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@ What is the optimal exchange rate policy?
@ exchange rate is not an instrument of the policy

— what mix of monetary policy, FX interventions, capital controls?
@ is exchange rate a target?

— should it be stabilized /fixed? what is a float?

— can inflation and exchange rate be simultaneous targets?

@ Build on a realistic GE model of exchange rates (ltskhoki-Mukhin 2021a,b)
— consistent with PPP, UIP, Backus-Smith, Meese-Rogoff, Mussa puzzles
— dual role of exchange rates

a) in the goods market

b) in the financial market

@ Develop a rich framework for policy analysis
— intuitive linear-quadratic policy problem (cf. CGG'99, GM’05)
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Main Results

@ First best requires:
i. MP — output gap (inflation target.+ float)
ii. FX — UIP deviations (risk sharing wedges)

— fixed exchange rate is not the goal

— offset financial shocks, accommodate fundamental shocks

@ Divine coincidence in an open economy: if the frictionless RER is stable,
then MP alone can implement the first-best
— fixed exchange rate = zero inflation
— stabilizes output gap and eliminates risk sharing wedge
© Without FX, optimal MP with commitment partially stabilizes ER

— balances out output gap and UIP deviations
© FX constraints can be relaxed via FX and ER forward guidance

© Explore possibility of income and losses from FX interventions
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Relation to the Literature

@ Portfolio models:

— Segmented markets: Kouri (1976), Blanchard, Giavazzi & Sa (2005),
Alvarez, Atkeson & Kehoe (2002, 2009), Pavlova & Rigobon (2008), Vutz
(2020),

— Currency crisis: Krugman (1979), Morris & Shin (1998), Fornaro (2021)

@ Optimal policy in open economy:

— Monetary policy: Obstfeld & Rogoff (1995), Clarida, Gali & Gertler (1999,
2001, 2002), Devereux & Engel (2003), Benigno & Benigno (2003), Gali &
Monacelli (2005), Engel (2011), Goldberg & Tille (2009), Corsetti, Dedola
& Leduc (2010, 2018), Fanelli (2018), Egorov & Mukhin (2021)

— Capital controls: Jeanne & Korinek (2010), Bianchi (2011), Farhi &
Werning (2012, 2013, 2016, 2017), Costinot, Lorenzoni & Werning (2014),
Schmitt-Grohe & Uribe (2016), Basu, Boz, Gopinath, Roch & Unsal (2020)

— FX interventions:
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@ SOE with T and NT, segmented asset markets

@ Households:

oo
max EY " 5[y log Cre + (1 - 7)(log Cwe — Ly)|
t=0
B,
s.t. R + PreCre + PreCne = Be—1 + Wele + 1 + T,
t
@ Firms:
@ tradables: exogenous endowment Y7, law of one price Py = E:P7, = &t
@ non-tradables: technology Yn: = A:L;, fully sticky prices Py: = 1
@ Financial sector:

— incomplete asset markets
— segmented markets w/ risk-averse arbitrageurs

Bt + Nt + Ft + Dt :O
~ ~ ~~ ~~

h/h noise traders  FX interventions  arbitrageurs
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@ Equilibrium conditions:

— labor supply
= P
— market clearing
Cne = Ynve = A;
@ First-best = flexible prices:
W, W,
C =——=A
YT Pue T WA
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v Cwe _ S
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@ Sticky prices:
Py =1 = output gap  x; = log %ANlt = log %
t

@ Exchange rate: -
e =qr + Xt — Z

Cre
o - . Cre
— Efficient RER: §: = a: — ¢z 5/21

— Consumption wedge for T: z; = log



Tradable Sector

@ Arbitrageurs choose portfolio (Dy, D}) w/
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@ Arbitrageurs choose portfolio (D;, D}) w/

£:DF
— zero net positions 3 Df + t == =0,

— carry trade returns Rt+1 Rt - Rtg "
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— live for one period and transfer income to home h/h
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Quadratic Problem
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Quadratic Problem

@ Lemma: To the first-order approximation, the optimal policy solves

min ;Eiﬂth +(1—'Y)Xt2]

{annb?vft*vgg}

st. Bbl=b , —

E, = —woi(bf — nf — f7)
2 ~
oy = Val"t(‘?t+1 - + Xt+1)
o X — output gap
o — consumption gap for T

o £ — FX reserves

© No Trilemma: it is possible to simultaneously have (i) independent MP,
(ii) fixed ER, (iii) no capital controls.
— limits to arbitrage (cf. ABBP'20, Fanelli-Straub’21)
— distortionary n; shocks

