Bank Runs, Fragility, and Credit Easing

Manuel Amador1 Javier Bianchi2

1Federal Reserve Bank of Minneapolis University of Minnesota
2Federal Reserve Bank of Minneapolis

May 2022

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Motivation

- Financial crises typically involve bank runs
- Short-term debt can make a bank vulnerable to a self-fulfilling run
- Empirically, runs more likely with weak aggregate fundamentals
 - General equilibrium feedbacks potentially important

★ Macroeconomic model essential to understand feedbacks

Q: What are the implications for government policy?
A Macroeconomic Model of Bank Runs

• Dynamic portfolio and equity decisions for banks
 • Depend on asset prices, determined in equilibrium

• Limited commitment and endogenous strategic default
 ○ Defaults triggered by fundamentals or runs

• Fragility linked to fundamentals, as in Gertler-Kiyotaki, but key differences:
 • Runs on individual banks
 • Maturity critical for fragility ⇒ role for lender of last resort
A Macroeconomic Model of Bank Runs

- Dynamic portfolio and equity decisions for banks
 - Depend on asset prices, determined in equilibrium

- Limited commitment and endogenous strategic default
 - Defaults triggered by fundamentals or runs

- Fragility linked to fundamentals, as in Gertler-Kiyotaki, but key differences:
 - Runs on individual banks
 - Maturity critical for fragility \Rightarrow role for lender of last resort

- Normative analysis
Preview of Main Normative Results

- Desirability of **credit easing** depends on source of the crisis

 - Welfare *reducing* if driven by fundamentals, but welfare *improving* if driven by runs

- **Key distinction**: Repaying banks are *net buyers* when crises are driven by fundamentals but *net sellers* when driven by runs

 - Increase in asset prices have opposite effects on the fraction of defaulting banks
Outline of the Talk

1. Environment without runs

2. Model with bank runs

3. Policy analysis
Environment

• Discrete time, infinite horizon, no aggregate risk

• Continuum of banks, preferences $\sum_{t=0}^{\infty} \beta^t \log(c_t)$.

• Creditors have linear utility, discount rate R

• Technology
 • Production of consumption good: $y = zk$
 • Capital in fixed supply \bar{K}

• Competitive market for assets and deposits

• No commitment to repay deposits
Environment

- Discrete time, infinite horizon, no aggregate risk
- Continuum of banks, preferences $\sum_{t=0}^{\infty} \beta^t \log(c_t)$.
- Creditors have linear utility, discount rate R
- Technology
 - Production of consumption good: $y = zk$
 - Capital in fixed supply \bar{K}
- Competitive market for assets and deposits
- No commitment to repay deposits
All banks start at $t = 0$ with portfolio (b_0, \bar{K})

- If repay at time t:
 \[c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k'. \]

 - q_t price schedule of deposits
 - p_t price of capital

- Deposits are one-period non-state contingent claims
 - Without loss for now, but will matter with runs

- Capital is liquid
 - Price determined in equilibrium
Banks’ Budget Constraints

All banks start at $t = 0$ with portfolio (b_0, \overline{K})

- If default at time t:

 \[c = (z + p_t)k - p_t k' \]

- Permanent financial exclusion $b' = 0$
 - Restriction on saving w/o loss

- Productivity loss $y = zk$
 - Evidence on losses of firms exposed to defaulting banks
Banks’ Optimization: Values of Repayment and Default

\[V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \]

s.t. \[c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \]

No-Ponzi

\[V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \]

s.t. \[c = zk + p_t(k - k') \]
Banks’ Optimization: Values of Repayment and Default

\[V^R_t(b, k) = \max_{k', b', c} \log(c) + \beta V^R_{t+1}(b', k') \]

s.t. \[c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \]

No-Ponzi

\[V^D_t(k) = \max_{k', c} \log(c) + \beta V^D_{t+1}(k') \]

s.t. \[c = \underline{z}k + p_t(k - k') \]

Repayment decision:

- If \(V^R_t(b, k) > V^D_t(k) \): repay
Banks’ Optimization: Values of Repayment and Default

\[V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \]
\[\text{s.t. } c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \]

No-Ponzi

\[V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \]
\[\text{s.t. } c = zk + p_t(k - k') \]

Repayment decision:

- If \(V_t^R(b, k) < V_t^D(k) \): default
Banks’ Optimization: Values of Repayment and Default

\[
V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \\
\text{s.t. } c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k'
\]

