Should Macroeconomists Use Seasonally Adjusted Time Series?

Structural Identification and Bayesian Estimation in Seasonal Vector Autoregressions

Ross Doppelt

NBER Summer Institute: July 14, 2022

Agenda Literature

- Seasonality and identification
- The X-11 filter and distortions to identification
- Identification through seasonal heteroskedasticity
- Estimation: A Bayesian Approach
- Application: Supply and demand in U.S. labor markets

A Taxonomy of Seasonality

- Assume n_{s} seasons per year ($n_{s}=12$ for monthly data)
- Let \mathbf{y}_{t} be an $n \times 1$ vector time series

$$
\mathbf{y}_{t}=\boldsymbol{\mu}+\mathbf{s}_{t}+\tilde{\mathbf{y}}_{t}
$$

- \mathbf{s}_{t} repeats annually: $\mathbf{s}_{t}=\mathbf{s}_{t-n_{s}}$
- $\tilde{\mathbf{y}}_{t}$ is a purely non-deterministic stochastic process
- Deterministic seasonality: Captured by \mathbf{s}_{t}
- Stochastic seasonality: $\tilde{\mathbf{y}}_{t}$ can have seasonal spectral peaks
- X-11 seasonal adjustment has 2 main steps:
- Estimate \mathbf{s}_{t} and subtract it from \mathbf{y}_{t}
- Apply a filter to $\tilde{\mathbf{y}}_{t}$ to suppress seasonal spectral peaks

An Overview of the X-11 Filter

- Suppose (for now) \mathbf{y}_{t} has no deterministic terms $\left(\mathbf{y}_{t}=\tilde{\mathbf{y}}_{t}\right)$
- Time domain: $\mathbf{y}_{t}^{\text {sa }} \equiv \xi(L) \mathbf{y}_{t}$
- Freq. domain: $\mathbf{f}^{s a}(\omega)=\equiv(\omega) \mathbf{f}(\omega), \equiv(\omega) \equiv|\xi(\exp \{-i \omega\})|^{2}$

Structural Identification Framework

- If \mathbf{y}_{t} is stationary, it has a reduced-form representation:

$$
\mathbf{y}_{t}=\hat{\mathbf{y}}_{t}+\mathbf{e}_{t}
$$

- $\hat{\mathbf{y}}_{t}$ is the projection of \mathbf{y}_{t} on $\left\{\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots\right\}$
- \mathbf{e}_{t} is white noise with precision $\mathbf{Q} \equiv \mathbb{V}\left[\mathbf{e}_{t}\right]^{-1}$
- Assume that residuals are functions of structural shocks ϵ_{t}
- $\mathbf{e}_{t}=\boldsymbol{\Psi}^{-1} \boldsymbol{\epsilon}_{t}$ for some invertible $\boldsymbol{\Psi}$
- $\boldsymbol{\Lambda} \equiv \mathbb{V}\left[\epsilon_{t}\right]^{-1}$ where $\boldsymbol{\Lambda}$ is diagonal
- An identification scheme is a mapping $\mathcal{I}: \mathbf{Q} \mapsto(\boldsymbol{\Psi}, \boldsymbol{\Lambda})$ such that $\boldsymbol{\Psi}^{\prime} \boldsymbol{\Lambda} \boldsymbol{\Psi}=\mathbf{Q}$ whenever $(\boldsymbol{\Psi}, \boldsymbol{\Lambda})=\mathcal{I}(\mathbf{Q})$
- Replace $\mathbf{y}_{t}, \hat{\mathbf{y}}_{t}, \mathbf{e}_{t}, \mathbf{Q}$ with $\mathbf{y}_{t}^{\text {sa }}, \hat{\mathbf{y}}_{t}^{\text {sa }}, \mathbf{e}_{t}^{\text {sa }}, \mathbf{Q}^{\text {sa }}$. How does $\mathcal{I}\left(\mathbf{Q}^{\text {sa }}\right)$ compare to $\mathcal{I}(\mathbf{Q})$?