— two channels of monetary policy
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Optimal Policy

@ Planner’s problem:
o0
: 2
min  SEY [+ (1))
{ze,xe,bf 07} t=0

l\)\»—l

st. Bbf=bl_1—2z
E¢Azeyq = —@of(bf — nf — ;")

2 ~
o7 = vare(Ger1 — Zev1 + Xeq1)

Proposition (First best)
The optimal policy implements the first best: i) MP close the output gap x; = 0,
i) FX interventions eliminate the risk-sharing wedge f;* = b} — nj.
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Optimal Policy

@ Planner’s problem:

1 oo
min - z2 (1- 2
{ztaxt7b:7ft*7gg} 2 ; ’y ! IY) ]
sit. pBbf =b;
E¢Azeyq = —@of(bf — nf — ;")

2 ~
oy = Vart(qt+1 — Zt41 + Xt+1)

Proposition (First best)
The optimal policy implements the first best: i) MP close the output gap x; = 0,
i) FX interventions eliminate the risk-sharing wedge f = b} — nj.

@ Optimal targets: MP — inflation/output,
— targeting ER is suboptimal, but equilibrium ER volatility is lower
© Responses to shocks: FX policy offsets nj and

— §: depends on
— unobservable §; and n} (cf. potential output, NAIRU, natural rate) 8/21



MONETARY POLICY

9/21



Divine Coincidence

@ Monetary policy problem:
oo

. 1
min > EZﬁt [vz2 + (1 —7)x¢]
{z¢,x¢,b} 02} 2 P
st Bbf = bl -z,

- 2
EiAzy = —wo; (b — n}),

2 ~ ~ ~
o = Vart(‘?t+1 — Zty1 + Xt+1)7 gt =ar — G
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Divine Coincidence

@ Monetary policy problem:

oo

min 1 EZﬁt [vz2 + (1 —7)x¢]

{ze,xe, b} 02} 2 P
* *
s.t. Bbt = Di_1 — Zt,
- 2 * *
EiAzi g = —o; (bt — nt),
2 _ ~ ~ ~
o = Vart(‘?t+1 — Zty1 + Xt+1)7 gt =ar — G

@ Can monetary policy alone close the two gaps?

— no in general case: conditional on Jf, Ze L x¢

— important exception: 02 =0 = z =0 = x; = —§:

© “Divine coincidence”: if §; = 0, the optimal MP implements x; = z; =0
— §: = 0 requires that i) a; = yr, ii) both follow RW, iii) r/ =0
— peg > inflation targeting due to multiple equilibria
— optimal currency areas (Mundell'61)
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@ More generally, the optimal monetary rule is

(1 _7) Xt = _7@)\1&71([3:,1 - nrfl) (et —]Et,].et)7
output gap >0 ER volatility

Proposition

The optimal monetary policy closes the average output gap Ex; = 0, but deviates
from targeting x; state-by-state to lower exchange rate volatility o2.

© MP trade-off: given one policy instrument, the optimal policy leans
against the wind and implements a crawling peg that is tighter when

— economy is more open -y
— arbitrageurs are more risk averse w
— volatility of nf and §; is higher

@ Time consistency: optimal discretionary policy closes output gap x; =0
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FX Policy

@ FX policy problem:

min Z 'YZt -) ]

2
{xt,2e,b7 ,f 07 } t=0

I\J\r—\

st. Bbf =b;_,—
EiAzeyy = —Gof (bf — nf — £7)

af = vart(dt+1 — Zry1 + )

@ Restrictions () on MP:
a)
b)
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FX Policy

@ FX policy problem:

min Z [vz2 + (1 —7)</]

2
{xt,2e,b7 ,f 07 } t=0

I\J\r—\

st. Bbf=b;,—2z
E;Az 1 = —aaf(b: —ni—f)

U? = Vart(dt-‘rl — Zr41 + )

@ Restrictions () on MP:

a) = z; is exogenous
= no FX divine coincidence

b) = Xx; is exogenous
— cf. macroprudential policy under AD externality (Farhi-Werning’16)

@ FX trade-off: FX interventions are unlikely to mitigate output gap

@ Time consistency: FX policy does not require commitment 11/21
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International Spillovers

@ Global equilibrium:

