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Abstract

We study how tax policies that lower the cost of capital impact investment and labor
demand. Difference-in-differences estimates using confidential US Census Data on man-
ufacturing establishments show that these policies increased both capital investment and
employment. Labor demand increased the most for production workers, who directly in-
teract with machinery. Policy-driven reductions in capital costs did not lead to wage or
productivity gains, but did increase overall plant production. We illuminate the economic
mechanisms behind our results by specifying a model of factor demands. The model sepa-
rates scale and substitution effects and is identified by our reduced-form moments. Reduced-
form estimates of the scale effect show that the primary effect of the policy was to increase
the use of all inputs by lowering the overall costs of production. Structural estimates of
capital-labor substitution elasticities show that capital and production workers are comple-
mentary inputs in modern manufacturing. We validate this result by showing that plants
with lower labor costs invest more in response to policies that lower the cost of capital. Our
results show that tax policies that incentivize capital investment lead manufacturing plants
to increase their scale, but do not lead these plants to replace workers with machines.
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“Everybody must be sensible how much labour is facilitated

and abridged by the application of proper machinery.

It is unnecessary to give any example.”

—Adam Smith (1776, book 1, chapter 1)

1 Introduction

How the adoption of capital impacts workers is one of the foundational questions of the economics

discipline. This question is ever more relevant in the 21st century given the widespread concerns

that a new generation of machines will replace human work and that tax incentives for investment

may unnecessarily accelerate the adoption of capital equipment at the expense of workers.

Though this question is both seminal and timely, empirical attempts to study how capital

investment impacts labor demand face a number of challenges. First, since modern firms combine

many functions including R&D, production, and marketing, firm-level data often fail to identify

the production workers who directly interact with machines. Second, because plants may adjust

both capital and labor in response to productivity or demand shocks, answering this question

requires a credible strategy to isolate the effects of capital investment on workers from other

confounding forces. Finally, since the accumulation of capital is a dynamic process, measuring

the effects of capital on workers requires tracking production units over an extended horizon in

which all inputs are variable.

This paper combines confidential data from the US Census Bureau and quasi-experimental

variation in the cost of capital due to a tax policy called bonus depreciation to overcome these

challenges. Bonus depreciation, or simply bonus, lowers the cost of investment by allowing

plants to deduct equipment expenses more quickly. By comparing plants that benefit the most

from bonus to those that benefit less, we isolate investment in capital equipment that is likely

independent of other idiosyncratic shocks faced by a given plant. By following plants between

1997 and 2011, our results measuring the impact of capital adoption on workers allow plants to

fully adjust along multiple margins.

The combination of detailed plant-level data and cross-sectional variation in the generosity of

tax incentives reveals a number of interesting facts. Difference-in-differences analyses show that

plants respond to the tax policy by increasing their capital stock and employment. By lowering

the cost of production, the policy also stimulated plant output. Contrary to the expectations of
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policymakers, capital investment did not increase average worker earnings or plant productivity.

Using these facts, we estimate a structural model that elucidates the economic forces that drive

the reduced-form estimates. Our model estimates show that the policy’s main effect was to

lower the overall costs of production, which increased the use of all inputs. The fact that

production employment increases more than other inputs implies that capital and production

labor are complements in production. Based on these findings, we conclude that tax policies

that incentivize capital investment lead manufacturing plants to increase their scale, but do not

lead these plants to replace workers with machines.

The policy we study, bonus depreciation, is one of the largest incentives for capital investment

in US history. The policy has been in nearly continual use since its inception in 2001. The US

Treasury (2020) estimates that the version of bonus depreciation that was implemented as part

of the Tax Cuts and Jobs Act of 2017 will cost the federal government $285 billion between 2019

and 2028. Bonus depreciation allows plants to deduct capital investments from their taxable

income more quickly, lowering the cost of investment. The extent to which the policy affects

the cost of capital depends on tax rules that govern how quickly investments can be deducted in

the absence of the policy. Assets that are typically deducted more slowly benefit more from the

tax incentive because bonus accelerates deductions from further in the future. Importantly, the

benefits are determined by arbitrary IRS rules and not by the useful lives of assets. By comparing

plants that benefit the most from this incentive—those that invest more in equipment that is

deducted slowly according to IRS rules—to plants that benefit less, we isolate investment in

equipment that is likely independent of other drivers of capital accumulation.

The identifying assumption underlying our difference-in-differences estimation strategy is

that, in the absence of the policy, outcomes for treated plants—the third of plants that benefit

most from the policy—would track those of the remaining plants that benefit less. We provide

support for the validity of this identifying assumption in a number of different ways. First,

we verify that outcomes at treated and control plants evolved in parallel prior to policy imple-

mentation in 2001. Second, we show that the capital response to the policy is much larger for

eligible than for ineligible capital. Lastly, we show that responses to the tax policy are not due

to the factors responsible for the recent decline in US manufacturing employment, are present in

multiple datasets, and are robust across a battery of specification checks.

We estimate simultaneous capital and labor demand responses using confidential data from
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the Census of Manufactures and the Annual Survey of Manufactures. As in House and Shapiro

(2008) and Zwick and Mahon (2017), we find that investment flows respond strongly to the

policy. We estimate that treated plants increased investment by 15.8% relative to non-treated

plants after the policy was implemented. An advantageous feature of Census data is the ability

to measure capital stocks. We estimate a relative increase in overall capital of 7.8% by 2011. This

increase is concentrated in equipment capital, which is directly targeted by the policy. These

novel findings reject the notion that the increases in investment flows identified in prior research

reflected a re-timing of investment. That treated plants saw relative increases in capital stocks

between 2001 and 2011 allows us to study the effects of capital accumulation on labor demand.

In contrast to the concern that capital investment displaces workers, our labor demand find-

ings show that the capital investment response is more than matched by concurrent increases in

employment. By 2011, plants that benefited more from bonus had a relative employment increase

of 9.5%. These gains were concentrated among production workers, whose employment increased

by 11.5%. Non-production employment also increased by 8.1%. That workers operating produc-

tion machinery saw the largest gains suggests that capital and labor are complementary inputs

in modern manufacturing.

The effects of bonus on employment are robust across various data sources and specification

checks. First, plant-level results are robust to allowing for trends that differ by (pre-period)

plant productivity or by plant or firm size. These results are also robust to controlling for

drivers of transformation in the manufacturing sector, including trends in capital intensity and

skill intensity and exposure to import competition and robotization. Second, we find similar

effects using employment data at the state-industry level from Quarterly Workforce Indicators

(QWI). These results based on aggregate data show that accounting for plant entry and exit

does not alter our findings. We also obtain similar estimates when using alternate cutoffs to

define treated units or continuous measures of treatment intensity. Our results are not driven by

trends in industries facing concomitant shocks: we find similar effects when we exclude high-tech

industries and when we allow for differential trends along financing costs, adoption of information

and communication technology (ICT), and for industries that produce capital goods. Third, to

show that our results are not driven by differential exposure to business cycles, we use NBER-

CES industry-level data starting in 1990 to document that industries that benefit more from

bonus did not differentially respond to past recessions. Finally, we use occupation data from
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decennial Censuses and the American Community Survey (ACS) to show that bonus has larger

employment effects for occupations that primarily engage in manual and routine tasks. Overall,

these checks limit potential concerns related to our identification strategy and suggest that our

results measure the average effect of bonus on employment across the manufacturing sector.

A popular rationale for policies that stimulate investment is that the increased use of capital

raises productivity and workers’ wages. We test this claim by estimating the effects of the policy

on average earnings and productivity. We estimate that average earnings decreased by 2.7% at

treated plants, which contrasts the positive effect on employment. To understand this result, we

study the effects of bonus depreciation on the composition of the workforce using state-industry

aggregate data from QWI. We find that bonus led to a relative increase in the shares of young, less

educated, women, Black, and Hispanic workers. Conditioning on these composition shifts fully

accounts for the observed decrease in average earnings; our estimates rule out average earnings

increases greater than 1.7% at the 95% confidence level. Thus, while workers benefit from the

availability of additional jobs, which are more likely to be filled by otherwise disadvantaged

workers, the policy does not significantly increase average earnings. Finally, while we do not find

that the policy increased plant-level total factor productivity, we do find that the policy allowed

plants to increase their output.1

We use our reduced-form results to estimate a structural model of factor demands that il-

luminates the economic mechanisms underlying the responses to the tax policy. We first im-

plement the insight of Marshall (1890) and Hicks (1932) that policies that change the price of

inputs impact both plants’ choice of cost-minimizing inputs (substitution effect) and their profit-

maximizing output level (scale effect). We show that the scale effect is identified by a linear

combination of our reduced-form estimates. This calculation shows that, by lowering costs of

production, the policy increased the use of all inputs by 10% (p < 0.001) and that this scale

effect was responsible for 90% of the overall effect of the policy on the demand for production

workers. To a first-order approximation, the policy allowed plants to increase their scale; on

average, plants did not replace workers with machines.2

Our model shows that the elasticities of substitution between capital, production labor, and

1In addition to the null effect on total factor productivity, we do not find evidence of an increase in labor
productivity since employment increased by more than plant revenue.

2The model also shows that the scale effect is informative of the effects of the policy on plants’ cost of capital.
We leverage this insight to estimate cost-of-capital elasticities of capital and labor demand in Section 7.
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non-production labor are identified by our reduced-form estimates. Using a Classical Minimum

Distance approach, we estimate that the Allen elasticity of substitution between capital and

non-production labor is close to 0.73.3 This result follows from the fact that the scale effect is

larger than the 8% increase in non-production employment. In contrast, the 11.5% increase in

production employment yields an elasticity of substitution between capital and production labor

of -0.44, implying that capital and production labor are complements. We reject values greater

than 0.13 for this elasticity of substitution at the 95% confidence level.4

If capital and labor are complements, plants would need additional workers to operate new

machines. An implication of this complementarity is that investment in plants with lower labor

costs should respond more strongly to bonus. We test this prediction using plant-level variation

in unionization rates, location in a right-to-work state, and by local labor market concentration.

In all three settings we find that, where labor costs are low, the investment effects of the policy

are larger. These results support the conclusion that capital and labor are complementary inputs

and reveal that labor market institutions can impact capital investment.

Our results build on classic studies that have estimated the effects of accelerated depreciation

on business investment (Hall and Jorgenson, 1967; Cummins, Hassett and Hubbard, 1994; House

and Shapiro, 2008; Edgerton, 2010). Using tax return data and modern causal inference methods,

Zwick and Mahon (2017) made a substantial leap forward in our understanding of the effects

of bonus depreciation. They showed the policy was very effective at stimulating investment,

especially among small firms and those who saw immediate cash flow benefits. A subsequent

literature has also found large effects of accelerated depreciation policies on investment (Ohrn,

2018, 2019; Maffini, Devereux and Xing, 2018; Fan and Liu, 2020; Guceri and Albinowski, 2021).

Less attention has been paid to the effects of these policies on employment outcomes.5,6

This paper improves our understanding of the effects of bonus depreciation in a number of

3Since the identifying variation emanates from industry-level differences in the benefit of bonus, we estimate
average elasticities of substitution across the manufacturing sector. As we discuss in Section 7, the benefit from
bonus is not correlated with industry-level estimates of substitution elasticities.

4We show that these estimates are compatible with popular models of production by estimating the parameters
of a translog cost function as well as a nested constant elasticity of substitution (CES) production function.

5Zwick and Mahon (2017) estimate effects of bonus on payroll but not employment, Garrett, Ohrn and
Suárez Serrato (2020) estimate regional employment effects, and Ohrn (2021) studies executive compensation.
Tuzel and Zhang (2021) study the effects of state accelerated depreciation policies on computer purchases and
the mix of occupational employment.

6Criscuolo, Martin, Overman and Van Reenen (2019) and Siegloch, Wehrhöfer and Etzel (2021) both explore
joint capital and labor responses to place-based policies in the UK and Germany, respectively. LaPoint and
Sakabe (2021) estimate responses to a geographically targeted Japanese version of bonus depreciation.
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ways. While prior research studied short-term effects using consolidated firm-level data, our re-

sults capture the decade-long effects of bonus on individual production units. Our rich production

data also allow for a more complete understanding of the effects of bonus on the manufacturing

sector. In particular, we estimate novel responses to bonus depreciation, including on the accumu-

lation of capital stocks, plant sales, total factor productivity, labor earnings, overall employment,

employment for production and non-production workers, and workforce demographics.

Our paper also contributes to the literature estimating elasticities of substitution between

capital and different types of labor, which are fundamental economic parameters. Prior estimates

suggest that capital and labor are highly substitutable, implying that policies that lower the cost

of capital may increase income inequality (e.g., Zucman and Piketty, 2014).7 A related concern is

that production workers are more substitutable with capital than non-production workers. This

“capital-skill complementarity hypothesis” suggests an additional reason why bonus depreciation

might increase income inequality (Griliches, 1969; Goldin and Katz, 1998; Krusell, Ohanian, Ŕıos-

Rull and Violante, 2000; Lewis, 2011). We contribute to this literature by estimating substitution

elasticities in a setting that combines quasi-experimental variation in the cost of capital over a 10-

year period with confidential plant-level data on production activities, including plant output,

capital use, and employment of different types of labor. These unique features allow us to

use the results of transparent difference-in-differences analyses to estimate the parameters of a

multi-input structural model. Our estimates show that workers are not highly substitutable with

machines and are not compatible with the capital-skill complementarity hypothesis.

Our complementarity result is reconcilable with recent literature exploring the effects of ICT

and industrial robots on labor demand. A number of studies show that adoption of ICT in-

creased the relative demand for “skilled” workers who typically engage in non-routine, cognitive

tasks (Autor, Katz and Krueger, 1998; Autor, Levy and Murnane, 2003; Akerman, Gaarder and

Mogstad, 2015; Gaggl and Wright, 2017). Interpreting our results in light of these findings sug-

gests that bonus did not shift investment towards ICT or other types of skill-complementing

capital. Multiple studies show that firm-level adoption of robots increases labor demand (Ace-

moglu, Lelarge and Restrepo, 2020; Dixon, Hong and Wu, 2021; Koch, Manuylov and Smolka,

7Recent studies focusing on a single type of labor include Karabarbounis and Neiman (2014), Doraszelski
and Jaumandreu (2018), Raval (2019), Benzarti and Harju (2021), and Oberfield and Raval (2021). Chirinko
(2008) concludes that this parameter is between 0.4 and 0.6. The meta-analysis of Gechert, Havranek, Irsova
and Kolcunova (2021) yields an average estimate of 0.9 (close to Cobb-Douglas), but shows that correcting for
publication bias lowers the estimate to 0.3.
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2021; Aghion, Antonin, Bunel and Jaravel, 2020).8 In most settings, robot adoption leads to

increases in demand for both high- and low-skill workers. Thus, our labor demand effects are

consistent with bonus depreciation stimulating investment in industrial robots.9

Acemoglu, Manera and Restrepo (2020) show that, mainly due to bonus depreciation, the US

tax code has increasingly favored capital over labor. They theorize that when automative tech-

nologies and labor are highly substitutable, this tax favoritism can lead to too much automation.

Combining their framework and our estimated complementarity between labor and all types of

capital (robots and other) suggests that the increasingly favorable tax treatment of capital has

not led to inefficiently low levels of labor demand.

Our results also improve our understanding of the modern manufacturing sector, which has

historically played an important role in the US labor market and continues to play an outsized

role in political discourse (Charles, Hurst and Schwartz, 2019). Since the turn of the century, the

US manufacturing sector has lost more than 5 million jobs. These losses coincided with increased

capital- and skill-intensity, increased import competition (Autor, Dorn and Hanson, 2013, 2016),

and robotization (Acemoglu and Restrepo, 2020). Our results show that bonus depreciation had

larger effects for industries that were less exposed to import competition and that were more

likely to adopt industrial robots. These findings indicate bonus had the largest effects on the

manufacturing industries most likely to thrive in the 21st century.

Section 2 describes accelerated depreciation policies. Section 3 discusses our data sources.

Sections 4 and 5 present our research design and results. We place our results in the context of

the transforming US manufacturing sector in Section 6. Section 7 estimates a model of factor

demands to interpret our reduced-form estimates. Section 8 concludes.

8Acemoglu and Restrepo (2020) and Dauth, Findeisen, Suedekum and Woessner (2021) show robotization
can decrease local labor demand by making highly automated firms more productive and shifting market share
away from relatively more labor intensive firms. Garrett, Ohrn and Suárez Serrato (2020) find bonus depreciation
increased employment in local labor markets suggesting capital investments stimulated by the policy, which may
include robots, do not lead to similar effects.

9Benmelech and Zator (2022) show robots account for less than 0.3% of equipment investment worldwide
during our sample period. That robots likely account for only a small amount of all capital investment stimulated
by bonus likely explains the divergence between our results and those of Lewis (2011) that suggest workers without
high school degrees are substitutes for automative technologies.

7



2 Investment Tax Incentives in the 21st Century

Governments around the world have used accelerated depreciation policies for more than 100

years to stimulate business investment. These policies were initially used to spur defense spending

during the First World War, were used again in the military buildup to the Second World War,

and were used as a means to replenish industrial capital stocks in the aftermath of these wars.10

While these policies gained popularity in the post-war years, base broadening tax reforms stymied

additional applications of accelerated depreciation during the later years of the 20th century.

In 2001, the use of these policies came back into vogue when the US introduced “Bonus

Depreciation.” The policy allows firms to deduct a bonus percentage of the cost of equipment

investment from their taxable income in the year the investment is made. Because costs are

typically deducted slowly over time, bonus lowers the present value costs of new investments.

For example, under 50% bonus, firms immediately deduct an additional 50% of investment costs.

The remaining 50% of the costs are deducted according to normal depreciation schedules—usually

the Modified Accelerated Cost Recovery System (MACRS). In addition to bonus, firms could

also benefit from an accelerated depreciation policy referred to as §179 (“Section 179”), which

allowed for full expensing of investment costs below a dollar limit.11 Throughout the paper, we

interpret our results as the combined effect of these policies.

Bonus and accelerated depreciation policies more generally have been politically popular

because they only change the timing of tax deductions for businesses. Therefore, the cost of the

policy appears very small over long time periods that do not account for the time value of money,

such as in the case of the Congressional Budget Office’s (CBO) 10-year forecasting window. Its

popularity is, in large part, responsible for its near continuous use since 2001. Despite the CBO’s

generous measurement, bonus has real costs as a tax expenditure and real value as a subsidy

because of the relative change in timing.

To understand the mechanics of bonus, consider a plant with a discount rate of 7% and a

tax rate of 35% that purchases a computer for $1,000, which would normally depreciate over five

years.12 With straight-line depreciation, the firm deducts $200 each year from its taxable income,

which lowers its tax liability by $200×0.35 = $70. Under 50% bonus, the firm instead depreciates

10See Koowattanatianchai, Charles and Eddie (2019) for a historical account of accelerated depreciation policies.
11This dollar limit increased from $24,000 to $500,000 between 2001 and 2011. Between 2003 and 2011, the

share of equipment investment that qualified for §179 was stable and averaged 12% (Kitchen and Knittel, 2016).
12This example ignores practical aspects of tax accounting, such as the the half-year convention.
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a bonus portion in the first year and receives an immediate deduction from taxable income of

$600 (= $500+($500×0.2)), but only deducts $100 in years two through five. In both cases, the

firm deducts the full value of the asset over five years which, ignoring the time value of money,

lowers its total tax liability by $350. Using a discount rate of 7%, the depreciation deductions

without bonus are only worth $307.10 in present value (PV) terms, while the deductions under

50% bonus have a PV of $328.55, 7% more than in the baseline. In this case, bonus decreases

the after-tax cost of the investment by $21.45, or 3.1% relative to the original cost.

To see how bonus depreciation works in a more realistic setting, we start from the observation

that the IRS sets tax depreciation schedules (IRS, 2002, see Table A.1 of Publication 946). Figure

1 shows examples of MACRS schedules for a tractor trailer (a 3-year asset) in Panel (A) and a

barge (a 10-year asset) in Panel (B). The blue bars in this figure represent depreciation deductions

over time in the absence of bonus depreciation. These schedules already partially front-load

depreciation deductions. The orange bars show the schedule of deductions with 50% bonus

depreciation. The benefit of bonus depreciation depends on the extent to which depreciation

deductions are accelerated forward in time. Contrasting the two panels, it is clear that both

assets benefit from bonus depreciation, but the asset that is depreciated more slowly according

to IRS rules (i.e., the barge) benefits more. The fact that similar assets differentially benefit

from bonus is at the heart of our identification strategy.

While this realistic example is instructive, it is useful to have a measure of the benefit of bonus

depreciation that applies to all assets. Let z0 be the original PV of depreciation deductions per

dollar of investment and let b be the bonus depreciation percent. Under bonus, the PV of

depreciation deductions per dollar of investment, z, is given by z = b+z0× (1− b). The fact that

∂z
∂b

= 1−z0 shows that bonus provides a larger subsidy to capital that is depreciated more slowly

according to IRS rules. As in Figure 1, assets such as a barge—those with lower z0—benefit

more from an increase in b.

In the US, each asset class is assigned a depreciation schedule, which determines z0. For

equipment used in production, asset classes are defined by the activity for which a given piece

of equipment is used. These classes align closely with NAICS industry definitions, instead of

depending on the useful life of a specific asset.13 For example, while equipment related to

13Since 1986, class lives are formally defined in Revenue Procedure 87-56, 1987-2 C.B. 674 (IRS, 2002). The
procedure establishes two types of depreciable assets: (1) specific assets used in all business activities in Table
B-1 and (2) assets used in specific business activities in Table B-2. For equipment used in manufacturing plants,
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cutting timber is depreciated over a five year period, equipment used in the creation of wood

pulp and paper is subject to a seven year schedule. Therefore, plants in different industries could

use similar or identical equipment, but face different depreciation schedules. In Section 4, we

discuss how we measure z0 at the industry level.

It is important to consider that several real-world factors shape the application of accelerated

depreciation policies. First, firms may not claim bonus if they have a tax loss or for other reasons

(Kitchen and Knittel, 2016). Our estimates therefore capture the effect on all firms, including

those that are eligible for bonus but are not able to immediately benefit from the policy.

Second, while the generosity of bonus varied over time, accelerated depreciation policies were

in nearly continuous use between 2001 and 2011 and significantly lowered the cost of investment.

Panel (C) of Figure 1 shows the effective bonus rate for two levels of investment, $400,000 and

$1,000,000. The $400,000 investment benefits from accelerated depreciation in all years after

2001 while the $1,000,000 investment benefits in all years after 2002 with the exception of 2006

and 2007. The average bonus rate between 2001 and 2011 was 45%.14 Using this bonus rate and

estimates from Zwick and Mahon (2017) based on IRS data, we calculate that by increasing the

PV of depreciation deductions, bonus lowered investment costs by 2.5%, on average.

Third, while the bonus amount varied over time, plants likely expected their investments

to benefit from bonus in all years after 2001. These expectations were shaped by repeated

extensions, increases in generosity, and several retroactive applications of the policy. In fact,

Auerbach (2003) correctly predicted the 2003 increase in bonus depreciation generosity using an

ordered probit model before it happened. Further supporting the view that firms expected to

continually benefit from bonus, House and Shapiro (2008) estimate that in 2006, firms behaved

as though the bonus depreciation rate was between 25% and 50% even when the statutory bonus

depreciation rate was zero.

Finally, bonus impacts the cost of capital both by increasing the present value of depreciation

deductions as well as by providing immediate cash flow. Bonus is economically equivalent to

giving a firm that purchases a qualified asset an interest-free loan equal to the bonus portion

multiplied by the tax rate and the value of the asset. The business de facto pays the loan

most class lives are determined using Table B-2, which align closely with industry definitions.
14This rate combines 100% expensing for the 12% of §179 eligible investment with the average bonus rate

between 2001 and 2011 of 38% for the remaining amount. Appendix B describes details of bonus depreciation
and §179 expensing policies.
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back since it cannot take the tax deductions it would have taken under MACRS in later years.

Recognizing the equivalence of bonus to an interest-free loan, Domar (1953) first theorized that

accelerated depreciation policies could be especially valuable for financially constrained firms or

those that would prefer to rely on retained earnings to finance capital investments. Edgerton

(2010) and Zwick and Mahon (2017) provide evidence that financing constraints help shape the

response of investment to bonus depreciation.15 The total impact of bonus on the cost of capital

is therefore likely to significantly exceed the value of depreciation deductions alone.

From the perspective of policy analysis, our reduced form estimates capture the 10-year

cumulative effects of bonus depreciation on investment and employment, inclusive of these real-

world factors surrounding the policy. In Section 7, we recover the implied effect of bonus on the

cost of capital using our reduced form estimates that incorporate these factors.

After the US implemented bonus in 2001, a number of large economies have followed suit,

using very similar instruments to decrease capital investment costs. These include the UK

(Maffini, Xing and Devereux, 2019), China (Fan and Liu, 2020), Canada, and Poland (Guceri

and Albinowski, 2021). Today, bonus and accelerated depreciation policies are being deployed

to combat the world’s largest economic crises, including global warming and the COVID-19

pandemic.16 These trends highlight the importance of bonus depreciation and related policies in

shaping investment and potentially labor demand in the 21st century.

3 Sources of US Manufacturing Data

This section describes the main datasets we use to measure the effects of bonus depreciation on

various manufacturing outcomes; Appendix A precisely defines each of our variables.

We construct our primary dataset using the Census of Manufactures (CM), the Annual Sur-

vey of Manufactures (ASM), and the Longitudinal Business Database (LBD). The CM and the

ASM are establishment-level manufacturing datasets containing detailed information on plants’

inputs and outputs and are considered the workhorse datasets of the US Census Bureau’s Eco-

nomic Census. The Census collects CM data quinquennially from the universe of manufacturing

15Criscuolo, Martin, Overman and Van Reenen (2019) use similar logic to motivate the importance of credit
constraints in shaping responses to industrial policies in the UK.

16The United Kingdom, Sweden, Russia, Germany, Ireland, Romania, and France have all relied on similar
policies to speed the transition to environmentally sustainable production methods (Koowattanatianchai, Charles
and Eddie, 2019). Australia, Austria, Germany, and New Zealand all included accelerated depreciation policies
in their fiscal stimulus responses to the COVID-19 pandemic (Asen, 2020).
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establishments in years ending in 2 and 7 (1997, 2002, 2007 in our data). The ASM collects an-

nual data in all non-CM years for a sample of approximately 50,000 plants. Plants are selected to

be part of the ASM in the year following the CM and are surveyed annually until the year after

the following CM, when a new wave of ASM plants is selected. Larger plants are oversampled

in the ASM and the largest plants are selected with certainty.

The ASM/CM data provide a unique opportunity to study how tax incentives for capital

investment affect production. These data focus on plant-level production processes and include

detailed measures of investment, materials cost, and total value of shipments (a proxy for plant-

level revenue). CM data measure capital stocks directly and we integrate ASM data to construct

capital stock measures using the perpetual inventory method in non-CM years (as in Cunning-

ham, Foster, Grim, Haltiwanger, Pabilonia, Stewart and Wolf, 2020). The full picture painted

by our data allows us to study how plants adjust production in response to the policy and our

measure of output captures the scale effect of the policy. Another advantage of these data is

that they include several measures of labor inputs: the number of workers (i.e., employment),

total payroll, average worker earnings, and number of hours worked. We also observe whether

labor was employed in production or non-production related tasks. This division of employment

by tasks allows us to test the popular concern that production-related tasks are at risk of being

automated, particularly in response to policies that lower the cost of capital. Finally, we combine

information on employment, capital stock, and material inputs to estimate plant-level measures

of total factor productivity (TFP).17 To avoid sensitivity to outliers, we winsorize all variables

at the 1% level.