No-Ponzi

\[
V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \\
\text{s.t. } c = zk + p_t(k - k')
\]

Repayment decision:

- If \(V_t^R(b, k) = V_t^D(k) \): indifferent
Banks’ Optimization: Values of Repayment and Default

\[V_t^R(b, k) = \max_{k', b', c} \log(c) + \beta V_{t+1}(b', k') \]

s.t. \(c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_t k' \)

No-Ponzi

\[V_t^D(k) = \max_{k', c} \log(c) + \beta V_{t+1}^D(k') \]

s.t. \(c = zk + p_t(k - k') \)

Repayment decision:

- If \(V_t^R(b, k) = V_t^D(k) \): indifferent
 - Repay for \(t > 0 \)
 - Default with probability \(\phi \)
Equilibrium Consistent Borrowing Limit

- Equilibrium default only at $t = 0$

- Guess and verify that bank pays at $t + 1$ if

$$b_{t+1} \leq \gamma_t p_{t+1} k_{t+1}$$

where

$$\bar{z} + p_{t+1} (1 - \gamma_t R) \frac{1}{\bar{z} + p_{t+1}} = \left(1 - \gamma_{t+1} \frac{p_{t+2}}{p_{t+1}} \right)^\beta$$
Equilibrium Consistent Borrowing Limit

- Equilibrium default only at $t = 0$

- Guess and verify that bank pays at $t + 1$ if

$$b_{t+1} \leq \gamma_t p_{t+1} k_{t+1}$$

where

$$\frac{\bar{z} + p_{t+1}(1 - \gamma_t R)}{\bar{z} + p_{t+1}} = \left(1 - \gamma_{t+1} \frac{p_{t+2}}{p_{t+1}}\right)^\beta$$

- Potentially many solutions, but only one consistent with No-Ponzi
Solving for γ_t for Constant Price

$$\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R} \right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$
Solving for γ_t for Constant Price

$$\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R} \right)^\frac{1}{\beta} \equiv H(\gamma_t)$$

• Partial eqm. does not exist if return on capital is too high
 ○ No borrowing limit

(b) No fixed point
Solving for γ_t for Constant Price

\[
\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R} \right)^{\frac{1}{\beta}} \equiv H(\gamma_t)
\]

- If eqm \exists, two fixed points but only smallest satisfies No-Ponzi
 - First fixed point unstable $\Rightarrow \gamma_t = \gamma^*$
 - γ^* is increasing in (β, \bar{z}) and decreasing in (R, \underline{z}, p)

(a) Two fixed points

(b) No fixed point
Outline of the Talk

1. Environment without runs
 • Bank problem in partial equilibrium
 • General equilibrium

2. Model with bank runs

3. Policy analysis
• Market clearing for capital

\[\phi K_t^D + (1 - \phi)K_t^R = \bar{K} \]

where \(\phi \in [0, 1] \) are the banks that default at \(t = 0 \)
General Equilibrium

- Market clearing for capital

\[\phi K_t^D + (1 - \phi)K_t^R = \bar{K} \]

where \(\phi \in [0, 1] \) are the banks that default at \(t = 0 \)

- Recall a bank is indifferent at \(t = 0 \) if \(b_0 = \gamma_{-1}p_0k_0 \)

where

\[\frac{\bar{z} + p_0(1 - \gamma_{-1}R)}{\bar{z} + p_0} = \left(1 - \gamma_0 \frac{p_1}{p_0}\right)^\beta \]

- Therefore,

\[\phi = \begin{cases}
1 & \text{if } B_0 > \gamma_{-1}p_0\bar{K}, \\
0 & \text{if } B_0 < \gamma_{-1}p_0\bar{K}, \\
\in [0, 1] & \text{if } B_0 = \gamma_{-1}p_0\bar{K}
\end{cases} \]
Type of equilibrium depends on B_0

- **Repayment eqm.**
 \[\gamma^R p^R K \]

- **Mixed eqm.**
 \[\gamma^D p^D K \]

- **Default eqm**

In the paper:
- Analytical characterization of thresholds
- Unique stationary eqm. and unique transition results
- Repaying banks are net buyers of k in the mixed eqm.
Type of equilibrium depends on B_0

- Repayment eqm.
- Mixed eqm.
- Default eqm

$\gamma^R p^R K$ $\gamma^D p^D K$

• Generalize Kehoe-Levine, by allowing initial defaults
• Analytical characterization of thresholds
• Unique stationary eqm. and unique transition results
• Repaying banks are net buyers of k in the mixed eqm.
Type of equilibrium depends on B_0

Repayment eqm.
$\gamma^R p^R K$

Mixed eqm.