A Conceptual Issue

- Shocks extracted from the data
- Using NSA series: $\boldsymbol{\epsilon}_{t}=\boldsymbol{\Psi} \mathbf{e}_{t}$, where $(\boldsymbol{\Psi}, \boldsymbol{\Lambda})=\mathcal{I}(\mathbf{Q})$
- Using SA series: $\boldsymbol{\epsilon}_{t}^{s a}=\boldsymbol{\Psi}^{\text {sa }} \mathbf{e}_{t}^{\text {sa }}$, where $\left(\boldsymbol{\Psi}^{\text {sa }}, \boldsymbol{\Lambda}^{s a}\right)=\mathcal{I}\left(\mathbf{Q}^{\text {sa }}\right)$
- Recall that $\mathbf{y}_{t}^{\text {sa }}=\xi(L) \mathbf{y}_{t}$, and $\xi(L)$ is two-sided
- $\mathbf{e}_{t}^{\text {sa }}\left(\epsilon_{t}^{\text {sa }}\right)$ synthesized using past, present, and future $\mathbf{e}_{t}\left(\epsilon_{t}\right)$
- By construction, $\epsilon_{t}^{\text {sa }} \perp\left\{\mathbf{y}_{t-1}^{\text {sa }}, \mathbf{y}_{t-2}^{\text {sa }}, \ldots\right\}$, but $\epsilon_{t}^{s a} \not \perp\left\{\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots\right\}$

A Quantitative Issue

Filtering and Structural Parameters

- Kolmogorov's formula:

$$
|\mathbf{Q}|=\exp \left\{-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log (|2 \pi \mathbf{f}(\omega)|) d \omega\right\}
$$

with analogous relationship between $\mathbf{Q}^{\text {sa }}$ and $\mathbf{f}^{\text {sa }}(\cdot)$

- When the dimension of \mathbf{y}_{t} is n :

$$
\left|\mathbf{Q}^{\text {sa }}\right|=D^{n}|\mathbf{Q}|, \quad D \equiv \exp \left\{-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log (\equiv(\omega)) d \omega\right\}
$$

- For the X - 11 filter shown earlier: $D \approx 2.83$
- Implication: $\mathcal{I}(\mathbf{Q}) \neq \mathcal{I}\left(\mathbf{Q}^{\text {sa }}\right)$ or $\mathcal{I}(\mathbf{Q}) \cap \mathcal{I}\left(\mathbf{Q}^{\text {sa }}\right)=\emptyset$
- Example: With Cholesky identification, average log difference between $\frac{\partial \mathbf{y}_{k, t}}{\partial \epsilon_{k, t}}$ and $\frac{\partial y_{k, t}^{s a}}{\partial \epsilon_{k, t}^{s a}}$ is about $.52(\approx 68 \%)$

Example: Labor Supply and Demand

Based on Baumeister and Hamilton (Econometrica, 2015)

$$
\mathbf{y}_{t}=\left[\begin{array}{c}
\Delta \log \left(\text { real wage }_{t}\right) \\
\Delta \log \left(\text { personhours }_{t}\right)
\end{array}\right], \quad \boldsymbol{\epsilon}_{t}=\left[\begin{array}{c}
\epsilon_{t}^{d} \\
\epsilon_{t}^{s}
\end{array}\right], \quad \boldsymbol{\Psi}=\left[\begin{array}{cc}
-\eta_{d} & 1 \\
-\eta_{s} & 1
\end{array}\right]
$$

- Combine the above with reduced-form projection:

$$
\begin{aligned}
\Delta \log \left(\text { personhours }_{t}\right) & =\eta_{d} \times \Delta \log \left(\text { real wage }_{t}\right)+\phi^{d}(L)^{\prime} \mathbf{y}_{t}+\epsilon_{t}^{d} \\
\Delta \log \left(\text { personhours }_{t}\right) & =\eta_{s} \times \Delta \log \left(\text { real wage }_{t}\right)+\phi^{s}(L)^{\prime} \mathbf{y}_{t}+\epsilon_{t}^{s}
\end{aligned}
$$