Our baseline regressions are performed on a balanced panel of establishments that are present

in the ASM/CM between 1997 and 2011. A particular advantage of these data is that they

allow us to track differences between treated and control plants for five years prior to policy

implementation and to measure the effects of the policy over a 10 year horizon. To construct

this sample we use establishment identifiers from the LBD that consistently track plants over

time. Our final ASM/CM sample consists of approximately 160,000 plant-year observations.

Our balanced sample sidesteps concerns that changes in the ASM sample construction across

time could insert noise and discontinuous breaks in our results. Additionally, tracking capital

17Following Criscuolo, Martin, Overman and Van Reenen (2019), we estimate residual TFP using industry-level
cost shares. See Appendix A for details.
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accumulation and employment over a 15 year period eliminates concerns that plant responses

may be constrained by adjustment frictions. By focusing on a balanced panel, our baseline results

speak to how existing plants respond to the policy.

Due to the Census Bureau’s ongoing concern with data privacy and disclosure risk (see, e.g.,

Abowd and Schmutte, 2019), we do not report summary statistics.18 Chen (2019) and Giroud

and Rauh (2019) relied on similar estimation samples using these data and disclosed summary

statistics. The average plant in a similarly balanced panel has 165 employees, 77% of which

are engaged in production-related tasks; capital investment averages $736,000 per year, of which

81% is in equipment (Chen, 2019).

We also rely on complementary data from the publicly-available Quarterly Workforce Indica-

tors (QWI) (see, e.g., Abowd, Stephens, Vilhuber, Andersson, McKinney, Roemer and Woodcock,

2009; Curtis, 2018). The underlying microdata for QWI come from the Longitudinal Employer

Household Dynamics program. These data are primarily derived from state unemployment in-

surance systems and also include worker and firm characteristics from a variety of surveys and

administrative sources. We collapse these data at the industry-state level. These data com-

plement the ASM/CM data in three ways. First, they allow us to explore whether bonus had

different employment effects on workers with different characteristics, including education, gen-

der, age, race, and ethnicity. Accounting for the effects of bonus on the demographic composition

of the workforce refines our understanding of the wage effects of the policy. Second, our state-

industry analyses account for any potential effects of the policy on entry and exit. Finally,

we use these data to estimate the effects of bonus on plants that are not included or that are

underrepresented in our ASM/CM sample, such as small and young firms.

4 Identifying Responses to Bonus Depreciation

Our research strategy compares how bonus depreciation impacted manufacturing outcomes across

industries that differentially benefited from the policy. We first describe how we classify which

industries benefited the most from bonus depreciation. We then describe our event-study,

difference-in-differences framework that uses this classification to identify how US manufacturing

plants responded to the policy.

18It is common practice for papers relying on confidential Census Bureau data to not report variable means or
other summary statistics for analysis samples (see, e.g., Foster, Haltiwanger and Syverson, 2008).

13



4.1 Treatment Variation in Bonus Depreciation

Recall from Section 2 that the plants that benefit the most from bonus are those that would

depreciate assets over a longer time horizon in the absence of the incentive, i.e. those with lower

values of z0. We rely on industry-level (4-digit NAICS codes) measures of z0 based on admin-

istrative tax return data from Zwick and Mahon (2017) and classify plants into the treatment

group if they are in an industry j that benefits the most from bonus depreciation. Let Bonusj be

an indicator equal to one if the plant’s z0 is in the bottom tercile of the z0 distribution.19 Relying

on the z0 distribution also captures variation in the cost of capital due to §179 expensing. Like

bonus, §179 most benefits plants that invest in assets that are depreciated more slowly according

to IRS tax rules.

We rely on this binary treatment for two reasons. First, to calculate z0, some assumption of

discount rates must be made. By relying on this simple dichotomy, our treatment indicator is

agnostic with regard to discount rates. Second, there is a clear break in the z0 distribution at

the 33rd percentile, making this a natural comparison of most- to less-treated units.20

Our indicator of bonus treatment is designed to mitigate endogeneity concerns. One specific

concern in this context is that bonus depreciation may affect the mix of investments across asset

classes. As a result, an industry’s z0 may be endogenous with regard to the policy. This concern

is allayed by the fact that our measure of z0 is calculated using only eligible investments made

in the non-bonus periods of our sample. As these investments are less likely to be affected by

bonus, the z0 distribution and our bonus indicator should not be endogenous with respect to

the policy.21 Additionally, recall that IRS asset classes are defined by asset use and not type.

A plant’s z0 is unlikely to change even when plants change the types of assets they purchase,

because their use is unaffected by the policy.

19For each asset class, Zwick and Mahon (2017) calculate z0 using a discount rate of 7%. Using data from IRS
form 4562, they compute industry-level z0s by aggregating the asset-class measures according to their importance
in an industry’s overall investment.

20We show this natural break in Panel (A) of Figure A1, which presents a histogram of the z0 distribution
across industries. Zwick and Mahon (2017, §III.B, p.228) also classify plants in the bottom tercile of the z0

distribution as treated in their dichotomous treatment definition. Garrett, Ohrn and Suárez Serrato (2020)
obtain similar estimates of bonus on local labor markets when defining dichotomous treatments at the 25th, 33rd,
and 40th percentiles. As we show below, we also obtain similar results when we define treatment status using
these different thresholds.

21We also address this endogeneity concern empirically by investigating the stability of z0 over time in Appendix
B. There, we use sector-level IRS SOI data on investment shares in each asset class to show that sector-level z0s
are stable over the years 2000–2011.
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4.2 Empirical Specifications

We estimate the effects of bonus on manufacturing outcomes using event study difference-in-

differences regressions of the form

Yit = αi +
2011∑

y=1997, y 6=2001

βy
[
Bonusj × I[y = t]

]
+ γXi,t + εit, (1)

where Yit is an outcome of interest for plant i in year t and industry j. αi is a plant-level fixed

effect that captures all time-invariant components of manufacturing activity. Xi,t is a vector of

fixed effects that varies across specifications. The coefficients β1997 through β2011 describe the

relative outcome changes for plants that benefit most from bonus relative to 2001.

The identifying assumption behind this strategy is that outcomes at treated and control

plants would evolve in parallel in the absence of bonus. This assumption is likely to hold because

differences in z0 are generated by the largely arbitrary assignment of IRS depreciation schedules to

different types of assets defined not by their nature, but by their use. The primary threat to this

assumption is that other trends during the time period correlate with bonus treatment. Because

Bonusj varies at the industry level, we cannot include industry-year fixed effects to directly

address this threat. Instead, we rely on a number empirical tests to support our identification

assumption. First, we use the event study estimates to compare pre-period trends in outcomes

between the treated and control units. In this context, the absence of differential trends suggests

that the identifying assumption is likely to hold in the post-period. Second, we use the fact

that, while equipment capital was eligible for bonus depreciation, investment in structures was

generally not eligible. We separately estimate effects of bonus depreciation on eligible equipment

capital and ineligible structures capital. Larger effects on treated equipment capital suggest

we are precisely measuring the effect of bonus depreciation and not of other shocks that would

violate our identifying assumption. Third, we show that our results are robust to including state-

by-year fixed effects and flexible controls for trends related to plant characteristics. Specifically,

we include plant size bins interacted with year fixed effects, firm size bins interacted with year

fixed effects, and TFP bins interacted with year fixed effects.22 These controls ensure that the

effects of bonus are not confounded by trends that affect plants or firms of different sizes or

productivity. Finally, in Section 6, we additionally show that our results are unrelated to major

22Plant size is determined by the book value of assets in 2001 and firm size is defined as the count of employees
in all establishments across a firm in 2001. We define four bins for each variable.
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drivers of manufacturing transformation in the 21st century, including changes in capital and

skill intensities, import competition exposure, and robotization.

We quantify the effects of bonus depreciation in two ways. First, we estimate the average

effect of bonus over the full treatment period using pooled regressions of the form

Yit = αi + β[Bonusj × Postt] + γXi,t + εit. (2)

The difference-in-differences (DD) estimate, β, measures the average increase in an outcome for

the treatment group relative to the control group. Second, because many of our outcome variables

(such as capital and employment) are stocks that evolve slowly over time, we also report long-

difference (LD) estimates, which correspond to β2011 in Equation (1). LD estimates measure the

cumulative effect of accelerated depreciation policies on plant outcomes over the 10-year period

2002–2011.23 One major benefit of measuring 10-year effects is that adjustment costs are unlikely

to dramatically affect these long-run results. Because federal bonus depreciation interacts with

the design of state tax systems, we cluster standard errors at the 4-digit NAICS-by-state level

following guidance in Bertrand, Duflo and Mullainathan (2004) and Cameron and Miller (2015).24

5 Effects of Bonus Depreciation on US Manufacturing

This section presents our estimates of the effects of bonus depreciation on manufacturing out-

comes. We first measure the effects of the policy on investment and capital stocks. Next, we

estimate the effects of bonus on labor demand, as measured by employment and earnings per

worker. Finally, we characterize how the policy affects plant output and productivity.

5.1 Capital Investment Response

We begin by exploring the effects of bonus depreciation on investment in physical capital. Panel

(A) of Figure 2 shows the results of estimating Equation (1) when the outcome is log investment.

Three results are immediately apparent. First, differences in investment between the treatment

and control groups are small and stable in the pre-period, supporting the validity of our empirical

strategy. Second, log investment for the treated group jumps by nearly 10 log points immediately

upon policy impact in 2002 and remains elevated throughout the post period. These differences

23To minimize the number of disclosed coefficients, we only report LD estimates for select specifications.
24Appendix C describes these interactions and shows that our results are generally robust to clustering at a

more conservative industry level.
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are statistically significant in all years after 2002. Third, while our baseline estimates include

plant and state-by-year fixed effects, we obtain similar estimates when we flexibly control for

time trends based on plant size, firm size, and productivity. The sustained relative increase in

investment captured by each series suggests accelerated depreciation policies increase investment

levels rather than only shifting capital expenditures across years. On the whole, these results

show that bonus depreciation has a large and statistically significant effect on investment behavior

in the manufacturing sector, confirming that the findings of House and Shapiro (2008) and Zwick

and Mahon (2017) hold in our setting.25

Panel (A) of Table 1 presents estimates of the effects of bonus on log investment. Column (1)

reports difference-in-differences (DD) estimates with only plant and year fixed effects and shows

a relative investment increase of 17% (p < 0.001). Estimations that progressively include state-

by-year fixed effects, plant size bins-by-year fixed effects, TFP bins-by-year fixed effects, and

firm size bins-by-year fixed effects yield a narrow range of estimates between 15.1 and 15.8%.26

Since investment data can include spells of non-investment, we consider alternative outcome

variables that capture extensive margin responses. Panel (B) of Table 1 estimates the effect

of bonus depreciation on the inverse hyperbolic sine (IHS, i.e., ln(x +
√
x2 + 1)) of investment.

The IHS of investment captures both intensive and extensive margins of response and takes

similar values as the simple log outcome for large values of investment. The results in Panel

(B) are nearly identical to those in Panel (A), suggesting that extensive margin responses to the

policy are relatively unimportant in our sample of large plants. Panel (C) of this table reports the

effects of bonus on investment scaled by the pre-period capital stock. This outcome also captures

extensive margin responses and shows that bonus led to significant increases in investment.27 In

sum, across all three investment outcomes we find large, positive, and statistically significant

effects of bonus depreciation on capital expenditure.

One strength of the ASM/CM data is that we observe measures of capital stock used in

25As we discussed above, Zwick and Mahon (2017) use the same threshold for bonus treatment in their event
study analyses, which show that investment in treated firms increased by 11.8% relative to firms in the control
group between 2002-04. Over that same period, our event study coefficients indicate that investment for the
treatment plants increased by 10.1%. See Appendix D for more details.

26Column (2) includes the same controls as the “Baseline” estimates presented in Panel (A) of Figure 2 and
column (5) corresponds to the specifications with “Additional Controls.”

27These estimates can be translated into percent increases by dividing the coefficient by investment as a share
of pre-period capital. Assuming this fraction is 0.2, the estimate from column (5) in Panel (C) implies that bonus
increased investment by 13.9%. Corresponding event study coefficients are presented in Figure A3.
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production. Given the large investment response, we also expect the policy to increase the capital

stock of treated plants. We show that this is indeed the case in Panel (B) of Figure 2. Differences

in the capital stock between treated and untreated plants are not statistically significant in the

pre-period. The graph then shows that, relative to plants that benefited less from bonus, treated

plants saw a persistent increase in their capital stock. This increase is robust to the inclusion of

additional controls. Given this gradual increase, we focus on the long-differences (LD) estimates

of bonus. Columns (1) and (2) of Table 2 show that by 2011 bonus depreciation led to a relative

increase in the capital stock of between 7.78 and 8.04%.

ASM/CM data also allow us to separately estimate the effects on equipment and structures.

Columns (3)–(6) of Table 2 show that the ten-year effect of bonus depreciation on equipment

capital stock is three times larger than the effect on the stock of structures. Because bonus de-

preciation mostly applied to equipment investment during our period, finding a larger equipment

response gives credence to our argument that estimated responses are due to the tax policy itself

and not to other coincident unobservable shocks. In addition to serving as a useful validating

exercise, these estimates are informative of how plants combine different types of capital in pro-

duction. As we discuss in Section 7, bonus may influence investment in structures through both

a scale effect and a substitution effect.

5.2 Labor Demand Response

Our results thus far verify that in our setting, bonus depreciation had large, positive impacts on

investment and capital stocks in the US manufacturing sector. We now turn our attention to the

important but under-explored question of whether plants used this increase in capital to replace

workers, or if plants hired additional workers to interact with the new machinery.

Figure 3 shows event study coefficients depicting the effects of bonus on log employment.

Both our baseline and additional controls specifications show that treated and control plants had

similar employment trends before 2001. In 2002, we immediately observe that, relative to control

plants, treated plants saw a large and statistically significant increase in the number of workers.

This effect continues throughout the sample period and increases further in later years.

Panel A of Table 3 reports estimates of the effects of bonus on employment. Column (5)

shows that employment at treated plants increased by 7.9% (p < 0.001), on average, between

2001 and 2011. Across our different sets of controls, this difference-in-differences estimate ranges
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between 7.85 and 8.5%. The long difference estimate in column (7) shows that, by 2011, the

plants that benefited most from bonus had a relative employment increase of 9.5% (p < 0.001).

Not only are the effects of bonus on the employment stock large and statistically significant at the

0.001 level, they are also larger than the effects of the policy on the capital stock. This finding is

surprising given the popular concern that modern equipment investment is labor replacing and

that the tax policy we study directly stimulates such investment.

An immediate question raised by this finding is whether the increase in employment is driven

by production workers who directly interact with machines or by workers specializing in non-

production tasks, such as management or sales. Relative to other administrative datasets that

do not capture production tasks (e.g., the LEHD or IRS tax data), the ASM/CM data provide

a unique opportunity to answer this question.28 Panels (B) and (C) of Table 3 report estimates

of the effect of bonus on production and non-production employment. Comparing the long

differences estimates in column (7), we find that the effect on production employment is more

than 40% larger than the effect on the employment workers specializing in non-production tasks.29

Our results are therefore not consistent with the hypothesis that bonus induced a shift from

production employment to automated technologies or to technologies that are more likely to be

complementary to non-production employment.

As we discuss in Section 3, the results above focus on a balanced panel of plants. One

possibility that is not captured by our baseline results is that, facing a lower cost of capital,

new plants may choose to engage in more capital-intensive forms of production. If this were the

case, and if entry comprised an important share of overall capital investment, the large effect

on employment could disappear when including the effect of bonus on new firms. To explore

this possibility, we now estimate the effects of bonus on employment using QWI data at the

state-industry level. Importantly, these aggregated data capture extensive margins of response,

such as plant exit or entry, that our balanced panel omits by construction. Figure 4 shows event

study estimates of bonus depreciation on employment using quarterly data at the state-industry

(4-digit-NAICS) level from QWI. We include state-by-industry and state-by-quarter fixed effects

28We follow Berman, Bound and Griliches (1994) in using the production/non-production task dichotomy in
the ASM data when estimating labor demand. As we show below, we find similar results using Census data and
task definitions related to manufacturing production in Acemoglu and Autor (2011).

29Panels (A) and (B) of Figure A4 present event study graphs of the effects of bonus on production and non-
production employment. As we show in Table A3, the result that the effect of bonus on production employment
is larger than for non-production employment is robust to measuring employment in terms of hours worked. This
table also shows that plants increase their use of materials in response to bonus.
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in this regression. We observe no differential pre-trends between treated and control industries

and employment in treated industries increases shortly after the policy is implemented. The

effect of bonus on employment grows through the end of the panel. Finally, the dynamics of the

event study estimates are a near perfect match with the ASM/CM estimates presented in Figure

3.30 These results suggest that entry and exit margins do not substantially alter our estimates

of the effects of bonus depreciation on employment.

Due to the balanced panel nature of our ASM/CM data, our baseline results are not represen-

tative of smaller or younger firms. In Figure A6, we present event study employment estimates

that focus on these types of firms using QWI data. Panel (A) focuses on smaller firms—those

with 50 or fewer employees—and shows that bonus had similar effects on the employment of

small firms. Panel (B) studies the effects of bonus on firms 0–5 years old and shows that bonus

also elevated the employment of young firms. Importantly, the similar results for small and young

plants show that the effect of bonus on employment is not confined to the sample of large plants

in our balanced panel and is generalizable to the full US manufacturing sector.31

5.2.1 Additional Robustness Checks

Before analyzing the impact of bonus on labor earnings and productivity, we demonstrate the

robustness of the effects on employment.32 First, in Panel (A) of Figure A7, we also show that

we obtain similar results using the continuous variation in z0.
33 We also estimate the effects of

bonus on employment using alternative treatment cutoffs. Panel (A) of Figure A8 shows that we

find similar employment effects when we define treatment using the 25th and 40th percentiles of

the z0 distribution.

We now show that our results are robust to controlling for a number of potential confounding

factors. First, one potential concern is that producers of capital goods benefit from the policy

both by a reduction in the cost of production and an increase in the demand for their products.

If this were the case, our estimates would overstate the effects of a reduction in the cost of

30Column (1) of Table A6 reports corresponding regression coefficients.
31The slightly larger effect for young firms is consistent with Isphording, Lichter, Löffler, Nguyen, Pöge and

Siegloch (2021), who suggest that young firms are more likely to be financially constrained than small firms.
32Due to disclosure limits related to the use of Census Data, we rely primarily on QWI data at the industry-state

level to perform these robustness checks.
33Additionally, Panel (B) of Figure A7 relates the treatment intensity z0 to employment growth and shows

that industries with lower values of z0 experienced relatively larger increases in employment. The strong linear
relationship between z0 and employment growth explains why our results are not sensitive to how we define
exposure to bonus in our analyses.
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investment on labor demand. In Panel (B) of Figure A8, we show that this is not the case,

as we find similar effects of bonus on employment when we additionally control for indicators

for NAICS industries that produce capital goods interacted with year fixed effects. Second, an

additional concern is that plants that benefit most from bonus face differential changes in the

costs of capital, which could potentially bias our results. Panel (C) of Figure A8 shows that

our results are robust to controlling for industry-level quintiles of effective interest rates from

COMPUSTAT interacted with year fixed effects.

In Figure A9, we show that our results are not driven by growth in ICT intensive industries

or “tech” industries. We use two separate measures of ICT intensity. First, we use BEA data to

construct the share of ICT capital in the pre-period. Second, we use a measure of the share of

workers engaging in ICT-related tasks during the period 2002–2016 from Gallipoli and Makridis

(2018). Panel (A) shows that we continue to find large employment effects when controlling

for tercile bins of either measure interacted with year fixed effects. In Panel (B), we present

event study plots after dropping “tech” industries.34 All three series of estimates continue to

show bonus depreciation has a large and statistically significant effect on employment, suggesting

growth in ICT-intensive or high-tech industries does not substantially bias our estimates.

The result that the employment effect of bonus is concentrated on workers that interact with

machinery relies on correctly identifying production tasks. In Appendix F, we map occupation

data from the decennial Census and the American Community Survey to the routine/non-routine

and cognitive/non-cognitive classifications from Acemoglu and Autor (2011). Using this defini-

tion of production occupations, we continue to find that bonus has larger effects on the em-

ployment of production workers, who are primarily engaged in routine, manual tasks. We also

find large effects for all routine-task workers, further reinforcing the conclusion that the bene-

fits of modern capital investments are not solely absorbed by professional workers (i.e., those in

non-routine, cognitive occupations).

Since bonus depreciation was enacted as a countercyclical fiscal measure, one concern is that

the industries that benefit most from bonus also experience differential exposure to the business

cycle. To show that our results are not driven by differential exposure to the business cycle, we use

NBER-CES industry-level data to estimate the effects of bonus on investment and employment

going back to the 1991 recession. As we show in Figure A10, industries that benefit most from

34Based on Heckler (2005), “tech” industries have more than 25% of workers in technology oriented occupations.
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bonus did not have differential trends during the 1991 recession. Moreover, these industry-level

results confirm that bonus depreciation increased both investment and employment after 2001.

Finally, as shown in Garrett, Ohrn and Suárez Serrato (2020), bonus depreciation can have

spillover effects on local labor markets. One potential concern is that our results may capture

these spillover effects in addition to the reduction in the cost of capital. In Table A5, we show

that we obtain similar plant-level effects of bonus on employment and investment when we

additionally control for local exposure to bonus depreciation.35 Overall, these robustness checks

support the interpretation that our estimates capture the plant-level effects of a policy-driven

reduction in the cost of capital on employment.

5.3 Labor Earnings

Policymakers often motivate the use tax incentives for investment by arguing that worker pay will

rise as plants increase investment (e.g., CEA, 2017). To investigate this claim, we measure the

effect of bonus depreciation on the log of total plant payroll divided by total plant employment.

Figure 5 presents event study plots of the effects of bonus on average worker earnings. Relative to

control plants, workers in treated plants saw a decrease in average earnings per worker. Columns

(1)–(5) of Panel (A) of Table 4 show that relative earnings dropped by close to 2% in the

post-period.36 These results are especially surprising given the increase in labor demand we

documented in the previous section.

A natural explanation for the negative effect of bonus on average earnings is that bonus

changes the composition of the workforce. QWI data allow us to explore whether this is the

case. Figure 6 presents event study plots on the fraction of employees at a plant with high school

or less education and the fraction of employees who are 35 years of age or younger. As in previous

analyses using QWI data, we include state-by-industry and state-by-quarter fixed effects.37 Both

plots indicate that the employment increase due to bonus depreciation was accompanied by a shift

toward a less educated and younger workforce. Multiplying the difference-in-differences estimate

35As in Garrett, Ohrn and Suárez Serrato (2020), we measure local exposure to bonus using the share of workers
in long duration industries in a given county. The finding that bonus has positive spillover effects on employment
assuages the concern that the policy may hurt workers through negative market-level spillover effects (e.g., as in
Acemoglu, Lelarge and Restrepo, 2020). In addition to showing that we obtain similar average plant-level effects,
we do not find evidence that plant-level effects vary according to local exposure.

36We find a similar negative effect when we estimate the impact of bonus on average earnings using QWI data;
see column (2) of Table A6.

37We report point estimates in columns (3) and (4) of Table A6.
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by the base fraction of young employees at treated plants (29.9%), we estimate that the share

of young workers (19–34) increased by 3.8%. Based on the fraction with high school education

or less (25.3%), the difference-in-differences estimate suggests that the share of lower education

workers increased by 1.0%. Given that less educated and younger workers are, on average,

paid relatively less, these results provide the first piece of evidence that the estimated decrease

in average earnings per worker may be due to compositional changes in worker characteristics

induced by the tax policy.

As a second piece of evidence that bonus may shift the composition of the workforce, Figure

7 presents event study analyses describing the effects of bonus depreciation on the fractions of

workers that are female, non-white, Hispanic or Latino, and Black. In addition to state-by-

industry and state-by-quarter fixed effects, these analyses also include bins of 1997–2001 changes

in gender and racial shares at the state-industry-level interacted with year fixed effects. These

flexible controls ensure that our estimates are not contaminated by ongoing changes in the gender

and racial composition of the manufacturing workforce during this time.

The plots in Figure 7 show that industries that were more exposed to bonus experienced rela-

tive shifts toward a more female, more Hispanic or Latino, and more Black workforce. Differences-

in-differences estimates imply that bonus increased the share of female workers by 3.2%, the share

Hispanic or Latino by 8.5%, and the share of Black workers by 1.6%. As workers in each of these

groups have lower average earnings, these results are also consistent with the hypothesis that

changing worker characteristics in response to the policy had a dampening effect on average

earnings per worker.

While these results are suggestive, we also precisely attribute the decrease in average wages

to compositional changes in the workforce using two methodologies. First, we control for the

endogenous change in worker composition when we regress log average earnings on bonus. The

negative and statistically significant effect of bonus on average earnings disappears when we

control for the shares of young workers and of those with at most a high school education. Further

controlling for the shares of non-white workers and female workers yields a precise null effect with

a 95% confidence interval between -0.28% and 1.7% (see Table A8 for details). Second, we perform

an analysis based on Kitagawa (1955), Oaxaca (1973), and Blinder (1973) to decompose the

overall change in average earnings per worker into changes in worker demographics and changes

in other factors, including wages. Between 2001 and 2011, this method finds that changes in
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the composition of the workforce account for 91% of the total decrease in average earnings.

The combined empirical evidence indicates that most of the observed decrease in earnings can

be attributed to the fact that bonus depreciation led plants to hire workers with fewer years

of formal education as well as more young, racially diverse, and female workers. Appendix I

provides a more detailed description of these analyses.

Overall, our results show that bonus depreciation did not increase average earnings per

worker.38 However, our employment results shows that bonus depreciation disproportionately

helped disadvantaged workers at a time when their employment prospects in the manufacturing

sector were dwindling (Gould, 2018).39

5.4 Productivity and Production Responses

In addition to touting the employment and earnings effects of capital investment, policymakers

often appeal to a theory of “capital deepening,” whereby increases in capital investment can

lead to productivity growth (see, e.g., CEA, 2017). Panel (A) of Figure 8 presents results

from an event-study of the effects of bonus on our measure of plant-level TFP. Contrary to the

capital deepening hypothesis, we do not find evidence that capital investment led to increases in

plant productivity.40 Panel (B) of Table 4 reports statistically insignificant estimates for both

difference-in-differences and long differences analyses. Column (5) of this panel implies a 95%

confidence interval of the effect of bonus on productivity between -1.4% and 0.8%.41

While bonus did not increase plant productivity, the mere fact that bonus decreased overall

costs of production may have allowed plants to expand their operations. The event study in

Panel (B) of Figure 8 shows that this was indeed the case. Column (5) of Panel (C) of Table 4

shows that the sales of treated plants (measured by the total value of shipments) saw a relative

38This result is consistent with Fuest, Peichl and Siegloch (2018), who find that local tax cuts across German
municipalities did not increase average earnings.

39In Appendix F, we show that the pattern of stronger employment effects for workers from traditionally
disadvantaged groups is most prevalent in production occupations (i.e., those primarily engaged in manual,
routine tasks).

