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Abstract

We develop a general policy analysis framework that features nominal rigidities and �nancial
frictions with endogenous UIP deviations. The goal of the optimal policy is to balance output gap
stabilization and international risk sharing using a mix of monetary policy and FX interventions.
The nominal exchange rate plays a dual role. First, it allows for the real exchange rate adjustments
when prices are sticky, which are necessary to close the output gap. Monetary policy can eliminate
the output gap, but this generally requires a volatile nominal exchange rate. Volatility in the nomi-
nal exchange rate, in turn, limits the extent of international risk sharing in the �nancial market with
risk averse intermediaries. Optimal monetary policy closes the output gap, while optimal FX inter-
ventions eliminate UIP deviations. When the �rst-best real exchange rate is stable, both goals can
be achieved by a �xed exchange rate policy — an open-economy divine coincidence. Generally, this
is not the case, and the optimal policy requires a managed peg by means of a combination of mone-
tary policy and FX interventions, without requiring the use of capital controls. We explore various
constrained optimal policies, when either monetary policy or FX interventions are restricted, and
characterize the possibility of central bank’s income gains and losses from FX interventions.
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1 Introduction

What is the optimal exchange rate policy? Should exchange rates be optimally pegged, managed or al-
lowed to freely �oat? What de�nes a freely �oating exchange rate? Do open economies face a trilemma
constraint in choosing between in�ation and exchange rate stabilization, unlike the divine coincidence
in a closed economy? These are generally di�cult questions, as the exchange rate is neither a policy
instrument, nor a direct objective of the policy, but rather an endogenous general equilibrium variable
with directs close links in both product and �nancial markets. At the same time, equilibrium exchange
rate behavior features a variety of puzzles from the point of view of conventional business cycle models
typically used for policy analysis in open economy.

We address these questions by developing a general policy analysis framework with nominal rigidi-
ties and �nancial frictions that are both central for equilibrium exchange rate determination and re-
sult in an empirically realistic model of the exchange rate. We extend the framework in Itskhoki and
Mukhin (2021b), where we studied a switch between �oating and �xed exchange rate regimes, to allow
for explicit policy analysis using both monetary policy and exchange rate interventions in the �nancial
market. The goal of the policy is to balance output gap stabilization and international risk sharing. Fi-
nancial market interventions are e�ective in segmented �nancial markets and a�ect the extent of UIP
deviations, as well as the equilibrium exchange rate volatility, which in turn also endogenously feeds
back into the equilibrium size of the UIP deviations.

The model features Balassa-Samuelson mechanism determining the value of the frictionless real
exchange rate (departures from PPP) and segmented �nancial markets resulting in endogenous equi-
librium UIP deviations. The presence of both endogenous PPP and UIP deviations is essential for the
optimal exchange rate policy analysis, as exchange rates are crucial components of both deviations. We
build on our earlier work that develops a tractable model of equilibrium exchange rate determination
with realistic properties of PPP and UIP deviations. We show that this framework is easily amenable to
normative analysis and characterize the optimal exchange rate policies implied by the model.

The nominal exchange rate plays a dual role. First, it allows for the real exchange rate adjustment
when prices (or wages) are sticky, and in the absence of such nominal exchange rate movements, the
economy features an output gap resulting in welfare losses. Monetary policy can eliminate the output
gap, but this generally requires a volatile nominal exchange rate. Volatility in the nominal exchange
rate limits the extent of international risk sharing in the �nancial market, as international �nancial
transactions are intermediated by risk-averse market makers who need to hold the nominal exchange
rate risk. This also leads to welfare losses. Financial market interventions can redistribute the risk
away from arbitrageurs, stabilizing the resulting equilibrium UIP deviations and improving the extent
of international risk sharing.

We prove a divine coincidence result in an open economy: if frictionless real exchange rate is stable,
then �xed nominal exchange rate achieves both goals of output gap and UIP stabilization, and �xed
nominal exchange rate is constrained optimal. Furthermore, direct nominal exchange rate targeting
is favored over in�ation stabilization, even though the goal of both policies is the same, as the latter
policy may result in multiple equilibria in the international �nancial market, with and without nominal
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exchange rate volatility. Additionally, pegging the exchange rate with monetary policy may emerge as
the second best policy, even when divine coincidence is not satis�ed, yet there are tight constraint on
the balance sheet of the central bank making e�ective FX interventions infeasible.

Second, we show that access to unconstrained monetary policy and FX interventions generally al-
lows the implementation of the constrained optimal allocation, independently of whether the friction-
less real exchange rate is stable or not. The resulting equilibrium generally features volatile nominal
exchange rate and in�ation targeting, with �nancial interventions stabilizing UIP deviations. We also
show that economies with segmented �nancial markets do not feature a trilemma constraint, as market
segmentation o�ers the �nancial regulator a powerful tool to stabilize the �nancial market, even when
monetary policy focuses exclusively on domestic in�ation and output gap stabilization.

Third, we explore various circumstances where either monetary policy is constrained (e.g., due
to the zero lower bound) or the �nancial interventions are constrained (e.g., due to non-negative re-
quirement on central bank foreign reserves or value-at-risk constraints for the central bank portfolio).
In this case, there are two independent policy goals (the output gap and the risk sharing wedge) and
only one unconstrained policy tool, thus making it generally impossible to replicate the constrained
e�cient allocation. Fixing the exchange rate using the monetary policy tool is generally feasible, but
is also generally suboptimal. Similarly, targeting the output gap alone is also suboptimal, and mon-
etary policy trades-o� output gap and exchange rate stabilization (partial peg) in the absence of FX
interventions. Using �nancial interventions to stabilize output gap is generally infeasible and does not
achieve constrained optimality. We characterize the optimal policy mix under a variety of constrained
environments.

