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Motivation

• Financial crises typically involve bank runs

• Short-term debt can make a bank vulnerable to a self-fulfilling run

• Empirically, runs more likely with weak aggregate fundamentals

• General equilibrium feedbacks potentially important

⋆ Macroeconomic model essential to understand feedbacks

Q: What are the implications for government policy?
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A Macroeconomic Model of Bank Runs

• Dynamic portfolio and equity decisions for banks

• Depend on asset prices, determined in equilibrium

• Limited commitment and endogenous strategic default

◦ Defaults triggered by fundamentals or runs

• Fragility linked to fundamentals, as in Gertler-Kiyotaki, but

key differences:

• Runs on individual banks

• Maturity critical for fragility ⇒ role for lender of last resort

• Normative analysis
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Preview of Main Normative Results

• Desirability of credit easing depends on source of the crisis

• Welfare reducing if driven by fundamentals, but welfare

improving if driven by runs

• Key distinction: Repaying banks are net buyers when crises are

driven by fundamentals but net sellers when driven by runs

• Increase in asset prices have opposite effects on the fraction

of defaulting banks
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Outline of the Talk

1. Environment without runs

• Bank problem in partial equilibrium

• General equilibrium

2. Model with bank runs

• Bank problem in partial equilibrium

• General equilibrium

3. Policy analysis



Environment

• Discrete time, infinite horizon, no aggregate risk

• Continuum of banks, preferences
∑∞

t=0 β
t log(ct).

• Creditors have linear utility, discount rate R

• Technology

• Production of consumption good: y = zk

• Capital in fixed supply K

• Competitive market for assets and deposits

• No commitment to repay deposits
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Banks’ Budget Constraints

All banks start at t = 0 with portfolio (b0,K)

• If repay at time t:

c = (z + pt)k − Rb + qt(b
′, k ′)b′ − ptk

′.

• qt price schedule of deposits • pt price of capital

• Deposits are one-period non-state contingent claims

◦ Without loss for now, but will matter with runs

• Capital is liquid

◦ Price determined in equilibrium
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Banks’ Budget Constraints

All banks start at t = 0 with portfolio (b0,K)

• If default at time t:

c = (z + pt)k − ptk
′

• Permanent financial exclusion b′ = 0

◦ Restriction on saving w/o loss

• Productivity loss y = zk

◦ Evidence on losses of firms exposed to defaulting banks

5/19



Banks’ Optimization: Values of Repayment and Default

V R
t (b, k) = max

k ′,b′,c
log(c) + βVt+1(b

′, k ′)

s.t. c = (z + pt)k − Rb + qt(b
′, k ′)b′ − ptk

′

No-Ponzi

VD
t (k) = max

k ′,c
log(c) + βVD

t+1(k
′)

s.t. c = zk + pt(k − k ′)

Repayment decision:

• If V R
t (b, k) = VD

t (k): indifferent

◦ Repay for t > 0

◦ Default with probability ϕ
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Equilibrium Consistent Borrowing Limit

• Equilibrium default only at t = 0

• Guess and verify that bank pays at t + 1 if

bt+1 ≤ γtpt+1kt+1

where

z̄ + pt+1(1− γtR)

z + pt+1
=

(
1− γt+1

pt+2

pt+1

)β

• Potentially many solutions, but only one consistent with

No-Ponzi
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Solving for γt for Constant Price

γt+1 = 1−
(
Rk(p)/R − γt
RD(p)/R

) 1
β

≡ H(γt)

• Partial eqm. does not exist if return on capital is too high

◦ No borrowing limit

◦ γ⋆ is increasing in (β, z̄) and decreasing in (R, z , p)

(a) Two fixed points

0 γ⋆ γ̂ 1
0

1

H(γt)

45◦
γt

γ
t+

1

(b) No fixed point

0 1
0

1

H(γt)

45◦

γt

γ
t+

1
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Outline of the Talk

1. Environment without runs

• Bank problem in partial equilibrium

• General equilibrium

2. Model with bank runs

• Bank problem in partial equilibrium

• General equilibrium

3. Policy analysis



General Equilibrium

• Market clearing for capital

ϕKD
t + (1− ϕ)KR

t =K

where ϕ ∈ [0, 1] are the banks that default at t = 0

• Recall a bank is indifferent at t = 0 if b0 = γ−1p0k0

where
z̄ + p0(1− γ−1R)

z + p0
=

(
1− γ0

p1
p0

)β

• Therefore,

ϕ =


1 if B0 > γ−1p0K,

0 if B0 < γ−1p0K,

∈ [0, 1] if B0 = γ−1p0K
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General Equilibrium

Type of equilibrium depends on B0

γRpRK γDpDK

Repayment eqm. Mixed eqm. Default eqm
B0

Mixing within thresholds: Fraction ϕ defaults and 1− ϕ repays.