- Identified Set:

$$
\mathcal{I}(\mathbf{Q})=\left\{(\boldsymbol{\Psi}, \boldsymbol{\Lambda}) \left\lvert\, \boldsymbol{\Psi}=\left[\begin{array}{cc}
-\eta_{d} & 1 \\
-\eta_{s} & 1
\end{array}\right]\right., \boldsymbol{\Lambda}=\left[\begin{array}{cc}
\lambda_{d} & 0 \\
0 & \lambda_{s}
\end{array}\right], \quad \begin{array}{c}
\boldsymbol{\Psi}^{\prime} \mathbf{\Lambda} \boldsymbol{\Psi}=\mathbf{Q} \\
\eta_{s}, \lambda_{d}, \lambda_{s}>0>\eta_{d}
\end{array}\right\}
$$

- Maybe $\left(\lambda_{d}, \lambda_{s}\right)=\left(\lambda_{d}^{s a}, \lambda_{s}^{s a}\right)$, but then $\frac{\left|\eta_{d}^{s a}\right|+\left|\eta_{s}^{s a}\right|}{\left|\eta_{d}\right|+\left|\eta_{s}\right|}=D \approx 2.83$
- Maybe $\left(\eta_{d}, \eta_{s}\right)=\left(\eta_{d}^{s a}, \eta_{s}^{s a}\right)$, but then $\left(\frac{\lambda_{d}^{s a}}{\lambda_{d}} \frac{\lambda_{s}^{s a}}{\lambda_{s}}\right)^{\frac{1}{2}}=D \approx 2.83$

Identification via Seasonal Heteroskedasticity

- Allow $\mathbb{V}\left[\boldsymbol{\epsilon}_{t}\right]^{-1}=\boldsymbol{\Lambda}_{t}$, where $\boldsymbol{\Lambda}_{t}=\boldsymbol{\Lambda}_{t^{\prime}}$ if $t \stackrel{\bmod n_{s}}{=} t^{\prime}$
- Precision of reduced-form residuals: $\mathbf{Q}_{t} \equiv \mathbb{V}\left[\mathbf{e}_{t}\right]^{-1}=\boldsymbol{\Psi}^{\prime} \boldsymbol{\Lambda}_{t} \boldsymbol{\Psi}$
- Standard ID through heteroskedasticity argument
- Notice $\mathbf{Q}_{t} \mathbf{Q}_{t^{\prime}}^{-1}=\boldsymbol{\Psi}^{\prime} \boldsymbol{\Lambda}_{t} \boldsymbol{\Lambda}_{t^{\prime}}^{-1} \boldsymbol{\Psi}^{\prime-1}$
- If $\boldsymbol{\Lambda}_{t} \boldsymbol{\Lambda}_{t^{\prime}}^{-1}$ has distinct diagonal elements, rows of $\boldsymbol{\Psi}$ are (proportional to) eigenvectors of $\mathbf{Q}_{t} \mathbf{Q}_{t^{\prime}}^{-1}$
- Rigobon (2003): "Probabilistic instruments"

Statistical Challenges in Seasonality

And Possible Bayesian Solutions

- $\mathbf{y}_{t}=\boldsymbol{\mu}+\mathbf{s}_{t}+\tilde{\mathbf{y}}_{t}$
- Sample-size issue
- 50 years of monthly data: $T=600$
- Need to estimate January-specific mean with only 50 Januarys
- Alternative: Fit a model to $\mathbf{y}_{t}-\mathbf{y}_{t-12}$
- Need to check for up to 12 unit roots
- Frequentist tests can pose practical challenges
- Want: A prior for seasonal processes
- Favor smoothness in \mathbf{s}_{t}
- Favor seasonal unit roots, or spectral peaks, in $\tilde{\mathbf{y}}_{t}$

Why Not Seasonal Dummies?

