Should Macroeconomists Use Seasonally Adjusted Time Series? Structural Identification and Bayesian Estimation in Seasonal Vector Autoregressions

Ross Doppelt

NBER Summer Institute: July 14, 2022

- Seasonality and identification
 - The X-11 filter and distortions to identification
 - Identification through seasonal heteroskedasticity
- Estimation: A Bayesian Approach
- Application: Supply and demand in U.S. labor markets

A Taxonomy of Seasonality

- Assume n_s seasons per year ($n_s = 12$ for monthly data)
- Let \mathbf{y}_t be an $n \times 1$ vector time series

$$\mathbf{y}_t = \boldsymbol{\mu} + \mathbf{s}_t + \tilde{\mathbf{y}}_t$$

- \mathbf{s}_t repeats annually: $\mathbf{s}_t = \mathbf{s}_{t-n_s}$
- $\tilde{\mathbf{y}}_t$ is a purely non-deterministic stochastic process
- Deterministic seasonality: Captured by \mathbf{s}_t
- Stochastic seasonality: $\tilde{\mathbf{y}}_t$ can have seasonal spectral peaks
- X-11 seasonal adjustment has 2 main steps:
 - Estimate \mathbf{s}_t and subtract it from \mathbf{y}_t
 - \bullet Apply a filter to $\tilde{\mathbf{y}}_t$ to suppress seasonal spectral peaks

An Overview of the X-11 Filter

- Suppose (for now) \mathbf{y}_t has no deterministic terms $(\mathbf{y}_t = \tilde{\mathbf{y}}_t)$
- Time domain: $\mathbf{y}_{t}^{sa} \equiv \xi(L) \mathbf{y}_{t}$

Doppelt

Seasonality and BVARs

Structural Identification Framework

• If \mathbf{y}_t is stationary, it has a reduced-form representation:

$$\mathbf{y}_t = \hat{\mathbf{y}}_t + \mathbf{e}_t$$

• $\hat{\mathbf{y}}_t$ is the projection of \mathbf{y}_t on $\{\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots\}$

• \mathbf{e}_t is white noise with precision $\mathbf{Q} \equiv \mathbb{V}[\mathbf{e}_t]^{-1}$

• Assume that residuals are functions of structural shocks ϵ_t

•
$$\mathbf{e}_t = \mathbf{\Psi}^{-1} \boldsymbol{\epsilon}_t$$
 for some invertible $\mathbf{\Psi}$

•
$$\mathbf{\Lambda} \equiv \mathbb{V}\left[\boldsymbol{\epsilon}_{t}
ight]^{-1}$$
 where $\mathbf{\Lambda}$ is diagonal

- An identification scheme is a mapping $\mathcal{I} : \mathbf{Q} \mapsto (\Psi, \Lambda)$ such that $\Psi' \Lambda \Psi = \mathbf{Q}$ whenever $(\Psi, \Lambda) = \mathcal{I}(\mathbf{Q})$
- Replace \mathbf{y}_t , $\hat{\mathbf{y}}_t$, \mathbf{e}_t , \mathbf{Q} with \mathbf{y}_t^{sa} , $\hat{\mathbf{y}}_t^{sa}$, \mathbf{e}_t^{sa} , \mathbf{Q}^{sa} . How does $\mathcal{I}(\mathbf{Q}^{sa})$ compare to $\mathcal{I}(\mathbf{Q})$?

- Shocks extracted from the data
 - Using NSA series: $\boldsymbol{\epsilon}_{t} = \boldsymbol{\Psi} \mathbf{e}_{t}$, where $(\boldsymbol{\Psi}, \boldsymbol{\Lambda}) = \mathcal{I}(\mathbf{Q})$
 - Using SA series: $\epsilon_t^{sa} = \Psi^{sa} \mathbf{e}_t^{sa}$, where $(\Psi^{sa}, \Lambda^{sa}) = \mathcal{I}(\mathbf{Q}^{sa})$
- Recall that $\mathbf{y}_{t}^{sa} = \xi(L) \mathbf{y}_{t}$, and $\xi(L)$ is two-sided
 - $\mathbf{e}_{t}^{sa}\left(\epsilon_{t}^{sa}
 ight)$ synthesized using past, present, and future $\mathbf{e}_{t}\left(\epsilon_{t}
 ight)$
 - By construction, $\epsilon_t^{sa} \perp \{\mathbf{y}_{t-1}^{sa}, \mathbf{y}_{t-2}^{sa}, \ldots\}$, but $\epsilon_t^{sa} \not\perp \{\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots\}$