— continuum of SOEs trading dollar bonds
— unchanged risk sharing condition

- 2 * * *
E:Azipy1 = *Wait(bit —n; — f; )

— endogenous pr: and r;

rf = if —EApresa, /CTitde /ymdi
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International Spillovers

@ Global equilibrium:
— continuum of SOEs trading dollar bonds
— unchanged risk sharing condition
E:Azi1 = —@oy (b — njy — £7)

— endogenous pr: and r;
re =i —EiAprita, /Cmdl = /ymdl

@ Gains from cooperation:
i) first-best policies = NE is efficient

ii) second-best policies = negative spillovers
~ _ 2 .
E:Altiti1 =1/, re =EeDyTei1 + W/Uit(bi*t —njp — fif)di

@ Anchor currency: countries import U.S. MP under second-best policy
it = Git—PTt + Xit — Zit

— currency of debt = anchor/reserve currency

— cf. gold standard with i = 0 and pr: determined from cr+ = y7t 12/21
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Extensions

Extensions relax assumptions of the baseline model:

@ Home traders

@ T and NT goods

© Fully sticky prices

@ Noise traders

© Log-linear preferences

%

int'l transfers

ToT effects

NKPC

risk-premium shocks

complementarities
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Transfers

@ No redistributional effects in the baseline model
@ Assume foreign arbitrageurs and noise traders

@ Country's budget constraint:
B:

e —1
Rt

% X E:17: Ri—1 &—
=Bt_1+vn—cn—7;</vt_1+ 1) To= o

wo? Rf &
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Transfers

@ No redistributional effects in the baseline model
@ Assume foreign arbitrageurs and noise traders

@ Country's budget constraint:

B*
e =Bt Y- Cr =T (N,_i‘_1 +
t

-1

Et—lﬂ) 7 7_t = Rt—l gt—l

wo? RE &

@ Loss function depends on UIP deviations 7¢_1 = r; — r} — E;_1Ae;:

o0

1 t
L=3E) 5

Ti_
vzZ + (1= 7)x¢ + 271 <ni_1 + ojai) ]
t=0

t

— extends Fanelli-Straub’21 to stochastic shocks

— to the SOA, welfare depends on ex-ante UIP deviations

— if local noise traders, ny =0 in £ and any 7: # 0 lower the welfare
— if nf # 0, the planner can extract rents
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Transfers

@ Planner’s problem:
1l t[..2 2
min > EY B {74 +(1 —V)Xt]
t=0
s.t. ]EtAZt+]_ = 7(:)0'?([): — n;k - ft*)
Bby = bi_y — z

2 ~
oy = Vart(Qt+1 + Xey1 — Zt+1)
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Transfers

@ Planner’s problem:
1 Tt
min = EZﬁt [’yztz + (1= )X+ 291 (i + ;1 }
2 — woy_q
s.t. EtAzt+1 = 7(:)0'?([):: — n: — ft‘*): Tt
Bbi = by —
U? = Val"t(at+1 — Zty1 + Xt+1)

@ First-best: implementation of the first best generically requires three
instruments — i) monetary policy, ii) FX interventions, iii) capital controls
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Transfers

@ Planner’s problem:

R Te—1
min 5 Etz_;ﬁt{'yzf +(1 —’y)xt2 + 2971 ( + = t2 )]

wo_q

- 2
st. E;Azq = fwat( - n;‘) =T
Bb; = b;_1 —z

2 ~
Oy = Vart(‘?t—H — Zr41 + Xt+1)

@ First-best: implementation of the first best generically requires three
instruments — i) monetary policy, i) FX interventions, iii) capital controls

@ Divine coincidence: if §; = 0 and either i) local noise traders or
ii) bf/nf = 0, then MP alone can achieve the first-best
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Transfers

@ Planner’s problem:
. 1« tf 2 2 Te—1
min = EZﬁ vze + (L =)+ 2971 (i + =5
2 — woy_q
s.t. EtAzt+1 = 7(:)0'?([):: — n: — ft‘*): Tt
Bbi = by —
07 = vare (Ger1 — Zer1 + Xes1)

@ First-best: implementation of the first best generically requires three
instruments — i) monetary policy, ii) FX interventions, iii) capital controls

@ Divine coincidence: if §; = 0 and either i) local noise traders or
ii) bf/n¥ ~ 0, then MP alone can achieve the first-best

@ FX policy: given o2, the optimal FX policy trades off rents for efficient risk
sharing and smooths the optimal UIP deviations 7; = %7} + nj in time:
—_ 2 o0
nlead