Lastly, we explore the monopoly power of the government in the international �nancial market and
the ability of the central bank to both earn monopoly rents and/or complete international risk sharing
and reduce the volatility of national incomes (inclusive of international transfers). The government
can generate expected rents only in the presence of noise traders by leaning against the wind of their
liquidity currency demand. Arbitrageurs compete with the government for these rents, and greater
equilibrium exchange rate volatility allows the government to capture a greater share of these rents by
discouraging arbitrageurs from active intermediation. In general, the policymaker favors small depar-
tures from e�cient risk sharing and expected UIP deviations which result in expected incomes of the
central bank against the noise traders. Capital controls are only useful in the presence of international
transfers from the �nancial sector.

Literature review

1. Financial frictions and exchange rates: Jeanne and Rose (2002), Gabaix and Maggiori (2015), It-
skhoki and Mukhin (2021a,b), Gourinchas, Ray, and Vayanos (2019), Greenwood, Hanson, Stein,
and Sunderam (2020), Gopinath and Stein

2. Costs of exchange rate interventions: Jeanne, Amador et al, Fanelli, Fanelli and Straub

3. Policy: Devereux and Engel (2003), Farhi and Werning (2012), Farhi, Gopinath, and Itskhoki
(2014), Egorov and Mukhin (2020), Gopinath et al on integrated policy framework
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4. Other: Brunnermeier and Sannikov, Fornaro, Kekre and Lenel

5. Objective approximation: Clarida-Gali-Gertler, Gali-Monacelli, Corsetti-Dedola-Leduc, Gopinath
et al, Egorov-Mukhin

6. Depart from Ricardian (Modigliani-Miller) equivalence environment of Wallace (1981)

7. Marcet-Nicolini

2 The Model of Exchange Rate Determination

We consider a small open economy with a tradable and a non-tradable sector. In our baseline analysis,
we assume a separable log-linear utility of the households:1

W0 = E0

∞∑
t=0

βtUt, Ut = U(Ct, Lt) = logCt − (1− γ)Lt, Ct = CγT tC
1−γ
Nt ,

who can borrow or lend using a one-period risk-free home-currency bond:

PtCt +
Bt
Rt

= Bt−1 +WtLt + PTtYTt + Πt + Tt,

where Rt is the gross nominal interest rate, and thus 1/Rt is the price of a bond paying one unit of
home currency next period.

The households own an exogenous stochastic endowment of the tradable good YTt, which is ho-
mogenous and traded at a �exible international price that satis�es the law of one price:

PTt = EtP ∗Tt,

where P ∗Tt is the international price of the tradable good and Et is the nominal exchange rate (units
of home currency for one unit of foreign currency; thus, an increase in Et corresponds to a home
depreciation). We assume a stable price level in the foreign country, P ∗Tt = 1, and therefore the home-
currency tradable price tracks the nominal exchange rate, PTt = Et. Therefore, home net exports
equals NXt = PTt(YTt − CTt) = Et(YTt − CTt).

The non-tradable good is produced using labor subject to productivity shocks, YNt = AtLt, and
the �rm pro�ts are Πt = PNtYNt − WtLt. The equilibrium labor supply (household FOC) satis�es
CNt = Wt/PNt, and the market clearing requires CNt = YNt. The competitive �exible price of
non-tradables equals Wt/At, however, prices are permanently sticky at an exogenous level PNt = 1.2

1Many analytical results are exact and hold for a general utility function U(CTt, CNt, Lt). The analysis also extends to
large open economies and endogenous produced non-homogenous tradable goods with home bias. The set of our baseline
assumptions, however, allows for the sharpest characterization with stark policy motives.

2We focus on the fully sticky price case as a limiting benchmark which simpli�es the analysis by avoiding an additional
dynamic equation, yet maintains all the qualitative tradeo�s of a more general environment. By having price stickiness only
in the non-tradable sector we avoid the need to choose between PCP, LCP and DCP frameworks; alternatively, we could focus
on sticky wages, which are equivalent in this case.
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Therefore, the �exible (�rst-best) supply of the non-tradable good satis�es Lt = 1 and YNt = At,
while the output gap due to sticky prices is given by Xt = YNt/At = Wt/At, and correspondingly the
equilibrium labor supply is Lt = Wt/At = Xt.

The policymaker uses wage in�ation as monetary instrument. For simplicity, we assume the poli-
cymaker has direct control over nominal wages and choosesWt in conducting monetary policy.3 When
monetary policy sets wages to peg the non-tradable productivity, Wt = At, this results in the �rst best
employment and output level, i.e. zero output gap, with a constant price PNt = 1.