40We also rule out increases in labor productivity since the revenue effect does not exceed the effect on labor.
41As we show in the previous section, bonus impacts the composition of the workforce. One concern is that our

TFP estimates are biased downwards since plants shift their employment to workers with fewer years of education
and experience. However, this effect is likely to be quantitatively small. Assuming that these workers are paid
their marginal product and using the average labor cost share of 25% and the unconditional decrease in average
earnings of -2.73% (column (7) of Panel (A) of Table 4) would imply a correction to our TFP estimates of +0.68%
(= −2.73% × 25%). This correction would revise our -1.53% (column (7) of Panel (B) of Table 4) estimate to
-0.85%, which still does not provide evidence in favor of the capital deepening hypothesis.
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increase of 5.4%, on average, between 2001 and 2011. Since Panel (B) of Figure 8 shows that the

effect of bonus on production grew over time, we also report long differences estimates in Panel

(C) of Table 4. By 2011, the plants that benefited the most from bonus increased their sales by

between 7.5 and 8.1%, relative to control plants.

In light of our earlier results, these findings suggest that bonus helped treated plants increase

their overall scale. Since productivity and earnings remain unchanged, it is likely that affected

plants achieved this new scale by relying on the same fundamental technologies they were using

prior to the policy. In Section 7, we explore the degree to which the scale effect explains the

documented capital and labor responses.

6 Tax Policy in a Transforming Manufacturing Sector

In analyzing the effects of bonus depreciation, it is crucial to place our findings in the context

of the ongoing transformation of the US manufacturing sector. Doing so helps ensure that our

results are driven by the effects of tax policy and not by sector-level trends. Additionally, it is

valuable to explore whether bonus depreciation stunted or accelerated the ongoing transformation

of the sector.

Charles, Hurst and Schwartz (2019) document that from 2000–2017, the US manufacturing

sector lost 5.5 million jobs.42 The authors go on to show that these losses were not accompanied

by declines in overall output and were concentrated among males with relatively little education.

This increase in “skill intensity” was paired with an increase in “capital intensity,” i.e., an

increase in the share of productivity attributable to capital. Two leading factors contributing to

the overall decline of manufacturing employment are the dramatic increase in import competition

from China documented in Autor, Dorn and Hanson (2013), Acemoglu, Autor, Dorn, Hanson and

Price (2016), Autor, Dorn and Hanson (2016), and Pierce and Schott (2016) and the increased

adoption of automated production processes investigated by Acemoglu and Restrepo (2020).43

We first show that increases in skill and capital intensities, import competition from China,

and automation are not correlated with bonus depreciation in ways that may impact our empirical

results. To do so, we use the ASM/CM plant-level data to re-estimate our main difference-in-

differences estimates in the presence of controls for each of these four forces. As in Charles, Hurst

42Appendix H compares the scale of our estimates of the effects of bonus depreciation relative to these aggregate
employment losses.

43Both of these forces could also cause or mediate changes in skill and capital intensity.
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and Schwartz (2019), we measure skill intensity at the plant-level as the share of employment in

non-production roles in 2001. To operationalize this control, we create bins based on quartiles

of the distribution of this variable and we interact them with year fixed effects. Our capital

intensity control is constructed in a similar manner, but is based on the 2001 plant-level ratio of

total capital assets to total employment. We control for the “China Shock” using industry-level

changes in import competition from China between 2000–2007 from Acemoglu, Autor, Dorn,

Hanson and Price (2016) interacted with year fixed effects. Finally, we use data from Acemoglu

and Restrepo (2020) on industry-level changes in the number of industrial robots per 1,000

workers between 1993–2007, which we also interact with year fixed effects.

Table 5 re-estimates our differences-in-differences parameters describing the effects of bonus

on investment, employment, and mean earnings. For reference, columns (1), (3), and (5) display

estimates we previously presented in columns (5) of Tables 1, 3, and 4. For comparison, columns

(2), (4), and (6) include plant and state-by-year fixed effects as well as the four controls for skill

intensity, capital intensity, Chinese import exposure, and robotization. As this table shows, the

effect of bonus on investment is essentially unchanged when including these controls. Employment

responses to bonus depreciation are slightly attenuated, decreasing from 7.9 to 6.9%. We also

continue to find that bonus depreciation does not lead to significant gains in average earnings for

the workers of more affected plants.44 Overall, this table shows that our estimated effects of bonus

are essentially unchanged in the presence of controls for salient drivers of the transformation of

the US manufacturing sector.45

We now investigate whether bonus depreciation exacerbated or mitigated the effects of these

key drivers of sectoral change. To do so, we include interactions between the difference-in-

differences term and the cross-sectional continuous components of each control described above

(e.g., 2001 capital stock per total employment). For comparability in interpretation, we normalize

each interactor to have mean zero and divide it by its interquartile range. As such, the interaction

terms are interpreted as differences in the effect of bonus depreciation between units in the 25th

and 75th percentiles of each factor. Table 6 presents results from these analyses for our two

44Intuitively, controlling for skill intensity works in the same way as controlling for plant-level employment
demographics. For this reason, we find similar null effects on average earnings as we do in Section 5.3.

45One possibility is that these controls may change the underlying variation from the tax policy. This could
happen, for instance, by limiting the effect of the policy on skill or capital intensity. If this were the case, these
specifications could risk over-controlling for some of the effects of bonus depreciation. For this reason, we do not
view these results as our preferred estimates.
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main outcomes, log investment and log total employment.46 Column (1) shows that investment

responses to bonus depreciation are larger in plants with higher skill intensity. The interaction

term in the employment regression is positive, but statistically insignificant at conventional levels.

In column (2), we find that both investment and employment responses are larger in plants with

high levels of capital intensity. These results imply that bonus depreciation did not encourage

plants to swim against the current by investing in technologies characterized by low levels of

capital and skill intensity. Two additional points related to this finding are worth mentioning.

First, even if bonus contributed to the transition to capital intensive forms of production, the

employment effects of bonus were larger in plants that were initially more capital intensive.

Second, this result further validates the research design as capital intensive plants are those that

experience the largest cash flows benefits from accelerated depreciation policies.

Column (3) of Table 6 estimates interaction effects of bonus and import competition. In-

creased import competition depresses the effects of bonus depreciation on both investment and

employment. These results are intuitive; investment incentives have the least impact on the US

industries that are most exposed to import competition from China. Finally, column (4) explores

interaction effects between bonus and exposure to robotization. We find positive point estimates

on the interactions with robotization, but only the employment interaction is statistically sig-

nificant. Surprisingly, these results contradict concerns that capital investments stimulated by

tax policy are labor replacing via the adoption of robots. The industries that automated most

during the period also increased employment the most in response to bonus depreciation.47

The results of Table 6 directly address a salient policy concern that investment incentives

like bonus depreciation simply prop-up non-competitive industries, prolonging their slow and

painful demise. These analyses show that this is not so in the case of bonus depreciation. We

find that the policy has the largest impact on the most skill-intensive, most capital-intensive,

most automated, and least exposed to Chinese import competition; bonus depreciation is most

effective for the industries that are most likely to thrive in the transforming landscape of US

manufacturing.

46Table A10 presents estimates from models in which all interaction terms are included together. Signs and
magnitudes of all coefficients are the same.

47This finding, which suggest workers and robots are not direct substitutes is not without precedent. Graetz and
Michaels (2018) find robot adoption does not decrease employment. Klenert, Fernandez-Macias and Antón Pérez
(2020) and Aghion, Antonin, Bunel and Jaravel (2020) show the adoption of robots led to increases in employment
without substantially changing the share of low-skill workers.
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7 Estimating Factor Demands Using Tax Policy Variation

While our reduced-form results yield novel insights into the effects of one of the largest tax

incentives for investment in US history, these results alone are not sufficient to understand the

economic mechanisms by which the policy impacts capital accumulation and labor demand. We

uncover these mechanisms by estimating a structural model of factor demands. We incorporate

the result of Marshall (1890) and Hicks (1932) that plants respond to changes in input prices by

adjusting both their scale and input mix. The model allows us to estimate the relative importance

of these mechanisms. The model also allows us to recover the implied effects of the policy on the

cost of capital, which we use to compute cost of capital elasticities of capital and labor demand

inclusive of financing and other constraints. Finally, the model leverages tax policy variation to

estimate elasticities of substitution between capital and different types of labor.

7.1 Model Setup

The model considers the production and pricing decisions of plants in the manufacturing sector.

Plants have a production function with constant returns to scale, which uses the three inputs:

capital K, production labor L, and non-production labor J. Plants first optimally choose inputs

to minimize costs. Plants then maximize profits by choosing their output level. The output

market is characterized by monopolistic competition where demand has a constant price elasticity

(see, e.g., Hamermesh, 1996; Harasztosi and Lindner, 2019; Criscuolo, Martin, Overman and

Van Reenen, 2019).48 Bonus depreciation lowers the cost of capital, which we denote by φ ≡
∂ ln(Cost of Capital)

∂Bonus
< 0. φ includes both the increased present value of depreciation deductions and

reductions in financing and other frictions.49 Since our identification strategy relies on cross-

industry variation, our estimates of substitution elasticities capture the average value across the

48The model assumes that plants take input prices as constant. As we show above, we do not find that bonus
impacts the wages of workers conditional on composition. In related work, Garrett, Ohrn and Suárez Serrato
(2020) also estimate a null effect of bonus on average wages accounting for spillover effects within local labor
markets. One possibility is that bonus impacts the pre-tax prices of capital goods. While classic papers show
that tax incentives for investment can impact the prices of capital goods (e.g., Goolsbee, 1998), House, Mocanu
and Shapiro (2017) show tax incentives have not impacted capital goods prices in recent years, partly because
of the growth of imported capital goods as a share of investment. Indeed, House and Shapiro (2008) show that
capital goods prices did not respond to bonus depreciation between 2002–2004.

49In Appendix J.3, we provide an explicit model consistent with Myers (1977); Bond and Meghir (1994); Bond
and Van Reenen (2007) that shows that interactions with financing frictions amplify the effect of bonus on the
cost of capital, φ.
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manufacturing sector.50 Appendix J provides a detailed derivation of the model.51

These simple assumptions allow us to characterize the effects of bonus on plants’ demands

for inputs of production. The reduction in the cost of capital φ impacts both the choice of cost-

minimizing inputs (substitution effect) and the profit-maximizing output level (scale effect). To

see this, note that the effect of bonus on the demand for capital is

βK =
∂ lnK

∂Bonus
= (−sJσKJ − sLσKL︸ ︷︷ ︸

Substitution
Effect

− sKη︸︷︷︸
Scale
Effect

)× φ.︸︷︷︸
Bonus Lowers

Cost of Capital

(3)

In their price-theoretic treatment of factor demands, Jaffe, Minton, Mulligan and Murphy (2019)

interpret this equation as the production analogue of the Slutsky equation, since it separates

substitution effects conditional on output from changes in the plant’s scale. Plants increase their

capital to the extent that lower production costs help each plant increase its sales. The strength

of this scale effect depends on the cost share of capital sK and the elasticity of product demand η.

Plants also increase their capital by substituting away from other inputs J and L. The strength

of this substitution effect depends on the input cost shares (sJ and sL) and on the Allen partial

elasticities of substitution (σKJ and σKL). Allen (1938) defines inputs K and J as complements

in production whenever σKJ < 0, while σKJ > 0 implies that these inputs are substitutes.52 Both

the scale and substitution effects depend on the degree to which bonus lowers the overall cost

of capital, including financing and other frictions. We therefore interpret φ as the experienced

reduction in the cost of capital inclusive of these frictions.

Consider now the model’s prediction of the effect of bonus on the demands for labor

βL =
∂ lnL

∂Bonus
= sK(σKL − η)× φ (4)

βJ =
∂ ln J

∂Bonus
= sK(σKJ − η)× φ. (5)

50A potential concern is that industries with lower elasticities of substitution (σKL) benefit more from bonus.
This concern is unlikely to impact our estimates since Table 5 and Figure A9 show that our reduced-form results
are not sensitive to (1) controlling for capital intensity, (2) controlling for industry trends in ICT adoption, or to (3)
removing high-tech industries, which are short duration industries with potentially high degrees of substitution.
These results are consistent with the fact that the IRS assignment of depreciation schedules is not related to the
useful lives of assets. In addition, Panel (A) of Figure A12 shows that the benefit from bonus, z0, is uncorrelated
with industry-level estimates of σKL from Raval (2019). Panel (B) further shows that we obtain similar effects
on employment when we control for differential trends based on these industry-level estimates of σKL.

51Our framework abstracts away from adjustment costs that may limit plants from adjusting their capital inputs
in any given year. Since we measure the effects of bonus depreciation over a 10-year period, it is reasonable to
assume that plants will be able to adjust their capital inputs over this period.

52While any two inputs may be complements, Allen (1938) shows that second-order optimization conditions
require the total substitution effect to be negative, i.e, sJσKJ + sLσKL > 0.
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Equation 4 shows that bonus increases labor demand when production labor and capital are

complements, i.e., σKL < 0, or when the scale effect dominates the substitution effect, i.e.,

η > σKL > 0. Finally, consider the model’s prediction of the effect of bonus on plant sales

βR =
∂ ln Revenue

∂Bonus
= sK(1− η)× φ. (6)

Equation 6 shows that the effect of bonus on revenue combines a price decrease of sKφ with an

increase in the quantity sold of −ηsKφ.

Equations 3–6 provide a transparent link between our reduced-form estimates from Section

5 and the four model parameters that determine factor demands θ = (σKL, σKJ , η, φ).

7.2 Separating Scale and Substitution using Reduced-Form Estimates

We first use the model to decompose the effects of bonus depreciation on labor demand into

scale and substitution effects. To do so, note that we can quantify the scale effect using our

reduced-form estimates. This is because, regardless of the values of σKL and σKJ , it is always

the case that:

β̄ ≡ sJβ
J + sKβ

K + sLβ
L = −sKηφ > 0. (7)

This equation shows that the cost-weighted average of the effects of bonus on plants’ inputs of

production, β̄, identifies the common scale effect in Equations 3–6, −sKηφ.

This equation makes it very easy to compute the common scale effect of the policy on the

demand for plant inputs. Panel (A) of Table 7 reports estimates of the scale effect.53 Assuming

that the input cost shares are such that sK = 0.2, sL = 0.5, and sJ = 0.3, column (1) shows that

the scale effect equals 0.10 (SE=0.01). Columns (2) and (3) of Table 7 show that varying the cost

shares has very small effects on our estimate of the scale effect. The scale effect is estimated with

a high degree of precision and has a natural economic interpretation: the effect of the policy on

the profit-maximizing output level led to an equal increase of 10% in the demand for all inputs.54

We now express elasticities of substitution as functions of our reduced-form moments and the

elasticity of product demand, η. Taking the ratio of Equations 4 and 7 implies that

σKL = η

(
1− βL

β̄

)
. (8)

53We use the following estimates in this calculation: βK from column (1) in Table 2, and βL and βJ from
columns (6) of Panels (B) and (C), respectively, in Table 3.

54This would also be the total increase in factor demands in a Leontief production function without any
substitution effects. Note that columns (4) and (5) vary η, which does not impact our estimate of the scale effect.
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Input L is a substitute for capital (σKL > 0) when the effect of the policy on labor demand βL

is smaller than the scale effect β̄. Conversely, L complements capital (σKL < 0) when βL > β̄.

Panel (B) of Table 7 reports estimates of substitution elasticities under different assumed

values for the cost shares and demand elasticity. Column (1) shows that σKL = −0.515 when the

elasticity of product demand η = 3.5.55 Columns (2)–(5) report estimates that vary the capital

cost share sK ∈ [0.10, 0.30] or the demand elasticity η ∈ [2, 5]. We consistently estimate that

σKL < 0, implying that production labor complements capital. This result follows from the fact

that bonus increased the use of production labor by 11.6%, which is greater than the 10% scale

effect. In contrast, since the estimated increase in non-production labor is smaller than the scale

effect, we estimate that non-production labor and capital are substitutes (σJK > 0). Therefore,

our results are not compatible with the capital-skill complementarity hypothesis.56

To better understand our estimate of σKL, we use Equation 8 to calculate the reduced-form

effects on production labor that would be implied by prior estimates of σKL. Given our estimates

β̂K and β̂J and η = 3.5, the orange line in Figure 9 plots the effects of bonus on production

labor as a function of σKL. Values of σKL between 0.4 (Raval, 2019) and 1.67 (Krusell, Ohanian,

Ŕıos-Rull and Violante, 2000) imply effects on production labor between 6.5% and 3%, while

σKL = 0 (i.e., Leontief) would imply an effect of just over 8%. In contrast, the blue line plots our

estimate β̂L = 11.6%; our estimated value of σKL corresponds to the intersection of the orange

and blue lines. The grey region shows that we reject the hypothesis that βL < 0.0893 at the

95% confidence level. This figure therefore shows that it is hard to reconcile our reduced-form

estimates with existing estimates of σKL.

Panel (C) of Table 7 formally evaluates the hypothesis that capital complements labor. We

reject the null hypothesis that σKL ≥ 0 with p-values ranging from 0.047 to 0.099, depending on

the values of sK and η. Because the effect of bonus on non-production labor is close to β̄, we do

not reject the hypothesis that non-production workers complement capital, even though these

effects are precisely estimated.57

55Ganapati, Shapiro and Walker (2020) estimate product demand elasticities using CM data. They report a
central estimate of 3.42 and a range of estimates between 1.93 and 5.23 for selected industries.

56Griliches (1969) defines the capital-skill complementarity hypothesis using Allen elasticities of substitution
as follows: σKL > 0, σKL > σKJ , and σKL > σLJ .

57Throughout, we report Allen elasticities of substitution, which in our setting capture the substitution between
labor and capital relative to all other inputs. An alternative measure of substitution—the Morishima elasticity
of substitution discussed by Blackorby and Russell (1989)—captures the substitution between labor and capital
relative to capital. Appendix K.4 reports estimates of Morishima elasticities, which also show that production
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The discussion above clarifies that differences between the common scale effect and the total

effect on a given input determine whether an input complements or substitutes for capital.

Quantitatively, however, our calculations reveal that, for both production and non-production

labor, the total effects are close to the scale effect. This result implies that the main mechanism

driving the effect of bonus depreciation on labor demand is the scale effect; that is, the policy-

driven reduction in the cost of capital allowed plants to expand both their output and their

demand for all inputs. In the case of production labor, the 10% scale effect was responsible for

close to 90% of the 11.6% total effect of the policy. The fact that the scale effect of the policy is

the main driver of its effect on employment rules out the worst fears of tax-driven automation,

as the primary effect of tax policies that lower the cost of investment is not to incentivize plants

to replace workers with machines.

7.3 Elasticities of Capital and Labor Demand

While separating scale and substitution effects clarifies the mechanisms that drive responses to

bonus, the effects of policies that change the cost of capital—e.g., changes in interest rates or

other tax provisions—depend on elasticities of capital and labor demand. We now estimate these

elasticities using our model to recover the implied effect of the policy on the cost of capital.

As we discuss in Section 2, the effect of bonus on the cost of capital depends on a number of

factors that are hard to quantify, including the roles of depreciation deductions, tax losses, and

financing constraints. One advantage of our model is that it links the estimated effects on inputs

of production to the effects of the policy on the cost of capital. Equation 7 implies that

φ = − β̄

sKη
. (9)

Column (1) of Panel (D) of Table 7 shows that the semi-elasticity of the cost of capital with

respect to bonus φ = −0.145 when the elasticity of product demand η = 3.5. Columns (2)–(5)

show that varying sK and η delivers estimates of φ ∈ [−0.25,−0.10].

Following the prior literature, we first consider the elasticity of investment with respect to the

cost of capital. Column (1) of Panel (D) of Table 7 shows that εIφ = βI

φ
= 0.210
−0.145

= −1.45.58 This

elasticity lies in the range [−2.1,−0.84] across columns (1)–(5). Through the lens of a simple

investment model without financing frictions, the results in Zwick and Mahon (2017) imply an

labor complements capital.
58This estimate uses the long difference estimate on investment from Panel (A) of Figure 2.
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elasticity of -7.2. Our smaller estimate of this elasticity is due to the fact that our estimate of φ

includes financing and other constraints.59

An advantage of our setting is the ability to measure the effect of the cost of capital on the

stock of capital used for production. Column (1) of Panel (D) of Table 7 reports our baseline

estimate of εKφ = βK

φ
= 0.080
−0.145

= −0.55.60 For context, Equation 3 and our baseline values for

sK and η would imply that εKφ = −1.5 with Cobb-Douglas production. Thus, even though our

estimated 8% increase in the capital stock is economically significant, we find a modest capital

stock elasticity when we appropriately measure the effect of the policy on the cost of capital.

Our model-based estimate of φ also allows us to recover cross-price elasticities of labor demand

with respect to the cost of capital. Column (1) of Panel (D) of Table 7 shows that we estimate

an elasticity of εLφ = βL

φ
= 0.116
−0.145

= −0.80 for production labor and εJφ = βJ

φ
= 0.090
−0.145

= −0.62 for

non-production labor.61 Both elasticities would equal -0.5 with Cobb-Douglas production. This

comparison reinforces the dominance of the scale effect in our setting, since even a large degree

of substitution would be overshadowed by the scale effect.62 In addition, since we estimate that

εLφ < εJφ, our results are also not consistent with the hypothesis of capital-skill complementarity.

Our estimated elasticities of capital and labor demand highlight three policy-relevant insights.

First, understanding how fiscal policies relax financing and other constraints is critical for fore-

casting the effects of fiscal policies on capital and labor demand. Second, the scale effect is the

biggest driver of the effects of changes in the cost of capital. Finally, this result alleviates the

concern that lowering the cost of capital would reduce labor demand.

59In Appendix J.3, we calibrate values of φ under alternative assumptions. Including a role for financing
constraints implies that φ is 2–4 times larger than when φ only accounts for the present value of depreciation
deductions. These calculations are also consistent with calibrations in Zwick (2014) showing that bonus had large
effects on investment due to high values of the shadow price of internal funds and high implied discounting rates.
In a setting where tax policy is less likely to interact with financing constraints, Chen, Jiang, Liu, Suárez Serrato
and Xu (2019) estimate an investment tax elasticity of −2.2, which is comparable in magnitude to our estimates.

60This elasticity lies in the range [−0.80,−0.32] across columns (1)–(5).
61Across our estimates in columns (1)–(5), εLφ ∈ [−1.16,−0.46] and εJφ ∈ [−0.90,−0.36].
62Figure A14 explores the dynamic patterns underlying these estimates. Panel (A) shows that the scale effect

grows over time as plants respond to the cumulative effects of the policy. While Panel (B) shows that the implied
effect on the cost of capital φ also grows over time, Panels (C) and (D) show that the investment and employment
elasticities are relatively constant over time. These results are consistent with our interpretation of φ as the effect
of the policy on cost of investment inclusive of financing constraints as well as other frictions that may prevent
plants from responding to the policy.
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7.4 Structural Estimation of Capital-Labor Substitution

We now refine our estimation of capital-labor substitution elasticities in three ways. First, we

jointly estimate the parameters of the model. Second, we incorporate the prediction of our model

for the effect of the policy on plant revenue as an over-identifying moment. Finally, we ensure

that the estimated parameters are consistent with axioms of cost-minimization. We incorporate

these refinements by estimating our structural model via Classical Minimum Distance (CMD).

7.4.1 Identification and Estimation Approach

To consider the prediction of the model for the effects of the policy on plant revenue, note that

Equations 6 and 7 imply that βR = η−1
η
β̄. Solving for η yields

η = − β̄

βR − β̄
. (10)

The intuition for this expression is as follows. The effect of bonus on quantity sold is given by

the scale effect since ∂ log q
∂Bonus

= −ηsKφ = β̄. The effect on prices can be decomposed from the

revenue and quantity effects. Specifically, the plant lowers its price by ∂ log p
∂Bonus

= sKφ = βR − β̄.

Equation 10 then shows that the elasticity of product demand η is the ratio of the percentage

changes in quantity and prices.63

Equations 9 and 10 imply that φ = − (β̄−βR)
sK

. To understand the identification of φ, note that

the constant demand elasticity η implies that ∂ log p
∂Bonus

= ∂ log Unit Cost
∂Bonus

. Therefore, φ is identified by

scaling-up the effects on prices (i.e., ∂ log p
∂Bonus

= βR − β̄) by the capital cost share, sK .

Having identified each of the model parameters with the reduced-form estimates, we now

discuss how we estimate the model using CMD. Let β̂ = (β̂K , β̂L, β̂J , β̂R)′ be the vector collecting

the reduced-form estimates of the effects of bonus depreciation on inputs and plant revenue, and

let h(θ) be the collection of model predictions from Equations 3–6. Our estimate θ̂ minimizes

the criterion function [β̂ − h(θ)]′Ŵ [β̂ − h(θ)], where Ŵ is a weighting matrix.64

While the equations above show that the model parameters are closely related to our reduced-

form estimates, the presence of the difference β̄ − βR in the denominator of the formula for η

63Combining Equations 8 and 10, we have that σKL = β̄−βL

β̄−βR . A similar expression identifies σKJ .
64In practice, Ŵ equals the inverse variance-covariance matrix V̂ of the moments β̂. Following Chamberlain

(1984, §4.2), we estimate the variance of θ̂ with the matrix [H(θ̂)′V̂ −1H(θ̂)]−1, where H(θ̂) = ∇θh(θ)|θ=θ̂ is the

gradient of h(θ) at θ̂. We implement this procedure using code modified from Harasztosi and Lindner (2019) that

relies on a finite difference approximation of H(θ̂).
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raises the concern that estimates of structural parameters may be sensitive to small differences

between our reduced-form estimates. For this reason, we calibrate η in our baseline estimations;

we show robustness to a range of calibrated values and to estimating η. Finally, to ensure that

our estimated parameters are consistent with cost minimization, we require that the substitution

elasticities satisfy the constraint: sJσKJ + sLσKL > 0 (Allen, 1938).

7.4.2 Estimated Parameters

To highlight the intuition behind our model, we present structural estimates of σKL graphically

in Panel (A) of Figure 10 as a function of different values of η. The dot-dashed blue line plots

Equation 8, which shows that σKL < 0 regardless of the value of η. The blue dots report estimates

of σKL using the full model and calibrated values of η equal to 2, 3.5, and, 5. This figure also

reports a model that estimates η = 3.076 as well as models that vary the share of capital in total

costs between 10% and 30%. The full model estimates lie above the line that plots Equation 8

because we impose the constraint that the model be consistent with cost minimization (i.e., that

sJσKJ + sLσKL > 0). Across these different variations, we consistently estimate that σKL < 0,

implying that capital and production workers are complementary inputs.

To understand the sensitivity of our estimates of σKL with respect to our reduced-form

estimates, note that in order to obtain an estimate of σKL = 1 (i.e., Cobb-Douglas), plants

would have had to increase their capital use by 38%, which is almost 5 times larger than our

estimated effect. Even a Leontief production function (i.e., σKL = 0) would require that plants

increase their capital by 15.5%, which is twice as large as our estimated effect.

Panel (A) of Table 8 reports estimates of σKL as well as all other model parameters across

a range of model specifications.65 Relative to our baseline estimate in column (1), columns

(2)–(3) show that our estimates are not sensitive to calibrated cost shares, columns (4)–(5)

show the effects of varying the elasticity of product demand η, and column (6) reports model

estimates when we also estimate η. Across all specifications we find that non-production workers

are substitutes with capital, σKJ > 0.

65The full model estimates are consistent with the result that the scale effect is the dominant mechanism
behind the increase in labor demand. Estimates from column (1) of Table 8 imply that 89% of the increase in
non-production employment is driven by the scale effect since η

η−σKL
= 3.5

3.5+0.44 = 0.89. The complementarity

effect is responsible for the remaining 11%. Similarly, these model estimates imply an elasticity of capital demand
of εKφ = −0.70 (SE= 0.12) and an elasticity of production labor demand of εLφ = −0.79 (SE= 0.07). Finally, the
estimated values of φ are also similar to those reported in Table 7.
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To gain intuition for these results, note that they follow directly from the fact that our

estimates in Section 5 are such that β̂L > ˆ̄β > β̂J. Panels (B) and (C) of Table 8 show that the

model predictions h(θ̂) are very close to our estimates β̂. This result shows that the calibrated

value of η and the restriction that our estimates are consistent with cost minimization are not

in conflict with the reduced-form estimates of the effects of bonus depreciation.66

We briefly discuss additional robustness checks of our model; see Appendix K for details.