- Consider $\mathbf{B}_{d} \mathbf{d}_{t}=\boldsymbol{\mu}+\mathbf{s}_{t}$ for seasonal dummies \mathbf{d}_{t}
- Consider the prior vec $\left(\mathbf{B}_{d}\right) \sim \mathrm{N}\left(\mathbf{0}, \sigma_{d}^{2} \mathbf{l}\right)$
- Then: $\mathbb{E}_{\text {prior }}\left[\frac{1}{T} \sum_{t} \mathbf{s}_{j, t}^{2}\right]=\frac{n_{s}-1}{n_{s}} \sigma_{d}^{2}$

A Prior for Deterministic Seasonality

- $\mathbf{s}_{t}=\mathbf{B w}_{t}$, where \mathbf{w}_{t} contains $n_{s}-1$ seasonal sinusoids (periods of 1 year, $\frac{1}{2}$ year, $\frac{1}{3}$ year, etc.)

A Prior for Stochastic Seasonality

Beliefs About The Spectrum

- $\mathbf{A}(L) \tilde{\mathbf{y}}_{t}=\boldsymbol{\epsilon}_{t}$, with $\mathbf{A}(L) \equiv \boldsymbol{\Psi}-\sum_{\ell=1}^{m} \boldsymbol{\Phi}_{\ell} L^{\ell}$

Spectrum of $\tilde{\mathbf{y}}_{t}: \quad \mathbf{f}(\omega)=\frac{1}{2 \pi}\left[\mathbf{A}(\exp \{i \omega\})^{\prime} \boldsymbol{\Lambda} \mathbf{A}(\exp \{-i \omega\})\right]^{-1}$

- Seasonal unit root: $\left|\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)\right|=0$
- Implies $\left|\mathbf{f}\left(\exp \left\{i \omega^{*}\right\}\right)\right| \rightarrow \infty$ as $\omega \rightarrow \omega^{*}$
- Oscillations at frequency ω^{*} important for variation in $\tilde{\mathbf{y}}_{t}$
- The prior will favor, but not impose, $\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)=\mathbf{0}$ for seasonal ω^{*}
- Stochastic linear restrictions: $\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right) \sim$ Complex normal with zero mean Details

A Prior for Stochastic Seasonality

Implied Prior Over the Spectrum

Prior Truncated to Stationary Region

A Prior for Stochastic Seasonality

Implied Prior Over the Spectrum

Application: Labor Supply and Demand

Based on Baumeister and Hamilton (Econometrica, 2015)

- Structural VAR

$$
\boldsymbol{\Psi}\left(\mathbf{y}_{t-\ell}-\mu-\mathbf{s}_{t}\right)=\sum_{\ell=1}^{m} \boldsymbol{\Phi}_{\ell}\left(\mathbf{y}_{t-\ell}-\boldsymbol{\mu}-\mathbf{s}_{t-\ell}\right)+\boldsymbol{\epsilon}_{t}, \boldsymbol{\epsilon}_{t} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(\mathbf{0}, \boldsymbol{\Lambda}_{t}^{-1}\right)
$$

with:

$$
\mathbf{y}_{t}=\left[\begin{array}{c}
\Delta \log \left(\text { real wage }_{t}\right) \\
\Delta \log \left(\text { personhours }_{t}\right)
\end{array}\right], \quad \epsilon_{t}=\left[\begin{array}{c}
\epsilon_{t}^{d} \\
\epsilon_{t}^{s}
\end{array}\right], \quad \boldsymbol{\Psi}=\left[\begin{array}{cc}
-\eta_{d} & 1 \\
-\eta_{s} & 1
\end{array}\right]
$$

- Implies a demand curve and a supply curve:

$$
\begin{aligned}
\Delta \log \left(\text { personhours }_{t}\right) & =c_{d}+\eta_{d} \times \Delta \log \left(\text { real wage }_{t}\right)+\delta_{d}^{\prime} \mathbf{w}_{t}+\phi^{d}(L)^{\prime} \mathbf{y}_{t}+\epsilon_{t}^{d} \\
\Delta \log \left(\text { personhours }_{t}\right) & =c_{s}+\eta_{s} \times \Delta \log \left(\text { real wage }_{t}\right)+\delta_{s}^{\prime} \mathbf{w}_{t}+\phi^{s}(L)^{\prime} \mathbf{y}_{t}+\epsilon_{t}^{s}
\end{aligned}
$$