The total consumption expenditure is split between tradables and non-tradables, PtCt = PTtCTt+

PNtCNt, such that γPNtCNt = (1 − γ)PTtCTt. Using the law of one price PTt = Et and the labor
supply CNt = Wt/PNt, we obtain an equilibrium condition for the nominal exchange rate:

Et =
γ

1− γ
Wt

CTt
. (1)

Monetary policy Wt proportionally shifts nominal exchange rate, holding tradable consumption con-
stant; in turn, holding constant monetary policy, greater tradable consumption appreciates the real
exchange rate.4

The real exchange rate, de�ned as Qt = Et/Pt = (Et/PNt)1−γ , where the home price level Pt =

P γT tP
1−γ
Nt and PTt = Et. With sticky price, the real exchange rate tracks the nominal exchange rate,

Qt = E1−γ
t , since PNt = 1. In the �exible price allocation, Qt =

( γ
1−γ

At
CTt

)1−γ , independently of the
monetary policy Wt and hence the value of the nominal exchange rate Et. It is convenient to express
the nominal exchange rate as a product of the real exchange rate and output gap, Et = Q1/(1−γ)

t ·Xt.

Financial market Apart from households, three types of agents trade home and foreign currency
bonds in the international �nancial market. Namely, these are the government, noise traders and ar-
bitrageurs. The government holds a portfolio of (Ft, F

∗
t ) units of home- and foreign-currency bonds,

respectively, with the value of the portfolio (government net foreign assets) given by Ft/Rt+EtF ∗t /R∗t ,
where R∗t is the gross nominal interest rate in foreign currency (dollar). Changes in Ft and F ∗t corre-
spond to open market operations of the government.

Noise traders hold a zero capital portfolio (Nt, N
∗
t ) of the two bonds, such thatNt/Rt + EtN∗t /R∗t = 0,

and N∗t /R∗t = ψt is the liquidity demand for foreign currency of the noise traders, that is ψt is a ran-
dom variable uncorrelated with macroeconomic fundamentals. A positive ψt means that noise traders
short home-currency bonds to buy foreign-currency bonds, and vice versa.

In turn, Bt is the fundamental demand of home households for the home-currency bond, which is
shaped by the macroeconomic forces resulting in the equilibrium of path net exports. The choice of Bt

3We show below that the �rst order condition for bond holdings implies βRtEt{Wt/Wt+1} = 1, and thus an interest
rate rule Rt = R̄t · (Wt/At)

φ with a su�ciently large φ and βR̄tEt{At/At+1} = 1 implements Wt = At.
4Note that this does not violate exchange rate disconnect with aggregate consumption to the extent CTt is a small com-

ponent of Ct, as is the case in the data due to the vast home bias in aggregate consumption.
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is characterized by the household Euler equation:

βRtEt
{

CTt
CT,t+1

Et
Et+1

}
= 1, (2)

where we used PTt = Et. Using (1), this condition implies βRtEt{Wt/Wt+1} = 1, a relationship
between home currency interest rate and nominal wage in�ation.

Finally, the arbitrageurs also hold a zero capital portfolio (Dt, D
∗
t ) such thatDt/Rt + EtD∗t /R∗t = 0,

with a return on one foreign currency unit holding of such portfolio (i.e.,D∗t = R∗t andDt = −RtD∗t Et/R∗t
given by R̃∗t+1 = R∗t − Rt EtEt+1

in dollars. In other words, the income from this carry trade is given

by πD∗t+1 = D∗t − Dt/Et = R̃∗t+1 ·
D∗t
R∗t

in foreign currency, where we used the zero-capital constraint
linkingDt andD∗t . Arbitrageurs choose their portfolio (Dt, D

∗
t ) to maximize min-variance preferences

over pro�ts, Vt(πD∗t+1) = Et
{

Θt+1π
D∗
t+1

}
− ω

2 vart
(
πD∗t+1

)
, where Θt+1 = β CTt

CT,t+1
is the stochastic dis-

count factor of home households, and the second term in Vt(·) re�ects the additional risk penalty of
the arbitrageurs with ω being the risk aversion parameter. The optimal portfolio choice satis�es:

D∗t
R∗t

=
Et
{

Θt+1R̃
∗
t+1

}
ωσ2

t

,

where σ2
t ≡ vart(R̃

∗
t+1) = R2

t · vart(
Et
Et+1

) is a measure of the nominal exchange rate volatility.
The market clearing in the �nancial market requires that the home-currency bond positions of all

four types of agents balance out:
Bt +Nt +Dt + Ft = 0.

The foreign-currency bond is in perfect elastic international supply at an exogenous interest rate R∗t .
The government budget constraint from operations in the �nancial market is given by:

Ft
Rt

+
EtF ∗t
R∗t

= Ft−1 + EtF ∗t−1 + τEtπ∗t − Tt, π∗t = R̃∗t ·
N∗t−1 +D∗t−1

R∗t−1

,

where Tt is the lump-sum transfer to the home households and π∗t is the combined income from the
�nancial transactions of noise traders and arbitrageurs (in dollars). Note that parameter τ ∈ [0, 1] can
be viewed as either the home country’s ownership share of the �nancial sector or a tax on �nancial
transactions imposed by the home government.5

3 The Policy Problem

De�ne the net foreign asset (NFA) position of the home country, B∗t in foreign currency, which has the
home-currency value:

EtB∗t
R∗t

=
Bt + Ft
Rt

+
EtF ∗t
R∗t

,

5Note that the arbitrageur’s problem omits τ without loss of generality, as a change in the tax rate τ is isomorphic to a
change in risk aversion ω.
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that is the value of the combined position of the home households and the government. Using B∗t , we
introduce a sequences of lemmas that characterize the equilibrium conditions for the open economy.

Lemma 1 The NFA of the home country equals the combined foreign-currency bond position in the �nan-

cial market: B∗t = F ∗t +N∗t +D∗t .