向下 イヨト イヨト ニヨ

• Kolmogorov's formula:

$$\left|\mathbf{Q}
ight|=\exp\left\{-rac{1}{2\pi}\int_{-\pi}^{\pi}\log\left(\left|2\pi\mathbf{f}\left(\omega
ight)
ight|
ight)d\omega
ight\}$$

with analogous relationship between Q^{sa} and $f^{\text{sa}}\left(\cdot\right)$

• When the dimension of \mathbf{y}_t is *n*:

$$\left|\mathbf{Q}^{ss}
ight|=D^{n}\left|\mathbf{Q}
ight|,\quad D\equiv\exp\left\{-rac{1}{2\pi}\int_{-\pi}^{\pi}\log\left(\Xi\left(\omega
ight)
ight)d\omega
ight\}$$

- For the X-11 filter shown earlier: $D \approx 2.83$
- Implication: $\mathcal{I}(\mathbf{Q}) \neq \mathcal{I}(\mathbf{Q}^{sa})$ or $\mathcal{I}(\mathbf{Q}) \cap \mathcal{I}(\mathbf{Q}^{sa}) = \emptyset$
- Example: With Cholesky identification, average log difference between $\frac{\partial \mathbf{y}_{k,t}}{\partial \epsilon_{k,t}}$ and $\frac{\partial \mathbf{y}_{k,t}^{sa}}{\partial \epsilon_{k,t}^{sa}}$ is about .52 ($\approx 68\%$)

Example: Labor Supply and Demand Based on Baumeister and Hamilton (Econometrica, 2015)

$$\mathbf{y}_{t} = \begin{bmatrix} \Delta \log (\text{real wage}_{t}) \\ \Delta \log (\text{personhours}_{t}) \end{bmatrix}, \quad \boldsymbol{\epsilon}_{t} = \begin{bmatrix} \epsilon_{t}^{d} \\ \epsilon_{t}^{s} \end{bmatrix}, \quad \boldsymbol{\Psi} = \begin{bmatrix} -\eta_{d} & 1 \\ -\eta_{s} & 1 \end{bmatrix}$$

• Combine the above with reduced-form projection:

 $\begin{array}{lll} \Delta \log \left({\rm personhours}_t \right) & = & \eta_d \times \Delta \log \left({\rm real \ wage}_t \right) + \phi^d \left(L \right)' \mathbf{y}_t + \epsilon^d_t \\ \Delta \log \left({\rm personhours}_t \right) & = & \eta_s \times \Delta \log \left({\rm real \ wage}_t \right) + \phi^s \left(L \right)' \mathbf{y}_t + \epsilon^s_t \end{array}$

• Identified Set:

$$\mathcal{I}(\mathbf{Q}) = \left\{ (\mathbf{\Psi}, \mathbf{\Lambda}) \middle| \mathbf{\Psi} = \begin{bmatrix} -\eta_d & 1\\ -\eta_s & 1 \end{bmatrix}, \ \mathbf{\Lambda} = \begin{bmatrix} \lambda_d & 0\\ 0 & \lambda_s \end{bmatrix}, \quad \begin{array}{c} \mathbf{\Psi}' \mathbf{\Lambda} \mathbf{\Psi} = \mathbf{Q} \\ \eta_s, \lambda_d, \lambda_s > 0 > \eta_d \end{array} \right\}$$

• Maybe
$$(\lambda_d, \lambda_s) = (\lambda_d^{sa}, \lambda_s^{sa})$$
, but then $rac{|\eta_d^{sa}| + |\eta_s^{sa}|}{|\eta_d| + |\eta_s|} = D pprox 2.83$

• Maybe
$$(\eta_d, \eta_s) = (\eta_d^{sa}, \eta_s^{sa})$$
, but then $\left(\frac{\lambda_d^{sa}}{\lambda_d} \frac{\lambda_s^{sa}}{\lambda_s}\right)^{\frac{1}{2}} = D \approx 2.83$

Identification via Seasonal Heteroskedasticity

• Allow
$$\mathbb{V}[\boldsymbol{\epsilon}_t]^{-1} = \boldsymbol{\Lambda}_t$$
, where $\boldsymbol{\Lambda}_t = \boldsymbol{\Lambda}_{t'}$ if $t \stackrel{\text{mod } n_s}{=} t'$