- "Seasonally adjusted model": Fit to SA time series
- "Seasonal model": Fit to NSA time series
- Heteroskedasticity by season \& heteroskedasticity à la Brunnermeier et al. (2021)

A Look at the Data

A Look at the Data

Evidence of Seasonal Heteroskedasticity

- Identification requires $\mathbb{V}\left[\epsilon_{t}^{s}\right] / \mathbb{V}\left[\epsilon_{t}^{d}\right]$ to vary over time

Seasonal Model

Non-Seasonal Heteroskedasticity

- Identification requires $\mathbb{V}\left[\epsilon_{t}^{s}\right] / \mathbb{V}\left[\epsilon_{t}^{d}\right]$ to vary over time

	η_{d}	$\frac{1}{T} \sum_{t} \mathbb{V}\left[\epsilon_{d, t}\right]$	η_{s}	$\frac{1}{T} \sum_{t} \mathbb{V}\left[\epsilon_{s, t}\right]$
Seasonal Model	$[-3.27,-2.06]$	$[1.49,2.80]$	$[1.19,1.55]$	$[0.55,0.71]$
Seasonally Adjusted Model	$[-2.44,-0.67]$	$[0.28,0.94]$	$[0.79,2.92]$	$[0.30,1.24]$

Posterior Median Estimates. $10^{\text {th }}$ \& $90^{\text {th }}$ Posterior Quantiles in Brackets.

- Homoskedastic Estimates

Impulse Responses

Variance Decompositions

	Wage Growth		Hours Growth	
	Seasonal	Seasonally Adjusted	Seasonal	Seasonally Adjusted
Unconditional Variance	$\begin{gathered} 25 \\ {[19,32]} \end{gathered}$	$\begin{gathered} 57 \\ {[24,81]} \end{gathered}$	$\begin{gathered} 52 \\ {[43,60]} \end{gathered}$	$\begin{gathered} 43 \\ {[19,75]} \end{gathered}$
Low Frequencies	$\begin{gathered} 41 \\ {[30,53]} \end{gathered}$	$\begin{gathered} 57 \\ {[24,83]} \end{gathered}$	$\begin{gathered} 55 \\ {[45,64]} \end{gathered}$	$\begin{gathered} 42 \\ {[18,74]} \end{gathered}$
Business-Cycle Frequencies	$\begin{gathered} 40 \\ {[29,50]} \end{gathered}$	$\begin{gathered} 57 \\ {[24,82]} \end{gathered}$	$\begin{gathered} 55 \\ {[46,64]} \end{gathered}$	$\begin{gathered} 42 \\ {[18,75]} \end{gathered}$
Irregular Frequencies	$\begin{gathered} 23 \\ {[17,30]} \end{gathered}$	$\begin{gathered} 57 \\ {[24,81]} \end{gathered}$	$\begin{gathered} 51 \\ {[43,59]} \end{gathered}$	$\begin{gathered} 43 \\ {[19,75]} \end{gathered}$

Percent Attributable to Supply Shocks.
Posterior Median Estimates. $10^{\text {th }}$ and $90^{\text {th }}$ Posterior Quantiles in Brackets.
Business-Cycle Frequencies: Periodicities between 1.5 and 8 years.
Low frequencies (irregular frequencies): All periodicities longer (shorter) than business cycles.

- Questions/Comments/Suggestions?
- Bayesian priors for seasonality: Canova $(1992,1993)$, Raynaud and Simonato (1993), Gersovitz and McKinnon (1978)
- Seasonality and causality in distributed-lag models: Sims (1974), Wallis (1974), Granger (1978)
- Seasonality and identification in equilibrium models: Sargent (1978), Ghysels (1988), Hansen and Sargent (1993), Sims (1993), Christiano and Todd (2002), Saijo (2013)
- Filtering and interpreting economic models: Nelson and Kang (1981), King and Rebelo (1993), Cogley and Nason (1995), Hamilton (2018), Ashley and Verbrugge (2022)