Column (2) of Table A11 shows that our results are robust to using difference-in-differences esti-

mates of β̂ instead of long-differences estimates. Column (3) reports similar parameter estimates

when we measure labor using production hours instead of number of workers. Column (4) shows

that we also find a negative elasticity of substitution when we do not differentiate between dif-

ferent types of labor. Columns (5)–(6) show that we estimate similar elasticities of capital-labor

substitution in models with one type of labor and that consider different roles for structures

and equipment or that include materials as an additional input. Across all of our models, we

consistently find that production workers complement capital in production. Finally, Figure A15

explores the dynamics of capital-labor substitution. This figure shows that capital and labor are

initially very complementary (σKL � 0) and that σKL tends toward zero over time. This pattern

is consistent with the intuition that plants can only increase production by hiring workers when

capital is fixed; workers become less complementary with machines as plants adjust their capital.

Panel (B) of Figure 10 compares our estimate of σKL to others in the literature. To do so,

we plot the probability that σ̂KL exceeds a given value. Our baseline estimate rejects values

of the elasticity of substitution between production labor and capital that are greater than

0.13 at the 95% confidence level. This test therefore rules out recent estimates of σKL from

Karabarbounis and Neiman (2014) (σKL = 1.3), the average value from the meta-analysis of

Gechert, Havranek, Irsova and Kolcunova (2021) (σKL = 0.9), and the central estimate from

Raval (2019) (σKL = 0.4). This figure also shows that we draw similar conclusions using models

that only include capital and labor (orange line) or that separate capital into equipment and

structures.67 Relative to most estimates in the literature, our approach benefits from using plant

level data on input use and production to measure the effects of a change in the cost of capital

over a 10-year period.

66Table A12 shows that we obtain qualitatively similar results when we do not impose this constraint.
67As we show in Table A15, we obtain similar conclusions when using Morishima elasticities of substitution.
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7.4.3 Implied Cost and Production Functions

We now show that our estimates of substitution elasticities are compatible with canonical models

of production. In his treatise on labor demand, Hamermesh (1996) recommends that empirical

researchers specify models that allow for flexible cross-price elasticities between capital and differ-

ent types of labor. One such model is the transcendental logarithmic cost function, or “translog”

for short, which is a second-order approximation to an arbitrary functional form (Christensen,

Jorgenson and Lau, 1971, 1973). In Appendix K.3, we show that the parameters of the translog

function can be recovered using our estimates from Table 8.

Tables A13 and A14 report our translog estimates. The translog parameters are estimated

with a high degree of precision and imply rich patterns of input substitution. These parameters

reject the null hypothesis that our results are generated by a Cobb-Douglas function. These

results also reject models where production workers or capital are separable from other inputs,

but are compatible with modeling non-production workers as separable inputs.

A popular but more restrictive modeling approach than the translog is the nested CES pro-

duction function. Based on our translog model estimates, we specify a nested CES production

function in which non-production labor enters separately from other inputs:

F (K,L, J) =
[
µ1J

ρ1 + (1− µ1)(µ2L
ρ2 + (1− µ2)Kρ2)

ρ1
ρ2

] 1
ρ1 ,

where µ1 and µ2 are related to income shares.68 Appendix K.5 shows that we can estimate the

CES parameters ρ1 and ρ2 using the labor and capital demand elasticities from Section 7.3:69

εLφ − εKφ =
1

1− ρ2

(11)

εJφ − εKφ ≈ 1

1− ρ1

sK

sL + sK
+

1

1− ρ2

sL

sL + sK
. (12)

According to Table 7, εLφ − εKφ < 0 and εJφ − εKφ ≈ 0, implying that ρ2 > 1 and ρ1 < 1.70 Table

A16 shows that we estimate that ρ1 = −1.67 and ρ2 = 5.03. Since these estimates imply that

68An alternative approach nests non-production labor and capital separately from production labor (e.g., as
in Krusell, Ohanian, Ŕıos-Rull and Violante, 2000). Our translog estimates show that this approach is not
compatible with our findings. To see this, recall that we estimate σKL < 0. Because this approach assumes that
σLJ = σKL, the production function would have two (out of three) negative elasticities of substitution and would
therefore violate second-order sufficiency conditions of cost minimization (see, e.g., Allen, 1938, p. 505).

69The second expression holds locally since we use numerical values of sK and sL to approximate capital and
labor cost shares, which are otherwise functions of prices and production parameters.

70Table A15 reports that εLφ − εKφ = −0.248(SE = 0.141) and that εJφ − εKφ = −0.070(SE = 0.188). While
Arrow, Chenery, Minhas and Solow (1961) note that in two-input CES production functions, decreasing marginal
returns requires that ρ < 1, the condition that ρ1, ρ2 < 1 is not necessary for a three-input production function
to be consistent with cost minimization.
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1
1−ρ2 = −0.25 < 0.37 = 1

1−ρ1 , our results are not consistent with the capital-skill complementarity

hypothesis and they reject the degree of capital-skill complementarity found in Krusell, Ohanian,

Ŕıos-Rull and Violante (2000) with a high degree of precision. This result is driven by the

fact that bonus depreciation led to a substantial increase in the employment of production

workers. Importantly, both the translog and the nested CES models show that the estimated

complementarity between capital and production labor is compatible with standard models of

production.

7.5 Empirical Implications of Capital-Labor Complementarity

The result that capital and labor are complements in production carries interesting testable

hypotheses. Specifically, we would expect to see larger investment responses when plants face

lower wages.71 We test for heterogeneous responses by three proxies for lower labor costs: plant-

level unionization, location in a right-to-work (RTW) state, and local labor market power. Our

measure of “Union” is an indicator that equals 1 when more than 60% of workers at a plant

are unionized.72 RTW is an indicator equal to 1 for plants in RTW states (as of 2001), where

employees have less bargaining power.73 We measure labor market concentration using a NAICS

3-digit, commuting zone level Herfindahl-Hirschmann Index (HHI) based on 2001 market condi-

tions.74 In plants that operate in local labor markets that are highly concentrated, monopsony

power may allow employers to set lower wages (see, e.g., Robinson, 1969; Manning, 2021).

Table 9 presents difference-in-differences estimates of the effects of bonus on investment,

employment, and mean earnings that include interactions between bonus and each of these proxies

for labor costs. The results in Panel (A) indicate that the investment responses are concentrated

71This prediction follows from Equation (3), which implies that bonus depreciation will lead to stronger effects
on investment when the labor cost share sL is smaller. This implication is “Marshall’s Second Law of Derived
Demand,” following the enumeration in Pigou (1920).

72Plant-level data on unionization are rare. Our measure is based on 2005 data from the Census Bureau’s
Management and Organizational Practices Survey (MOPS), which covers the majority of our sample.

73The RTW variable comes from Valletta and Freeman (1988). RTW laws allow workers to opt out of union
dues and agency fees. These laws decrease the power of unions because workers can free-ride on the efforts of the
union, which is obligated to bargain and obtain benefits on behalf of all workers. Researchers have also found
that RTW laws codify state-level anti-union sentiments (see, e.g., Farber, Herbst, Kuziemko and Naidu, 2021,
Footnote 43). For these reasons, RTW laws lower workers’ bargaining power and result in lower labor costs.

74We construct the HHI using data from the LBD. Given that local labor concentration is highly right-skewed
in our sample, we measure concentration using the log of HHI. As with other continuous interaction variables,
we demean the log of HHI before interacting it with bonus. The interaction has the convenient interpretation as
the differential effect of bonus depreciation between a plant located in the average labor market concentration
compared to a plant that is located in a highly concentrated labor market, according to FTC/DOJ guidelines
(i.e., HHI> 2500).
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in less unionized plants, where we expect wages and bargaining power to be lower. Similarly, the

estimates in Panel (B) show larger investment responses in RTW states. Finally, in Panel (C),

we find larger investment responses in labor markets where wages are likely depressed due to

monopsony power. Across all proxies of labor cost, we see that bonus induces more investment

in plants that face lower labor costs. These results are consistent with capital and labor being

complements, which validates the results from our empirical model of factor demands. Further,

these analyses highlight how labor market institutions can impact capital investment.

Table 9 also reports heterogeneous effects on employment and earnings. Two notable results

stand out. First, negative interactions for both employment and earnings show that unions do

not increase the benefits of bonus to workers. Second, bonus leads to a relative increase in

average earnings in highly concentrated labor markets. This result is consistent with the notion

that in monopsonistic labor markets, plants must raise wages to increase employment.

Our estimated model of factor demands delivers a number of economic insights. First, the

model shows that the scale effect is the main mechanism driving the increase in labor demand.

Second, the implied reduction in the cost of capital delivers estimates of capital and labor de-

mand elasticities with reasonable magnitudes. Third, we consistently estimate that capital and

production workers are complements and our full model estimates rule out values of σKL greater

than 0.13. Fourth, our estimates are compatible with standard production models. Finally,

the model delivers testable predictions, which validate the complementarity between capital and

labor.

8 Conclusion

The question of whether policies that subsidize investment in physical capital help or hurt workers

is pervasive in discussions about equitable and efficient fiscal policy. In this paper, we use tax

policy variation from bonus depreciation in conjunction with confidential data from ASM/CM

to gain empirical leverage on this debate. By comparing plants in industries that benefit more

from bonus depreciation to those in industries that benefit less, we show that both capital and

labor increased in response to the policy.

Our results document several previously unexplored responses to capital investment incen-

tives. First, we find that production labor increases more than non-production labor, and that

both increase in statistically and economically important ways. We also show that the average
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earnings for workers at affected plants actually decrease, despite increases in labor inputs. This

decrease is explained by increases in the shares of workers that are less-educated, younger, more

racially diverse, and more likely to be women. While bonus depreciation did not affect plant

productivity, it did lead manufacturing plants to increase their scale.

In the larger context of the transformation of the US manufacturing sector, we find that

bonus depreciation was less effective at stimulating manufacturing activity for industries that

were more exposed to import competition from China. We also find that bonus is most effective

at plants with high degrees of capital and skill intensity, which may have contributed to the

increase in capital and skill intensity in the sector. Finally, we reject the hypothesis that bonus

decreased employment in industries that were highly exposed to robotization; in fact, bonus

had larger effects on employment in these plants. Overall, bonus does not seem to encourage

plants to double-down on 20th century modes of production or to grow in industries that are at

a comparative disadvantage.

Using a structural model, we separate the scale and substitution effects induced by the policy.

Because bonus lowered costs of production, the policy led to a large and statistically significant

scale effect. While the majority of the effect on employment is driven by this scale effect, we also

consistently find that capital and labor are complements in production, and we are able to rule

out relatively small elasticities of substitution. We verify the complementarity between capital

and labor by showing empirically that plants invest more when labor costs are low, including at

non-unionized plants, RTW states, and concentrated labor markets.

Our ability to measure the effects of bonus over several margins helps us evaluate whether

capital investment helps or hurts workers. While the policy did not increase workers’ aver-

age earnings or plant productivity, workers benefited from increased employment opportunities,

which were concentrated among traditionally marginalized groups.
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Figure 1: Bonus Depreciation Policy and Specific MACRS Assets

(A) 50% Bonus on 3-Year MACRS Assets (B) 50% Bonus on 10-Year MACRS Assets
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(C) Timing of Accelerated Depreciation Policies
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Notes: Panels (A) and (B) of Figure 1 show how 50% bonus changes the depreciation schedule for a 3-year
asset and a 10-year asset, respectively. See Appendix B for further explanation of these calculations. The bonus
depreciation provision has a larger effect on the deduction schedule for a firm that invests in more assets that
are depreciated more slowly for tax purposes. Panel (C) shows how the timing of §179 and bonus depreciation
incentives affect the relative share of depreciation deductions that are accelerated into the first year of the
investment. The two series plot the percent of purchase price accelerated for a $400,000 investment and for a
$1,000,000 investment. The $1,000,000 investment only benefits primarily from bonus depreciation. The $400,000
begins benefiting from §179 expensing starting in 2003. Source: Panels (A) and (B), authors’ calculations based
on IRS (2002) data. Panel (C), authors’ calculations based on the statutory §179 and bonus rates explained in
Kitchen and Knittel (2016).
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Figure 2: Effects of Bonus Depreciation on Capital Investment

(A) Log Investment
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Notes: Figure 2 displays estimates describing the effect of bonus depreciation on log investment in Panel (A) and
log total capital in Panel (B). Plotted coefficients are estimates of βy from Equation (1), which are the annual
coefficients associated with Bonus. The baseline specification in each panel includes state-by-year and plant fixed
effects. The specifications with additional controls add plant size in 2001 bins interacted with year fixed effects,
TFP in 2001 bins interacted with year fixed effects, and firm size in 2001 interacted with year fixed effects to
the baseline specifications. These specifications correspond to columns (6) and (7) of Table 1, respectively. 95%
confidence intervals are included for each annual point estimate with standard errors clustered by the 4-digit
NAICS-by-state level. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Figure 3: Effects of Bonus Depreciation on Log Employment
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Notes: Figure 3 displays estimates describing the effect of bonus depreciation on log employment. Plotted
coefficients are estimates of βy from Equation (1), which are the annual coefficients associated with Bonus. The
baseline specification includes state-by-year and plant fixed effects. The specification with additional controls add
plant size in 2001 bins interacted with year fixed effects, TFP in 2001 bins interacted with year fixed effects, and
firm size in 2001 interacted with year fixed effects to the baseline specifications. These specifications correspond
to columns (6) and (7) of Table 3, respectively. 95% confidence intervals are included for each annual point
estimate with standard errors clustered by the 4-digit NAICS-by-state level. Source: Authors’ calculations based
on ASM, CMF, and Zwick and Mahon (2017) data.
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Figure 4: Effects of Bonus Depreciation on Log Employment; QWI Data
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Notes: Figure 4 displays estimates describing the effect of bonus depreciation on log employment using state-by-
industry QWI data. The regression estimates displayed in this figure correspond to a quarterly analogue of βy
from Equation (1), which is the change in log employment relative to 2001q2 in industries affected most by Bonus
relative to industries that are less affected by Bonus. The regression includes 4-digit NAICS-by-state fixed effects
and state-by-quarter fixed effects. The event study estimates in this figure correspond to column (1) of Table
A6. 95% confidence intervals are included for each quarterly point estimate with standard errors clustered by the
4-digit NAICS-by-state level. Source: Authors’ calculations based on QWI and Zwick and Mahon (2017) data.
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Figure 5: Effects of Bonus Depreciation on Earnings Per Worker

(A) Log Mean Earnings per Worker
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Notes: Figure 5 displays estimates describing the effect of bonus depreciation on Log Mean Earnings per Workers.
Plotted coefficients are estimates of βy from Equation (1), which are the annual coefficients associated with
Bonus. The baseline specification includes state-by-year and plant fixed effects. The specifications with additional
controls add plant size in 2001 bins interacted with year fixed effects, TFP in 2001 bins interacted with year fixed
effects, and firm size in 2001 interacted with year fixed effects to the baseline specifications. These specifications
correspond to columns (6) and (7) of Table 4, respectively. 95% confidence intervals are included for each annual
point estimate with standard errors clustered by the 4-digit NAICS-by-state level. Source: Authors’ calculations
based on ASM, CMF, and Zwick and Mahon (2017) data.
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Figure 6: Effects of Bonus Depreciation on the Fractions of Employees by Education and Age
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Notes: Figure 6 displays estimates describing the effects of bonus depreciation on the fraction of employees with
high school education or less in Panel (A) and the fraction of employees 35 years old or younger in Panel (B)
using state-by-industry QWI data. The regression estimates displayed in this figure correspond to a quarterly
analogue of βy from Equation (1), which is the change in outcome relative to 2001q2 in industries affected most
by bonus relative to industries that are less affected by bonus. The specification used for each panel includes
4-digit NAICS-by-state fixed effects, state-by-quarter fixed effects, and pre-period growth bins interacted with
year fixed effects. The event study estimates in Panels (A) and (B) correspond to columns (3) and (4) of Table A6,
respectively. 95% confidence intervals are included for each annual point estimate with standard errors clustered
by the 4-digit NAICS-by-state level. Source: Authors’ calculations based on QWI and Zwick and Mahon (2017)
data.
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Figure 7: Effects of Bonus Depreciation on the Fractions of Employees by Gender, Race,
Ethnicity
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Notes: Figure 7 displays estimates describing the effects of bonus depreciation on the fraction of female employees
in Panel (A), the fraction of Non-White employees in Panel (B), the fraction of Hispanic or Latino employees
in Panel (C), and the fraction of Black employees in Panel (D). The regression estimates displayed in this figure
correspond to a quarterly analogue of βy from Equation (1), which is the change in outcome relative to 2001q2 in
industries affected most by bonus relative to industries that are less affected by bonus. The specification used for
each panel includes 4-digit NAICS-by-state fixed effects, state-by-quarter fixed effects and controls for pre-period
trends in demographic shares. The event study estimates in Panels (A) through (D) correspond to columns (1)
through (4) of Table A7, respectively. 95% confidence intervals are included for each annual point estimate with
standard errors clustered by the 4-digit NAICS-by-state level. Source: Authors’ calculations based on QWI and
Zwick and Mahon (2017) data.
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Figure 8: Effects of Bonus Depreciation on Productivity and Production

(A) Total Factor Productivity
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Notes: Figure 8 displays estimates describing the effects of bonus depreciation on total factor productivity in
Panel (A) and log total value of shipments in Panel (B). Plotted coefficients are estimates of βy from Equation (1),
which are the annual coefficients associated with Bonus. The baseline specification in each panel includes state-
by-year and plant fixed effects. The specifications with additional controls add plant size in 2001 bins interacted
with year fixed effects, TFP in 2001 bins interacted with year fixed effects, and firm size in 2001 interacted with
year fixed effects to the baseline specifications. These specifications correspond to columns (6) and (7) of Table 4,
respectively. 95% confidence intervals are included for each annual point estimate with standard errors clustered
by the 4-digit NAICS-by-state level. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon
(2017) data.
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Figure 9: Implied Effect on Production Labor Based on Prior Estimates of σKL

Notes: Figure 9 shows implied effects of bonus depreciation on production labor given various values of σKL
corresponding to different production technologies. The curved orange line shows βL implied by different values
of σKL, taking as given the effect of bonus as estimated in column (1) in Table 2 and column (6) of Table 3.
Dotted gray lines represent the implied effects of bonus on production labor for selected estimates of σKL and
benchmark technologies, assuming the same capital and non-production labor responses to the policy. The blue
line and shaded region represent our estimates of the effect of bonus on production labor and the one-sided 95%
confidence interval associated with our estimate from column (6) of Table 3.
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Figure 10: Model Estimates of Capital-Labor Elasticity of Substitution

(A) Estimates of σKL
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Notes: Panel (A) of Figure 10 graphically displays our estimates of σKL based on our long-differences estimates
of the effects of bonus depreciation on capital and labor demand for a range of values of η. The solid blue line in
Panel (B) of Figure 10 displays the probability that the estimated capital-labor substitution parameter σKL in our
baseline model (Column (1), Table 8) is greater than the values along the x-axis. The dashed orange line reports
a similar probability for a model with one type of labor and capital (Column (4), Table A11) and the light-blue
dot-dashed line reports the case of a model with one type of labor alongside equipment and structures (Column
(5), Table A11). Vertical lines correspond to σKL values from Raval (2019), from Gechert, Havranek, Irsova
and Kolcunova (2021), a σKL = 1 implied by a Cobb-Douglas production function, and from Karabarbounis and
Neiman (2014), respectively. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017)
data.
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Table 1: Effects of Bonus Depreciation on Capital Investment

Panel A: Log Investment
(1) (2) (3) (4) (5)

Bonus 0.1698*** 0.1556*** 0.1508*** 0.1518*** 0.1577***
(0.0285) (0.0276) (0.0281) (0.0279) (0.0285)
[0.000] [0.000] [0.000] [0.000] [0.000]

Panel B: IHS Investment

Bonus 0.1675*** 0.1531*** 0.1486*** 0.1498*** 0.1561***
(0.0298) (0.0289) (0.0294) (0.0292) (0.0298)
[0.000] [0.000] [0.000] [0.000] [0.000]

Panel C: Investment over Pre-Period Capital

Bonus 0.0309*** 0.0288*** 0.0267*** 0.0272*** 0.0278***
(0.0044) (0.0043) (0.0044) (0.0043) (0.0045)
[0.000] [0.000] [0.000] [0.000] [0.000]

Year FE X
Plant FE X X X X X
State×Year FE X X X X
PlantSize2001×Year FE X X X
TFP2001×Year FE X X
FirmSize2001×Year FE X

Notes: Table 1 displays estimates describing the effects of bonus depreciation on log investment in Panel (A),
log total capital in Panel (B), and investment over pre-period capital in Panel (C). Difference-in-differences
subpanels show estimates of β from specifications in the form of Equation (2) while the long difference subpanels
show estimates of β2011 from specifications in the form of Equation (1). Specification (1) estimates include year
and plant fixed effects. Specification (2) estimates include state-by-year fixed effects and plant fixed effects.
Specifications (3), (4), and (5) progressively add plant size in 2001 bins interacted with year fixed effects, TFP in
2001 bins interacted with year fixed effects, and firm size in 2001 interacted with year fixed effects, respectively,
to the controls in the preceding column. Standard errors are presented in parentheses and are clustered at the
4-digit NAICS-by-state level. p-values are presented in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01. Source:
Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table 2: Effects of Bonus Depreciation on Capital Stocks

(1) (2) (3) (4) (5) (6)

Log Log Log
Total Capital Equipment Capital Structures Capital

Bonus 0.0804*** 0.0778*** 0.1047*** 0.0962*** 0.0413** 0.032*
(0.0183) (0.0186) (0.0192) (0.0193) (0.0181) (0.0189)
[0.000] [0.000] [0.000] [0.000] [0.023] [0.090]

Plant FE X X X X X X
State×Year FE X X X X X X
PlantSize2001×Year FE X X X
TFP2001×Year FE X X X
FirmSize2001×Year FE X X X

Notes: Table 2 displays long differences estimates describing the effects of bonus depreciation on measures of
capital stocks. For each measure of capital stock, the first specification includes year and plant fixed effects
and the second specification includes plant size in 2001 bins interacted with year fixed effects, TFP in 2001 bins
interacted with year fixed effects, and firm size in 2001 interacted with year fixed effects. Standard errors are
presented in parentheses and are clustered at the 4-digit NAICS-by-state level. p-values are presented in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon
(2017) data.
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Table 3: Effects of Bonus Depreciation on Employment

Panel A: Log Total Employment
(1) (2) (3) (4) (5) (6) (7)

Difference-in-Differences Long Difference

Bonus 0.0849*** 0.0812*** 0.0788*** 0.0785*** 0.0791*** 0.0965*** 0.095***
(0.0097) (0.0096) (0.0096) (0.0095) (0.0097) (0.0152) (0.0158)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Panel B: Log Production Employment

Difference-in-Differences Long Difference

Bonus 0.1047*** 0.1013*** 0.0993*** 0.0993*** 0.0987*** 0.1163*** 0.115***
(0.0108) (0.0106) (0.0106) (0.0105) (0.0107) (0.0164) (0.0168)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Panel C: Log Nonproduction Employment

Difference-in-Differences Long Difference

Bonus 0.0732*** 0.0683*** 0.064*** 0.062*** 0.0622*** 0.0905*** 0.0814***
(0.0165) (0.0163) (0.0162) (0.0163) (0.0163) (0.0249) (0.0257)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.002]

Year FE X
Plant FE X X X X X X X
State×Year FE X X X X X X
PlantSize2001×Year FE X X X X
TFP2001×Year FE X X X
FirmSize2001×Year FE X X

Notes: Table 3 displays estimates describing the effects of bonus depreciation on log employment. The difference-in-differences subpanels show estimates
of β from specifications in the form of Equation (2) while the long difference subpanels show estimates of β2011 from specifications in the form of Equation
(1). Specification (1) estimates include year and plant fixed effects. Specification (2) estimates include state-by-year and plant fixed effects. Specifications
(3), (4), and (5) progressively add plant size in 2001 bins interacted with year fixed effects, TFP in 2001 bins interacted with year fixed effects, and firm
size in 2001 interacted with year fixed effects, respectively, to the controls in the preceding column. Standard errors are presented in parentheses and are
clustered at the 4-digit NAICS-by-state level. p-values are presented in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations
based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table 4: Effects of Bonus Depreciation on Earnings, Productivity, and Revenue

Panel A: Log Mean Earnings
(1) (2) (3) (4) (5) (6) (7)

Difference-in-Differences Long Difference

Bonus -0.0179*** -0.0208*** -0.0209*** -0.0205*** -0.0207*** -0.0282*** -0.0273***
(0.0045) (0.0043) (0.0043) (0.0043) (0.0044) (0.0069) (0.0071)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Panel B: Total Factor Productivity

Difference-in-Differences Long Difference

Bonus -0.0007 -0.0015 -0.0011 -0.0017 -0.0028 -0.0122 -0.0153
(0.0062) (0.0061) (0.0061) (0.006) (0.0059) (0.0108) (0.01)
[0.910] [0.806] [0.857] [0.777] [0.635] [0.259] [0.126]

Panel C: Log Total Value of Shipments

Difference-in-Differences Long Difference

Bonus 0.0572*** 0.0514*** 0.0512*** 0.0517*** 0.0542*** 0.0751*** 0.0808***
(0.0147) (0.0138) (0.0138) (0.0136) (0.0139) (0.0263) (0.0261)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.004] [0.002]

Year FE X
Plant FE X X X X X X X
State×Year FE X X X X X X
PlantSize2001×Year FE X X X X
TFP2001×Year FE X X X
FirmSize2001×Year FE X X

Notes: Table 4 displays estimates describing the effects of bonus depreciation on log mean earnings in Panel (A), log TFP in Panel (B), and log total value
of shipments in Panel (C). Difference-in-differences subpanels show estimates of β from specifications in the form of Equation (2) while the long differences
panel shows estimates of β2011 from specifications in the form of Equation (1). Specification (1) estimates include year and plant fixed effects. Specification
(2) estimates include state-by-year and plant fixed effects. Specifications (3), (4), and (5) progressively add plant size in 2001 bins interacted with year
fixed effects, TFP in 2001 bins interacted with year fixed effects, and firm size in 2001 interacted with year fixed effects, respectively, to the controls in the
preceding column. Standard errors are presented in parentheses and are clustered at the 4-digit NAICS-by-state level. p-values are presented in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table 5: Effects of Bonus Depreciation, Controlling for Shocks to Manufacturing Sector

(1) (2) (3) (4) (5) (6)

Log Log Log
Investment Employment Mean Earnings

Bonus 0.1577*** 0.1566*** 0.0791*** 0.0691*** -0.0207*** 0.0001
(0.0285) (0.0315) (0.0097) (0.0104) (0.0044) (0.0048)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.983]

