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Introduction

Agenda » Literature |

@ Seasonality and identification

e The X-11 filter and distortions to identification

o lIdentification through seasonal heteroskedasticity
@ Estimation: A Bayesian Approach

@ Application: Supply and demand in U.S. labor markets
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A Taxonomy of Seasonality

@ Assume ns seasons per year (ns = 12 for monthly data)

@ Let y; be an n x 1 vector time series

Yt =+ St + ¥t
o s; repeats annually: s; =s;_,

e y; is a purely non-deterministic stochastic process
@ Deterministic seasonality: Captured by s;
@ Stochastic seasonality: §; can have seasonal spectral peaks

@ X-11 seasonal adjustment has 2 main steps:
o Estimate s; and subtract it from y;

o Apply a filter to y; to suppress seasonal spectral peaks
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An Overview of the X-11 Filter

@ Suppose (for now) y; has no deterministic terms (y; = ¥:)
e Time domain: yi? =& (L)y:

e Freq. domain: £ (w) = = (w) f (w), = (w) = |€ (exp {—iw})|?

X-11 Lag Polynomial Coefficients X-11 Filter Gain Function
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Structural ldentification Framework

o If y; is stationary, it has a reduced-form representation:
Yt =¥+ et
e ¥, is the projection of y; on {y:—1,y¥:—2,...}
o e, is white noise with precision Q = V[e,] ™"
@ Assume that residuals are functions of structural shocks €;
o e, = W le, for some invertible W
o A =V][e] " where A is diagonal

@ An identification scheme is a mapping Z : Q — (W, A) such
that W'AW = Q whenever (W,A) =7 (Q)

@ Replace y¢, ¥:, e:, Q with y3?, 937, €2, Q*?. How does Z (Q*?)
compare to Z (Q)?
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A Conceptual Issue

@ Shocks extracted from the data

o Using NSA series: €; = We;, where (W,\) =7 (Q)

o Using SA series: €52 = W*e$?, where (W* A*) =7 (Q%)
@ Recall that y7? = £ (L) y¢, and £ (L) is two-sided

o ef? (€?) synthesized using past, present, and future e; (&)

o By construction, € L {y:?,y{?,,...}, but
eia 1{ {yt717 Yt—2,.- }
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A Quantitative Issue
Filtering and Structural Parameters
@ Kolmogorov's formula:
1 /7
Q= e {5 [ log(l2nf (o)) oo}

with analogous relationship between Q% and % (+)

@ When the dimension of y; is n:

1 (7 _
|Q*?| = D" |Q], DEeXp{—zﬂ/wlog(:(w))dw}

@ For the X-11 filter shown earlier: D ~ 2.83
o Implication: Z(Q) #Z(Q*?) or Z(Q)NZ(Q%?) =10

o Example: With Cholesky identification, average log difference

Oyk,t 6yfjt H ~ 0
between 7 and des, 1S about .52 (=~ 68%)
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Example: Labor Supply and Demand

Based on Baumeister and Hamilton (Econometrica, 2015)

_ Alog (real wage,) . — e wo | 1
ye Alog (personhours,) | °f e |’ —ns 1
@ Combine the above with reduced-form projection:
Alog (personhours,) = 74 X Alog (real wage,) + ¢° (L) y: + €¢
Alog (personhours,) = 175 x Alog(real wage,) + ¢° (L) y: + €;
o Identified Set:
- _ | —ma 1 _| A O VAW =Q
I(Q)_{(W’A)’w_ [ -ns 1 } h= [ 0 A } Nsy Ady As > 0> ng }

s \s 3|+
o Maybe (A\g, As) = (A, A), but then % =D~ 283

1
o Maybe (1,7s) = (1§, 7%), but then (355 )? = D~ 283
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Identification via Seasonal Heteroskedasticity

mod s

Allow Ve ' = A;, where A, = Ay if t ™= ™ ¢/

Precision of reduced-form residuals: Q; = V [e;] ' = WA, W

Standard ID through heteroskedasticity argument
o Notice Q;Q,* = WA N W1

o If I\tl\;,1 has distinct diagonal elements, rows of W are
(proportional to) eigenvectors of QtQt_,1