A Prior for Stochastic Seasonality

Favoring Seasonal Unit Roots

- Return

- $\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)=\mathbf{0}$ requires zero real and imaginary parts:

$$
\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)=\underbrace{\boldsymbol{\psi}-\sum_{\ell=1}^{m} \boldsymbol{\Phi}_{\ell} \cos \left(\omega^{*} \ell\right)}_{\Re\left(\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)\right)}+\underbrace{i \sum_{\ell=1}^{m} \boldsymbol{\Phi}_{\ell} \sin \left(\omega^{*} \ell\right)}_{\Im\left(\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)\right)}
$$

- Prior treats each column of $\Re\left(\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)\right)$ and $\Im\left(\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)\right)$ as $\mathrm{N}\left(\mathbf{0},\left(\tau_{\omega^{*}}^{2} \boldsymbol{\Lambda}\right)^{-1}\right)$, so $\mathbf{A}\left(\exp \left\{i \omega^{*}\right\}\right)$ is mean-zero complex normal
- Dummy observations implementation:

$$
\begin{aligned}
\overline{\mathbf{Y}}_{\omega^{*}} \boldsymbol{\Psi}^{\prime} & =\overline{\mathbf{X}}_{\omega^{*}} \boldsymbol{\Phi}^{\prime}+\overline{\mathcal{E}}_{\omega^{*}}, \quad\left(\overline{\mathcal{E}}_{\omega^{*}}\right)_{j, k} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(0, \lambda_{k}\right) \\
\overline{\mathbf{Y}}_{\omega^{*}} & \equiv \tau_{\omega^{*}}\left[\begin{array}{c}
\mathbf{I}_{n} \\
\mathbf{0}_{n \times n}
\end{array}\right] \\
\overline{\mathbf{X}}_{\omega^{*}} & \equiv \tau_{\omega^{*}}\left[\begin{array}{cccc}
\cos \left(\omega^{*} 1\right) & \cos \left(\omega^{*} 2\right) & \cdots & \cos \left(\omega^{*} m\right) \\
\sin \left(\omega^{*} 1\right) & \sin \left(\omega^{*} 2\right) & \cdots & \sin \left(\omega^{*} m\right)
\end{array}\right] \otimes \mathbf{I}_{n}
\end{aligned}
$$

Non-Seasonal Heteroskedasticity

Following Brunnermeier, Palia, Sastry, and Sims (AER, 2021)

		Start	End
1	Pre-Stagflation	Jan. 1967	Dec. 1972
2	Stagflation	Jan. 1973	Sep. 1979
3	Volcker Disinflation	Oct. 1979	Dec. 1982
4	S\&L Crisis	Jan. 1983	Dec. 1989
5	Great Moderation	Jan. 1990	Dec. 2007
6	Financial Crisis	Jan. 2008	Dec. 2010
7	ZLB \& Recovery	Jan. 2011	Nov. 2016
8	Interest-Rate Takeoff	Dec. 2016	Dec. 2019

- My sample: Jan. 1967 - Dec. 2019. Brunnermeier et al.'s sample: Jan. 1973 - Jun. 2015.

Structural Parameters

The Role of Heteroskedasticity

		η_{d}	$\frac{1}{T} \sum_{t} \mathbb{V}\left[\epsilon_{d, t}\right]$	η_{s}	$\frac{1}{T} \sum_{t} \mathbb{V}\left[\epsilon_{s, t}\right]$
Seasonal Model	Hetero- skedastic	$[-3.27,-2.06]$	$[1.49,2.80]$	$[1.19,1.55]$	$[0.55,0.71]$
	Homo- skedastic	$[-3.29,-1.52]$	$[1.10,2.85]$	$[1.15,1.83]$	$[0.55,0.83]$
	Hetero- skedastic	$[-2.44,-0.67]$	$[0.28,0.94]$	$[0.79,2.92]$	$[0.30,1.24]$
	Homo- skedastic	$[-2.28,-0.84]$	$[0.34,0.93]$	1.37 $[0.84,2.20]$	$[0.33,0.86]$

Posterior Median Estimates. $10^{\text {th }}$ \& $90^{\text {th }}$ Posterior Quantiles in Brackets.

$$
\checkmark \text { Return }
$$