Plant FE X X X X X X
State×Year FE X X X X X X
Plant Controls X X X
×Year FE

Sector Shocks X X X
×Year FE

Notes: Table 5 displays difference-in-differences estimates from specifications in the form of Equation (2) on log
investment, log employment, and log mean earnings. All specifications include state-by-year and plant fixed effects.
To control for trends in the manufacturing sectors, all specifications also include skill intensity bins interacted
with year fixed effects, capital intensity bins interacted with year fixed effects, Chinese import exposure bins
interacted with year fixed effects, and robotization bins interacted with year fixed effects. Standard errors are
presented in parentheses and are clustered at the 4-digit NAICS-by-state level. p-values are presented in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM, CMF, Zwick and Mahon
(2017), Acemoglu, Autor, Dorn, Hanson and Price (2016), and Acemoglu and Restrepo (2020) data.
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Table 6: Effects of Bonus Depreciation, Interactions with Shocks to Manufacturing Sector

(1) (2) (3) (4)

Interaction Term Skill Intensity Capital Intensity Trade Exposure Robot Exposure

Panel A: Log Investment

Bonus 0.1801*** 0.1565*** 0.1249*** 0.1584***

(0.0337) (0.0314) (0.0313) (0.0314)

[0.000] [0.000] [0.000] [0.000]

Bonus×Interaction 0.0978* 0.0316** -0.0858*** 0.0158

(0.055) (0.0152) (0.0284) (0.012)

[0.075] [0.038] [0.003] [0.188]

Panel B: Log Total Employment

Bonus 0.0743*** 0.0691*** 0.0538*** 0.0705***

(0.011) (0.0104) (0.011) (0.0103)

[0.000] [0.000] [0.000] [0.000]

Bonus×Interaction 0.0215 0.0049* -0.0415*** 0.0125***

(0.018) (0.0029) (0.0107) (0.0038)

[0.232] [0.091] [0.000] [0.001]

Plant FE X X X X
State×Year FE X X X X
Skill Intensity×Year FE X X X X
Capital Intensity×Year FE X X X X
Trade Exposure×Year FE X X X X
Robot Exposure×Year FE X X X X

Notes: Table 6 displays difference-in-differences estimates and coefficients describing interactions between
difference-in-differences terms and variables capturing manufacturing sector trends. The outcome variable in
Panel (A) is log investment. The outcome variable in Panel (B) is log total employment. In Specifications (1)–
(4), the difference-in-differences coefficient is interacted with measures of skill intensity, capital intensity, Chinese
import exposure, and robotization respectively. All specifications include state-by-year and plant fixed effects.
To control for trends in the manufacturing sectors, all specifications also include skill intensity bins interacted
with year fixed effects, capital intensity bins interacted with year fixed effects, Chinese import exposure bins
interacted with year fixed effects, and robotization bins interacted with year fixed effects. Standard errors are
presented in parentheses and are clustered at the 4-digit NAICS-by-state level. p-values are presented in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM, CMF, Zwick and Mahon
(2017), Acemoglu, Autor, Dorn, Hanson and Price (2016), and Acemoglu and Restrepo (2020) data.
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Table 7: Model-Based Implications of Reduced-Form Estimates

(1) (2) (3) (4) (5)

Baseline Low sK High sK Low η High η

Panel A: Scale Effect Estimates

Scale Effect, β̄ 0.101*** 0.104*** 0.099*** 0.101*** 0.101***

(0.014) (0.015) (0.014) (0.014) (0.014)

Panel B: Allen Elasticities of Substitution

Production labor-capital, σKL -0.515 -0.426 -0.608* -0.294 -0.736

(0.336) (0.330) (0.362) (0.192) (0.481)

Nonproduction labor-capital, σKJ 0.376 0.445 0.303 0.215 0.537

(0.587) (0.545) (0.637) (0.335) (0.838)

Panel C: p-values for Substitutability Tests

Substitutability of production labor 0.063 0.099 0.047 0.063 0.063

H0 : σKL ≥ 0

Complementarity of non-production labor 0.739 0.793 0.683 0.739 0.739

H0 : σKJ ≤ 0

Panel D: Cost of Capital Elasticity Estimates

Effect on cost of capital, φ -0.145*** -0.296*** -0.094*** -0.253*** -0.101***

(0.021) (0.044) (0.013) (0.036) (0.014)

Capital, εKφ -0.555*** -0.271*** -0.852*** -0.317*** -0.793***

(0.109) (0.058) (0.149) (0.062) (0.155)

Investment, εIφ -1.398*** -0.684*** -2.146*** -0.799*** -1.997***

(0.357) (0.180) (0.532) (0.204) (0.509)

Production Labor, εLφ -0.803*** -0.393*** -1.232*** -0.459*** -1.147***

(0.067) (0.033) (0.109) (0.038) (0.096)

Non-production Labor, εJφ -0.625*** -0.306*** -0.959*** -0.357*** -0.893***

(0.117) (0.055) (0.191) (0.067) (0.168)

Cost shares:

Production labor 0.50 0.55 0.45 0.50 0.50

Nonproduction labor 0.30 0.35 0.25 0.30 0.30

Capital 0.20 0.10 0.30 0.20 0.20

Demand Elasticity, η 3.50 3.50 3.50 2.00 5.00

Notes: Table 7 presents several results relating our reduced-form estimates to model outcomes across several
alternative calibrations of cost shares and η. Panel (A) displays estimates of the scale effect defined in Equation
(7). Panel (B) presents estimates of the Allen elasticities of substitution between capital and production labor
and capital and non-production labor using equations (4) and (5), respectively. Panel (C) conducts hypothesis
tests of the substitutability and complementarity of production and non-production labor, respectively. Panel
(D) presents estimates of the effect of bonus depreciation on the cost of capital using the calculated scale effects
in Panel (A) and Equation (7). It also presents estimates of the elasticity of capital, investment, production
labor, and non-production labor with respect to this estimated change in the cost of capital. Standard errors are
presented in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM,
CMF, and Zwick and Mahon (2017) data.
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Table 8: Classical Minimum Distance Estimates of Production Elasticities

(1) (2) (3) (4) (5) (6)

Baseline Low sK High sK Low η High η Est. η

Panel A: Estimated Parameters

Demand elasticity, η 3.500 3.500 3.500 2.000 5.000 3.076

(2.123)

Production labor-capital, σKL -0.440 -0.463 -0.410 -0.236 -0.658 -0.380

(0.346) (0.356) (0.353) (0.208) (0.489) (0.435)

Nonproduction labor-capital, σKJ 0.733 0.727 0.738 0.393 1.097 0.633

(0.639) (0.608) (0.671) (0.381) (0.907) (0.710)

Panel B: Empirical Moments

Revenue 0.075 0.075 0.075 0.075 0.075 0.075

Production labor 0.116 0.116 0.116 0.116 0.116 0.116

Nonproduction labor 0.090 0.090 0.090 0.090 0.090 0.090

Capital 0.080 0.080 0.080 0.080 0.080 0.080

Panel C: Model-Predicted Moments

Revenue 0.069 0.069 0.069 0.046 0.078 0.065

Production labor 0.109 0.109 0.108 0.103 0.110 0.108

Nonproduction labor 0.076 0.076 0.076 0.074 0.076 0.076

Capital 0.096 0.096 0.097 0.092 0.097 0.096

Cost shares:

Production labor 0.50 0.55 0.45 0.50 0.50 0.50

Nonproduction labor 0.30 0.35 0.25 0.30 0.30 0.30

Capital 0.20 0.10 0.30 0.20 0.20 0.20

Effect on Cost of Capital, φ -0.14 -0.27 -0.09 -0.23 -0.10 -0.16

Notes: Table 8 presents estimates of the structural parameters of the three input model of production labor,
non-production labor, and capital in Section 7. All parameters estimated using a minimum distance estimator.
Column (1) represents our baseline model featuring a calibrated value of η = 3.5 and cost shares of sL = 0.5,
sJ = 0.3, and sK = 0.5. Columns (2) and (3) consider lower and higher capital cost shares, columns (4) and (5)
consider lower and higher calibrated demand elasticities, and column (6) presents model estimates in which we
estimate the value of η. Standard errors are presented in parentheses. Source: Authors’ calculations based on
ASM, CMF, and Zwick and Mahon (2017) data.
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Table 9: Heterogeneity in Effects of Bonus Depreciation by Labor Market Characteristics

(1) (2) (3)

Log Log Log

Investment Employment Mean Earnings

Panel A: Interaction with highly unionized plant indicator

Bonus 0.1966*** 0.111*** -0.0158***

(0.0338) (0.0107) (0.0053)

[0.000] [0.000] [0.003]

Bonus×Union -0.0854** -0.0619*** -0.0103*

(0.0385) (0.012) (0.0062)

[0.027] [0.000] [0.097]

Panel B: Interaction with Right-to-Work indicator

Bonus 0.0622* 0.0675*** -0.0232***

(0.0364) (0.0131) (0.0058)

[0.087] [0.000] [0.000]

Bonus×RTW 0.200*** 0.0294 0.0052

(0.0546) (0.0191) (0.0086)

[0.000] [0.124] [0.545]

Panel C: Interaction with local labor market concentration

Bonus 0.1498*** 0.082*** -0.022***

(0.0275) (0.0096) (0.0042)

[0.000] [0.000] [0.000]

Bonus×log(HHI) 0.0381** -0.0053 0.0081***

(0.0183) (0.0052) (0.0029)

[0.037] [0.308] [0.005]

State×Year FE X X X
Plant FE X X X

Table 9 displays difference-in-differences estimates and coefficients describing the interaction between difference-
in-differences terms and variables capturing labor market characteristics. The outcome variables in Specifications
(1)–(3) are log investment, log total employment, and log mean earnings. The treatment variable is interacted
with an indicator for more than 60% union presence, an indicator for state Right-to-Work laws as of 2001, and
a standardized measure of local HHI in Panels (A), (B), and (C) respectively. All specifications include state-
by-year and plant fixed effects. Standard errors are presented in parentheses and are clustered at the 4-digit
NAICS-by-state level. p-values are presented in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’
calculations based on ASM, CMF, Zwick and Mahon (2017), and Valletta and Freeman (1988) data.
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Online Appendix: Not For Publication

This appendix includes several sections of supplemental information. Appendix A contains def-

initions for all the variables used in the paper. Appendix B describes the variation in the net

present value of depreciation deductions, z0, across time and industries. We discuss the choice

of standard error calculations in Appendix C. We compare our results on investment with those

of Zwick and Mahon (2017) in Appendix D, and we present additional investment responses to

bonus in Appendix E. Appendix F shows employment results by the task content of occupations

using Census and ACS data. Appendix G provides additional employment results using QWI

data. Appendix H places our results in the context of aggregate and long-run trends in the man-

ufacturing industry. Appendix I decomposes the wage changes into compositional changes and

other factors. Appendix J derives the complete model. Finally, Appendix K discusses variations

and extensions of the structural model.

A Variable Definitions

Variable Name Description
Bonus Indicator that the NPV of investment in industry j is less

than 0.875. Source: Zwick and Mahon (2017).
Post Post-2001 indicator.
Log Investment Natural logarithm of investment in plus 1. Investment is

defined as the total new and used machinery and equip-
ment expenditures in $1,000s by plant i in year t. Source:
ASM/CMF.

Log Total Capital Natural logarithm of total capital plus 1. Total capital is
defined as the value of total capital assets in $1,000s of plant
i in year t. Data is available in CMF years 1997, 2002, 2007,
and 2012. Interim years imputed using investment variable
defined above. Source: ASM/CMF.

IHS Investment Inverse hyperbolic sine function of investment, as defined
above, by plant i in year t. Source: ASM/CMF.

∆PPENTt/PPENT1997−2001 Investment as Share of Pre-Period Capital. Pre-period cap-
ital defined as the average total capital, as defined above,
in the 1997-2001 period. Investment in machinery and
equipment as defined above by plant i in year t. Source:
ASM/CMF.

Continued on next page
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Table A.1 – Continued from previous page
Variable Description
Log Capital Equipment Stock Natural logarithm of total capital equipment plus 1. To-

tal capital equipment is defined as the value of total cap-
ital machinery and equipment assets of plant t in year j.
Data is available in CMF years 1997, 2002, 2007, and 2012.
Interim years imputed using investment variable defined
above. Source: ASM/CMF and Cunningham, Foster, Grim,
Haltiwanger, Pabilonia, Stewart and Wolf (2020).

Log Capital Structures Stock Natural logarithm of total capital structures plus 1. To-
tal capital equipment is defined as the value of total capital
structures assets in $1,000s of plant i in year t. Data is avail-
able in CMF years 1997, 2002, 2007, and 2012. Interim years
imputed using investment variable defined above. Source:
ASM/CMF and Cunningham, Foster, Grim, Haltiwanger,
Pabilonia, Stewart and Wolf (2020).

Log Employment Natural logarithm of total employment plus 1. Total em-
ployment is defined as the total number of non-leased em-
ployees at plant i in year t. Source: ASM/CMF.

Log Production Employment Natural logarithm of production employment plus 1. Pro-
duction employment is defined as the total number of non-
leased employees working in production at plant i in year t.
Source: ASM/CMF.

Log Non-production Employ-
ment

Natural logarithm of non-production employment plus 1.
Production employment is defined as the difference between
total employment and production employment, as defined
above, at plant i in year t. Source: ASM/CMF.

Log Mean Earnings per Worker Natural log of average annual earnings plus 1. Average an-
nual earnings defined as total payroll divided by total em-
ployment at plant i in year t. Source: ASM/CMF.

Log Total Value of Shipments Natural log of revenue plus 1. Revenue defined as the
total value of shipments from plant i in year t. Source:
ASM/CMF.

TFP Total Factor Productivity of plant i in year t. TFP cal-
culated using a factor share approach following Criscuolo,
Martin, Overman and Van Reenen (2019): TFPit = τit− τ̄jt
where τit = rit−S̄Mjtmit−S̄Ljtlit−(1−S̄mjt−S̄Ljt)kit. Here,
rit is log(total value of shipments), mit is log(materials), lit is
log(total employment), kit is log(total capital), and S̄ terms
denote average cost shares for the respective inputs in four-
digit NAICS industry j. Finally, τ̄jt is the average value of
τit in the three-digit NAICS sector. Source: ASM/CMF and
Cunningham, Foster, Grim, Haltiwanger, Pabilonia, Stew-
art and Wolf (2020).

Continued on next page
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Table A.1 – Continued from previous page
Variable Description
RTW Indicator that plant i operated in a state with Right-to-

Work laws in 2001. Source: Valletta and Freeman (1988).
Unionization Indicator that for plant i, over 60% of total employment was

unionized in 2005. Source: MOPS.
Log HHI Natural logarithm of local labor market Herfindahl-

Hirschmann Index (HHI) in 2001. Local labor market de-
fined as the three-digit NAICS-commuting zone in which
plant i operates in 2001. For local labor market m, HHI

= 10, 000
∑

f∈Ft(m)

( lft
LF (m)t

)2
, where lft is employment of

firm f , Ft(m) is the set of all firms operating in labor market
m in time t, and LF (m)t is total employment in labor market
m. Source: LBD.

Skill Intensity Skill intensity of plant i defined as share of total employ-
ment classified as non-production employment in 2001. Skill
intensity fixed effects defined as quartiles of skill intensity
across plants in estimating sample. Source: ASM/CMF.

Capital Intensity Capital intensity of plant i defined as total capital assets
divided by employment in 2001. Capital intensity fixed ef-
fects defined as quartiles of capital intensity across plants in
estimating sample. Source: ASM/CMF.

ADH Exposure ADH exposure for plant i defined as the change in exposure
to Chinese import competition at the six-digit NAICS in-
dustry level from 2000 to 2007. Source: Acemoglu, Autor,
Dorn, Hanson and Price (2016).

AR Robotization AR Robotization for plant i defined as the change in robo-
tization at the three-digit NAICS sector level from 1993 to
2007. Source: Acemoglu and Restrepo (2020).

Plant Size Fixed Effect Plant size of plant i defined as total capital assets in year
2001. Plant size fixed effects defined as quartiles of plant size
across plants in estimating sample. Source: ASM/CMF.

Firm Size Fixed Effect Firm size of plant i defined as total employment of firm to
which plant is attached in year 2001. Firm Size fixed effects
defined as quartiles of firm size across plants in estimating
sample. Source: ASM/CMF.

TFP Fixed Effects TFP of plant i defined above. TFP fixed effects defined as
quartiles of TFP in 2001 across plants in estimating sample.
Source: ASM/CMF.

Log Employment, QWI Natural logarithm of total employment in each four-digit
NAICS industry × state × year. Source: QWI.

Log Mean Earnings, QWI Natural logarithm of mean earnings in each four-digit
NAICS industry × state × year. Source: QWI.

Continued on next page
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Table A.1 – Continued from previous page
Variable Description
Fraction of Employees with
High School Education or Less

Fraction of employees in each four-digit NAICS industry ×
state × year that report having a high school education or
less. Reported education is observed for approximately one-
seventh of the sample that completed the census long-form
and is imputed for all other workers. Source: QWI.

Fraction of Employees 35 Years
Old or Younger

Fraction of employees in each four-digit NAICS industry ×
state × year that are 35 years old or younger. Source: QWI.

Fraction of Female Employees Fraction of employees in each four-digit NAICS industry ×
state × year that are female. Source: QWI.

Fraction of Non-White Employ-
ees

Fraction of employees in each four-digit NAICS industry ×
state × year with a reported race other than White. Source:
QWI.

Fraction of Hispanic or Latino
Employees

Fraction of employees in each four-digit NAICS industry ×
state × year whose reported ethnicity is Hispanic or Latino.
Source: QWI.

Fraction of Black Employees Fraction of employment in each four-digit NAICS industry
× state × year whose reported race is Black. Source: QWI.

Log Employment, Small Firms Natural logarithm of employment in firms with 50 or fewer
employees in each four-digit NAICS industry× state× year.
Source: QWI.

Log Employment, Young Firms Natural logarithm of employment in firms that are five or
fewer years old in each four-digit NAICS industry × state
× year. Source: QWI.

Log Employment, NBER-CES Natural logarithm of total employment in each four-digit
NAICS industry × year. Source: NBER and CES.

Log Investment, NBER-CES Natural logarithm of total investment in each four-digit
NAICS industry × year. Source: NBER and CES.

Log Capital Stock, NBER-CES Natural logarithm of total capital stock in each four-digit
NAICS industry × year. Source: NBER and CES.

ICT Asset Shares Share of fixed assets in information and communication
technology at the three- and four-digit NAICS industry
level. Shares calculated as average over 1997-2001 period.
Source: BEA.

Capital Producer Indicator Indicator for whether a four-digit NAICS industry reports
any sales of capital goods to other industries in 2002. Source:
BEA.

Cost of External Capital Average cost of borrowing, defined as interest divided by
debt, for publicly traded firms for each four-digit NAICS
industry averaged over the 1997-2001 period. Source: Com-
pustat.

Log Employment, Decennial
Census and American Commu-
nity Survey

Natural logarithm of total employment in each four-digit
NAICS industry × state × year. Source: 1990/2000 Cen-
suses and 2005/2010 ACS.

Continued on next page
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Table A.1 – Continued from previous page
Variable Description
Occupation-Task Definitions Occupations are classified into four broad categories: (1)

professional, (2) administrative, (3) production, and (4) ser-
vices occupations. Professional occupations specialize in
non-routine, cognitive tasks. Administrative occupations
specialize in routine, non-cognitive tasks. Production oc-
cupations specialize in routine manual tasks. Services oc-
cupations specialize in non-routine manual tasks. Source:
Acemoglu and Autor (2011)

Tech Industries Industries with more than 25% of employment in technology
oriented occupations. These include Aerospace Products
and Parts (NAICS 3364), Other Chemicals (3259), Basic
chemicals (3251), Pharmaceuticals (3254), Electrical Equip-
ment and Components (3359), Audio and Video Equipment
(3343), Navigational and Control Instruments (3345), Semi-
conductor and Compoent Manufacturing (3344), Commu-
nications Equipment Manufacturing (3342), Computer and
Peripheral Equipment (3341). Source: Heckler (2005)

ICT z score Normalized share of workers engaging in tasks involving
ICT during the period 2002–2016. Source: Gallipoli and
Makridis (2018).

B Context for the Present Value of Depreciation Deductions

The tax subsidy to long-duration capital investment during our sample period comes from both

bonus depreciation and §179 incentives. The original round of 30% bonus depreciation applied

to equipment installed after September 11, 2001 and was intended to be temporary. Bonus

was increased to 50% in mid 2003. The policy was phased out beginning on January 1, 2005,

but many large investments in long-lived assets qualified through January 1, 2006. In response

to the 2008 financial crisis, bonus was reinstated at 50% and has continued with temporary

extensions through the Tax Cuts and Jobs Act of 2017, which increased the policy to 100%

bonus depreciation, also known as full expensing. §179 expensing began with a limit of $24,000

in 2001 increasing to $100,000 in 2003, $250,000 in 2008, and $500,000 in 2010. The §179

incentives are phased out dollar for dollar starting at four times the investment limit.

We display the time variation in how these incentives affected two different investments—

one for $400,000 and one for $1,000,000—and calculate the effective bonus rate in Panel (A) of

70



Figure 1. First, §179 allows for investments under certain thresholds to be immediately deducted

or expensed, which makes the present value of deductions for $1 of investments equal to one.

After claiming any relevant §179 incentives, a firm can claim an additional “bonus” percentage

of the remaining investment cost that wasn’t covered, which is 38% on average during the sample

period. For instance in 2004, the §179 threshold was $100,000 phasing out at $400,000 and the

bonus rate was 50%. For a $400,000 investment, one first claims $100,000 of §179 incentives

and then claims 50% bonus for the remainder of the investment cost. This leads to $250,000 of

investment immediately deducted (100, 000 + 0.5× (400, 000− 100, 000)), which is equivalent to

62.5% bonus. Further, sometimes bonus is larger for larger investments such as the extension of

50% bonus for investments larger than one million dollar in 2005. The accelerated depreciation

policies are mostly driven by §179 for smaller investments and by bonus for larger investments.

We rely on Zwick and Mahon (2017) replication data to measure which plants are most

impacted by accelerated depreciation. They provide estimates of the net present value of depre-

ciation deductions for non-bonus years derived from IRS Form 4562. The data provide variation

at the 4-digit NAICS industry level. We plot the replication data in a histogram in Panel (A)

of Figure A1 for manufacturing industries (NAICS 3111 to 3399). We find there is a structural

break around 0.875, the scale of which is a function of several modeling assumptions regarding

the appropriate discount factors. We use this structural break as the threshold to be considered

treated by bonus. Plants with a NPV of depreciation deductions below the threshold are con-

sidered long duration industries and we count those industries as relatively treated and the rest

as controls.

IRS SOI sector-level corporation depreciation data are used to calculate the NPV of depre-

ciation deductions at the IRS sector level. The total sum of assets placed in service during the

previous tax year for each sector and for each depreciation schedule is available in Table 13 of

the “Corporation Complete Report” through IRS (2017). As further evidence that firms are rel-

atively unable to adjust the tax-duration of their investment, we plot the aggregate net present

value of depreciation deductions for $1 of equipment investment by IRS sectors, which don’t have

perfect NAICS analogs. We show the results of these calculations in Panel (B) of Figure A1.

The longest duration businesses, the bottom tercile of firms weighted by equipment investment,

always have z0 calculations that are around 10%-15% lower than the medium and short duration

firms. We show that the levels of these differences in IRS SOI data are stable from 2000 to 2011
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before accounting for bonus depreciation incentives.

C Standard Error Clustering

Throughout the paper, we cluster standard errors at the level of treatment variation (e.g.,

Bertrand, Duflo and Mullainathan, 2004; Cameron and Miller, 2015). To define this level, con-

sider the impact of bonus on a firm’s investment decision. The firm sets the marginal product

of capital f ′(K) equal to the cost of capital as follows

f ′(K) = r + δ +
1− τz
1− τ

,

where r is the interest rate, δ is the economic rate of depreciation, and τ is the firm’s combined

corporate income tax rate. As we discuss in Section 2, the policy has differential benefits across

industries since

z = b+ (1− b)× z0,

where z0 is industry-specific. Additionally, the tax benefit from bonus depreciation depends on

τ, which is a function of state and federal tax policies. Specifically,

τ = τf × (1− τs) + τs × (1− τf × I[Ds]),

where τf and τs are the federal and state corporate income tax rates, respectively. The first

term accounts for the fact that corporations are able to deduct state taxes from federal taxes.

The second term in this equation captures the fact that some states allow for federal taxes to be

deducted from state taxes, an event we denote by I[Ds]. In this case, we assume that states allow

for bonus depreciation at the state level and rely on the same tax base. Additional interactions

between state tax systems and bonus depreciation arise when states depart from using the federal

tax base or when they additionally provide further depreciation incentives (see, e.g. Ohrn, 2019;

Suárez Serrato and Zidar, 2018)

The equations above clarify that the benefit from bonus depends on interactions between the

federal bonus policy and federal and state tax systems. This motivates us to cluster standard

errors at the industry-state level. Moreover, as we show in Table A2, our primary investment,

capital, employment, earnings, and productivity results have similar levels of statistical signifi-

cance when we instead cluster standard errors at the industry level. Finally, we note that these

levels of clustering are more conservative than those of previous papers that cluster at the firm

level (e.g., Zwick and Mahon, 2017).
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D Comparison to Investment Effects from Zwick and Mahon (2017)

This section compares our estimated effects of bonus on log investment with those reported by

Zwick and Mahon (2017, ZM, henceforth). ZM discuss their identifying variation in their §III.B

on page 228. In a direct analogue to the exercise in this paper, this section of ZM compares

investment outcomes in the 30% of firms in industries with the longest duration investment to

the 30% of firms in the shortest duration of investment. Below we describe how we compare our

results to those of ZM.

In Panels (A) and (B) of their Figure 1, ZM report yearly averages of log investment for both

treated and control firms. We obtain the numerical values of these data points using the program

WebPlotDigitizer (see https://apps.automeris.io/wpd/). Columns (1)–(4) of Table A1 report

the extracted data. This table then creates a series that mirrors our event study estimates. To

do so, we compute the difference between the average values of treated and control groups by

year. We then normalize this difference to be zero in the year 2000 and we combine the data from

the two times periods in ZM by making the assumption that differences in investment between

these two groups are constant between 2004 and 2005. Table A1 details these operations.

Figure A2 plots the series in column (7) of Table A1 along with our estimates from the

additional controls series in Panel (A) of Figure 2.75 Similar to our results, ZM show that

investment at treated firms increases immediately after the implementation of the policy. In the

2002-04 period and among those who had some positive investment, ZM show that treated firms

had investment that was 11.8% higher than control firms. This corresponds to our event study

estimates for the same time period which show an average increase in investment of 10.1%. This

figure shows that we are not able to reject the hypothesis that the estimates in the orange line

differ from those in the blue line for most years.

Overall, Figure A2 shows that our estimated effects of bonus on log investment are quite

comparable with those reported by ZM. The similarity in these results is remarkable for several

reasons. First, while we use census and survey data, ZM rely on data from corporate tax returns.

Second, while we focus on plants in the manufacturing sector, ZM study data on firms in the

overall economy. Third, while our results focus on a balanced panel that includes mostly larger

75We normalize years to the survey year in ASM which is derived from a survey during the year while the tax
data are retrospective from the following year. This means we plot 2000 in ZM as equivalent to 2001 in the ASM
data.
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plants, ZM study a non-balanced panel that includes many small firms. Finally, while our

estimates only rely on the controls mentioned in Section 4, ZM produce the estimates in their

Figure 1 using a two step process that first re-weights observations to address sampling changes

over time and then residualizes the effects of a host of variables, including splines in assets, sales,

profit margin, and age. Despite all these differences, Figure A2 shows that our investment results

have a comparable magnitude to those of ZM.

