

Should Macroeconomists Use Seasonally Adjusted Time Series?

Structural Identification and Bayesian Estimation in Seasonal Vector Autoregressions

Ross Doppelt

NBER Summer Institute: July 14, 2022

- Seasonality and identification
 - The X-11 filter and distortions to identification
 - Identification through seasonal heteroskedasticity
- Estimation: A Bayesian Approach
- Application: Supply and demand in U.S. labor markets

A Taxonomy of Seasonality

- Assume n_s seasons per year ($n_s = 12$ for monthly data)
- Let \mathbf{y}_t be an $n \times 1$ vector time series

$$\mathbf{y}_t = \boldsymbol{\mu} + \mathbf{s}_t + \tilde{\mathbf{y}}_t$$

- \mathbf{s}_t repeats annually: $\mathbf{s}_t = \mathbf{s}_{t-n_s}$
- $\tilde{\mathbf{y}}_t$ is a purely non-deterministic stochastic process
- Deterministic seasonality: Captured by \mathbf{s}_t
- Stochastic seasonality: $\tilde{\mathbf{y}}_t$ can have seasonal spectral peaks
- X-11 seasonal adjustment has 2 main steps:
 - Estimate \mathbf{s}_t and subtract it from \mathbf{y}_t
 - Apply a filter to $\tilde{\mathbf{y}}_t$ to suppress seasonal spectral peaks

An Overview of the X-11 Filter

- Suppose (for now) \mathbf{y}_t has no deterministic terms ($\mathbf{y}_t = \tilde{\mathbf{y}}_t$)
- Time domain: $\mathbf{y}_t^{sa} \equiv \xi(L) \mathbf{y}_t$
- Freq. domain: $\mathbf{f}^{sa}(\omega) = \Xi(\omega) \mathbf{f}(\omega)$, $\Xi(\omega) \equiv |\xi(\exp\{-i\omega\})|^2$

- If \mathbf{y}_t is stationary, it has a reduced-form representation:

$$\mathbf{y}_t = \hat{\mathbf{y}}_t + \mathbf{e}_t$$

- $\hat{\mathbf{y}}_t$ is the projection of \mathbf{y}_t on $\{\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots\}$
- \mathbf{e}_t is white noise with precision $\mathbf{Q} \equiv \mathbb{V}[\mathbf{e}_t]^{-1}$
- Assume that residuals are functions of structural shocks ϵ_t
 - $\mathbf{e}_t = \Psi^{-1} \epsilon_t$ for some invertible Ψ
 - $\Lambda \equiv \mathbb{V}[\epsilon_t]^{-1}$ where Λ is diagonal
- An identification scheme is a mapping $\mathcal{I} : \mathbf{Q} \mapsto (\Psi, \Lambda)$ such that $\Psi' \Lambda \Psi = \mathbf{Q}$ whenever $(\Psi, \Lambda) = \mathcal{I}(\mathbf{Q})$
- Replace $\mathbf{y}_t, \hat{\mathbf{y}}_t, \mathbf{e}_t, \mathbf{Q}$ with $\mathbf{y}_t^{sa}, \hat{\mathbf{y}}_t^{sa}, \mathbf{e}_t^{sa}, \mathbf{Q}^{sa}$. How does $\mathcal{I}(\mathbf{Q}^{sa})$ compare to $\mathcal{I}(\mathbf{Q})$?

A Conceptual Issue

- Shocks extracted from the data
 - Using NSA series: $\epsilon_t = \Psi \mathbf{e}_t$, where $(\Psi, \Lambda) = \mathcal{I}(\mathbf{Q})$
 - Using SA series: $\epsilon_t^{sa} = \Psi^{sa} \mathbf{e}_t^{sa}$, where $(\Psi^{sa}, \Lambda^{sa}) = \mathcal{I}(\mathbf{Q}^{sa})$
- Recall that $\mathbf{y}_t^{sa} = \xi(L) \mathbf{y}_t$, and $\xi(L)$ is two-sided
 - \mathbf{e}_t^{sa} (ϵ_t^{sa}) synthesized using past, present, and future \mathbf{e}_t (ϵ_t)
 - By construction, $\epsilon_t^{sa} \perp \{\mathbf{y}_{t-1}^{sa}, \mathbf{y}_{t-2}^{sa}, \dots\}$, but $\epsilon_t^{sa} \not\perp \{\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots\}$