- Precision of reduced-form residuals: $\mathbf{Q}_t \equiv \mathbb{V}[\mathbf{e}_t]^{-1} = \mathbf{\Psi}' \mathbf{\Lambda}_t \mathbf{\Psi}$
- Standard ID through heteroskedasticity argument

• Notice
$$\mathbf{Q}_t \mathbf{Q}_{t'}^{-1} = \mathbf{\Psi}' \mathbf{\Lambda}_t \mathbf{\Lambda}_{t'}^{-1} \mathbf{\Psi}'^{-1}$$

- If Λ_tΛ⁻¹_{t'} has distinct diagonal elements, rows of Ψ are (proportional to) eigenvectors of Q_tQ⁻¹_{t'}
- Rigobon (2003): "Probabilistic instruments"

Statistical Challenges in Seasonality

And Possible Bayesian Solutions

- $\mathbf{y}_t = \boldsymbol{\mu} + \mathbf{s}_t + \tilde{\mathbf{y}}_t$
- Sample-size issue
 - 50 years of monthly data: T = 600
 - Need to estimate January-specific mean with only 50 Januarys
- Alternative: Fit a model to $\mathbf{y}_t \mathbf{y}_{t-12}$
 - Need to check for up to 12 unit roots
 - Frequentist tests can pose practical challenges
- Want: A prior for seasonal processes
 - Favor smoothness in ${\boldsymbol{s}}_t$
 - Favor seasonal unit roots, or spectral peaks, in $\tilde{\mathbf{y}}_t$

Why Not Seasonal Dummies?

- Consider $\mathbf{B}_d \mathbf{d}_t = \boldsymbol{\mu} + \mathbf{s}_t$ for seasonal dummies \mathbf{d}_t
- Consider the prior vec $(\mathbf{B}_d) \sim N(\mathbf{0}, \sigma_d^2 \mathbf{I})$
- Then: $\mathbb{E}_{prior}\left[\frac{1}{T}\sum_{t}\mathbf{s}_{j,t}^{2}\right] = \frac{n_{s}-1}{n_{s}}\sigma_{d}^{2}$

A Prior for Deterministic Seasonality

• $\mathbf{s}_t = \mathbf{B}\mathbf{w}_t$, where \mathbf{w}_t contains $n_s - 1$ seasonal sinusoids (periods of 1 year, $\frac{1}{2}$ year, $\frac{1}{3}$ year, etc.)

Beliefs About The Spectrum

•
$$\mathbf{A}(L) \tilde{\mathbf{y}}_t = \epsilon_t$$
, with $\mathbf{A}(L) \equiv \mathbf{\Psi} - \sum_{\ell=1}^m \mathbf{\Phi}_\ell L^\ell$

Spectrum of $\tilde{\mathbf{y}}_t$: $\mathbf{f}(\omega) = \frac{1}{2\pi} \left[\mathbf{A} \left(\exp \left\{ i\omega \right\} \right)' \mathbf{A} \mathbf{A} \left(\exp \left\{ -i\omega \right\} \right) \right]^{-1}$

• Seasonal unit root: $|\mathbf{A}(\exp{\{i\omega^*\}})| = 0$

• Implies
$$|\mathbf{f}(\exp{\{i\omega^*\}})| \to \infty$$
 as $\omega \to \omega^*$

- Oscillations at frequency ω^* important for variation in $\tilde{\mathbf{y}}_t$
- The prior will favor, but not impose, A (exp {iω*}) = 0 for seasonal ω*
- Stochastic linear restrictions: A (exp {iω*}) ~ Complex normal with zero mean
 Details

Implied Prior Over the Spectrum

Implied Prior Over the Spectrum

Application: Labor Supply and Demand Based on Baumeister and Hamilton (Econometrica, 2015)

Structural VAR

$$\Psi\left(\mathbf{y}_{t-\ell} - \mu - \mathbf{s}_{t}\right) = \sum_{\ell=1}^{m} \Phi_{\ell}\left(\mathbf{y}_{t-\ell} - \mu - \mathbf{s}_{t-\ell}\right) + \epsilon_{t}, \ \epsilon_{t} \overset{\text{i.i.d.}}{\sim} \mathsf{N}\left(\mathbf{0}, \mathbf{\Lambda}_{t}^{-1}\right)$$

with:

$$\mathbf{y}_{t} = \begin{bmatrix} \Delta \log \left(\text{real wage}_{t} \right) \\ \Delta \log \left(\text{personhours}_{t} \right) \end{bmatrix}, \quad \boldsymbol{\epsilon}_{t} = \begin{bmatrix} \boldsymbol{\epsilon}_{t}^{d} \\ \boldsymbol{\epsilon}_{t}^{s} \end{bmatrix}, \quad \boldsymbol{\Psi} = \begin{bmatrix} -\eta_{d} & 1 \\ -\eta_{s} & 1 \end{bmatrix}$$