E Additional Investment Results

This section shows two event studies for different constructions of the investment outcome vari-

able as discussed in Section 5. Estimates for the first additional outcome, the inverse hyperbolic

sine of investment (ln(x +
√
x2 + 1)), are shown in Panel (A) of Figure A3. This outcome al-

lows both the intensive and extensive margins to respond to bonus and has the same scale for

interpretatoin as the natural log. The estimates are almost identical to the primary variable

definition of log investment, which suggests the extensive margin is is not behaving differently

than the intensive margin.

The third construction of the investment outcome is capital expenditure divided by pre-period

capital. The interpretation of these coefficients are a change in investment as a share of original

assets. The event study coefficients are shown in Panel (B) of Figure A3. The time patterns and

increases are qualitatively similar to the other definitions. Difference-in-differences estimates for

both of these variable definitions are shown in Panels (B) and (C) of Table 1.

F Additional Employment Effects by Task Content of Jobs

This section discusses the effects of bonus depreciation on employment for workers in various oc-

cupations defined as routine/non-routine and cognitive/non-cognitive as in Acemoglu and Autor

(2011). We also show how these results change for workers in different demographic groups.

To perform this analysis, we map occupation data from the U.S. Census and American Com-

munity Survey (ACS) and the broad task classifications of Acemoglu and Autor (2011). They

classify Census occupations into four broad categories: (1) professional, (2) administrative, (3)

production, and (4) services occupations. Professional occupations are defined as managerial,

professional, and technical occupations that specialize in non-routine, cognitive tasks. Admin-

istrative occupations are defined as sales, clerical and administrative support that specialize in
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routine, non-cognitive tasks. Production occupations are defined as production, craft, repair and

operative occupations that specialize in routine manual tasks. Services occupations specialize in

non-routine manual tasks.

We construct counts of employment in each of these four categories at the state-by-industry

level using microdata from the IPUMS samples of the 1990 and 2000 Censuses, the 2005 ACS,

and the 2010 ACS 5-year estimates. Our sample comprises adults between the ages of 18 and 64

that are not institutionalized and are employed in manufacturing industries. We drop imputed

values for employment status. We define industries by their 1990 Census industry codes in order

to maintain a consistent sample over time. Because exposure to bonus is defined at the 4-digit

NAICS industry code, we utilize NAICS-Census code industry crosswalks to assign treatment

status to Census industry codes. We exclude Census industries that cannot be mapped to a

unique treatment status based on this crosswalk.

Figure A5 presents estimates from event study regressions that show the effect of bonus

depreciation on workers in production occupations and routine occupations (production plus

administrative) using data from the years 1990, 2000, 2005, and 2010. Estimates are weighted

by employment in 2000 and standard errors are clustered at the industry-state level. The event

study shows that bonus depreciation has large effects on production labor and on routine labor.

The effects on production labor reinforce the conclusion that the effects of bonus depreciation

are concentrated among those workers directly interacting with production machinery. The

similar time pattern for routine work also suggests bonus depreciation increases demand for

administrative labor.

Table A4 presents coefficients describing the effect of bonus depreciation on employment from

2000 to 2010 for groups of workers classified by the routine/non-routine, cognitive/non-cognitive,

and across a number of different demographic groups. Each coefficient is taken from a different

regression where the observation unit is a state-industry. All regressions include industry and

state-year fixed effects, are weighted using 2000 employment, and use standard errors clustered

at the state-industry-level.

The top line estimate in column (1) shows that bonus depreciation increased employment in

most treated industries by 8.56% from 2000 to 2010. This estimate is close to our long-difference

estimate presented in Panel A, column (6) from Table 3. Moving across the estimates presented

in the table, we see large positive effects for routine work and smaller statistically insignificant
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effects on non-routine work.76 Columns (4) through (7) show that the effect of bonus depreci-

ation is largest for production workers, who perform manual routine tasks. The effect of bonus

depreciation is also large and positive for administrative workers who perform cognitive routine

tasks. Effects on professional and service workers are smaller and not statistically significant.

While bonus depreciation affects demand for all workers, column (1) also shows that the policy

has outsized effects on young workers, workers with fewer years of education, female workers,

Black workers, and Hispanic workers. These results reinforce the demographic analyses using

QWI data presented in Section 5.3. Comparing the demographic subgroups results between

Column (1) and Columns (2) and (6) suggests that the pattern of relatively larger effects of

bonus depreciation on employment for traditionally disadvantaged groups is even stronger for

routine and production workers.

In sum, this task-based analysis reinforces the conclusion that the effect of bonus deprecia-

tion on employment is largest for workers interacting with production machinery and engaging

in manual-routine tasks. Among workers performing these types of tasks, the effect of bonus

depreciation is larger for young workers, workers with fewer years of education, female workers,

Black workers, and Hispanic workers.

G Additional Employment Results using QWI Data

This Appendix extends the employment results discussed in Section 5. In that section, we

introduce state-industry level variation using QWI data to measure employment responses in

settings that may not be well covered by the ASM sample that is balanced. First, the ASM

sample can be tilted toward large and old plants by construction, so we use QWI state-industry

variation to see whether the same trends show up in small and young firms.

We show QWI event study estimates for firms with 1-50 employees in Panel (A) of Figure

A6. This sample restricts on plants being very small and aggregates up to the state level, so

if a plant grows beyond 50 employees it will leave the sample and aggregate state employment

in this category would decrease. This sample restriction still shows that long duration plants

experienced more employment growth than short duration counterparts even selecting on being

very small plants. Further, we replicate the employment analysis again restricting to plants that

76In 2000, production occupations accounted for approximately 80% of all routine employment in manufactur-
ing.
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are in the first 5 years of operation. We find that employment in plants treated by bonus is

increasing relative to untreated plants. Quarterly coefficients are shown in Panel (B) of Figure

A6.

We also show extended robustness to a variety of industry level characteristics that could be

correlated with the tax duration of investment. We do this using QWI data and state-industry

variation instead of with ASM/CM data to limit the number of disclosures we have to make with

the confidential Census data. The most important of these tests deals with our discrete definition

of treatment. The variable z0, which is defined as the PV of depreciation deductions for each

dollar of investment, can be used as a continuous treatment instead of a discrete treatment. In

Figure A7, we present results where we define treatment continuously as (1-z0)τ*0.0375, which is

the average treatment of accelerated depreciation due to bonus from 2002 to 2011. In Panel (A),

we show that the event study has the same sign and statistical significance as the discrete version.

Panel (B) displays a binscatter of changes in employment as a function of z0, where we see the

continuous treatment does not show any effect driven by outliers, but a smooth decreasing of

employment as industries enjoyed shorter depreciation schedules historically (i.e. higher z0). Our

formulation of the treatment as a discrete variable does not appear to have a material impact on

our results.

Evidence presented in Panel (A) of Figure A8 suggests a similar conclusion. In Panel (A),

we show how the QWI employment event study differs when we use 25th percentile and 40th

percentile cutoffs to define bonus depreciation treatment. All three treatment definitions suggest

large, positive effects of bonus depreciation on employment which suggest our baseline employ-

ment effects are largely unaffected by the choice of z0 cutoff we use to define treatment.

Figure A8 presents a number of additional robustness checks. In Panel (B), we address

the concern that our findings are driven by increased employment due to additional demand

for capital goods rather than changes in the cost of capital due to the policy. To do so, we

use the 2002 BEA Input-Output tables to identify industries that sell capital goods to other

industries. We control for an indicator equal to one if an industry reports any capital goods

sales and interact this indicator with year fixed effects. Our results are larger in magnitude with

the inclusion of this control, although the results are qualitatively similar. Next, we address

the concern that the different mixes of assets and capital intensity across industries could lead

to different costs of accessing external finance that requires some sort of collateral. As a proxy
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for the cost of external capital, we calculate the average cost of borrowing (interest divided by

debt) for publicly traded firms in Compustat. We then include quintile bins of this external cost

measure interacted with year fixed effects in Panel (C). Again, our results are very similar to

baseline suggesting differences in the cost of external financing are not driving our results.

In Figure A9, we show that our results are not driven by growth in the use of information and

communications technologies (ICT). We take two approaches. First, in Panel (A), we present

additional estimates of the effect bonus depreciation on log employment controlling for two

measures of ICT growth. For each control, we include tercile indicators interacted with year

fixed effects. The first measure is ICT capital intensity measured as a share of capital stock in

ICT goods using BEA Detailed Data for Fixed Assets and Consumer Durable Goods from 1997

to 2001. The second measure is the Gallipoli and Makridis (2018) Z-score, the normalized share

of workers engaging in tasks involving ICT during the period 2002–2016. Both sets of estimates

with these additional ICT controls are very similar to baseline suggesting growth in ICT usage

is not biasing the results.

The second approach is account for ICT growth is simpler. In Panel (B), we present esti-

mates after dropping “tech” industries from our regressions. We define “tech” industries as those

with more than 25% of employment in technology oriented occupations following Heckler (2005).

These industries include Aerospace Products and Parts (NAICS 3364), Other Chemicals (3259),

Basic chemicals (3251), Pharmaceuticals (3254), Electrical Equipment and Components (3359),

Audio and Video Equipment (3343), Navigational and Control Instruments (3345), Semiconduc-

tor and Compoent Manufacturing (3344), Communications Equipment Manufacturing (3342),

Computer and Peripheral Equipment (3341). These industries represent represent 21.4% manu-

facturing employment in 2001. Despite the smaller sample, we continue to find bonus depreciation

has large and significant effects on employment.

We also use QWI data to present extended results on workforce composition corresponding

to Figures 6 and 7. The difference-in-differences and long difference coefficients are reported in

Tables A6 and A7, respectively.

H Aggregate and Long-Run Manufacturing Trends

This section provides additional context to the employment and capital investment results pre-

sented in Section 5. Figure A11 demonstrates that the positive effects of Bonus Depreciation on
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U.S. manufacturing plants that we estimate can be interpreted in the context of large sector-

level declines in employment and an overall shift toward more capital-intensive production. We

utilize data from the NBER-CES Manufacturing Industry Database to obtain sector-wide man-

ufacturing time series. We then apply our event study estimates from Section 5 to these series

to illustrate the aggregate effects implied by our results. Panel (A) demonstrates that manufac-

turing capital stock grew steadily for both long and short duration industries in the pre-period,

but stagnated for short duration industries after 2001. On the other hand, long duration indus-

try capital stock continued to grow in the treatment period, though less dramatically than in

the pre-period. Panel (B) demonstrates that manufacturing employment experienced a stable

post-2001 decline across both long and short duration industries. Long duration industries thus

experienced relatively more positive employment growth than short duration industries, despite

an overall decline in employment. Taken together, these figures demonstrate the well-established

fact that U.S. manufacturing became more capital intensive over the 1997-2011 period.

Figure A11 replicates our main investment and employment event study regressions using data

from the NBER-CES Manufacturing Industry Database over the 1990-2011 period to demonstrate

that our results are not explained by long-run business cycle trends that the 1997-2011 sample

period in our main analysis could otherwise mask. Event study coefficient estimates are obtained

from regressions similar to Equation (1) using 4-digit NAICS industry-year level data. Panel (A)

shows that despite some short-run fluctuations, log investment in our pre-period reveals no

statistically significant differences across long and short duration industries in the 1990-2000

period. This coarse regression also produces post-2001 effects that are very similar to those

derived from our plant-level regressions. Panel (B) shows that log employment in the pre-period

was very stable across long and short duration industries, while we again find large positive

effects in the post-2001 period.

I Worker Composition and Wage Decomposition

This section provides two complementary methods of assessing the impact of worker composi-

tion on the observed decrease in labor earnings at plants treated by bonus, relative to control

plants. First, we replicate the Log Earnings regression with QWI data while controlling for

the various measurements of workforce composition at the state-industry level. The results of

these regressions are presented in Table A8. This table begins with the original Log Earnings
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regression coefficient indicating that earnings decrease in Bonus plants in the post period by 3.1

log points relative to control plants. The next four specifications sequentially add controls for

each of the endogenous workforce characteristics that we find respond to bonus incentives: share

young workers, share workers with highschool education or less, share of non-white workers, and

share of female workers.77 In the final column with all controls, we find that bonus is associated

with a 0.7 log point increase in earnings instead of a decrease, although the effect is statistically

insignificant. This indicates that the change in workforce composition explains more than the

entire decrease in earnings.

Second, we apply a formal decomposition to measure the effect of each margin of workforce

composition directly. The Kitagawa-Oaxaca-Blinder decomposition follows the literature by esti-

mating separate earnings regressions before and after bonus for the treatment and control samples

to separate changes in observable characteristics from the changes in the predicted marginal ef-

fects associated with those characteristics (Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973). To

begin the composition, we begin with the fact that the wages in treated and control industries

before and after the implementation of bonus can be described by a system of 4 equations, with

each describing the relationship of wages to workforce characteristics for a different sample:

wagebonus, pre
jst = αbonus, pre

js + γbonus, pre
st + βbonus, preXbonus, pre

jst + εjst

wagebonus, post
jst = αbonus, post

js + γbonus, post
st + βbonus, postXbonus, post

jst + εjst

wagecontrol, pre
jst = αcontrol, pre

js + γcontrol, pre
st + βcontrol, preXcontrol, pre

jst + εjst

wagecontrol, post
jst = αcontrol, post

js + γcontrol, post
st + βcontrol, postXcontrol, post

jst + εjst.

The controls Xjst in each regression include the share of young employees, share of employees

with less than a high school education, share of non-white employees, and share of employess

that are female. All regressions include state-by-year and industry-by-state fixed effects. In

expectation under the assumption that E(εjst|Xjst) = 0, we can restate these equations as OLS

estimates. Taking differences of the first two equations describes the change in average wages for

bonus plants to be the difference in estimated fixed effects (∆ FE) plus the difference in average

effects of workforce composition.

∆ ¯wagebonus = ∆FEbonus + β̂bonus, postX̄bonus, post − β̂bonus, preX̄bonus, pre.

77The workforce characteristics are included in each regression interacted with year fixed effects to allow them
to have different effects over time in an evolving market.
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Adding and subtracting the estimated value of β̂bonus, postX̄bonus, pre to the right hand side of

this equation allows us to separate “quantity” or “composition” effects, changes in shares holding

prices constant, from everything else that is going on.

∆ ¯wagebonus = ∆FEbonus + ∆β̂bonusX̄bonus, pre︸ ︷︷ ︸
Everything Else

+ β̂bonus, pre∆X̄bonus︸ ︷︷ ︸
Composition

.

To find the relative wage effects for treated plants relative to control plants, we must do

the same calculation for the control equations and then take a difference between the wage

decomposition for Bonus plants and control plants. Estimates of the four regressions explaining

Log Earnings are shown in Columns (1)-(4) of Table A9. The impact of the change in workforce

composition is simply the difference between the quantity term for treated plants and for control

plants and can be calculated separately for each characteristic:

• The increase in young workers accounts for 0.46 log points of the decrease,

• the increase in less educated workers accounts for 1.40 log points of the decrease,

• the increase in non-white workers accounts for 0.12 log points of the decrease,

• and the increase in female workers accounts for 0.85 log points of the decrease.

Taken in its entirety, this decomposition suggests that 2.83 log points of the 3.1 log point effect

is explained by changes in composition. Conservatively, composition in this exercise explains 91%

of the wage effect by this method instead of the entire effect in the previous method. That is,

we continue to find that it is the change in the share of less educated workers and the share of

female workers that explain most of the variation as in the regressions including the endogenous

controls.

J Structural Model Derivation

Below we derive the model predictions presented in Section 7. The following exposition follows

closely that in Harasztosi and Lindner (2019), which in turn follows Hamermesh (1996) to derive

the output demand elasticity.
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J.1 Consumer Problem

Consider a differentiated goods market and consumer preferences given by the constant elasticity

of substitution function

U =

(
a

[(∫ 1

0

q(ω)
κ−1
κ dω

) κ
κ−1
] θ−1

θ

+ (1− a)X
θ−1
θ

) θ
θ−1

,

where consumption of a variety ω from the differentiated goods market is given by q(ω) and X is

spending on outside goods. Let Q =
( ∫ 1

0
q(ω)

κ−1
κ dω

)
. The consumer budget constraint is given

by ∫ 1

0

p(ω)q(ω)dω +X = I,

where consumer income is I and expenditures on the outside good X is set as a numeraire.

Demand for variety ω may be derived by first solving the consumer’s constrained optimization

problem as represented by the Lagrangian below:

L =

(
a

[(∫ 1

0

q(ω)
κ−1
κ dω

) κ
κ−1
] θ−1

θ

+ (1− a)X
θ−1
θ

) θ
θ−1

− λ
[ ∫ 1

0

p(ω)q(ω)dω +X − I
]
.

Taking first-order conditions with respect to q(ω) and X

∂L

∂q(ω)
=

(
a
(
Q

κ
κ−1

) θ−1
θ + (1− a)X

θ−1
θ

) θ
θ−1
−1

a
(
Q

κ
κ−1

) θ−1
θ
−1
Q

κ
κ−1
−1q(ω)

κ−1
κ
−1 − λp(ω) = 0, (13)

∂L

∂X
=

(
a
(
Q

κ
κ−1

) θ−1
θ + (1− a)X

θ−1
θ

) θ
θ−1
−1

(1− a)X
θ−1
θ
−1 − λ = 0. (14)

Relative demand for a given variety can be derived by taking the ratio of FOCs of two varieties

ω1 and ω2, and rearranging:

q(ω1) =

(
p(ω1)

p(ω2)

)−κ
q(ω2).

This expression may be further manipulated by multiplying both sides by p(ω1) and integrating

with respect to p(ω1): ∫ 1

0

p(ω1)q(ω1)dω1 = p(ω2)κq(ω2)

∫ 1

0

p(ω1)1−κdω1.

The left-hand side of this expression is equal to total expenditures on all varieties (that is,

(I −X)). Defining the composite price index P ≡
( ∫ 1

0
p(ω2)1−κdω2

) 1
1−κ

, we write this equation

as

(I −X) = p(ω2)κq(ω2)P 1−κ.
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We then solve for the optimal choice of q(ω2) = (I − X)P κ−1p(ω2)−κ. Utilizing this simplified

expression, it is convenient to express Q
κ
κ−1 as

Q
κ
κ−1 =

(∫ 1

0

q(ω2)
κ−1
κ dω2

) κ
κ−1

= (I −X)P κ−1
(∫ 1

0

p(ω2)1−κdω2

) κ
κ−1

= (I −X)P−1.

To derive the optimal quantity of X, combine the two FOCs:

a
(
Q

κ
κ−1

) θ−1
θ
−1

Q
κ
κ−1
−1q(ω)

κ−1
κ
−1 = (1− a)X

θ−1
θ
−1p(ω)

Multiplying both sides by q(ω) and integrating over ω simplifies the expression to

a
(
Q

κ
κ−1

) θ−1
θ

= (1− a)X
θ−1
θ
−1

∫ 1

0

p(ω)q(ω)dω.

Using the expressions Q
κ
κ−1 = (I −X)P−1 and

∫ 1

0
p(ω)q(ω)dω = (I −X) implies that

X =

(
1−a
a

)θ
P θ−1

1 +
(

1−a
a

)θ
P θ−1

I and I −X =
1

1 +
(

1−a
a

)θ
P θ−1

I.

We may now express the firm level demand for good q(ω) as

q(ω2) = I
1

1 +
(

1−a
a

)θ
P θ−1

P 1−κp(ω2)−κ. (15)

As a result, we can derive the elasticity of demand for a given variety ω with respect to its own

price as

∂ log q(ω)

∂ log p(ω)
= −κ.

J.2 Firm Problem

Firms first minimize production costs subject to constant returns to scale technology; let c(w,R, pj)

denote the firm’s unit cost function, which depends on the wage rate w, the rental rate of capital

R, and the price of an arbitrary third input pj. Given the elasticity of output demand derived

in the previous section, we may utilize firm optimality conditions to derive the expressions in

the main text that relate our empirical elasticities to structural parameters of interest. With

constant returns to scale production technology, profit maximization for a firm producing variety

ω is determined by the following expression:

max
q(ω)

p(q(ω), ω)q(ω)− c(w,R, pj)q(ω).
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Solving and rearranging yields the following first order condition:(
∂p(ω)

∂q(ω)

q(ω)

p(ω)
+ 1

)
p(ω)− c(w,R, pj) = 0.

From the consumer problem, the inverse elasticity of demand is ∂p(ω)
∂q(ω)

q(ω)
p(ω)

= − 1
κ
, which allows us

to express the optimal price for ω as a function of a fixed mark-up µ and input prices:

p(ω) =
κ

κ− 1︸ ︷︷ ︸
≡µ

c(w,R, pj).

Using this expression, we first consider the effects of bonus depreciation on firm production.

First, consider the effect of an arbitrary change in the cost of capital R on prices charged by

affected firms. Taking logarithms and differentiating with respect to R gives

∂ log p(ω)

∂R
=
∂ log c(w,R, pj)

∂R
+
∂ log µ

∂R

Given that the mark-up µ is constant, ∂ log µ
∂R

= 0. Shephard’s lemma
(
cR = K

q

)
then implies that

the elasticity of output prices with respect to capital input prices is equal to the share of capital

cost in total cost, sK :

∂ log p(ω)

∂ logR
=
R× cR

c
=
R×K
cq(ω)

≡ sK .

We then utilize this expression to derive the analogous effect on total revenue:

∂ log p(ω)q(ω)

∂ logR
=
∂ log p(ω)

∂ logR
+
∂ log q(ω)

∂ log p(ω)

∂ log p(ω)

∂ logR
.

Letting −η ≡ ∂ log q(ω)
∂ log p(ω)

, the effect on total revenue of an arbitrary change in the cost of capital is

∂ log p(ω)q(ω)

∂ logR
= (1− η)sK .

The scale effect, ηsK , depends on the degree to which bonus depreciation impacts the quantity

sold by a given firm, q(ω). Under the assumption that bonus depreciation only impacts one firm,

Equation 15 shows that η = κ. To the extent that bonus impacts the sector-level price index

P, Equation 15 shows that the relevant η also depends on substitution toward consumption on

outside goods X.

Letting φ = ∂ logR
∂Bonus

< 0 denote the effect of bonus on the cost of capital, we arrive at Equation

6:

∂ log p(ω)q(ω)

∂Bonus
= (1− η)sK × φ.
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Next, we derive the effect of bonus on the input decisions of affected firms. For each input,

we use Shepards’ lemma to express the optimal choice of each input as a function of the optimal

output quantity and the first derivative of the cost function. Taking logs and differentiating with

respect to an arbitrary change in the cost of capital, we may arrive at expressions for the effect

of bonus on optimal input decisions as a function of input elasticities of substitution, the output

demand elasticity, and input cost shares. For the optimal choice of capital, Shephard’s lemma

gives K = cRq. Therefore,

∂ logK(ω)

∂R
=
cRR
cR

+
∂ log q(ω)

∂R
. (16)

Multiplying both sides of this expression by ∂R
∂ logR

= R and substituting for the previously derived

expression for input cost shares yields

∂ logK(ω)

∂ logR
= R

cRR
cR
− ηsK .

To write R cRR
cR

in terms of elasticities of substitution, note that constant returns to scale and

Shephard’s lemma imply that:

qc(w,R, pj) = wL+RK + pjJ

qc(w,R, pj) = wcwq +RcRq + pjcpjq

c(w,R, pj) = wcw +RcR + pjcpj .

Differentiating with respect to the cost of capital implies

cR = wcwR + cR +RcRR + pjcpjR

R
cRR
cR

= −wcwR
cR
− pj

cpjR

cR

R
cRR
cR

= −wL
L

cwR
cR
− pjJ

J

cpjR

cR

R
cRR
cR

= −wL
qc

ccwR
cwcR

− pjJ

qc

ccpjR

cpjcR

R
cRR
cR

= −sLσKL − sJσKJ ,

where the second line solves for R cRR
cR
, the third line manipulates each ratio by multiplying and

diving by the respective input, and the fourth line uses Shephard’s lemma and further multiplies

and divides by c. The last line uses the definitions of cost shares sL = wL
qc

and sJ =
pjJ

qc
and of

the Allen partial elasticity of substitution between inputs i and j, which is given by σij =
ccij
cicj

.
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Again letting φ = ∂ logR
∂Bonus

< 0, we combine this expression with Equation 16 to derive Equation

(3) from the main text:

∂ logK(ω)

∂Bonus
= (−sJσKJ − sLσKL − ηsK)× φ.

We follow a similar procedure to derive Equation 4, the effect of bonus on the optimal labor

choice. Taking logarithms of Shephard’s lemma (L = cwq) and differentiating with respect to R,

∂ logL(ω)

∂R
=

cwR
cw

+
∂ log q(ω)

∂R
.

As before, we can write this expression as

∂ logL(ω)

∂ logR
=

RcR
c

ccwR
cRcw

− ηsK

∂ logL(ω)

∂ logR
=

RK

qc

ccwR
cRcw

− ηsK

where the first line multiplies and divides by cR
c

and the second line uses Shephard’s lemma.

Using definitions of the Allen partial elasticity of substitution and the share of capital in total

costs, together with φ = ∂ logR
∂Bonus

< 0, we arrive at Equation 4

∂ logL(ω)

∂Bonus
= sK(σKL − η)× φ.

Equation 5 can be derived in a similar fashion.

J.3 Effects of Bonus under Financing Constraints

This section describes a simple model that shows that financing constraints can amplify the

effects of bonus on the cost of capital. As in Domar (1953), suppose that plants would like to

finance new investments, I, through a combination of retained earnings, RE, and the cash flow

plants get from bonus, BCF . When I ≤ RE+BCF the firm pays r(1−τz)
1−τ to finance investment.

Note that BCF = τbI, so that plants pay the interest rate r(1−τz)
1−τ if I ≤ RE

1−τb . That is, retained

earnings can finance larger investments when b is larger, since this allows plants to claim a larger

share of the total tax deductions associated with the investment in the year the investment is

made. Additionally, we consider that plants face uncertainty regarding the retained earnings

that will be available at the time of investment, so that RE ∼ G(·). As in Myers (1977); Bond

and Meghir (1994); Bond and Van Reenen (2007), we assume that plants pay a transaction cost
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f when accessing financing mechanisms (e.g., by issuing stock) when investment costs exceed

retained earnings.

The expected financing cost for an investment I is then

Cost of Capital ≡ r(1− τz)
1− τ

+
f

1− τ
Pr
(
I ≥ RE

1− τb

)
=
r(1− τ(b+ (1− b)z0))

1− τ
+

f

1− τ
G (I(1− τb)) .

The effect of bonus on the cost of capital is then:

− τ

1− τ
[r(1− z0) + fIG′(I(1− τb))] .

Note that, since G(·) is a C.D.F., G′(·) ≥ 0. This expression shows that bonus lowers the cost

of capital both by decreasing the standard user cost of capital term from Hall and Jorgenson

(1967) and by reducing the likelihood that plants will pay transaction costs to access other forms

of finance.

Let εG = IG′

G
≥ 0 be the elasticity of the likelihood that the firm is constrained with respect

to the size of the investment. We can then write φ as follows:

φ ≡ ∂ ln(Cost of Capital)

∂Bonus
=

−1

Cost of Capital
× τ

1− τ
[r(1− z0) + fG(I(1− τb))εG]

= −τ
[
sr

(1− z0)

(1− τz)
+ (1− sr)εG

]
,

where sr is the share of financing costs explained by the opportunity cost of retained earnings.

When sr = 1, φ =
∂ ln

r(1−τz)
1−τ

∂Bonus
= − τ(1−z0)

(1−τz) . As an illustrative calculation, assume τ = 0.35,

z0 = 0.9, and that b = 0.5. For investments financed with retained earnings (i.e., when sr = 1), we

calculate that φ = −0.052. Assuming that about half of the investment cost is due to additional

financing costs and that εG = 0.25 implies that φ = −0.15, while assuming that εG = 0.5 and

sr = 0.5 implies that φ = −0.276.