Default eqm
$\gamma^D p^D K$

In the paper:

- Analytical characterization of thresholds
- Unique stationary eqm. and unique transition results
- Repaying banks are net buyers of k in the mixed eqm.
General Equilibrium

Type of equilibrium depends on B_0

- Repayment eqm. $\gamma^R p^{R\overline{K}}$
- Mixed eqm. $? p^{D\overline{K}}$
- Default eqm $\gamma^D p^{D\overline{K}}$

Mixing within thresholds: Fraction ϕ defaults and $1 - \phi$ repays.

- Generalize Kehoe-Levine, by allowing initial defaults
Type of equilibrium depends on B_0

Repayment eqm. Mixed equilibrium Default eqm

$\gamma^R p^R K$ $\gamma^D p^D K$

Mixing within thresholds: Fraction ϕ defaults and $1 - \phi$ repays.

- Generalize Kehoe-Levine, by allowing initial defaults

In the paper:
- Analytical characterization of thresholds
- Unique stationary eqm. and unique transition results
- Repaying banks are net buyers of k in the mixed eqm.
Mixed Equilibrium Simulations

Price of Capital p_t

Leverage Threshold γ_t

Capital Holdings

- Repaying banks
- Defaulting banks
Outline of the Talk

1. Environment without runs

2. Model with bank runs

3. Policy analysis
Coordination problem between creditors a la Cole-Kehoe

- Creditors may refuse to rollover \Rightarrow repayment more costly
- If optimal to default during a run, a bank is “vulnerable”
Bank facing a run needs to de-lever:

\[\hat{V}_{t}^{\text{Run}}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1} \left((\bar{z} + p_{t+1})k' \right) \]

\[s.t \quad c = n + b' - p_{t}k' \]
Multiplicity of Equilibria

Bank facing a run needs to de-lever:

\[\hat{V}_{t}^{Run}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1}((\bar{z} + p_{t+1})k') \]

\[s.t \quad c = n + b' - p_t k' \]

Safe bank faces tighter constraint:

\[\hat{V}_{t}^{Safe}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}((\bar{z} + p_{t+1})k' - R b') \]

\[s.t \quad c = n + b' - p_t k' \]

\[\hat{V}_{t+1}^{Run}(n') \geq V_{t+1}^{D}(k') \]
Bank facing a run needs to de-lever:

$$\hat{V}_t^{Run}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1} \left((\bar{z} + p_{t+1})k' \right)$$

subject to

$$c = n + b' - p_t k'$$

Safe bank faces tighter constraint:

$$\hat{V}_t^{Safe}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^{Safe} \left((\bar{z} + p_{t+1})k' - Rb' \right)$$

subject to

$$c = n + b' - p_t k'$$

$$\hat{V}_{t+1}^{Run}(n') \geq V_{t+1}^D(k')$$

- Multiplicity: $$\hat{V}_t^{Safe}(n) > \hat{V}_t^D(k) > \hat{V}_t^{Run}(n)$$
Multiplicity of Equilibria

Bank facing a run needs to de-lever:

$$\hat{V}_t^{\text{Run}}(n) = \max_{k' \geq 0, c} \log(c) + V_{t+1} \left((\bar{z} + p_{t+1})k' \right)$$

$$s.t \quad c = n + b' - p_t k'$$

Safe bank faces tighter constraint:

$$\hat{V}_t^{\text{Safe}}(n) = \max_{b', k' \geq 0, c} \log(c) + \beta \hat{V}_{t+1}^{\text{Safe}} \left((\bar{z} + p_{t+1})k' - Rb' \right)$$

$$s.t \quad c = n + b' - p_t k'$$

$$\hat{V}_{t+1}^{\text{Run}}(n') \geq V_{t+1}^{D}(k')$$

- Multiplicity: $$\hat{V}_t^{\text{Safe}}(n) > \hat{V}_t^{D}(k) > \hat{V}_t^{\text{Run}}(n)$$

 - Assume that if a bank is vulnerable for $$t > 0$$, a run happens
The Effects of Bank Runs