Proof: Using the market clearing for home-currency bond,Bt+Nt+Dt+Ft = 0, and the zero capital
portfolios of noise traders and arbitrageurs, we have Bt+Ft

Rt
− Et(N

∗
t +D∗t )
R∗t

= 0. Then using the de�nition
of NFA and rearranging yields B∗t = F ∗t +N∗t +D∗t . �

The NFA position allows to characterize concisely the home country budget constraint:

Lemma 2 The combined home country budget constraint in foreign currency terms is given by:

B∗t
R∗t
−B∗t = (YTt − CTt)− (1− τ)R̃∗t

B∗t−1 − F ∗t−1

R∗t−1

. (3)

Proof: See Appendix A. �

Note that NXt/Et = YTt − CTt is the real (or foreign-currency) value of net exports. The last term
in the budget constraint re�ects the international transfer of �nancial-sector income from the home
country to the rest of the world. When τ = 1, that is either all income is taxed away or the �nancial
sector is owned by the domestic residents, there is no international transfer and the budget constraint
is simply B∗t /R∗t −B∗t = YTt − CTt.

Finally, the equilibrium international risk sharing is characterized in:

Lemma 3 The international risk sharing condition is given by:

βR∗tEt
CTt
CT,t+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

, where σ2
t = R2

t · vart

( Et
Et+1

)
. (4)

The international risk sharing wedge is Zt ≡ ωσ2
t
B∗t−N∗t −F ∗t

R∗t
.

Proof: follows directly from the optimal portfolio of the arbitrageurs, which we rewrite expanding the
expressions for Θt+1 and R̃∗t+1 as:

ωσ2
t

D∗t
R∗t

= Et
{

Θt+1R̃
∗
t+1

}
= Et

{
β

CTt
CT,t+1

·
[
R∗t −Rt

Et
Et+1

]}
.

Subtracting the household Euler equation (2) and substituting forD∗t from Lemma 1 �nishes the proof.�

In the absence or risk-sharing wedge, Zt = 0, the international risk sharing condition reduces to
the conventional Euler equation for the foreign-currency bond, βR∗tEt

CTt
CT,t+1

= 1, a property of the
constrained optimal risk sharing in this economy. Combining international risk sharing (4) with the
home household Euler equation we obtain the modi�ed UIP condition that holds in this economy:

Et
{

CTt
CT,t+1

[
R∗t −Rt

Et
Et+1

]}
= ωσ2

t

B∗t −N∗t − F ∗t
βR∗t

= Zt/β. (5)
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Note that Zt/β is the UIP wedge. When Zt = 0, whether due to ωσ2
t = 0 or to F ∗t = B∗t −N∗t , the UIP

holds from the perspective of the home household SDF. This is because we endowed the arbitrageurs
who trade the home and foreign currency bonds with the SDF of the home households. Therefore, in the
limit of risk neutral arbitrageurs (ω → 0), the international �nancial market converges to a frictionless
two-bond market where UIP holds in expectation.

Equilibrium We can now de�ne the equilibrium in this economy. Given the stochastic path of
exogenous shocks {At, YTt, R∗t , N∗t }, sticky non-tradable prices PNt ≡ 1, and the path of policies
{Wt, Ft, F

∗
t }, an equilibrium vector {CTt, B∗t , Et, Rt} and the implied {σ2

t } solve the dynamic sys-
tem (1)–(4) with the initial conditionB∗−1 and the transversality condition limT→∞B

∗
T /
∏T
t=0R

∗
t = 0.

The other endogenous variables {YNt, CNt, Lt, D∗t , Bt} are recovered from static side equations.6 The
policy vector contains monetary policy Wt and foreign exchange interventions F ∗t , and we can omit
Ft since it merely crowds out Bt one-for-one without changing the equilibrium path of the economy
due to Ricardian equivalence. Without loss of generality, the monetary policy tool could be changed to
Rt, making Wt an endogenous variable instead, and one would need to ensure, as usual, the unique-
ness of the implemented equilibrium path. Lastly, we note that exogenous shocks include non-tradable
productivityAt, tradable endowment YTt, foreign interest rateR∗t and noise trader liquidity shocks for
foreign vs home currency N∗t .

3.1 Exact policy problem

Given the equilibrium path, the resulting welfare of the country is given by:

W0 = maxE0

∞∑
t=0

βt
[
γ logCTt + (1− γ)

(
logWt −

Wt

At

)]
, (6)

where we used the fact that under sticky prices, PNt = 1, we have CNt = Wt and Lt = Wt/At.
The optimal policy problem is to pick the path of policies {Wt, F

∗
t }, subject to possible constraints,

that implement the equilibrium vector {CTt, B∗t , Et, Rt} that maximizes welfare. In other words, the
planner maximizes (6) with respect to {CTt, B∗t , Et, Rt,Wt, F

∗
t } and σ2

t subject to (1)–(4) and given the
stochastic path of exogenous variables {At, YTt, R∗t , N∗t }.