A Quantitative Issue

Filtering and Structural Parameters

- Kolmogorov's formula:

$$|\mathbf{Q}| = \exp \left\{ -\frac{1}{2\pi} \int_{-\pi}^{\pi} \log (|2\pi \mathbf{f}(\omega)|) d\omega \right\}$$

with analogous relationship between \mathbf{Q}^{sa} and $\mathbf{f}^{sa}(\cdot)$

- When the dimension of \mathbf{y}_t is n :

$$|\mathbf{Q}^{sa}| = D^n |\mathbf{Q}|, \quad D \equiv \exp \left\{ -\frac{1}{2\pi} \int_{-\pi}^{\pi} \log (\Xi(\omega)) d\omega \right\}$$

- For the X-11 filter shown earlier: $D \approx 2.83$
- Implication: $\mathcal{I}(\mathbf{Q}) \neq \mathcal{I}(\mathbf{Q}^{sa})$ or $\mathcal{I}(\mathbf{Q}) \cap \mathcal{I}(\mathbf{Q}^{sa}) = \emptyset$
- Example: With Cholesky identification, average log difference between $\frac{\partial \mathbf{y}_{k,t}}{\partial \epsilon_{k,t}}$ and $\frac{\partial \mathbf{y}_{k,t}^{sa}}{\partial \epsilon_{k,t}^{sa}}$ is about .52 ($\approx 68\%$)

Example: Labor Supply and Demand

Based on Baumeister and Hamilton (Econometrica, 2015)

$$\mathbf{y}_t = \begin{bmatrix} \Delta \log(\text{real wage}_t) \\ \Delta \log(\text{personhours}_t) \end{bmatrix}, \quad \boldsymbol{\epsilon}_t = \begin{bmatrix} \epsilon_t^d \\ \epsilon_t^s \end{bmatrix}, \quad \boldsymbol{\Psi} = \begin{bmatrix} -\eta_d & 1 \\ -\eta_s & 1 \end{bmatrix}$$

- Combine the above with reduced-form projection:

$$\begin{aligned} \Delta \log(\text{personhours}_t) &= \eta_d \times \Delta \log(\text{real wage}_t) + \boldsymbol{\phi}^d(L)' \mathbf{y}_t + \epsilon_t^d \\ \Delta \log(\text{personhours}_t) &= \eta_s \times \Delta \log(\text{real wage}_t) + \boldsymbol{\phi}^s(L)' \mathbf{y}_t + \epsilon_t^s \end{aligned}$$

- Identified Set:

$$\mathcal{I}(\mathbf{Q}) = \left\{ (\boldsymbol{\Psi}, \boldsymbol{\Lambda}) \left| \boldsymbol{\Psi} = \begin{bmatrix} -\eta_d & 1 \\ -\eta_s & 1 \end{bmatrix}, \boldsymbol{\Lambda} = \begin{bmatrix} \lambda_d & 0 \\ 0 & \lambda_s \end{bmatrix}, \eta_s, \lambda_d, \lambda_s > 0 > \eta_d \right. \right\}$$

- Maybe $(\lambda_d, \lambda_s) = (\lambda_d^{sa}, \lambda_s^{sa})$, but then $\frac{|\eta_d^{sa}| + |\eta_s^{sa}|}{|\eta_d| + |\eta_s|} = D \approx 2.83$
- Maybe $(\eta_d, \eta_s) = (\eta_d^{sa}, \eta_s^{sa})$, but then $\left(\frac{\lambda_d^{sa}}{\lambda_d} \frac{\lambda_s^{sa}}{\lambda_s} \right)^{\frac{1}{2}} = D \approx 2.83$