• Generalize Kehoe-Levine, by allowing initial defaults

In the paper:

• Analytical characterization of thresholds

• Unique stationary eqm. and unique transition results

• Repaying banks are net buyers of k in the mixed eqm.
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General Equilibrium

Type of equilibrium depends on B0

γRpRK γDpDK

Repayment eqm. Mixed eqm.Mixed equilibrium Default eqm
B0

Mixing within thresholds: Fraction ϕ defaults and 1− ϕ repays.
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Mixed Equilibrium Simulations

Price of Capital pt Leverage Threshold γt

Capital Holdings
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Outline of the Talk

1. Environment without runs

• Bank problem in partial equilibrium

• General equilibrium

2. Model with bank runs

• Bank problem in partial equilibrium

• General equilibrium

3. Policy analysis



Self-Fulfilling Bank Runs

Coordination problem between creditors a la Cole-Kehoe

• Creditors may refuse to rollover ⇒ repayment more costly

• If optimal to default during a run, a bank is “vulnerable”
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Multiplicity of Equilibria

Bank facing a run needs to de-lever:

V̂ Run
t (n) = max

k ′≥0,c
log(c) + Vt+1

(
(z̄ + pt+1)k

′ )
s.t c =n +��7

0
b′ − ptk

′

Safe bank faces tighter constraint:

V̂ Safe
t (n) = max

b′,k ′≥0,c
log(c) + βV̂ Safe

t+1 ((z + pt+1)k
′ − Rb′)

s.t c = n + b′ − ptk
′

V̂ Run
t+1 (n

′) ≥ VD
t+1(k

′)

• Multiplicity: V̂ Safe
t (n) > V̂D

t (k) > V̂ Run
t (n)

◦ Assume that if a bank is vulnerable for t > 0, a run happens
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The Effects of Bank Runs

• Financial fragility, default region expands ↓ γD

◦ Repayment region contracts γR ↓ if and only if βR < 1

γRpRK γDpDK

Repayment eqm. Mixed eqm. Default eqm
B0

• Lower price of capital

◦ Lower γ, implies lower demand by repaying banks

◦ More defaulting banks, which have lower demand for capital
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Outline of the Talk

1. Basic environment without bank runs

• Bank problem in partial equilibrium

• General equilibrium

2. Introduce bank runs

3. Policy analysis



Credit Easing

Introduce government purchases of assets K g at t = 0

Assume that government makes losses:

• Productivity zg < z and return (zg + p1)/p0 < R

⇒ Investors they do not purchase k if same productivity as govt.

Q: How does credit easing affect ϕ and welfare?

15/19



Welfare ⇓ if defaults due to fundamentals

dW

dKg
=

[
ϕ
dVD

dKg
− (1− ϕ)

dV R

dKg

]
−
���������:0(
V R − VD

) dϕ

dKg

Without runs:
• V R = VD ⇒ dϕ irrelevant

• Given {p1, p2...}, dV R = dVD = dW = dT0
dKg

∣∣∣
Kg=0

< 0

With runs:With runs:
• V R = V Safe > V Run = VD

⇒ If dϕ < 0, possibility that ⇑ dW > 0

A repaying banks facing a run is a net seller of assets

⇒ benefits from intervention that ⇑ p0 ⇒ dϕ < 0

In equilibrium, dϕ < 0
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Credit Easing: Self-Fulfilling vs. Fundamentals

Self-Fulfilling Runs
p0 ϕ

Fundamentals
p0 ϕ

Discussion
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Other Policies

• Controlling default decisions: Details

• Higher ϕ w/o runs and lower ϕ w/runs

• Tax on purchases of capital at t = 0 rebated lump sum

• Irrelevant: after-tax price remains constant and has no effects

• Deposit insurance: deters runs, but requires borrowing limits

• Lender of last resort: must cover all banks to be effective
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Conclusions

• A dynamic macroeconomic model of self-fulfilling bank runs

• General equilibrium effects crucial to assess govt. policies

• Desirability of credit easing depends on whether a crisis is

diriven by fundamentals or self-fulfilling runs

• Agenda:

• Anticipation effects of credit easing

• Use framework for other policies, such as macroprudential
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Government picks ϕ at t = 0

Banks’ welfare

W = (1− ϕ)V R + ϕVD

• Assume only p0 changes in response to policy:

↑ ϕ reduces p0 and helps repaying banks that have high u′
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