• Implies a demand curve and a supply curve:

 $\begin{array}{lll} \Delta \log \left(\mathsf{personhours}_t \right) & = & c_d + \eta_d \times \Delta \log \left(\mathsf{real wage}_t \right) + \delta'_d \mathbf{w}_t + \phi^d \left(L \right)' \mathbf{y}_t + \epsilon^d_t \\ \Delta \log \left(\mathsf{personhours}_t \right) & = & c_s + \eta_s \times \Delta \log \left(\mathsf{real wage}_t \right) + \delta'_s \mathbf{w}_t + \phi^s \left(L \right)' \mathbf{y}_t + \epsilon^s_t \end{array}$

- "Seasonally adjusted model": Fit to SA time series
- "Seasonal model": Fit to NSA time series

A Look at the Data

< ロ > < 回 > < 回 > < 回 > < 回 >

э

A Look at the Data

・ロト ・ 同ト ・ ヨト ・

-

Evidence of Seasonal Heteroskedasticity

• Identification requires $\mathbb{V}\left[\epsilon_{t}^{s}\right]/\mathbb{V}\left[\epsilon_{t}^{d}
ight]$ to vary over time

Non-Seasonal Heteroskedasticity

- Identification requires $\mathbb{V}\left[\epsilon_{t}^{s}\right]/\mathbb{V}\left[\epsilon_{t}^{d}\right]$ to vary over time

Structural Parameters

	η_d	$\frac{1}{T}\sum_{t}\mathbb{V}\left[\epsilon_{d,t} ight]$	η_{s}	$\frac{1}{T}\sum_{t}\mathbb{V}\left[\epsilon_{s,t} ight]$
Seasonal	-2.58	2.00	1.36	0.62
Model	[-3.27, -2.06]	[1.49, 2.80]	[1.19, 1.55]	[0.55, 0.71]
Seasonally	-1.21	0.40	1.59	0.53
Adjusted Model	[-2.44, -0.67]	[0.28, 0.94]	[0.79, 2.92]	[0.30, 1.24]

Posterior Median Estimates. 10th & 90th Posterior Quantiles in Brackets.

Homoskedastic Estimates

イロト イヨト イヨト

æ

Impulse Responses

æ

(日)

	Wage Growth		Hours Growth	
	Seasonal	Seasonally Adjusted	Seasonal	Seasonally Adjusted
Unconditional Variance	25	57	52	43
	[19, 32]	[24, 81]	[43, 60]	[19, 75]
Low Frequencies	41	57	55	42
	[30, 53]	[24, 83]	[45, 64]	[18, 74]
Business-Cycle Frequencies	40	57	55	42
	[29, 50]	[24, 82]	[46, 64]	[18, 75]
Irregular Frequencies	23	57	51	43
	[17, 30]	[24, 81]	[43, 59]	[19, 75]

Percent Attributable to Supply Shocks.

Posterior Median Estimates. 10th and 90th Posterior Quantiles in Brackets.

Business-Cycle Frequencies: Periodicities between 1.5 and 8 years. Low frequencies (irregular frequencies): All periodicities longer (shorter) than business cycles.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

• Questions/Comments/Suggestions?

æ

▲ 御 ▶ ▲ 臣 ▶

- Bayesian priors for seasonality: Canova (1992, 1993), Raynaud and Simonato (1993), Gersovitz and McKinnon (1978)
- Seasonality and causality in distributed-lag models: Sims (1974), Wallis (1974), Granger (1978)
- Seasonality and identification in equilibrium models: Sargent (1978), Ghysels (1988), Hansen and Sargent (1993), Sims (1993), Christiano and Todd (2002), Saijo (2013)
- Filtering and interpreting economic models: Nelson and Kang (1981), King and Rebelo (1993), Cogley and Nason (1995), Hamilton (2018), Ashley and Verbrugge (2022)