Identification via Seasonal Heteroskedasticity

- Allow $\mathbb{V}[\epsilon_t]^{-1} = \Lambda_t$, where $\Lambda_t = \Lambda_{t'}$ if $t \stackrel{\text{mod } n_s}{=} t'$
- Precision of reduced-form residuals: $\mathbf{Q}_t \equiv \mathbb{V}[\mathbf{e}_t]^{-1} = \Psi' \Lambda_t \Psi$
- Standard ID through heteroskedasticity argument
 - Notice $\mathbf{Q}_t \mathbf{Q}_{t'}^{-1} = \Psi' \Lambda_t \Lambda_{t'}^{-1} \Psi'^{-1}$
 - If $\Lambda_t \Lambda_{t'}^{-1}$ has distinct diagonal elements, rows of Ψ are (proportional to) eigenvectors of $\mathbf{Q}_t \mathbf{Q}_{t'}^{-1}$
- Rigobon (2003): “Probabilistic instruments”

Statistical Challenges in Seasonality

And Possible Bayesian Solutions

- $\mathbf{y}_t = \mu + \mathbf{s}_t + \tilde{\mathbf{y}}_t$
- Sample-size issue
 - 50 years of monthly data: $T = 600$
 - Need to estimate January-specific mean with only 50 Januaries
- Alternative: Fit a model to $\mathbf{y}_t - \mathbf{y}_{t-12}$
 - Need to check for up to 12 unit roots
 - Frequentist tests can pose practical challenges
- Want: A prior for seasonal processes
 - Favor smoothness in \mathbf{s}_t
 - Favor seasonal unit roots, or spectral peaks, in $\tilde{\mathbf{y}}_t$

Why Not Seasonal Dummies?

- Consider $\mathbf{B}_d \mathbf{d}_t = \mu + \mathbf{s}_t$ for seasonal dummies \mathbf{d}_t
- Consider the prior $\text{vec}(\mathbf{B}_d) \sim N(\mathbf{0}, \sigma_d^2 \mathbf{I})$
- Then: $\mathbb{E}_{prior} \left[\frac{1}{T} \sum_t \mathbf{s}_{j,t}^2 \right] = \frac{n_s - 1}{n_s} \sigma_d^2$

A Prior for Deterministic Seasonality

- $\mathbf{s}_t = \mathbf{B}\mathbf{w}_t$, where \mathbf{w}_t contains $n_s - 1$ seasonal sinusoids (periods of 1 year, $\frac{1}{2}$ year, $\frac{1}{3}$ year, etc.)

A Prior for Stochastic Seasonality

Beliefs About The Spectrum

- $\mathbf{A}(L)\tilde{\mathbf{y}}_t = \epsilon_t$, with $\mathbf{A}(L) \equiv \Psi - \sum_{\ell=1}^m \Phi_\ell L^\ell$

$$\text{Spectrum of } \tilde{\mathbf{y}}_t : \mathbf{f}(\omega) = \frac{1}{2\pi} \left[\mathbf{A}(\exp\{i\omega\})' \mathbf{\Lambda} \mathbf{A}(\exp\{-i\omega\}) \right]^{-1}$$

- Seasonal unit root: $|\mathbf{A}(\exp\{i\omega^*\})| = 0$
 - Implies $|\mathbf{f}(\exp\{i\omega^*\})| \rightarrow \infty$ as $\omega \rightarrow \omega^*$
 - Oscillations at frequency ω^* important for variation in $\tilde{\mathbf{y}}_t$
- The prior will favor, but not impose, $\mathbf{A}(\exp\{i\omega^*\}) = \mathbf{0}$ for seasonal ω^*
- Stochastic linear restrictions: $\mathbf{A}(\exp\{i\omega^*\}) \sim \text{Complex normal with zero mean}$ [Details](#)

A Prior for Stochastic Seasonality

Implied Prior Over the Spectrum

A Prior for Stochastic Seasonality

Implied Prior Over the Spectrum

Application: Labor Supply and Demand

Based on Baumeister and Hamilton (Econometrica, 2015)