6For example, from market clearing and labor supply YNt = CNt = Wt and from production function function Lt =

Wt/At, while from Lemma 1 D∗t = B∗t − F ∗t −N∗t , and household assets satisfy Bt+Ft
Rt

=
Et(B∗

t−F
∗
t )

R∗
t

.
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We reproduce the set of constraints (1)–(4) explicitly as:

B∗t
R∗t
−B∗t−1 = (YTt − CTt)− (1− τ)

[
R∗t−1 −Rt−1

Et−1

Et

]
B∗t−1 − F ∗t−1

R∗t−1

,

βR∗tEt
CTt
CT,t+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

,

βRtEt
{

CTt
CT,t+1

Et
Et+1

}
= 1,

Et =
γ

1− γ
Wt

CTt
,

σ2
t = R2

t · vart

( Et
Et+1

)
.

The �rst is the budget constraint with the unconventional last term re�ecting the ex post income trans-
fer of the payo�s of noise traders and arbitrageurs (since B∗t−1 − F ∗t−1 = N∗t−1 +D∗t−1). The next two
constraints are the Euler equations for foreign-currency and home-currency bonds, with the unconven-
tional term in the former re�ecting the risk premium charged by the arbitrageurs for intermediating
the foreign currency risk (sinceD∗t = B∗t −N∗t −F ∗t ) in proportion with risk aversion ω and exchange
rate volatility σ2

t de�ned in the last constraint. Finally, the next-to-last equation characterizes the equi-
librium relationship between the nominal exchange rate, non-tradable wage Wt (monetary policy) and
tradable consumption, re�ecting the Balassa-Samuelson forces (since in equilibrium CNt = Wt). The
complexity of this problem is exactly in that the equilibrium volatility of the nominal exchange rate σ2

t

endogenously magni�es the wedge Zt that distorts international risk sharing.

3.2 Linear-quadratic policy problem

While the exact policy problem (6) is su�ciently tractable for some sharp characterization, as we show
below, consider further progress can be made with a linear-quadratic approximation. There are two
challenges involved in the transition to a linear-quadratic environment. The �rst challenge relates to
the quadratic approximation of the welfare function in an open economy, and in particular where the
constrained optimal risk sharing is not full insurance, as the international �nancial market is incomplete
and features risk free bonds only. Speci�cally, the optimal risk sharing corresponds to no UIP deviations
in (5) rather than perfect consumption smoothing. The second challenge is associated with the risk
sharing frictions that are proportional to second moments of the macro variables, namely the volatility
of the nominal exchange rate σ2

t in (4). In our approximation, we must ensure that the risk sharing
frictions remain in the linear-quadratic environment to maintain the key tradeo�s of the exact policy
problem between output gap stabilization and risk sharing.

We denote with xt ≡ cNt − c̃Nt and zt ≡ cTt − c̃Tt the two wedges in our analysis, where by
convention the small letters are the log deviations of the corresponding variables (e.g., cTt = logCTt−
log C̄T ) from a non-stochastic �rst-best equilibrium with R̄ = R̄∗ = 1/β and B̄∗ = N̄∗ = 0. The
variables with tildes denote the constrained optimum allocation. In particular, c̃Nt = at corresponds to
the level of non-tradable consumption under �exible prices, or equivalently zero output gap, and thus
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xt = logXt = log Wt
At

is the measure of the output gap (recall that CNt = Wt in any equilibrium). In
turn, zt is the measure of the risk sharing wedge, equal to the proportional gap between CTt and the
frictionless C̃Tt which is de�ned by βR∗tEt{C̃Tt/C̃T,t+1} = 1 and the budget constraint.7

We focus here on the case without international transfers, τ = 1 in (3), and consider the case with
transfers separately in Section 5.

Lemma 4 The equilibrium system (1)–(4) log-linearized around a non-stochastic equilibrium with B̄∗ =

N̄∗ = 0 and a �nite non-zero ωσ̃2
t is given by:

βb∗t = b∗t−1 − zt, (7)

Et∆zt+1 = −ω̄σ2
t (ιb

∗
t − n∗t − f∗t ), (8)

σ2
t = Ete2

t+1 −
(
Etet+1

)2
, (9)

et = q̃t + xt − zt, (10)

where q̃t ≡ at− c̃Tt is (the log deviation of) the �rst-best real exchange rate, b∗t ≡ (B∗t − B̃∗t )/ȲT with B̃∗t
implied by the path of C̃Tt, n∗t ≡ (N∗t − B̃∗t )/ȲT , ω̄ = ωȲT /β and ι ∈ {0, 1}.

The exogenous shocks in the linearized system are represented by two variables: (i) q̃t, which re�ects the
evolution of non-tradable productivityAt relative to tradable endowment YTt shaping the path of C̃Tt;
and (ii) n∗t which re�ects the foreign currency demand by noise traders and households. The policy
variables are the output gap xt, chosen by the monetary policy, and the FX intervention f∗t ≡ F ∗t /ȲT .8

A distinctive feature of our approach and the key property of the linearized equilibrium system in
Lemma 4 is that the second moment, namely the volatility of the nominal exchange rate σ2

t , in�uences
the �rst-order dynamics of the risk sharing wedge zt, which in turn feeds back into the rest of the
equilibrium system. The reason is that we take the approximation in a way that ensures that the risk
premium approximated by ω̄σ2

t (ιb
∗
t − n∗t − f∗t ) remains a �rst order object. Speci�cally, as shocks

become small and σ̃2
t = R2

t ·vart(Et/Et+1)→ 0, we scale e�ective risk aversion of the �nancial sector ω
to ensure that the sequence ωσ̃2

t remains bounded away from zero by a constant (zero order term). We
argue this provides a superior point of approximation for models that focus on the joint dynamics
of macroeconomic variables and risk premia. Lastly, depending on the sequence of approximation,
equation (8) features either ι = 1 (baseline) or ι = 0 (special case). The special case approximates the
situation when macroeconomic demand for currency b∗t is orders of magnitude smaller than �nancial
(liquidity) demand for currency n∗t , and disappears in relative terms in the limit.