K Additional Model Results

This section presents various model results in greater detail. These results demonstrate that

our conclusion that capital and labor are complements in production holds up across several

alternative models. This section also presents estimates of both translog cost functions and

constant elasticity of substitution production functions. These estimated functions allow us to

test several hypotheses of interest. Finally, we utilize our event study estimates over the 2002-

2011 period to calculate several model parameters over time.
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K.1 Two-Input Model Results

To motivate the three input model presented in the main text, we consider a two input model

with capital and labor. The two-input version of Equation 8 is:

σKL = η

(
1− βL

sLβL + sKβK

)
. (17)

To implement this equation, we set input cost shares so that 1−sK = sL = 0.8. Panel A of Figure

A13 plots this equation using the estimated effects of bonus on capital and labor for a range of

values of η. This figure shows that, regardless of the value of η, the fact that β̂L > β̂K implies

that capital and labor are complements, i.e., σKL < 0.78 Column (4) of Table A11 implements the

classical minimum distance approach to estimate σKL, finding an estimate of σKL = −0.12. In

two input models, a negative elasticity of substitution is not consistent with cost minimization.

One interpretation of these results is that the data are not consistent with a large degree of

substitution between capital and workers.79 A second interpretation is that plants in our data

are not well approximated by a two input model.

K.2 Alternative Model Inputs

We consider several alternative models in which different inputs are used in production. Table

A11 presents several three input alternatives to the baseline model estimates presented in the text,

which we reproduce in column (1). Columns (2) and (3) of Table A11 again consider a three

input production technology comprising production labor, non-production labor, and capital,

but instead estimate labor relying on estimates of effects on employment using difference-in-

differences (instead of long differences) and hours (instead of number of workers), respectively. In

both cases, we estimates very similar values of σKL, suggesting that the finding that production

labor and capital are complements is not driven by mismeasurement of labor inputs, nor by

focusing on the long-run effect of bonus depreciation on inputs. Column (5) of Table A11

considers an alternative production function that combines (all) workers with equipment capital,

and structures. As discussed in the main text, structures were generally not eligible for bonus

depreciation. This model finds that workers are complementary to equipment and that structures

78To be consistent with a Cobb-Douglas production function, Equation 17 implies that β̂K would have to be
2.25-times as large as β̂L, assuming η = 5; and 6-times as large if η = 2.

79Gechert, Havranek, Irsova and Kolcunova (2021) conduct a meta-analysis of estimates of σKL and show that,
correcting for publication bias, one should expect to find a large number of negative estimates of σKL.
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are substitutes with equipment. Since the model perfectly matches the estimated effect on capital

structures, we interpret the estimated 4% increase in structures as being driven by a scale effect,

though it is diminished by a substitution away from structures. Finally, column (6) considers a

model with workers, capital, and materials. In this model, workers continue to be complements

with capital, and we also find that materials and capital are substitutes.

We also estimate a five input model that combines production labor, non-production labor,

materials, capital structures, and capital equipment. Panel B of Figure A13 reports values of σKL

implied by a five-input analogue of Equation 17 across values of η. Once again, our estimates

imply negative values of σKL.

K.3 Translog Cost Function Estimation

Following Hamermesh (1996) and Berndt and Christensen (1973), we estimate translog cost

function parameters implied by the estimated substitution elasticities presented in Table 8. The

translog cost function can accommodate an arbitrary number of inputs, is a second-order ap-

proximation to a general cost function, and nests several alternative production technologies.

The general form is given by:

logC = log Y + a0 +
∑
i

ai logwi + 0.5
∑
i

∑
j

bij logwi logwj, (18)

where ∑
i

ai = 1; bij = bji;
∑
i

bij = 0, ∀j, (19)

where the parameters bij are the parameters of interest. For factor inputs i and j and associated

cost shares si and sj, the partial elasticities of substitution we estimate can be expressed as

σij = [bij + sisj]/sisj, i 6= j. (20)

We can then estimate blk and bjk using our estimated elasticities of substitution, σKL and σJK .

In order to identify blj, we consider two values of σLJ relative to our estimates of σKL and σJK

in Table 8. Specifically, first consider that properties of cost minimization imply a lower-bound

value of σLJ :

sJσLJ + sKσKL > 0,

σLJ > −(sK/sJ)σKJ .
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As a second alternative, we consider the assumption that σLJ is as large as our largest estimated

elasticity: max = {σ̂KL, σ̂JK} = σ̂JK . Below, we present results using these two alternative values

of σLJ , which we use to estimate blj.

To identify the parameters bii then requires values of σLL, σJJ , and σKK . These values can

be obtained from the following identities:

sLσLL + sJσLJ + sKσLK = 0,

sLσJL + sJσJJ + sKσJK = 0,

sLσKL + sJσKJ + sKσKK = 0.

Rearranging the first of these expressions, σLL = [−sJσLJ − sKσLK ]/sL. Equation (3) demon-

strates that for an input j, σjj can be interpreted as the negative of the total substitution effect

with respect to other inputs divided by the cost share sj. We can then relate these parameters

to their translog counterparts through the following equation:

σii = [bii + s2
i − si]/s2

i . (21)

Equations (20) and (21) demonstrate that the partial elasticities of substitution we estimate are

linear functions of the analogous translog parameters bij. Panels A of Tables A13 and A14 report

translog parameter estimates for our two assumed values of σLJ .

An advantage of estimating these translog cost parameters is that we may derive simple

testable restrictions on these parameters that correspond to different production technologies.

We test the following hypotheses:

H0 : bkl = bkj = bjl = 0 (Cobb-Douglas),

H0 : bkl = bkj = 0 (Capital Separability),

H0 : bkj = blj = 0 (J Separability),

H0 : bkl = blj = 0 (L Separability),

H0 : bij = −sisj ∀i 6= j (Leontief).

Panels B of Tables A13 and A14 report p-values associated with the F-tests corresponding to

these null hypotheses across the 3-input model estimates presented in Table 8. For both bounds

on σLJ , we are generally able to reject the Cobb-Douglas production technology as well as capital

and production labor separability at the 5% level and in many cases at the 0.1% level.
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We also reject non-production labor separability when assuming σLJ = −(sK/sJ)σKJ . This

result makes intuitive sense since the lower bound that implies this value of σLJ corresponds to

null total elasticity of substitution, which is closer to a Leontief production technology than a

separable one. In contrast, we do not reject that non-production labor may be separable when

we assume that σLJ = σKJ . This result also makes intuitive sense since σLJ = σKJ implies that

blj = bkj, which by construction satisfies half of the conditions of test of J-separability.

In both cases, we are unable to reject a Leontief production technology across all models.

This result is consistent with our finding in Section 7 that the most of the effect of the policy on

factor demands was driven by the scale effect.

K.4 Morishima Elasticities of Substitution

As an alternative to the Allen partial elasticities of substitution presented in Section 7, we also

consider estimates of Morishima elasticities of substitution. Following Blackorby and Russell

(1989), the Morishima elasticities of substitution may be expressed as functions of the elasticities

of input demand with respect to changes in a given input price. Thus, the Morishima elasticities of

production labor and capital and nonproduction labor and capital, respectively, may be expressed

as

σMKL = εLφ − εKφ , (22)

σMKJ = εJφ − εKφ . (23)

We estimate these parameters using the elasticity estimates in Panel (D) of Table 7. Panel (A)

of Table A15 shows that these estimated elasticities again support the view that capital and

production labor are complements, while the elasticity of substitution between non-production

labor and capital is small and negative. Panel (B) demonstrates that we can reject the null

hypothesis that capital and production labor are substitutes at the 5% level across all models

considered.

K.5 Constant Elasticity of Substitution Parameter Estimates

We now demonstrate that the elasticities in Panel (D) of Table 7 can be used to estimate key

parameters from a nested constant elasticity of substitution (CES) production function. We

consider a CES production function in which production labor and capital are nested separately
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from non-production labor:

F (K,L, J) =
[
µ1J

ρ1 + (1− µ1)(µ2L
ρ2 + (1− µ2)Kρ2)

ρ1
ρ2

] 1
ρ1 ,

where J represents non-production labor, L represents production labor, K represents capital,

and ρ1 and ρ2 are our CES parameters of interest.

The first-order conditions associated with cost minimization yield the following expression

that relates the ratio of optimal L and K to the price ratio:

L

K
=

(
(1− µ2)

µ2

R

w

) 1
1−ρ2

. (24)

Taking logs and differentiating this expression with respect to the cost of capital φ leads directly

to our identification result for ρ2:

εLφ − εKφ =
1

1− ρ2

, (25)

which can be rearranged to yield an expression for ρ2.

In order to derive an expression for ρ1, we first note that cost minimization implies the

following result that relates CES parameters to input cost shares:

RK

RK + wL
=

µ2

(
R
µ2

) −ρ2
1−ρ2

µ2

(
R
µ2

) −ρ2
1−ρ2 + (1− µ2)

(
w

1−µ2

) −ρ2
1−ρ2

=
sK

sK + sL
. (26)

As with Equation (24), we may also derive the following expression for the optimal quantity ratio

of J and K using first-order conditions:

J

K
=

(
R

µ2

) 1
1−ρ2

(
pj
µ1

) −1
1−ρ1

 1

(1− µ1)

[
µ2

(
R

µ2

) −ρ2
1−ρ2

+ (1− µ2)

(
w

1− µ2

) −ρ2
1−ρ2

] ρ1−ρ2
−ρ2


1

1−ρ1

(27)

Unlike Equation (24), taking logs of this expression and differentiating does not isolate ρ1. In-

stead, we utilize expressions for the optimal quantities of J and K implied by cost minimization.

Taking logs and differentiating these expressions with respect to R allows us to evaluate Equation

(23) as a function of CES parameters. Together with Equation (26), these expressions yield the

following result that relates εJφ and εKφ to an approximate expression around initial cost shares:

εJφ − εKφ ≈ 1

1− ρ2

[
1 +

ρ1 − ρ2

1− ρ1

sK

sL + sK

]
. (28)
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Rearranging this expression, combined with Equations (22) and (23), shows that ρ1 is a simple

function of the elasticities of input quantities with respect to φ and the relative cost shares of

production labor and capital:

εJφ − εKφ ≈ (εLφ − εKφ )
sL

sL + sK
+

1

1− ρ1

sK

sL + sK
. (29)

We present estimates of CES parameters identified using Equations (25) and (29) in Panel (A)

of Table A16. Following the CES framework of Krusell, Ohanian, Ŕıos-Rull and Violante (2000),

these estimates naturally lead to the question of whether our estimated effects on production

and non-production labor are consistent with a capital-skill complementarity hypothesis that

the CES substitution elasticity of production labor and capital is greater than that between

nonproducton labor and capital. These estimates are displayed in Panel (B) of Table A16.

Given the fact that our estimates of 1
1−ρ2 are uniformly negative and those of 1

1−ρ1 are uniformly

positive, it would appear that our results are inconsistent with this hypothesis. However, due

to the relative imprecision of our CES estimates, we cannot rule out this hypothesis formally.

Instead, we test whether we can reject the finding of Krusell, Ohanian, Rı́os-Rull and Violante

(2000) that 1
1−ρ2 >

1
1−ρ2 + 1. Panel (C) of Table A16 shows that we can we reject this hypothesis

at the 1% level across all models.

K.6 Model Estimates over Time

Our existing model results utilize either difference-in-differences or long difference estimates to

recover estimates of scale effects, effects on the cost of capital, input elasticities with respect

to changes in the cost of capital, and capital-labor substitution elasticities. Alternatively, we

may utilize the event study estimates from Section 5 to recover these estimates for the entire

2002-2011 treatment period. Due to disclosure restrictions, we impute the covariances between

reduced-form estimates in the 2002-2010 period where necessary by assuming that the correlations

between any two regression estimates are constant and equal to their correlation in 2011.

Panels (A) and (B) of Figure A14 presents estimates of the scale effect and the effect on the

cost of capital, respectively, over time. We estimate both the scale effect, β̄, and the effect on

the cost of capital, φ, by applying Equation (7) year-by-year. Consistent with the increasing

effects over time across most outcomes in Section 5 we find that both of these effects increase in

magnitude over time. Panels (C) and (D) display estimates of the investment and production
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employment elasticities presented in Table 7 over time. As in the main text, we define these

elasticities as εIφ = βI/φ and εLφ = βL/φ, respectively. These estimates are relatively stable over

time. This result suggests that our estimates of φ capture the effects of the policy on the cost of

capital, inclusive of financing and adjustment constraints that may prevent plants from adjusting

their capital.

Lastly, we estimate σKL for each year over the 2004-2011 period by combining our event study

estimates of the effect of bonus depreciation on production labor, an annualized long-difference

estimate of the effect on total revenue, and Equations (4) and (6):

σtKL = (1− η)
βLt
βRt

+ η.

Figure A15 presents these estimates. While somewhat imprecise, these point estimates suggest

a much larger, negative estimate of σKL that gradually attenuates over time. This pattern is

consistent with labor being a more flexible input than capital in the short run, whereas over

time, capital adjustments imply smaller degrees of complementary between labor and capital.
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Appendix Figures

Figure A1: Distribution and Stability of Depreciation Net Present Value without Bonus

(A) Distribution of Depreciation NPV without Bonus
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(B) Stability of Depreciation NPV Over Time
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Notes: Panel (A) of Figure A1 shows the distribution of the present value of depreciation deductions across
manufacturing industries according to estimates in Zwick and Mahon (2017). The vertical red line in this graph
at 0.875 highlights the structural break that we take advantage of for defining plants that benefit most from
Bonus. Panel (B) of Figure A1 displays the aggregate net present value of depreciation deductions for $1 of
new investment in each year from 2000 to 2011 with an assumed discount rate of 7% without applying bonus
depreciation. These represent annual estimates of z0 discussed in Section 2. IRS sectors are aggregated into
thirds based on weighted total investment in 2000 with the trends for each third graphed separately. The graph
highlights that the sectors that invest in the longest tax-duration assets always have z0 estimates less than 0.8
while the other two terciles have similarly stable z0 estimates that are much higher. It does not appear that the
non-bonus depreciation values of new investment are changing over time in response to Bonus. Source: Authors’
calculations based on Zwick and Mahon (2017) replication data and IRS SOI sector-level corporation depreciation
data, derived from Form 4562.
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Figure A2: Comparison of Investment Event Study Results with Zwick and Mahon (2017)
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Notes: Figure A2 compares our investment results to those of Zwick and Mahon (2017). As we discuss in Section
4, we define exposure to treatment as a binary variable that takes the value of one when for firms with z0 in the
first three terciles of the distribution of z0. Zwick and Mahon (2017) use the same definition of treated firms in
their Figure 1 (see their §III.B, p.228). Using the reported values in their Figure 1, we construct a combined
event study that mirrors our estimates. We describe this procedure in Appendix D. Table A1 lists the data and
operations used to generate the orange series. Because IRS tax data report results from previous years and the
ASM/CM data report production data in March of the current year, we align these two series to match economic
activity in the same year. The blue series reproduce our estimates of the effects of bonus on log investment from
Figure 2. This figure shows that our estimated effects of bonus on log investment are quite comparable with those
reported in Zwick and Mahon (2017). Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon
(2017) data.
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Figure A3: Effects of Bonus Depreciation on Alternative Investment Outcomes

(A) IHS Investment

-.2

-.1

0

.1

.2

.3

1997 1999 2001 2003 2005 2007 2009 2011

Baseline Additional Controls 95% CIs

(B) (∆PPENTt/PPENT1997−2001)

-.04

-.02

0

.02

.04

.06

1997 1999 2001 2003 2005 2007 2009 2011

Baseline Additional Controls 95% CIs

Notes: Figure A3 displays estimates describing the effect of bonus depreciation on the Inverse Hyperbolic Sine
of Investment in Panel (A) and PPENT expenditures divided by previous PPENT stock in Panel (B). Plotted
coefficients are estimates of βy from Equation (1), which are the annual coefficients associated with Bonus.
The baseline specification in each panel includes state-by-year and plant fixed effects. The specifications with
additional controls add plant size in 2001 bins interacted with year fixed effects, TFP in 2001 bins interacted with
year fixed effects, and firm size in 2001 interacted with year fixed effects to the baseline specifications. These
specifications correspond to columns (2) and (5) of Table 1, respectively. 95% confidence intervals are included for
each annual point estimate with standard errors clustered by the 4-digit NAICS-by-state level. Source: Authors’
calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Figure A4: Effects of Bonus Depreciation on Production and Non-production Employment

(A) Log Production Employment
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Notes: Figure A4 displays estimates describing the effect of bonus depreciation on log production employment
in Panel (A) and log non-production employment in Panel (B). Plotted coefficients are estimates of βy from
Equation (1), which are the annual coefficients associated with Bonus. The baseline specification in each panel
includes state-by-year and plant fixed effects. The specifications with additional controls add plant size in 2001
bins interacted with year fixed effects, TFP in 2001 bins interacted with year fixed effects, and firm size in 2001
interacted with year fixed effects to the baseline specifications. These specifications correspond to columns (6) and
(7) of Table 3, respectively. 95% confidence intervals are included for each annual point estimate with standard
errors clustered by the 4-digit NAICS-by-state level. Source: Authors’ calculations based on ASM, CMF, and
Zwick and Mahon (2017) data.
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Figure A5: Effect of Bonus Depreciation on Employment by Task Content
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Notes: Figure A5 displays estimates describing the effect of bonus depreciation on employment in routine oc-
cupations and production occupations based on event study regressions. Plotted regression coefficients in years
1990, 2005, and 2010 represent the difference in employment by long- vs. short-duration industries relative to
the same difference in 2000. Employment is categorized by matching occupation definitions from the Census
and ACS to production and routine categories from Acemoglu and Autor (2011). Regressions are weighted by
2000 employment. Standard errors clustered at the state-industry level. Source: Authors’ calculations based on
Census, ACS, Zwick and Mahon (2017), and Acemoglu and Autor (2011) data.

99



Figure A6: Effects of Bonus Depreciation on Smaller and Younger Firm Employment; QWI

(A) Firms with 1-50 Employees
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Notes: Figure A6 displays estimates describing the effect of bonus depreciation on Log Employment for small
and young firms using state-by-industry QWI data. Panel (A) restricts the sample to firms with 50 or fewer
employees. Panel (B) restricts the sample to firms that are five or fewer years old. The regression estimates
displayed in this figure correspond to a quarterly analogue of βy from Equation (1), which is the change in log
employment relative to 2001q2 in industries affected most by Bonus relative to industries that are less affected
by Bonus. The regression includes 4-digit NAICS-by-state fixed effects and state-by-quarter fixed effects. 95%
confidence intervals are included for each quarterly point estimate with standard errors clustered by the 4-digit
NAICS-by-state level. Source: Authors’ calculations based on QWI and Zwick and Mahon (2017) data.
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Figure A7: Effects of Bonus Depreciation on Employees, Continuous Treatment

(A) Effect of Bonus Depreciation on QWI Log Employment, Continuous Treatment
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Notes: Panel (A) of Figure A7 displays estimates describing the effect of bonus depreciation on log employment
using state-by-industry QWI data as in Figure 4, but using the continuous (1-z0)τ*0.0375 in place of the treatment
indicator. Panel (B) presents a binned-scatter plot of industry-level changes in QWI Log Employment against
z − 0. Each industry-level change is derived from a regression in the form of Equation including an interaction
term for the industry of focus. Source: Authors’ calculations based on QWI and Zwick and Mahon (2017) data.
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Figure A8: Effects of Bonus Depreciation, QWI Employment Robustness Checks

(A) Different Treatment Cutoffs (B) Capital Producer Controls
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Notes: Figure A8 presents additional estimates of the effect of depreciation incentives on log employment in
the state-by-industry QWI data as in Figure 4. Panel (A) shows the effects of bonus on employment using
three different cutoffs in the z0 distribution to determine treatment: 25th percentile, 33rd percentile, and 40th

percentile. Panel (B) includes an indicator for capital producing industries interacted with year fixed effects.
Capital producing industries are identified using 2002 BEA Input-Output tables. Panel (C) includes quintile
indicators for the cost of capital interacted with year fixed effects. We proxy for the cost of capital by taking
the industry average of the cost of borrowing from Compustat, defined as xint / (dltt + dlc). Source: Authors’
calculations based on QWI, BEA, Compustat, and Zwick and Mahon (2017) data.
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Figure A9: Effects of Bonus Depreciation, Controlling for ICT Growth

(A) ICT Controls
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Notes: Figure A9 presents additional estimates of the effect of depreciation incentives on log employment in the
state-by-industry QWI data as in Figure 4. Panel (A) includes tercile indicators for two measures of the use of
information and communications technology (ICT) interacted with year fixed effects. The first is ICT capital
intensity measured as a share of capital stock in ICT goods using BEA Detailed Data for Fixed Assets and
Consumer Durable Goods from 1997 to 2001. The second is the Gallipoli and Makridis (2018) Z-score, which
measures the normalized share of workers engaging in tasks involving ICT during the period 2002–2016. Panel (B)
presents estimates that do not include tech industries. These include Aerospace Products and Parts (NAICS 3364),
Other Chemicals (3259), Basic chemicals (3251), Pharmaceuticals (3254), Electrical Equipment and Components
(3359), Audio and Video Equipment (3343), Navigational and Control Instruments (3345), Semiconductor and
Compoent Manufacturing (3344), Communications Equipment Manufacturing (3342), Computer and Peripheral
Equipment (3341). These industries represent 21.4% of 2001 manufacturing employment. Source: Authors’
calculations based on QWI, BEA, Compustat, Gallipoli and Makridis (2018), and Zwick and Mahon (2017)
data.
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Figure A10: U.S. Manufacturing Over the Business Cycle
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Notes: Figure A10 presents event study regression coefficients summarizing the effect of bonus depreciation on log
employment and log investment in 4-digit NAICS industries over the 1990 to 2011 period. Coefficients obtained
from industry-year level regressions akin to Equation (1) with observations weighted by 2001 industry employment
levels. Industry and year fixed effects are included in estimating equations, and standard errors are clustered
at the 4-digit NAICS level. Shaded regions correspond to dates classified as business cycle contractions by the
National Bureau of Economic Research. Source: Authors’ calculations based on NBER-CES Manufacturing
Industry Database, NBER Business Cycle Expansions and Contractions, and Zwick and Mahon (2017) data.

104



Figure A11: Effects of Bonus Depreciation on Aggregate Trends
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Notes: Figure A11 presents the effect of bonus depreciation on aggregate trends over log employment and log
capital stock over the 1997-2011 implied by our reduced form estimates. We construct aggregate series across
bonus treatment by calculating aggregate time series of log capital stock and log employment, respectively, for
all manufacturing industries and applying estimates of event study coefficients from Equation (1) to the resulting
series. Source: Authors’ calculations based on NBER-CES Manufacturing Industry Database, ASM, CMF, and
Zwick and Mahon (2017) data.
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Figure A12: Bonus Depreciation Treatment and Differences in σKL

(A) Correlation Between Raval (2019) σKL and Zwick and Mahon (2017) z0
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Notes: Panel (A) of Figure A12 shows how de-meaned σKL from Raval (2019) in years 1997, 2002, and 2007 vary
across Zwick and Mahon (2017)’s z0 measure averaged to the 3-digit NAICS level. The fitted linear relationship
is based on year 2002 data. Panel (B) displays estimates describing the effect of bonus depreciation on log
employment using state-by-industry QWI data as in Figure 4, controlling for tercile bins of 2002 σKL from Raval
(2019) interacted with year fixed effects. Source: Authors’ calculations based on data from the QWI, Zwick and
Mahon (2017), and Raval (2019).
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Figure A13: Additional Estimates of Capital-Labor Substitution

(A) σKL in a Two Input Model
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Notes: Figure A13 implements versions of Equation 17 across two- and five-input models and for a range of
values of η. Panel (A) shows that both our long-differences and difference-in-differences reduced-form estimates
are not consistent with large degrees of substitution between capital and labor in a two-input model. This figure
also motivates the estimation of three-input models since profit maximization requires a non-negative value of
σKL. Panel (B) implements a five-input analogue of Equation 17 using our long-differences estimates of the
effects of bonus depreciation on capital and labor demand for a range of values of η. The inputs included are
production labor (cost share cl1 = 0.15), non-production labor (cost share cl2 = 0.10), equipment capital (cost
share ck1 = 0.06), structures capital (cost share ck2 = 0.04), and materials (cost share cm = 0.65). Source:
Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Figure A14: Scale, Cost of Capital, and Elasticity Estimates over Time

(A) Scale Effect, β̄ (B) Effect on Cost of Capital, φ

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

-0.2

-0.15

-0.1

-0.05

0

(C) Investment Elasticity, εIφ (D) Production Employment Elasticity, εPLφ
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Notes: Figure A14 displays select model estimates over the 2002-2011 period using event study regression estimates
from Equation (1). Panel (A) presents the scale effects implied by our reduced form estimates over the 2002-2011
period. Scale effects for year t are defined using equation 7 as β̄t = sJβ

J
t + sKβ

K
t + sLβ

L
t . Panel (B) displays

estimates of the effect on the cost of capital. Effects for year t are defined using equation 7 as φ = −β̂t/(sKη).
Panels (C) and (D) present estimates of the elasticity of investment and production labor, respectively, with
respect to changes in the cost of capital over time. Elasticities are calculate as εIφ = βI/φ and εLφ = βL/φ,

respectively. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Figure A15: Capital-Production Labor Substitution over Time
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Notes: Figure A15 estimates σKL over the 2004-2011 period. For each year t, σKL estimates are obtained using
the estimated effects of bonus depreciation from Equation (1), an annualized long-differences estimate of the effect
of bonus depreciation on revenue, and equations 4 and 6. Source: Authors’ calculations based on ASM, CMF,
and Zwick and Mahon (2017) data.
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Appendix Tables

Table A1: Graph Data from Zwick and Mahon (2017)

Figure 1, Panel A Figure 1, Panel B Differences (Bonus-Control) Combined

Control Bonus Control Bonus Panel A Panel B Event Study

Year (1) (2) (3) (4) (5) (6) (7)

1996 6.553 6.553 0.013 0.013

1997 6.602 6.587 -0.002 -0.002

1998 6.482 6.478 0.009 0.009

1999 6.488 6.454 -0.021 -0.021

2000 6.480 6.467 0.000 0.000

2001 6.243 6.346 0.116 0.116

2002 6.078 6.218 0.153 0.153

2003 6.119 6.233 0.127 0.127

2004 6.251 6.352 0.114 0.114

2005 6.455 6.455 0.000 0.114

2006 6.604 6.614 0.010 0.124

2007 6.599 6.633 0.034 0.148

2008 6.569 6.705 0.136 0.250

2009 6.259 6.519 0.261 0.374

2010 6.398 6.519 0.121 0.235

Notes: Table A1 uses graph data from Zwick and Mahon (2017) as a way to compare our investment results.
To construct this table, we first use the program WebPlotDigitizer (see https://apps.automeris.io/wpd/) to
extract data points from Figure 1 in Zwick and Mahon (2017). Columns (1)–(4) report the extracted data.
Column (5) reports the differences between the first bonus and control series (i.e., column 2 minus column 1)
normalizing the difference to 2000. Column (6) reports the differences between the second bonus and control
series (i.e., column 4 minus column 3). Column (7) joins these two series making the assumption that there is no
relative change between 2004 and 2005. We make this assumption given differences in how data are normalized
between Panels A and B of Figure 1 in Zwick and Mahon (2017). Figure A2 plots the series in column (7) of this
table along with our estimates from Panel (A) of Figure 2. Source: Authors’ calculations based on Zwick and
Mahon (2017) graph data.
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Table A2: Effects of Bonus Depreciation, Industry-Level Clustering