Rigobon (2003): “Probabilistic instruments”
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Statistical Challenges in Seasonality
And Possible Bayesian Solutions

©yr =p+St+ ¥t
@ Sample-size issue
e 50 years of monthly data: T = 600
o Need to estimate January-specific mean with only 50 Januarys
@ Alternative: Fit a model to y; — y:_12
o Need to check for up to 12 unit roots
e Frequentist tests can pose practical challenges
@ Want: A prior for seasonal processes
e Favor smoothness in s;

e Favor seasonal unit roots, or spectral peaks, in y;
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Why Not Seasonal Dummies?

o Consider Byd; = p + s; for seasonal dummies d;

o Consider the prior vec (B4) ~ N (0, 031
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@ Then: prlor |: Et ) t} = ”sns Oyq

1
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o
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A Prior for Deterministic Seasonality

@ s; — Bwy, where w; contains ng — 1 seasonal sinusoids
(periods of 1 year, % year, % year, etc.)
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A Prior for Stochastic Seasonality
Beliefs About The Spectrum

o A(L)§: =€, with A(L) =W — 7, d,L°

1

-1
)= 5 A (e {iw}) A (exp {~ic})|

Spectrum of §; : f(w
@ Seasonal unit root: |A (exp {iw*})| =0
o Implies |f (exp {iw*})| = o0 as w — w*

e Oscillations at frequency w™* important for variation in ¥,

@ The prior will favor, but not impose, A (exp {iw*}) = 0 for
seasonal w*

@ Stochastic linear restrictions: A (exp {iw*}) ~ Complex
normal with zero mean
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A Prior for Stochastic Seasonality

Implied Prior Over the Spectrum

Untruncated Prior Prior Truncated to Stationary Region
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Application: Labor Supply and Demand

Based on Baumeister and Hamilton (Econometrica, 2015)

@ Structural VAR
m
ii.d. _
W (yi—g — p—st) Z (Yo —p—seg)+e, e ~ N(0,A1)

with:

. A log (real wage,) G [ —ma 1
ye= [ A log (personhours,) |’ €= , W=

@ Implies a demand curve and a supply curve:

Alog (personhours,) = cg 474 X Alog (real wage,) + dlwe 4 ¢ (L) ye + €¢f
Alog (personhours,) = cs +ns X Alog (real wage,) + 6iwe + ¢° (L) ye + €

@ “Seasonally adjusted model”: Fit to SA time series
@ “Seasonal model”: Fit to NSA time series

o Heteroskedasticity by season & heteroskedasticity a la
Brunnermeier et al. (2021)
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A Look at the Data
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A Look at the Data

Real Wage Growth (Anmalized) Aggregate Hours Growth (Annualized)
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Evidence of Seasonal Heteroskedasticity

e Identification requires V [e3] /V {e?} to vary over time

Seasonal Model

s o o = e
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Non-Seasonal Heteroskedasticity

o Identification requires V [e3] /V {ef} to vary over time

Seasonally Adjusted Model

oo

T

(=2
T

'
T
'
'
L

[V}
T
L

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Relative Variance of Supply Shocks

Doppelt Seasonality and BVARs



Structural Parameters

Nd -}' ZtV [ed,t] Ns % Ztv [fs,r}

Seasonal —2.58 2.00 1.36 0.62
Model [—3.27, —2.06] [1.49, 2.80] [1.19,1.55] [0.55,0.71]

Seasonally —1.21 0.40 1.59 0.53
Adjusted Model [—2.44, —0.67] [0.28,0.94] [0.79,2.92] [0.30, 1.24]

Posterior Median Estimates. IOth & 90th Posterior Quantiles in Brackets.
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Impulse Responses

{{gsponse of Wages to a Demand Shock Response of Hours to a Demand Shock
’ 3 -
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Variance Decomposition