7The relationship between zt and Zt from Lemma 3 is Ete−∆zt+1 = 1 + Zt, and Et∆zt+1 is the linearized UIP wedge.
8Note that without international transfers, the Euler equation (2), approximated as it = logRt− log R̄ = Et{∆cT,t+1 +

∆et+1} = Et{∆xt+1 + ∆at+1} = Etwt+1, becomes a side equation de�ning the path of rt, which follows the evolution
of non-tradable productivity and output gap (or equivalently, the wage in�ation, since cTt + et = wt = xt + at). The
primitive exogenous shocks {At, YTt, R∗t , N∗t } a�ect the equilibrium system in Lemma 4 via {q̃t, n∗t }, with the e�ect of
{YTt, R∗t , N∗t } contained in both n∗t and q̃t via their e�ects on {C̃Tt, B̃∗t }, and the e�ect of At a�ecting q̃t only. Note that
there is no one-to-one relationship between shocks to R∗t and the equilibrium Rt, which only depends on the path of Wt

chosen by the home monetary authority. However, equilibrium nominal exchange rate re�ects both external and domestic
shocks, and ensures that modi�ed UIP (5) holds, or its log-linearized version it − i∗t −Et∆et+1 = Et∆zt+1, where we used
the fact that i∗t = logR∗t − log R̄∗ = Et∆c̃T,t+1.
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With Lemma 4, we can cast the policy problem as choosing the path of {xt, zt, et, σ2
t , b
∗
t , f
∗
t }, where

{xt, f∗t } are policy instruments and {zt, et, σ2
t , b
∗
t } are endogenous variables solving the equilibrium

system. The remaining element of the problem is the quadratic approximation to the welfare objective
function around a constrained-optimal allocation with xt = zt = 0.

Lemma 5 A second order approximation to the welfare maximization problem (6) around a constrained

optimal allocation CNt = C̃Nt = At, Lt = L̃t = 1 and CTt = C̃Tt is given by:

min
1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t

]
. (11)

The di�erence of this approximation from a conventional approximation is that we do not use the �rst-
best allocation with CTt = const, but rather a constrained optimal allocation with CTt = C̃Tt implied
by βR∗tEt{C̃Tt/C̃T,t+1} = 1. We prove Lemmas 4 and 5 in the appendix, and characterize the solution
to the corresponding linear-quadratic minimization problem (11) subject to (7)–(10) in Section 5.

Equilibrium dynamics We now impose some structural assumptions on the dynamics of shocks to
solve the equilibrium system (7)–(10) in certain special cases which prove useful in future analysis. In
particular, this allows to characterize the equilibrium exchange rate volatility σ2

t . First, we characterize
the dynamics of {c̃Tt, q̃t} when yTt follows an AR(1) with persistence ρ. Assuming βR∗t ≡ 1, we have:

Et∆c̃T,t+1 = 0,

βb̃∗t = b̃∗t−1 + yTt − c̃Tt,

which result in the following solution:9

∆c̃Tt =
1− β
1− βρ

(1− ρL)yTt ∼ iid, (12)

which reduces to c̃Tt = yTt when yTt itself follows a random walk (i.e., ρ = 1). The �rst-best real
exchange rate is given by q̃t = at − c̃Tt, and thus in general follows an ARIMA(1,1,1). When at

and yTt both follow random walks, q̃t is also a random walk with innovations re�ecting non-tradable
productivity growth relative to tradable endowment growth.

Next, we consider the equilibrium path of {zt, b∗t }when n∗t−f∗t follows an AR(1) with persistence ρ.
We conjecture and verify that σ2

t = σ2. In this case, we can show that zt satis�es:

zt = (1− βλ1)b∗t−1 −
βλ1ω̄σ

2

1− βρλ1
(n∗t − f∗t ), (13)

where λ1 ≤ 1 and λ2 ≥ 1/β > 1, such that λ1λ2 = 1/β, are the two roots of the equilibrium
dynamic system, which in general depend on σ2. When ι = 0 in (8), we have λ1 = 1 and λ2 = 1/β

independently of the value of σ2. Solving further for zt, we can show that it follows an ARMA(2,1)
9The implied solution for b̃t is an ARIMA(1,1,0) given by ∆b̃t = 1−ρ

1−βρyt, which reduces to b̃t = 0 when ρ = 1.
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process with autoregressive roots ρ and λ1 and moving average root 1/β.10

Equations (12)–(13) allow us to evaluate the resulting conditional volatility of the exchange rate:

σ2
t = vart(et+1) = vart

(
q̃t+1 + xt+1 − zt+1

)
= vart

(
wt+1 − c̃T,t+1 − zt+1

)
= vart

(
εwt+1 −

1− β
1− βρ

εyt+1 +
βλ1ω̄σ

2

1− βρλ1
(εnt+1 − ε

f
t+1)

)
,

where (εyt+1, ε
n
t+1) are exogenous innovations of tradable endowment and liquidity dollar demand

shocks, respectively, and (εwt+1, ε
f
t+1) are innovations of monetary and FX policy, repsectively. There-

fore, this equation characterizes a �xed point for σ2, which is indeed constant as long as innovations
(εyt+1, ε

n
t+1, ε

w
t+1, ε

f
t+1) have a constant covariance matrix Σ. In what follows, we consider various spe-

cial cases in which the expression characterizing σ2 simpli�es and σ2 can be solved explicitly. For
example, when monetary policy stabilizes the output gap, xt = wt − at = 0, we have εwt+1 = εat+1,
i.e. the innovation of non-tradable productivity.