(1) (2) (3) (4) (5) (6)
Log Log Log Log Log

Investment Total Capital Employment Mean Earnings Total Revenue TFP

Difference-in-Differences

Bonus 0.1577** 0.0445 0.0791*** -0.0207** 0.0542 -0.0028
(0.0642) (0.0329) (0.0224) (0.0087) (0.0344) (0.0082)
[0.014] [0.176] [0.000] [0.017] [0.115] [0.733]

Long Differences

Bonus 0.2049 0.0778* 0.095** -0.0273** 0.0808 -0.0153
(0.1246) (0.0416) (0.04) (0.0126) (0.0717) (0.0162)
[0.100] [0.061] [0.018] [0.030] [0.260] [0.345]

Plant FE X X X X X X
State×Year FE X X X X X X
PlantSize2001×Year FE X X X X X X
TFP2001×Year FE X X X X X X
FirmSize2001×Year FE X X X X X X

Notes: Table A2 displays estimates describing the effect of bonus depreciation on various outcomes with standard errors clustered at the 4-digit NAICS
level. Differences-in-differences subpanels show the Bonus×Post coefficient estimates from specifications in the form of Equation (2) while the Long
Differences panel shows Bonus×[t = 2011] coefficient estimates from specifications in the form of Equation (1). Outcome variables in Specifications (1)–(6)
are Log Investment, Log Total Total Employment, Log Mean Earnings, Log Total Capital, Log Total Value of Shipments, and TFP. All Specifications
include plant fixed effects, state-by-year fixed effects, plant size in 2001 bins interacted with year fixed effects, TFP in 2001 bins interacted with year fixed
effects, and firm size in 2001 interacted with year fixed effects. Standard errors are presented in parentheses. p-values are presented in brackets. * p < 0.10,
** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table A3: Effects of Bonus on Hours Worked and Materials

(1) (2) (3)

Log Log Log

Prod. Hours Nonprod. Hours Materials

Bonus 0.0863*** 0.0582* 0.0832**

(0.0181) (0.0311) (0.0344)

[0.000] [0.061] [0.016]

Plant FE X X X
State×Year FE X X X

Notes: Table A3 displays long differences estimates describing the effect of bonus depreciation on hours measures
of labor demand and on plants’ use of materials. Standard errors are presented in parentheses and are clustered
at the 4-digit NAICS-by-state level. p-values are presented in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01.
Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table A4: Effects of Bonus Depreciation on Employment by Task-Content and Demographics: 2000-2010 Changes

(1) (2) (3) (4) (5) (6) (7)
All Routine Nonroutine Professional Admin. Production Services

Cognitive Cognitive Manual Manual

Nonroutine Routine Routine Nonroutine

All Workers 0.0856∗∗∗ 0.126∗∗∗ 0.0264 0.0300 0.0876∗∗∗ 0.134∗∗∗ 0.0665
(0.0201) (0.0212) (0.0217) (0.0227) (0.0235) (0.0224) (0.0467)

Demographic Subgroups
< HS Education 0.151∗∗∗ 0.159∗∗∗ 0.0906∗∗∗ 0.0806∗∗ 0.129∗∗∗ 0.159∗∗∗ 0.0873

(0.0214) (0.0220) (0.0276) (0.0335) (0.0275) (0.0228) (0.0550)

Ages 18-35 0.143∗∗∗ 0.190∗∗∗ 0.0276 0.0262 0.113∗∗∗ 0.203∗∗∗ 0.0816
(0.0272) (0.0288) (0.0349) (0.0390) (0.0400) (0.0310) (0.0942)

Female 0.126∗∗∗ 0.166∗∗∗ 0.0257 0.0545∗ 0.118∗∗∗ 0.143∗∗∗ 0.0406
(0.0235) (0.0251) (0.0299) (0.0317) (0.0271) (0.0316) (0.0879)

Hispanic 0.154∗∗∗ 0.216∗∗∗ -0.0398 0.0210 0.158 0.221∗∗∗ -0.0197
(0.0391) (0.0427) (0.0829) (0.0971) (0.106) (0.0453) (0.113)

Black 0.105∗∗ 0.158∗∗∗ -0.0786 0.0977 -0.0134 0.162∗∗∗ 0.0408
(0.0424) (0.0448) (0.0975) (0.104) (0.0952) (0.0498) (0.145)

Industry FE X X X X X X X
State×Year FE X X X X X X X

Notes: Table A4 displays coefficient estimates representing the effect of bonus depreciation on log employment at the state-industry level from 2000 to
2010. Specifications are estimated using subgroups of workers based on demographic categories and occupation task-content categories from Acemoglu
and Autor (2011). All regressions include industry and state-year fixed effects. Standard errors are clustered at state-industry level and presented in
parentheses. Source: Authors’ calculations based on Census, ACS, Acemoglu and Autor (2011), and Zwick and Mahon (2017) data.
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Table A5: Effects of Bonus Depreciation, Interactions with Local Bonus Exposure

(1) (2) (3) (4) (5) (6)

Log Log Log
Investment Employment Mean Earnings

Bonus 0.1535** 0.1531** 0.0789*** 0.0756*** -0.0206** -0.0204**
(0.0601) (0.0642) (0.0219) (0.0222) (0.0086) (0.0087)
[0.011] [0.017] [0.000] [0.001] [0.017] [0.019]

Local Exposure 0.0349* 0.0407** 0.0127** 0.0149*** -0.0037 -0.0037
(0.018) (0.0178) (0.0055) (0.0049) (0.0031) (0.003)
[0.053] [0.022] [0.021] [0.002] [0.233] [0.217]

Bonus × Exposure -0.0417 -0.0389 -0.0074 -0.0049 0.0045 0.0043
(0.0283) (0.0276) (0.0083) (0.0078) (0.0037) (0.0036)
[0.141] [0.159] [0.373] [0.530] [0.224] [0.232]

Plant FE X X X X X X
State×Year FE X X X X X X
PlantSize2001×Year FE X X X
TFP2001×Year FE X X X
FirmSize2001×Year FE X X X

Notes: Table A5 displays difference-in-differences estimates and coefficients describing the interaction between difference-in-differences terms and variables
capturing the share of local commuting zone exposure to bonus depreciation in 2001. Local exposure is defined as the percent of manufacturing employment
in long duration industries in a given plant’s commuting zone. Exposure variables are demeaned and standardized such that reported coefficients express
the effect of moving from the 25th to the 75th percentile exposure across plants in our estimating sample. Due to disclosure restrictions, reported standard
errors, displayed in parentheses, are clustered at the 4-digit NAICS level. p-values are presented in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01. Source:
Authors’ calculations based on ASM, CMF, Zwick and Mahon (2017), Acemoglu, Autor, Dorn, Hanson and Price (2016), and Acemoglu and Restrepo
(2020) data.
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Table A6: Effect of Bonus Depreciation, QWI Sample

(1) (2) (3) (4)

Log(Emp) Log(Earn) % < HS % < 35 years

Difference-in-Differences

Bonus 0.097*** -0.031*** 0.00259*** 0.01285***

(0.0156) (0.00547) (0.000605) (0.0024862)

[0.000] [0.000] [0.000] [0.000]

Long Differences

Bonus 0.135*** -0.0314*** 0.00394*** 0.0306***

(0.0216) (0.0078) (0.000724) (0.00679)

[0.000] [0.000] [0.000] [0.000]

Share2001 0.25 0.3

State×NAICS FE X X X X
State×Quarter FE X X X X

Notes: Table A6 shows the effect of bonus depreciation on outcomes based on state-industry data from QWI.
Difference-in-differences subpanels show the estimates of β from specifications in the form of Equation (2) while
the long differences subpanels show estimates of β2011q3 from specifications in the form of Equation (1). The
outcomes across Specifications (1)–(4) are the Log of Total Employment, the Log of Mean Earnings, the fraction
of employees with a high school degree or less Education, and the fraction of employees who are 35 years or
younger. All specifications include 4-digit NAICS-by-state and State-quarter fixed effects. Standard errors are
presented in parentheses and are clustered at the 4-digit NAICS-by-state level. p-values are presented in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01. Source: QWI and Zwick and Mahon (2017) data.
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Table A7: Effect of Bonus Depreciation on Fraction of Different Race and Ethnicity

(1) (2) (3) (4)

% Female % Nonwhite % Black % Hispanic

Difference-in-Differences

Bonus 0.00822*** 0.000267 0.0012 0.00536***

(0.00151) (0.000958) (0.00074) (0.000969)

[0.000] [0.780] [0.105] [0.000]

Long Differences

Bonus 0.0118*** 0.000678 0.00409*** 0.00589***

(0.0022) (0.00211) (0.00153) (0.0017)

[0.000] [0.748] [0.008] [0.001]

Share2001 0.25 0.26 0.07 0.06

State×NAICS FE X X X X
State×Quarter FE X X X X
Pre-Period Growth FE X X X X

Notes: Table A7 shows the effect of bonus depreciation on demographic characteristics of the workforce based
on state-industry data from QWI. Differences-in-differences subpanels show the Bonus×Post coefficient estimates
from specifications in the form of Equation (2) while the long difference subpanels show Bonus×[t = 2011q3]
coefficient estimates from specifications in the form of Equation (1). The outcomes across Specifications (1)–(4)
are the fraction of female employees, the fraction of non-white employees, the fraction of Black employees, and
the fraction of Hispanic employees. All specifications include 4-digit NAICS-by-state fixed effects, State-quarter
fixed effects, and pre-period growth rate bins in the outcome variable interacted with year fixed effects. Standard
errors are presented in parentheses and are clustered at the 4-digit NAICS-by-state level. p-values are presented
in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: QWI and Zwick and Mahon (2017) data.
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Table A8: Effect of Bonus on Earnings, Controlling for Endogenous Worker Composition

(1) (2) (3) (4) (5)

Difference-in-Differences

Bonus -0.031∗∗∗ -0.028∗∗∗ -0.003 -0.003 0.007

(0.005) (0.005) (0.005) (0.005) (0.005)

[0.000] [0.000] [0.495] [0.549] [0.126]

Industry × State FE X X X X X
State × Year FE X X X X X
Age Shares X X X X
Education Shares X X X
Race Shares X X
Sex Shares X

Notes: Table A8 Standard errors are presented in parentheses and are clustered at the 4-digit NAICS-by-state
level. p-values are presented below. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: QWI and Zwick and Mahon
(2017) data.

Table A9: Effect of Worker Composition on Observed Earnings, Decomposition Regressions

(1) (2) (3) (4)

Treat Pre Treat Post Control Pre Control Post

Share Young -0.548∗∗∗ 0.189∗∗ -0.505∗∗∗ -0.102

(0.124) (0.093) (0.105) (0.071)

[0.000] [0.043] [0.000] [0.149]

Share Highschool or Less -3.298∗∗∗ -3.683∗∗∗ -4.436∗∗∗ -3.810∗∗∗

(0.324) (0.328) (0.520) (0.230)

[0.000] [0.000] [0.000] [0.000]

Share Nonwhite 0.096 0.078 0.893∗∗∗ 0.259∗∗∗

(0.132) (0.080) (0.247) (0.082)

[0.465] [0.327] [0.000] [0.002]

Share Female -0.549∗∗∗ -0.644∗∗∗ -0.904∗∗∗ -0.390∗∗∗

(0.141) (0.108) (0.160) (0.070)

[0.000] [0.000] [0.000] [0.000]

Industry × State FE X X X X
State × Year FE X X X X
Mean Share Young 0.308 0.254 0.303 0.236

Mean Share Highschool or Less 0.259 0.255 0.223 0.218

Mean Share Nonwhite 0.167 0.171 0.173 0.175

Mean Share Female 0.262 0.261 0.334 0.318

Notes: Table A9 Standard errors are presented in parentheses and are clustered at the 4-digit NAICS-by-state
level. p-values are presented below. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: QWI and Zwick and Mahon
(2017) data.
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Table A10: Effects of Bonus Depreciation and Manufacturing Trends

(1) (2)

Log Log

Investment Employment

Bonus 0.1457*** 0.0577***

(0.0339) (0.0117)

[0.000] [0.000]

Treat×Skill Intensity 0.0577 0.0097

(0.0541) (0.0181)

[0.286] [0.592]

Treat×Capital Intensity 0.0259* 0.0028

(0.0155) (0.003)

[0.095] [0.351]

Treat×Trade Exposure -0.0723** -0.0413***

(0.0296) (0.0111)

[0.015] [0.000]

Treat×Robot Exposure 0.0187 0.0137***

(0.012) (0.0038)

[0.119] [0.000]

Plant FE X X
State×Year FE X X
Skill Intensity×Year FE X X
Capital Intensity×Year FE X X
Trade Exposure×Year FE X X
Robot Exposure×Year FE X X

Notes: Table A10 displays difference-in-differences estimates and coefficients describing the full set of interactions
between the DD term and variables capturing all four manufacturing sector trends: Skill Intensity, Capital
Intensity, Chinese Import Exposure, and Robotization. The outcome variable in Specification (1) is the Log of
Investment. The outcome variable in Specification (2) is the Log of Total Employment. All specifications include
state-by-year and plant fixed effects. To control for trends in the manufacturing sectors, both specifications
include skill intensity bins interacted with year fixed effects, capital intensity bins interacted with year fixed
effects, Chinese import exposure bins interacted with year fixed effects, and robotization bins interacted with
year fixed effects. Standard errors are presented in parentheses and are clustered at the 4-digit NAICS-by-state
level. p-values are presented in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations
based on ASM, CMF, Zwick and Mahon (2017), Acemoglu, Autor, Dorn, Hanson and Price (2016), and Acemoglu
and Restrepo (2020) data.
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Table A11: Additional Classical Minimum Distance Estimates of Production Elasticities

(1) (2) (3) (4) (5) (6)

Baseline DD Hours

Panel A: Estimated Parameters

Demand elasticity, η 3.500 3.500 3.500 3.500 3.500 3.500

Labor-capital, σKL -0.440 -0.603 -0.332 -0.106 -0.138 -0.474

(0.346) (0.305) (0.498) (0.144) (0.142) (0.952)

Nonproduction labor-capital, σKJ 0.733 1.006 0.786

(0.639) (0.489) (1.043)

Equipment-structures, σKS 1.908

(0.603)

Materials-capital, σKM 0.182

(0.507)

Panel B: Empirical Moments

Revenue 0.075 0.051 0.075 0.075 0.075 0.075

Labor 0.116 0.101 0.086 0.097 0.097 0.097

Nonproduction labor 0.090 0.068 0.058

Structures 0.041

Materials 0.083

Capital 0.080 0.042 0.080 0.105 0.080

Panel C: Model-Predicted Moments

Revenue 0.069 0.060 0.052 0.065 0.064 0.057

Labor 0.109 0.098 0.080 0.094 0.094 0.091

Nonproduction labor 0.076 0.060 0.057

Structures 0.041

Materials 0.076

Capital 0.096 0.084 0.080 0.105 0.080

Cost shares:

Labor 0.50 0.50 0.50 0.80 0.80 0.25

Nonproduction labor 0.30 0.30 0.30

Structures 0.09

Materials 0.65

Capital 0.20 0.20 0.20 0.20 0.11 0.10

Effect on Cost of Capital, φ -0.14 -0.12 -0.10 -0.13 -0.23 -0.23

Notes: Table A11 presents classical minimum distance estimates across several alternative models. Column (1)
reproduces column (1) of Table 8 for reference. Columns (2) and (3) demonstrate that these baseline results are
robust to using difference-in-differences estimates and estimates on labor hours, respectively. Column (4) estimates
a two input model of total labor employment and capital. Columns (5) and (6) consider three input models with
either two types of capital or materials, respectively. Capital-labor substitution elasticities corresponds either to
that of total capital and total labor, the elasticity of capital and production labor, or the elasticity of substitution
between equipment capital and production labor. Standard errors are presented in parentheses. Standard errors
are presented in parentheses. Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017)
data.
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Table A12: Unconstrained Classical Minimum Distance Estimates of Production Elasticities

(1) (2) (3) (4) (5) (6)

Baseline Low sK High sK Low η High η Est. η

Panel A: Estimated Parameters

Demand elasticity, η 3.500 3.500 3.500 2.000 5.000 3.858

(3.115)

Production labor-capital, σKL -0.509 -0.424 -0.594 -0.272 -0.759 -0.568

(0.334) (0.328) (0.357) (0.203) (0.470) (0.633)

Nonproduction labor-capital, σKJ 0.374 0.443 0.308 0.225 0.548 0.414

(0.590) (0.544) (0.642) (0.359) (0.830) (0.738)

Panel B: Empirical Moments

Revenue 0.075 0.075 0.075 0.075 0.075 0.075

Production labor 0.116 0.116 0.116 0.116 0.116 0.116

Nonproduction labor 0.090 0.090 0.090 0.090 0.090 0.090

Capital 0.080 0.080 0.080 0.080 0.080 0.080

Panel C: Model-Predicted Moments

Revenue 0.072 0.074 0.070 0.047 0.082 0.075

Production labor 0.115 0.116 0.115 0.108 0.118 0.116

Nonproduction labor 0.090 0.090 0.090 0.084 0.091 0.090

Capital 0.080 0.080 0.080 0.079 0.080 0.080

Cost shares:

Production labor 0.50 0.55 0.45 0.50 0.50 0.50

Nonproduction labor 0.30 0.35 0.25 0.30 0.30 0.30

Capital 0.20 0.10 0.30 0.20 0.20 0.20

Effect on Cost of Capital, φ -0.14 -0.30 -0.09 -0.24 -0.10 -0.13

Notes: Table A12 reproduces Table 8 from the main text by implementing an unconstrained classical minimum
distance estimation procedure. Estimation is identical to that conducted in Table 8 with the exception that we do
not impose the cost-minimization constraint sLσKL + sJσKJ > 0. Standard errors are presented in parentheses.
Source: Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table A13: Translog Cost Function Estimation: σLJ Lower Bound

(1) (2) (3) (4) (5) (6) (7)

Baseline DD Hours Low sK High sK Low η High η

Panel A: Estimated Parameters

bll 0.250 0.250 0.250 0.247 0.247 0.250 0.250

bjj 0.122 0.089 0.130 0.177 0.077 0.163 0.078

(0.069) (0.056) (0.107) (0.040) (0.087) (0.041) (0.098)

bkk 0.160 0.160 0.146 0.090 0.210 0.160 0.160

(0.064) (0.049) (0.105) (0.034) (0.091) (0.039) (0.091)

bkl -0.144 -0.160 -0.133 -0.080 -0.190 -0.124 -0.166

(0.035) (0.030) (0.050) (0.020) (0.048) (0.021) (0.049)

bkj -0.016 0.000 -0.013 -0.010 -0.020 -0.036 0.006

(0.038) (0.029) (0.063) (0.021) (0.050) (0.023) (0.054)

blj -0.106 -0.090 -0.117 -0.167 -0.057 -0.126 -0.084

(0.035) (0.030) (0.050) (0.020) (0.048) (0.021) (0.049)

Panel B: Production Function F-test p-values

Cobb-Douglas 0.000 0.000 0.013 0.000 0.115 0.000 0.010

K Separability 0.000 0.000 0.000 0.000 0.000 0.000 0.000

J Separability 0.000 0.000 0.001 0.000 0.450 0.000 0.010

L Separability 0.000 0.000 0.007 0.000 0.000 0.000 0.001

Leontief 0.436 0.095 0.751 0.428 0.448 0.514 0.395

σLJ 0.29 0.40 0.22 0.13 0.49 0.16 0.44

(0.15) (0.14) (0.22) (0.03) (0.51) (0.09) (0.22)

Demand elasticity 3.50 3.50 3.50 3.50 3.50 2.00 5.00

Cost shares:

Production labor 0.50 0.50 0.50 0.55 0.45 0.50 0.50

Nonproduction labor 0.30 0.30 0.30 0.35 0.25 0.30 0.30

Capital 0.20 0.20 0.20 0.10 0.30 0.20 0.20

Effect on Cost of Capital, φ -0.14 -0.12 -0.10 -0.27 -0.09 -0.23 -0.10

Notes: Table A13 presents estimates of translog cost parameters implied by estimated substitution elasticities
corresponding to the columns in Table 8 and tests whether various production functions are consistent with the
associated translog parameters. Panel A displays estimated translog cost parameters where σLJ is assumed to
be equal to the lower bound implied by the model estimates in Table 8, σ̂LJ = −(sK/sJ)σ̂KL. Panel B displays
p-values from F-tests in which the null hypotheses are sets of conditions on the estimated translog parameters
implying the specified production technologies. The null hypotheses tested are H0 : bkl = bkj = bjl = 0 (Cobb-
Douglas), H0 : bkl = bkj = 0 (Capital Separability), H0 : bkj = blj = 0 (J Separability), H0 : bkl = blj = 0, (L
Separability), and H0 : bij = −si ∗ sj∀i 6= j (Leontief). Standard errors are presented in parentheses. Source:
Authors’ calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table A14: Translog Cost Function Estimation: σLJ = max{σKJ , σKL}

(1) (2) (3) (4) (5) (6) (7)

Baseline DD Hours Low sK High sK Low η High η

Panel A: Estimated Parameters

bll 0.184 0.159 0.165 0.133 0.220 0.215 0.151

(0.071) (0.055) (0.119) (0.099) (0.061) (0.042) (0.101)

bjj 0.056 -0.001 0.045 0.062 0.049 0.127 -0.020

(0.134) (0.103) (0.219) (0.138) (0.126) (0.080) (0.191)

bkk 0.160 0.160 0.146 0.090 0.210 0.160 0.160

(0.064) (0.049) (0.105) (0.034) (0.091) (0.039) (0.091)

bkl -0.144 -0.160 -0.133 -0.080 -0.190 -0.124 -0.166

(0.035) (0.030) (0.050) (0.020) (0.048) (0.021) (0.049)

bkj -0.016 0.000 -0.013 -0.010 -0.020 -0.036 0.006

(0.038) (0.029) (0.063) (0.021) (0.050) (0.023) (0.054)

blj -0.040 0.001 -0.032 -0.053 -0.029 -0.091 0.015

(0.096) (0.073) (0.156) (0.117) (0.075) (0.057) (0.136)

Panel B: Production Function F-test p-values

Cobb-Douglas 0.000 0.000 0.000 0.000 0.000 0.000 0.000

K Separability 0.000 0.000 0.000 0.000 0.000 0.000 0.000

J Separability 0.676 0.991 0.837 0.653 0.696 0.111 0.915

L Separability 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Leontief 0.436 0.095 0.751 0.428 0.448 0.514 0.395

σLJ 0.73 1.01 0.79 0.73 0.74 0.39 1.10

(0.64) (0.49) (1.04) (0.61) (0.67) (0.38) (0.91)

Demand elasticity 3.50 3.50 3.50 3.50 3.50 2.00 5.00

Cost shares:

Production labor 0.50 0.50 0.50 0.55 0.45 0.50 0.50

Nonproduction labor 0.30 0.30 0.30 0.35 0.25 0.30 0.30

Capital 0.20 0.20 0.20 0.10 0.30 0.20 0.20

Effect on Cost of Capital, φ -0.14 -0.12 -0.10 -0.27 -0.09 -0.23 -0.10

Notes: Table A14 presents estimates of translog cost parameters implied by estimated substitution elasticities
corresponding to the columns in Table 8 and tests whether various production functions are consistent with the
associated translog parameters. Panel A displays estimated translog cost parameters where σLJ is assumed to
be equal the upper bound implied by the model estimates in Table A11, σ̂LJ = σ̂KJ . Panel B displays p-values
from F-tests in which the null hypotheses are sets of conditions on the estimated translog parameters implying
the specified production technologies. The null hypotheses tested are H0 : bkl = bkj = bjl = 0 (Cobb-Douglas),
H0 : bkl = bkj = 0 (Capital Separability), H0 : bkj = blj = 0 (J Separability), H0 : bkl = blj = 0, (L Separability),
and H0 : bij = −si ∗ sj∀i 6= j (Leontief). Standard errors are presented in parentheses. Source: Authors’
calculations based on ASM, CMF, and Zwick and Mahon (2017) data.
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Table A15: Morishima Elasticities of Substitution Parameter Estimates

(1) (2) (3) (4) (5)

Baseline Low sK High sK Low η High η

Panel A: Morishima Elasticities of Substitution

Production labor-capital, σMKL -0.248* -0.121* -0.380* -0.142* -0.354*

(0.141) (0.067) (0.223) (0.081) (0.202)

Nonproduction labor-capital, σMKJ -0.070 -0.034 -0.107 -0.040 -0.100

(0.188) (0.091) (0.290) (0.107) (0.268)

Panel B: p-values for Substitutability Tests

Substitutability of production labor 0.040 0.036 0.044 0.040 0.040

H0 : σMKL ≥ 0

Complementarity of non-production labor 0.355 0.354 0.356 0.355 0.355

H0 : σMKJ ≤ 0

Cost shares:

Production labor 0.50 0.55 0.45 0.50 0.50

Nonproduction labor 0.30 0.35 0.25 0.30 0.30

Capital 0.20 0.10 0.30 0.20 0.20

Demand Elasticity, η 3.50 3.50 3.50 2.00 5.00

Notes: Panel (A) of Table A15 presents estimates of Morishima elasticities of substitution derived by applying
Equations (22) and (23) to estimates from Panel (D) of Table 7. Panel (B) presents p-values associated with
tests of the substitutability and complementarity of the elasticities presented in Panel (A). Standard errors are
presented in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Source: Authors’ calculations based on ASM,
CMF, and Zwick and Mahon (2017) data.
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Table A16: Constant Elasticity of Substitution Parameter Estimates

(1) (2) (3) (4) (5)

Baseline Low sK High sK Low η High η

Panel A: CES Parameter Estimates

Nonproduction Labor, ρ1 -1.662 -1.248 -2.299 -3.659 -0.864

(4.158) (2.753) (6.933) (7.277) (2.911)

Production Labor, ρ2 5.034** 9.251** 3.628** 8.060** 3.824**

(2.300) (4.575) (1.543) (4.026) (1.610)

Panel B: Implied CES Substitution Elasticities

Nonproduction Labor, 1
1−ρ1 0.376 0.445 0.303 0.215 0.537

(0.587) (0.545) (0.637) (0.335) (0.838)

Production Labor, 1
1−ρ2 -0.248* -0.121* -0.380* -0.142* -0.354*

(0.141) (0.067) (0.223) (0.081) (0.202)

Panel C: p-values for Skill Complementarity Test

H0 : 1
1−ρ2 −

1
1−ρ1 − 1 > 0 0.004 0.003 0.006 0.000 0.016

Cost shares:

Production labor 0.50 0.55 0.45 0.50 0.50

Nonproduction labor 0.30 0.35 0.25 0.30 0.30

Capital 0.20 0.10 0.30 0.20 0.20

Demand Elasticity, η 3.50 3.50 3.50 2.00 5.00

Notes: Panel (A) of Table A16 presents estimates of substitution parameters from a constant elasticity of substitu-
tion (CES) as identified by Equations (11) and (12). Panel (B) tests a null hypothesis of H0 : 1

1−ρ2 −
1

1−ρ1 −1 > 0,

consistent with the presence of skill complementarity of capital, across these models. * p < 0.10, ** p < 0.05, ***
p < 0.01. Standard errors are presented in parentheses. Source: Authors’ calculations based on ASM, CMF, and
Zwick and Mahon (2017) data.
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