Wage Growth Hours Growth
Seasonally Seasonally
Seasonal Seasonal
Adjusted Adjusted
. . 25 57 52 43
Unconditional Variance 19, 32] 24, 81] 43, 60] [19, 75]
Low Frequencies 41 57 55 42
W rrequenct 30, 53] [24,83] 45, 64] (18, 74]
Busi Cycle F . 40 57 55 42
usiness-Cycle Frequencies 29, 50] 24, 82] [46, 64] [18, 75]
| lar F . 23 57 51 43
fregular Frequencies [17, 30] [24, 81] [43, 59] [19,75]

Percent Attributable to Supply Shocks.
Posterior Median Estimates. 10th and 90th Posterior Quantiles in Brackets.
Business-Cycle Frequencies: Periodicities between 1.5 and 8 years.

Low frequencies (irregular frequencies): All periodicities longer (shorter) than business cycles.
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@ Questions/Comments/Suggestions?
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Selected Literature e

@ Bayesian priors for seasonality: Canova (1992, 1993), Raynaud
and Simonato (1993), Gersovitz and McKinnon (1978)

@ Seasonality and causality in distributed-lag models: Sims
(1974), Wallis (1974), Granger (1978)

@ Seasonality and identification in equilibrium models: Sargent
(1978), Ghysels (1988), Hansen and Sargent (1993), Sims
(1993), Christiano and Todd (2002), Saijo (2013)

o Filtering and interpreting economic models: Nelson and Kang
(1981), King and Rebelo (1993), Cogley and Nason (1995),
Hamilton (2018), Ashley and Verbrugge (2022)
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A Prior for Stochastic Seasonality

Favoring Seasonal Unit Roots > Retumn

o A (exp{iw*}) = 0 requires zero real and imaginary parts:

A(exp{iw*}) =W — Z & cos (w"l) + iz & sin (w™0)
=1 0=1

R(A(exp{iw*})) S(A(exp{iw*}))

@ Prior treats each column of 3 (A (exp {iw*})) and
S (A (exp {iw*})) as N (0, (7'3*/\)_1), so A (exp {iw*}) is
mean-zero complex normal

@ Dummy observations implementation:

_ g ;= - iid.
Yol = X«® + &, (5w*),-,k =N (0, Ak)
_ _ 1,
YW* = Tw* |: 0n><n i|
% _ cos(w*1) cos(w*2) .-+ cos(w*m) o1
wro = T sin (w*1)  sin(w*2) -+ sin(w*m) n
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Non-Seasonal Heteroskedasticity

Following Brunnermeier, Palia, Sastry, and Sims (AER, 2021) (> Return )

Start End

1 Pre-Stagflation Jan. 1967 Dec. 1972
2 Stagflation Jan. 1973 Sep. 1979
3 Volcker Disinflation ~ Oct. 1979 Dec. 1982
4 S&L Crisis Jan. 1983 Dec. 1989
5 Great Moderation Jan. 1990 Dec. 2007
6
7
8

Financial Crisis Jan. 2008 Dec. 2010
ZLB & Recovery Jan. 2011 Nov. 2016
Interest-Rate Takeoff Dec. 2016 Dec. 2019

o My sample: Jan. 1967 — Dec. 2019. Brunnermeier et al.'s
sample: Jan. 1973 — Jun. 2015.
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Structural Parameters

The Role of Heteroskedasticity

1 Etv I:ed,t]

1 er [es,r]

Nd MNs
Hetero- —2.58 2.00 1.36 0.62
Seasonal skedastic [—3.27, —2.06] [1.49,2.80] [1.19,1.55] [0.55,0.71]
Model
Homo- —2.19 1.64 1.46 0.66
skedastic [—3.29, —1.52] [1.10, 2.85] [1.15,1.83] [0.55,0.83]
Hetero- —1.21 0.40 1.59 0.53
Seasonally skedastic [—2.44, —0.67] [0.28,0.94] [0.79,2.92] [0.30, 1.24]
Adj. Model
Homo- —1.37 0.49 1.37 0.48
skedastic [—2.28, —0.84] [0.34,0.93] [0.84, 2.20] [0.33,0.86]

Posterior Median Estimates. 10" & 90" Posterior Quantiles in Brackets.
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