- Financial fragility, default region expands $\downarrow \gamma^D$
 - Repayment region contracts $\gamma^R \downarrow$ if and only if $\beta R < 1$

<table>
<thead>
<tr>
<th>Repayment eqm.</th>
<th>Mixed eqm.</th>
<th>Default eqm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma^R p^{R\bar{K}}$</td>
<td>$\gamma^D p^{D\bar{K}}$</td>
<td>B_0</td>
</tr>
</tbody>
</table>
The Effects of Bank Runs

- Financial fragility, default region expands $\downarrow \gamma^D$
 - Repayment region contracts $\gamma^R \downarrow$ if and only if $\beta R < 1$

Repayment eqm. \quad Mixed eqm. \quad Default eqm

$\gamma^R p^R K$ \quad $\gamma^D p^D K$
Financial fragility, default region expands $\downarrow \gamma^D$

- Repayment region contracts $\gamma^R \downarrow$ if and only if $\beta R < 1$

\[
\begin{align*}
\text{Repayment eqm.} & \quad \gamma^R p^R K \\
\text{Mixed eqm.} & \quad \gamma^D p^D K \\
\text{Default eqm} & \quad \gamma^D p^D K
\end{align*}
\]

- Lower price of capital
 - Lower γ, implies lower demand by repaying banks
 - More defaulting banks, which have lower demand for capital
Outline of the Talk

1. Basic environment without bank runs
 - Bank problem in partial equilibrium
 - General equilibrium

2. Introduce bank runs

3. Policy analysis
Introduce government purchases of assets K^g at $t = 0$

Assume that government makes losses:

- Productivity $z^g < z$ and return $(z^g + p_1)/p_0 < R$

\Rightarrow Investors they do not purchase k if same productivity as govt.

Q: How does credit easing affect ϕ and welfare?
Welfare ↓ if defaults due to fundamentals

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}
\]
Welfare ↓ if defaults due to fundamentals

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}
\]
Welfare \downarrow if defaults due to **fundamentals**

$$\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}$$
Welfare ↓ if defaults due to fundamentals

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g} \]

Without runs:
- \(V^R = V^D \) \(\Rightarrow \) \(d\phi \) irrelevant
Welfare \(\uparrow \) if defaults due to runs

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g} \rightarrow 0
\]

Without runs:

- \(V^R = V^D \Rightarrow d\phi \) irrelevant

- Given \(\{p_1, p_2, \ldots\} \), \(dV^R = dV^D = dW = \left. \frac{dT_0}{dK_g} \right|_{K_g=0} < 0 \)
Welfare \uparrow if defaults due to runs

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g} < 0
\]

Without runs:

- \(V^R = V^D \) \(\Rightarrow \) \(d\phi \) irrelevant

- Given \(\{p_1, p_2, \ldots\} \), \(dV^R = dV^D = dW = \left. \frac{dT_0}{dK_g} \right|_{K_g=0} < 0 \)

With runs:

- \(V^R = V^{Safe} \geq V^{Run} = V^D \)

\(\Rightarrow \) If \(d\phi < 0 \), possibility that \(\uparrow W \)

A repaying banks facing a run is a net seller of assets

\(\Rightarrow \) benefits from intervention that \(\uparrow p_0 \Rightarrow d\phi < 0 \)
Welfare ↑ if defaults due to runs

\[
\frac{dW}{dK_g} = \left[\phi \frac{dV^D}{dK_g} - (1 - \phi) \frac{dV^R}{dK_g} \right] - \left(V^R - V^D \right) \frac{d\phi}{dK_g}
\]

Without runs:

- \(V^R = V^D \) ⇒ \(d\phi \) irrelevant
- Given \(\{p_1, p_2...\} \), \(dV^R = dV^D = dW = \frac{dT_0}{dK^g} \bigg|_{K^g=0} < 0 \)

With runs:

- \(V^R = V^{Safe} > V^{Run} = V^D \)

⇒ If \(d\phi < 0 \), possibility that \(W \) ↑

A repaying banks facing a run is a net seller of assets

⇒ benefits from intervention that \(p_0 \) ↑ ⇒ \(d\phi < 0 \)
Credit Easing: Self-Fulfilling vs. Fundamentals

Self-Fulfilling Runs

\[p_0 \]

\[\phi \]