4 Exact Optimal Policies

We start by exploring various special case with an exact optimal policy characterization.

4.1 Constrained optimum

First, we consider the case with τ = 1, namely when all income in the �nancial sector remains in the
home country and there is no international transfer associated with noise traders and/or arbitrageurs.
The optimal policy problem in this case delivers the constrained optimum as there is no incentive to
manipulate risk sharing or monetary policy to achieve a monetary transfer from the rest of the world.

The optimum problem in this case is still to pick {CTt, B∗t , Et, Rt,Wt, F
∗
t } and associated {σ2

t } to
maximize (6) subject to (1)–(4), but the country budget constraint (3) in this case simpli�es to:

B∗t
R∗t
−B∗t−1 = YTt − CTt. (14)

As a result, the policy instrument F ∗t (FOREX interventions) enters only the international risk sharing
constraint (4), and thus it would be chosen to relax this constraint (that is, ensure a zero Lagrange
multiplier). The optimal choice of B∗t when (4) is relaxed requires:

βR∗tEt
CTt
CT,t+1

= 1, (15)

that is international risk sharing without a wedge (i.e.,Zt = 0 in Lemma 3). Combining this undistorted
risk sharing condition with the budget constraint determines the unique optimal path of {CTt}.

10Speci�cally, zt = λ1zt−1 − βλ1ω̄σ
2

1−βρλ1
(1− β−1L)(n∗t − f∗t ) and b∗t = λ1b

∗
t−1 + λ1ω̄σ

2

1−βρλ1
(n∗t − f∗t ), an AR(2). In the case

with λ1 = 1 (when ι = 0), we have ∆zt follow an ARMA(1,1) and ∆b∗t an AR(1).
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By consequence, this requires setting F ∗t = B∗t −N∗t to ensure zero wedge Zt = 0 independently
of the equilibrium volatility of the nominal exchange rate σ2

t . This characterizes the optimal foreign
exchange interventions, which lean against the wind — in fact, fully eliminate the wind — by fully
accommodating the NFA demand of the home country (households) B∗t and the liquidity demand of
the noise traders N∗t . As a result, the arbitrageurs have no job left, and D∗t = 0, the equilibrium risk
premium is eliminated and UIP holds in expectation.

Next, consider the optimal monetary policy, namely the choice of {Wt}. Note that with simpli�ed
budget constraint and with eliminated risk premium, the nominal exchange rate Et and the home in-
terest rate Rt are no longer constraining the optimization, and are merely side variables determined
from the respective constraints. The choice of Wt then becomes static:

Wt = arg max{logWt −Wt/At} = At.

Setting Wt = At eliminate the output gap state-by-state (i.e., Xt = Wt/At = 1). The equilibrium
nominal exchange rate obtains from (1) and equals Et = γ

1−γ
At
CTt

. Finally, the equilibrium interest rate
satis�es βRtEt{At/At+1} = 1, which follows from (1)–(2).

We summarize this discussion in:

Proposition 1 The constrained optimum allocation denoted with {C̃Tt, W̃t, B̃
∗
t , F̃

∗
t , Ẽt, R̃t} maximizes

welfare subject to the budget constraint alone:

max
{CTt,Wt,B∗t }

E0

∞∑
t=0

βt
[
γ logCTt + (1− γ)

(
logWt −

Wt

At

)]
subject to

B∗t
R∗t
−B∗t−1 = YTt − CTt,

and it is implemented with monetary policy W̃t = At which closes the output gap and foreign exchange

rate interventions F̃ ∗t = B∗t − N∗t which eliminates risk premium, UIP deviations and the risk sharing

wedge. The optimum consumption path {C̃Tt} is the unique path that satis�es the dynamic system (14)–
(15). The nominal exchange rate is given by Ẽt = γ

1−γ
At
C̃Tt

. The optimal policy is time consistent.

Proof: See discussion above and Appendix A. �

Intuitively, there are two distortions — output gap due to sticky prices and imperfect risk shar-
ing due to limits to arbitrage — and two policy instruments (monetary policy and FOREX interven-
tions), which allow to address both distortions and deliver the constrained optimum.11 The property of
the constrained optimum is zero wedges in production (output gap) and in international risk sharing,
Xt = 1 and Zt = 0. The maximal utility is given by:

W̃0 = E0

∞∑
t=0

βt
[
γ log C̃Tt + (1− γ) (logAt − 1)

]
.

11Note that the constrained optimum is not �rst best as international �nancial market is incomplete and only allows to
share risk in expectation given the foreign interest rate R∗t . This is equivalent to a single foreign-currency bond economy.
Interestingly, the presence of the home currency bond is irrelevant for the optimum allocation, asRt is merely a side variable
and does not a�ect the equilibrium allocation in this case, and the planner has no incentive to use an additional instrument
(e.g., capital controls) to relax this constraint (see below).
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This is the benchmark for the remaining analysis, as we take:

W0 − W̃0 = E0

∞∑
t=0

βt
[
γ log

CTt

C̃Tt
+ (1− γ)

(
log

Wt

At
− Wt −At

At

)]
≤ 0,

where the �rst term is the loss from risk sharing distortions and the second term is the loss from the
output gap.