> (BAY Eenpyy A€ (0,1)
j=0
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Transfers

@ Planner’s problem:
. 1« tf 2 2 Te—1
min = EZﬁ vze + (L =)+ 2971 (i + =5
2 — woy_q
s.t. EtAzt+1 = 7(:)0'?([):{ — n: — ft‘*): Tt
Bbi = by —
07 = vare (Ger1 — Zer1 + Xes1)

@ First-best: implementation of the first best generically requires three
instruments — i) monetary policy, ii) FX interventions, iii) capital controls

@ Divine coincidence: if §; = 0 and either i) local noise traders or
ii) bf/n¥ ~ 0, then MP alone can achieve the first-best

@ FX policy: given o2, the optimal FX policy trades off rents for efficient risk
sharing and smooths the optimal UIP deviations 7; = %7} + nj in time:

D02\ — :
> (BAY Eenpyy A€ (0,1)
j=0

— commitment is important. but differentlv from the NK models 15/21




Terms of Trade

@ Baseline model assumes T and NT:

— might be a good approximation for commodity exporters
— contrasts with OR'95, DE'03, GM'05, etc.
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Terms of Trade

@ Baseline model assumes T and NT:

— might be a good approximation for commodity exporters
— contrasts with OR'95, DE'03, GM'05, etc.

@ Allow for home and foreign goods:

G = C,{,:"{C;t, Che = 'Dl';tzS ¢

— log-linear preferences for simplicity
— optimal steady-state production subsidies
— three shocks: nj, a:, ¢

@ Currency of invoicing:

@ producer (PCP) = sticky wages
@ dominant (DCP)
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Optimal Policy: PCP

@ Planner’s problem under PCP:

~—

Cr—Crt Vi~

: 1«
min fEZﬁt[ 22+ X }
{ze %, b7 1 02} 2 =0 ~~~
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@ Planner’s problem under PCP:

: 1«
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{ze %, b7 1 02} 2 =0 ~~~ ~~~
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Optimal Policy: PCP

@ Planner’s problem under PCP:

. 1o~
min fEZﬁt[ 22+ X }
{zexe,b? 702} 2 =0 ~ ~~
cre—Cre  Ye—Vr
sit. Bbf =bl 1 —z + xi,
E¢Azeyy = —@oi (by — nf — f7),

2 ~ ~ ~
o = Vart(qt+1 - Zip1 + Xt+1), gt = ar — Crt
@ FX policy: same motives as in the baseline model

@ Divine coincidence: if a; = ¢/ and follow a random walk, then §; = 0 and
the MP alone can implement the first-best allocation x; = zz =0

@ One instrument: neither f;* nor of = 0 are sufficient to implement z; =0

because of suboptimal exports
17/21



Optimal Policy: DCP

@ Planner’s problem under DCP:

min g Bt [fy 22 +(1-7) X2 }
{z¢,xe,b7 f*,02} ~—
CFt Crt YHt—VHt
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Optimal Policy: DCP

@ Planner’s problem under DCP:

min
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1 o0
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@ FX policy: can no longer implement z; = 0, but still focuses on the wedge
in the risk-sharing condition
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Optimal Policy: DCP

@ Planner’s problem under DCP:

min
{zt,xt,b;*7ﬂ*70'$}

s.t.

1 o0
SEY By 2 +-m 2]
t=0 - -
CFt —CFt YHt — YHt
Bb; = bi_y — z; + KkGy,
EtAzeyy = —@of (bf — nf — ),

2 ~ ~ ~
or = vare (Geg1 — Ze41 + Xer1),  Ge = ar — Cre

@ FX policy: can no longer implement z; = 0, but still focuses on the wedge
in the risk-sharing condition

@ Divine coincidence: if a; = ¢/ and follow a random walk, then §; = 0 and
the MP alone can close the two gaps x; =z =0

@ Monetary policy: same motives as in the baseline model
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:
1 o0
min = IEZﬂt {'yzf + (1 =)+ aaw,z\,t)}
2 t=0

st. E:Azeq = —@ol (b; — nf — £)
Bb; = bi_1—z
TNt = KXt + ﬁEt'ﬂ'[\[t+1 —+ V¢

2 ~
oy = Vart(qt+1 — Zp41 + Xep1 + 7TNt+1)
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:
min  — EZB’-“ |:'th ]. — ’y)(xt + (}’TNt):|
s.t. EfAZt+]_ = —a)a't (b;;_K _ n:" _ ft*)
Bb; = by,
TNt = KXt + sBEt/TNH»l +