- Structural VAR

$$\Psi(\mathbf{y}_{t-\ell} - \boldsymbol{\mu} - \mathbf{s}_t) = \sum_{\ell=1}^m \Phi_{\ell} (\mathbf{y}_{t-\ell} - \boldsymbol{\mu} - \mathbf{s}_{t-\ell}) + \boldsymbol{\epsilon}_t, \quad \boldsymbol{\epsilon}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{\Lambda}_t^{-1})$$

with:

$$\mathbf{y}_t = \begin{bmatrix} \Delta \log(\text{real wage}_t) \\ \Delta \log(\text{personhours}_t) \end{bmatrix}, \quad \boldsymbol{\epsilon}_t = \begin{bmatrix} \epsilon_t^d \\ \epsilon_t^s \end{bmatrix}, \quad \Psi = \begin{bmatrix} -\eta_d & 1 \\ -\eta_s & 1 \end{bmatrix}$$

- Implies a demand curve and a supply curve:

$$\begin{aligned} \Delta \log(\text{personhours}_t) &= c_d + \eta_d \times \Delta \log(\text{real wage}_t) + \delta'_d \mathbf{w}_t + \phi^d(L)' \mathbf{y}_t + \epsilon_t^d \\ \Delta \log(\text{personhours}_t) &= c_s + \eta_s \times \Delta \log(\text{real wage}_t) + \delta'_s \mathbf{w}_t + \phi^s(L)' \mathbf{y}_t + \epsilon_t^s \end{aligned}$$

- “Seasonally adjusted model”: Fit to SA time series
- “Seasonal model”: Fit to NSA time series
- Heteroskedasticity by season & heteroskedasticity à la Brunnermeier et al. (2021)

▶ Details

A Look at the Data

A Look at the Data

Evidence of Seasonal Heteroskedasticity

- Identification requires $\mathbb{V} [\epsilon_t^s] / \mathbb{V} [\epsilon_t^d]$ to vary over time

Non-Seasonal Heteroskedasticity

- Identification requires $\mathbb{V} [\epsilon_t^s] / \mathbb{V} [\epsilon_t^d]$ to vary over time

Structural Parameters

	η_d	$\frac{1}{T} \sum_t \mathbb{V} [\epsilon_{d,t}]$	η_s	$\frac{1}{T} \sum_t \mathbb{V} [\epsilon_{s,t}]$
Seasonal Model	-2.58 [-3.27, -2.06]	2.00 [1.49, 2.80]	1.36 [1.19, 1.55]	0.62 [0.55, 0.71]
Seasonally Adjusted Model	-1.21 [-2.44, -0.67]	0.40 [0.28, 0.94]	1.59 [0.79, 2.92]	0.53 [0.30, 1.24]

Posterior Median Estimates. 10th & 90th Posterior Quantiles in Brackets.

► Homoskedastic Estimates

Impulse Responses

Response of Wages to a Demand Shock

Response of Hours to a Demand Shock

Response of Wages to a Supply Shock

Response of Hours to a Supply Shock

Variance Decompositions

	Wage Growth	Hours Growth		
	Seasonal	Seasonally Adjusted	Seasonal	Seasonally Adjusted
Unconditional Variance	25 [19, 32]	57 [24, 81]	52 [43, 60]	43 [19, 75]
Low Frequencies	41 [30, 53]	57 [24, 83]	55 [45, 64]	42 [18, 74]
Business-Cycle Frequencies	40 [29, 50]	57 [24, 82]	55 [46, 64]	42 [18, 75]
Irregular Frequencies	23 [17, 30]	57 [24, 81]	51 [43, 59]	43 [19, 75]

Percent Attributable to Supply Shocks.

Posterior Median Estimates. 10th and 90th Posterior Quantiles in Brackets.

Business-Cycle Frequencies: Periodicities between 1.5 and 8 years.

Low frequencies (irregular frequencies): All periodicities longer (shorter) than business cycles.

Thanks!

- Questions/Comments/Suggestions?

