains ns − 1 seasonal sinusoids
(periods of 1 year, 1

2 year, 1
3 year, etc.)
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A Prior for Stochastic Seasonality
Beliefs About The Spectrum

A (L) ỹt = εt , with A (L) ≡ Ψ−
∑m
`=1 Φ`L`

Spectrum of ỹt : f (ω) = 1
2π
[
A (exp {iω})′ ΛA (exp {−iω})

]−1

Seasonal unit root: |A (exp {iω∗})| = 0

Implies |f (exp {iω∗})| → ∞ as ω → ω∗

Oscillations at frequency ω∗ important for variation in ỹt

The prior will favor, but not impose, A (exp {iω∗}) = 0 for
seasonal ω∗

Stochastic linear restrictions: A (exp {iω∗}) ∼ Complex
normal with zero mean Details
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A Prior for Stochastic Seasonality
Implied Prior Over the Spectrum
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A Prior for Stochastic Seasonality
Implied Prior Over the Spectrum
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Application: Labor Supply and Demand
Based on Baumeister and Hamilton (Econometrica, 2015)

Structural VAR

Ψ (yt−` − µ− st ) =
m∑
`=1

Φ` (yt−` − µ− st−`) + εt , εt
i.i.d.∼ N

(
0,Λ−1

t
)

with:

yt =
[

∆ log (real waget )
∆ log (personhourst )

]
, εt =

[
εdt
εst

]
, Ψ =

[
−ηd 1
−ηs 1

]
Implies a demand curve and a supply curve:
∆ log (personhourst ) = cd + ηd ×∆ log (real waget ) + δ′d wt + φd (L)′ yt + εdt

∆ log (personhourst ) = cs + ηs ×∆ log (real waget ) + δ′swt + φs (L)′ yt + εst

“Seasonally adjusted model”: Fit to SA time series

“Seasonal model”: Fit to NSA time series

Heteroskedasticity by season & heteroskedasticity à la
Brunnermeier et al. (2021) Details
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A Look at the Data
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A Look at the Data
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Evidence of Seasonal Heteroskedasticity

Identification requires V [εst ] /V
[
εdt

]
to vary over time
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Non-Seasonal Heteroskedasticity

Identification requires V [εst ] /V
[
εdt

]
to vary over time
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Structural Parameters

ηd
1
T

∑
t
V
[
εd,t
]

ηs 1
T

∑
t
V
[
εs,t
]

Seasonal
Model

−2.58
[−3.27,−2.06]

2.00
[1.49, 2.80]

1.36
[1.19, 1.55]

0.62
[0.55, 0.71]

Seasonally
Adjusted Model

−1.21
[−2.44,−0.67]

0.40
[0.28, 0.94]

1.59
[0.79, 2.92]

0.53
[0.30, 1.24]

Posterior Median Estimates. 10th & 90th Posterior Quantiles in Brackets.
Homoskedastic Estimates
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Impulse Responses
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Variance Decompositions

Wage Growth Hours Growth

Seasonal
Seasonally

Seasonal
Seasonally

Adjusted Adjusted

Unconditional Variance 25
[19, 32]

57
[24, 81]

52
[43, 60]

43
[19, 75]

Low Frequencies 41
[30, 53]

57
[24, 83]

55
[45, 64]

42
[18, 74]

Business-Cycle Frequencies 40
[29, 50]

57
[24, 82]

55
[46, 64]

42
[18, 75]

Irregular Frequencies 23
[17, 30]

57
[24, 81]

51
[43, 59]

43
[19, 75]

Percent Attributable to Supply Shocks.

Posterior Median Estimates. 10th and 90th Posterior Quantiles in Brackets.

Business-Cycle Frequencies: Periodicities between 1.5 and 8 years.
Low frequencies (irregular frequencies): All periodicities longer (shorter) than business cycles.
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Thanks!

Questions/Comments/Suggestions?
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Selected Literature Return

Bayesian priors for seasonality: Canova (1992, 1993), Raynaud
and Simonato (1993), Gersovitz and McKinnon (1978)

Seasonality and causality in distributed-lag models: Sims
(1974), Wallis (1974), Granger (1978)

Seasonality and identification in equilibrium models: Sargent
(1978), Ghysels (1988), Hansen and Sargent (1993), Sims
(1993), Christiano and Todd (2002), Saijo (2013)

Filtering and interpreting economic models: Nelson and Kang
(1981), King and Rebelo (1993), Cogley and Nason (1995),
Hamilton (2018), Ashley and Verbrugge (2022)
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A Prior for Stochastic Seasonality
Favoring Seasonal Unit Roots Return

A (exp {iω∗}) = 0 requires zero real and imaginary parts:

A (exp {iω∗}) = Ψ−
m∑
`=1

Φ` cos (ω∗`)︸ ︷︷ ︸
<(A(exp{iω∗}))

+ i
m∑
`=1

Φ` sin (ω∗`)︸ ︷︷ ︸
=(A(exp{iω∗}))

Prior treats each column of < (A (exp {iω∗})) and
= (A (exp {iω∗})) as N

(
0,
(
τ2
ω∗Λ

)−1), so A (exp {iω∗}) is
mean-zero complex normal

Dummy observations implementation:

Ȳω∗Ψ′ = X̄ω∗Φ′ + Ēω∗ ,
(

Ēω∗
)

j,k
i.i.d.∼ N (0, λk )

Ȳω∗ ≡ τω∗

[
In

0n×n

]
X̄ω∗ ≡ τω∗

[
cos (ω∗1) cos (ω∗2) · · · cos (ω∗m)
sin (ω∗1) sin (ω∗2) · · · sin (ω∗m)

]
⊗ In
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Non-Seasonal Heteroskedasticity
Following Brunnermeier, Palia, Sastry, and Sims (AER, 2021) Return

Start End

1 Pre-Stagflation Jan. 1967 Dec. 1972

2 Stagflation Jan. 1973 Sep. 1979

3 Volcker Disinflation Oct. 1979 Dec. 1982

4 S&L Crisis Jan. 1983 Dec. 1989

5 Great Moderation Jan. 1990 Dec. 2007

6 Financial Crisis Jan. 2008 Dec. 2010

7 ZLB & Recovery Jan. 2011 Nov. 2016

8 Interest-Rate Takeoff Dec. 2016 Dec. 2019

My sample: Jan. 1967 – Dec. 2019. Brunnermeier et al.’s
sample: Jan. 1973 – Jun. 2015.
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Structural Parameters
The Role of Heteroskedasticity

ηd
1
T

∑
t
V
[
εd,t
]

ηs 1
T

∑
t
V
[
εs,t
]

Seasonal
Model

Hetero-
skedastic

−2.58
[−3.27,−2.06]

2.00
[1.49, 2.80]

1.36
[1.19, 1.55]

0.62
[0.55, 0.71]

Homo-
skedastic

−2.19
[−3.29,−1.52]

1.64
[1.10, 2.85]

1.46
[1.15, 1.83]

0.66
[0.55, 0.83]

Seasonally
Adj. Model

Hetero-
skedastic

−1.21
[−2.44,−0.67]

0.40
[0.28, 0.94]

1.59
[0.79, 2.92]

0.53
[0.30, 1.24]

Homo-
skedastic

−1.37
[−2.28,−0.84]

0.49
[0.34, 0.93]

1.37
[0.84, 2.20]

0.48
[0.33, 0.86]

Posterior Median Estimates. 10th & 90th Posterior Quantiles in Brackets.
Return
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