2 ~
oy = Vart(thrl — Zt41 + Xe41 + TNl )
| ———

)?H-l
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:
N QR
min 3 E;ﬂt {Xf-i—ﬂ',z\,t}

s.t. e = KX + /B]Etﬂ-Nt—Q—l + vt

X0 + mno = Ko
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:

oo

.1 o v
min ZED 5 (12 + (1 = 7)3(% — net)?]
st. EAzyq = —@o} (b — nf — £;)

Bby =biy—z

2 ~ N
oy = Vart(qt+1 — Zty1 + Xr+1)

@ Divine Coincidence: if v; = 0, then isomorphic to the baseline model
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Adjusting Prices

@ Replace fully sticky prices with Calvo friction

@ Planner’s problem:

oo

1 N
min > Egﬂt (12 + (1 = 7)3(% — net)?]
st. EAzyq = —@o} (b — nf — £;)

Bb; = b1~z

2 ~ N
oy = Vart(Qt+1 — Zty1 + Xr+1)

@ Divine Coincidence: if v; = 0, then isomorphic to the baseline model

@ Markup shocks: the optimal policy does not result in long-term price
targeting py: - 0
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Risk-Premium Shocks

@ Baseline model focuses on noise-trader shocks
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Risk-Premium Shocks

@ Baseline model focuses on noise-trader shocks

@ Arbitrageurs as drivers of UIP deviations:
@ Risk-aversion shocks (Gabaix-Maggiori'15):
EtAZtJ,_]_ = —Lz'to'?(b;k - n: - f:{)

= optimal policy remains largely unchanged

@ Expectation shocks
E;Azi 1 = —@o2(bf — nf — £7) +

= no divine coincidence

= same optimal policy
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Conclusion

@ Shall exchange rate be fixed or freely float?

o with MP and FX available, eliminate output gap and UIP deviation,
but not exchange rate volatility

o nonetheless, do eliminate non-fundamental exchange rate volatility
from noise traders

— possibly the dominant portion of exchange rate volatility and UIP
deviations under laissez faire

o explicit partial peg when FX is unavailable

@ Divine coincidence:

— fix exchange rate with MP

@ Without divine coincidence:

— neither fully fixed nor freely floating is optimal
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Mussa Puzzle Redux

Peg Float
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X IRBC
(flex prices)

=)
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Quadratic Loss Function

@ Lemma: Let X solve max, F(x) s.t. g(x) =0. Then the second-order
approximation to the problem is given by

1 _
L(dx) o de’ [V2F(%) + A\V?g(%)] dx,
where ) is the steady-state values of the Lagrange multipliers.

@ Non-tradable sector (NK block):

o0 1 o0
Ly=EY B [log Cue + A (AcLe = Cue) ] ox —E Y~ B (eme — émy)”
t=0

t=0 M

@ Tradable sector (portfolio choice):
[ee) B* 1 ) )
:EE *|log C At | B Y — Cre — == ff]EE t -
Lt t:oﬂ [og Tt + t( MR R Tt R*>}O( 5 tioﬂ(CTt CTt)
@ Total welfare:
1 o0
L=~Lr+(1—-7)Ly x _EE g Bt [’yzt2 +(1- 'y)xtz}

t=0
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Discretionary Policy

@ Markov problem:

V(b*,s) = min  ~z2+ (1 —7)x* + BEV(b*,s)

z,x,b*’
st. Ez(b*',s') =z —wo?(b*' — n*),
Bb* = b* — z,
0% = Var(c”]’ +x(b*', ") = z(b*, s'))7
= path of {z, b}} is independent of x;

= optimal policy focuses on closing the output gap
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Optimal FX Policy

@ FX policy problem:

1 oo
min - EY giz?
{zb7} 2 ; '

st. Bbf=bl 41—z
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Optimal FX Policy

@ FX policy problem:

1 o0
min - EY giz?
{zb7} 2 ; '

st. Bbf=bl 41—z

@ Has standard recursive formulation:

V(b*) _ T*',n %(b* —ﬁb*/)2+ﬂV(b*/)

Proposition

Optimal FX policy is time consistent and implements efficient risk sharing z; = 0.
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Exchange Rate Regime
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Anchor Currencies
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