Fundamentals

\[p_0 \]

\[\phi \]
Credit Easing: Self-Fulfilling vs. Fundamentals

Self-Fulfilling Runs

\[p_0 \]

\[\phi \]

Fundamentals

\[p_0 \]

\[\phi \]
Other Policies

- Controlling default decisions: Details
 - Higher ϕ w/o runs and lower ϕ w/runs

- Tax on purchases of capital at $t = 0$ rebated lump sum
 - Irrelevant: after-tax price remains constant and has no effects

- Deposit insurance: deters runs, but requires borrowing limits

- Lender of last resort: must cover all banks to be effective
Conclusions

- A dynamic macroeconomic model of self-fulfilling bank runs
- General equilibrium effects crucial to assess govt. policies
- Desirability of credit easing depends on whether a crisis is driven by fundamentals or self-fulfilling runs
- Agenda:
 - Anticipation effects of credit easing
 - Use framework for other policies, such as macroprudential
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi) V^R + \phi V^D$$
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi) V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\left. \frac{dW}{d\phi} \right|_{\phi = \phi^E} = (V^D(p_0^E) - V^R(p_0^E)) + \left[(1 - \phi) \left. \frac{dV^R(p_0)}{dp_0} \right|_{p_0 = p_0^E} + \phi \left. \frac{dV^D(p_0)}{dp_0} \right|_{p_0 = p_0^E} \right] \frac{dp_0}{d\phi}$$
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi) V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi=\phi^E} = (V^D(p_0^E) - V^R(p_0^E)) +$$

$$\left[(1 - \phi) \frac{dV^R(p_0)}{dp_0} \bigg|_{p_0=p_0^E} + \phi \frac{dV^D(p_0)}{dp_0} \bigg|_{p_0=p_0^E} \right] \frac{dp_0}{d\phi}$$

ϕ reduces p_0 and helps repaying banks that have high u'.
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi)V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi = \phi^E} = (V^D(p_0^E) - V^R(p_0^E)) +$$

$$\left[(1 - \phi) \left. \frac{dV^R(p_0)}{dp_0} \right|_{p_0 = p_0^E} + \phi \left. \frac{dV^D(p_0)}{dp_0} \right|_{p_0 = p_0^E} \right] \frac{dp_0}{d\phi}$$

$$\left. \frac{dV^R(p_0)}{dp_0} \right|_{\phi = \phi^E} = u'(c^R)(\bar{K} - k^R(p_0^E)), \quad \left. \frac{dV^D(p_0)}{dp_0} \right|_{\phi = \phi^E} = u'(c^D)(\bar{K} - k^D(p_0^E)).$$
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi)V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\left. \frac{dW}{d\phi} \right|_{\phi = \phi^E} = \left[V^D(p_0^E) - V^R(p_0^E) \right]$$

$$- (1 - \phi) \left[u'(c^R(p_0^E)) - u'(c^D(p_0^E)) \right] \left(k^R(p_0^E) - \bar{K} \right)$$

↑ ϕ reduces p_0 and helps repaying banks that have high u'
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi)V^R + \phi V^D$$

- Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi = \phi^E} = [V^D(p_0^E) - V^R(p_0^E)] > 0$$

$$- (1 - \phi)[u'(c^R(p_0^E)) - u'(c^D(p_0^E))] (k^R(p_0^E) - \bar{K}) > 0$$

$$\frac{dp_0}{d\phi} < 0$$

$\uparrow \phi$ reduces p_0 and helps repaying banks that have high u'

- Without runs: optimal to have more banks defaulting
Government picks ϕ at $t = 0$

Banks’ welfare

$$W = (1 - \phi)V^R + \phi V^D$$

• Assume only p_0 changes in response to policy:

$$\frac{dW}{d\phi} \bigg|_{\phi=\phi^E} = [V^D(p_0^E) - V^R(p_0^E)]$$

$$- (1 - \phi)[u'(c^R(p_0^E)) - u'(c^D(p_0^E))] (k^R(p_0^E) - \bar{K})$$

$\uparrow \phi$ reduces p_0 and helps repaying banks that have high u'

• Without runs: optimal to have more banks defaulting

• With runs: may be optimal to reduce defaults
Fundamentals

(a) Welfare

(b) \(p_0 \)

(c) \(\gamma_0 p_1 \)

Self-Fulfilling Runs

(d) Welfare

(e) \(p_0 \)

(f) \(\gamma_0 p_1 \)