- Bayesian priors for seasonality: Canova (1992, 1993), Raynaud and Simonato (1993), Gersovitz and McKinnon (1978)
- Seasonality and causality in distributed-lag models: Sims (1974), Wallis (1974), Granger (1978)
- Seasonality and identification in equilibrium models: Sargent (1978), Ghysels (1988), Hansen and Sargent (1993), Sims (1993), Christiano and Todd (2002), Saijo (2013)
- Filtering and interpreting economic models: Nelson and Kang (1981), King and Rebelo (1993), Cogley and Nason (1995), Hamilton (2018), Ashley and Verbrugge (2022)

A Prior for Stochastic Seasonality

Favoring Seasonal Unit Roots

▶ Return

- $\mathbf{A}(\exp\{i\omega^*\}) = \mathbf{0}$ requires zero real and imaginary parts:

$$\mathbf{A}(\exp\{i\omega^*\}) = \underbrace{\Psi - \sum_{\ell=1}^m \Phi_\ell \cos(\omega^* \ell)}_{\Re(\mathbf{A}(\exp\{i\omega^*\}))} + i \underbrace{\sum_{\ell=1}^m \Phi_\ell \sin(\omega^* \ell)}_{\Im(\mathbf{A}(\exp\{i\omega^*\}))}$$

- Prior treats each column of $\Re(\mathbf{A}(\exp\{i\omega^*\}))$ and $\Im(\mathbf{A}(\exp\{i\omega^*\}))$ as $N(\mathbf{0}, (\tau_{\omega^*}^2 \boldsymbol{\Lambda})^{-1})$, so $\mathbf{A}(\exp\{i\omega^*\})$ is mean-zero complex normal
- Dummy observations implementation:

$$\bar{\mathbf{Y}}_{\omega^*} \boldsymbol{\Psi}' = \bar{\mathbf{X}}_{\omega^*} \boldsymbol{\Phi}' + \bar{\boldsymbol{\varepsilon}}_{\omega^*}, \quad (\bar{\boldsymbol{\varepsilon}}_{\omega^*})_{j,k} \stackrel{\text{i.i.d.}}{\sim} N(0, \lambda_k)$$

$$\bar{\mathbf{Y}}_{\omega^*} \equiv \tau_{\omega^*} \begin{bmatrix} \mathbf{I}_n \\ \mathbf{0}_{n \times n} \end{bmatrix}$$

$$\bar{\mathbf{X}}_{\omega^*} \equiv \tau_{\omega^*} \begin{bmatrix} \cos(\omega^* 1) & \cos(\omega^* 2) & \cdots & \cos(\omega^* m) \\ \sin(\omega^* 1) & \sin(\omega^* 2) & \cdots & \sin(\omega^* m) \end{bmatrix} \otimes \mathbf{I}_n$$

Non-Seasonal Heteroskedasticity

Following Brunnermeier, Palia, Sastry, and Sims (AER, 2021)

[Return](#)

		Start	End
1	Pre-Stagflation	Jan. 1967	Dec. 1972
2	Stagflation	Jan. 1973	Sep. 1979
3	Volcker Disinflation	Oct. 1979	Dec. 1982
4	S&L Crisis	Jan. 1983	Dec. 1989
5	Great Moderation	Jan. 1990	Dec. 2007
6	Financial Crisis	Jan. 2008	Dec. 2010
7	ZLB & Recovery	Jan. 2011	Nov. 2016
8	Interest-Rate Takeoff	Dec. 2016	Dec. 2019

- My sample: Jan. 1967 – Dec. 2019. Brunnermeier et al.'s sample: Jan. 1973 – Jun. 2015.

Structural Parameters

The Role of Heteroskedasticity

		η_d	$\frac{1}{T} \sum_t \mathbb{V} [\epsilon_{d,t}]$	η_s	$\frac{1}{T} \sum_t \mathbb{V} [\epsilon_{s,t}]$
Seasonal Model	Heteroskedastic	-2.58 [-3.27, -2.06]	2.00 [1.49, 2.80]	1.36 [1.19, 1.55]	0.62 [0.55, 0.71]
	Homo-skedastic	-2.19 [-3.29, -1.52]	1.64 [1.10, 2.85]	1.46 [1.15, 1.83]	0.66 [0.55, 0.83]
Seasonally Adj. Model	Heteroskedastic	-1.21 [-2.44, -0.67]	0.40 [0.28, 0.94]	1.59 [0.79, 2.92]	0.53 [0.30, 1.24]
	Homo-skedastic	-1.37 [-2.28, -0.84]	0.49 [0.34, 0.93]	1.37 [0.84, 2.20]	0.48 [0.33, 0.86]

Posterior Median Estimates. 10th & 90th Posterior Quantiles in Brackets.

► Return