伺 ト イヨト イヨト

Favoring Seasonal Unit Roots • Return

• $\mathbf{A}(\exp{\{i\omega^*\}}) = \mathbf{0}$ requires zero real and imaginary parts:

$$\mathbf{A}\left(\exp\left\{i\omega^{*}\right\}\right) = \underbrace{\mathbf{\Psi} - \sum_{\ell=1}^{m} \mathbf{\Phi}_{\ell}\cos\left(\omega^{*}\ell\right)}_{\Re(\mathbf{A}(\exp\left\{i\omega^{*}\right\}))} + i\underbrace{\sum_{\ell=1}^{m} \mathbf{\Phi}_{\ell}\sin\left(\omega^{*}\ell\right)}_{\Im(\mathbf{A}(\exp\left\{i\omega^{*}\right\}))}$$

- Prior treats each column of $\Re (\mathbf{A} (\exp \{i\omega^*\}))$ and $\Im (\mathbf{A} (\exp \{i\omega^*\}))$ as $N (\mathbf{0}, (\tau_{\omega^*}^2 \mathbf{\Lambda})^{-1})$, so $\mathbf{A} (\exp \{i\omega^*\})$ is mean-zero complex normal
- Dummy observations implementation:

$$\begin{split} \bar{\mathbf{Y}}_{\omega^*} \Psi' &= \bar{\mathbf{X}}_{\omega^*} \Phi' + \bar{\mathcal{E}}_{\omega^*}, \quad \left(\bar{\mathcal{E}}_{\omega^*}\right)_{j,k} \stackrel{\text{i.i.d.}}{\sim} \mathsf{N}\left(0, \lambda_k\right) \\ \bar{\mathbf{Y}}_{\omega^*} &\equiv \tau_{\omega^*} \begin{bmatrix} \mathsf{I}_n \\ \mathsf{0}_{n \times n} \end{bmatrix} \\ \bar{\mathbf{X}}_{\omega^*} &\equiv \tau_{\omega^*} \begin{bmatrix} \cos\left(\omega^*1\right) & \cos\left(\omega^*2\right) & \cdots & \cos\left(\omega^*m\right) \\ \sin\left(\omega^*1\right) & \sin\left(\omega^*2\right) & \cdots & \sin\left(\omega^*m\right) \end{bmatrix} \otimes \mathsf{I}_n \\ & \quad \langle \Box \rangle \langle \mathcal{O} \rangle \langle \mathcal{O} \rangle \rangle \langle \mathcal{O} \rangle \rangle \langle \mathcal{O} \rangle \langle \mathcal{O} \rangle \rangle \langle \mathcal{O} \rangle \langle \mathcal{O$$

Non-Seasonal Heteroskedasticity

Following Brunnermeier, Palia, Sastry, and Sims (AER, 2021) • Return

		Start	End
1	Pre-Stagflation	Jan. 1967	Dec. 1972
2	Stagflation	Jan. 1973	Sep. 1979
3	Volcker Disinflation	Oct. 1979	Dec. 1982
4	S&L Crisis	Jan. 1983	Dec. 1989
5	Great Moderation	Jan. 1990	Dec. 2007
6	Financial Crisis	Jan. 2008	Dec. 2010
7	ZLB & Recovery	Jan. 2011	Nov. 2016
8	Interest-Rate Takeoff	Dec. 2016	Dec. 2019

• My sample: Jan. 1967 – Dec. 2019. Brunnermeier et al.'s sample: Jan. 1973 – Jun. 2015.

Structural Parameters The Role of Heteroskedasticity

		η_d	$\frac{1}{T}\sum_{t}\mathbb{V}\left[\epsilon_{d,t} ight]$	η_{s}	$\frac{1}{T}\sum_{t}\mathbb{V}\left[\epsilon_{s,t} ight]$
Seasonal Model	Hetero- skedastic	-2.58 [-3.27, -2.06]	2.00 [1.49, 2.80]	1.36 [1.19, 1.55]	0.62 [0.55, 0.71]
	Homo- skedastic	-2.19 [-3.29, -1.52]	1.64 [1.10, 2.85]	1.46 [1.15, 1.83]	0.66 [0.55, 0.83]
Seasonally Adj. Model	Hetero- skedastic	-1.21 [-2.44, -0.67]	0.40 [0.28, 0.94]	1.59 [0.79, 2.92]	0.53 [0.30, 1.24]
Aaj. Wodel	Homo- skedastic	-1.37 [-2.28, -0.84]	0.49 [0.34, 0.93]	1.37 [0.84, 2.20]	0.48 [0.33, 0.86]

Posterior Median Estimates. 10th & 90th Posterior Quantiles in Brackets.

Return

э

Image: A image: A