Importantly, the optimal policy is time consistent, as both instruments remove the respective distor-
tions contemporaneously and require no intertemporal promises. As a result, the implementation of the
constrained optimum allocation does not require commitment on the part of the monetary authority.

There is no closed form characterization of C̃Tt in the presence of uninsured country risk in YTt,
but C̃Tt follows a near martingale process with innovations approximately equal to the annuity value
of the innovation to the NPV of tradable endowment YTt. For example, when YTt follows a random
walk, C̃Tt ≈ R∗t−1

R∗t
B∗t + YTt with B∗t ≈ B∗−1, i.e. ∆B∗t ≈ 0. What are the implications of this for

the nominal and real exchange rate? The nominal exchange rate Ẽt = γ
1−γ

At
C̃Tt

, as well as the real

exchange rate Q̃t = Ẽ1−γ
t , appreciates with the relative productivity in the tradable sector, that is when

tradable endowment YTt increases faster than non-tradable productivityAt. Indeed, this is the Balassa-
Samuelson force which shapes the path of the real exchange rate as the interplay between tradable
and non-tradable productivity. Under sticky prices, implementing this path for the real exchange rate
requires the nominal exchange rate to follow the same relative productivities.

Implementing the constrained optimum in an economy with sticky prices and frictional �nancial
market requires an active use of both monetary policy and foreign exchange interventions, but does
not require the use of capital controls. The goal of foreign exchange interventions is not to eliminate
exchange rate volatility, but rather to eliminate the risk sharing wedge (the UIP deviations). No UIP
deviations are, in fact, consistent with a volatile nominal exchange rate, which itself is generally a con-
sequence of the optimal monetary policy stabilizing output gap.12 However, in certain circumstances,
the constrained optimum may involve a stable exchange rate. With segmented �nancial market, for-
eign exchange interventions provide the government with an important additional tool, which allows
to stabilize wedges in the international �nancial market — and, in some circumstances, this may involve
stabilizing the nominal exchange rate. The use of foreign exchange interventions does not interfere with
monetary policy, which should still be focused on output gap stabilization, as in the closed economy,
and do not generally require the use of capital controls. In this sense, such economy does not feature
the trilemma trade-o� present in conventional monetary models with a frictionless �nancial market.

4.2 Divine coincidence: �xed exchange rate

In the constrained optimum allocation, foreign exchange rate interventions F̃ ∗t = B∗t −N∗t eliminates
the risk-sharing wedge (Zt = 0), but do not result in a stable exchange rate (Et 6= const in general).

12As shown above, the nominal exchange rate implementing the �rst best follows the relative non-tradable productivity.
Arguably, the volatility of relative productivities is not as large as the observed volatility of �oating exchange rates, e.g. dollar-
euro (10% annualized standard deviation). Thus, it is likely that optimal foreign exchange rate interventions partially stabilize
the exchange rate relative to laissez-faire, as we further discuss below.
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Indeed, the nominal exchange rate traces the frictionless real exchange rate, which in turn re�ects the
relative movements in non-tradable productivity (relative to tradable endowment). We now explore
the special case when a �xed exchange rate implements the constrained optimum.

Note also that the constrained optimum implementation requires the use of both instruments —
monetary policy Wt and foreign exchange rate interventions F ∗t — and, in general, it cannot be im-
plemented with monetary policy alone. There exists, however, an important special, yet robust, case
when monetary policy alone can simultaneously implement both goals — output gap stabilization and
elimination of the international risk-sharing wedge — without any need to use foreign exchange rate
interventions. This case relies on the full stabilization of the nominal exchange rate — the �xed ex-
change rate — which can be achieved by means of monetary policy and thus eliminates the need to use
foreign exchange interventions. We refer to this special case as divine coincidence in an open economy.

Indeed, examining the general policy problem (6) (still assuming no international transfers, τ = 1),
the limiting case with commitment to Et = const implies σ2

t = 0, and thus eliminates the risk sharing
wedge, i.e. ensures Zt = 0, irrespectively of the use of the other instrument F ∗t . Furthermore, since
Et = γ

1−γ
Wt
CTt

, monetary policy can always ensure a �xed exchange rate by setting Wt = CTt. The
only remaining question is when such monetary policy can also be optimal from the point of view of
output gap stabilization, that is ensures that Xt = Wt/At = 1. While being a knife-edge case, it is
an important one, and can be formulated as follows: if the �rst-best real exchange rate (i.e., the real
exchange rate corresponding to the �rst-best allocation with zero output gap) is constant then �xed
nominal exchange rate is the optimal policy stabilizing simultaneously output gap and international risk
sharing. Indeed, recall that the real and nominal exchange rates perfectly comove under sticky prices,

Et = Q1−γ
t , so that if the �rst-best real exchange rate Q̃t =

(
γ

1−γ
At
CTt

)1/(1−γ)
= const, then it can

always be implemented with Et = const independently of the degree of price stickiness. Furthermore,
this is an “if and only if” statement, and the �xed exchange rate is necessarily suboptimal whenever
Q̃t 6= const and price are (at least partially) sticky.

Proposition 2 The �xed nominal exchange rate implements the constrained optimum allocation if and

only if the �rst-best real exchange rate is stable, Q̃t = const. In this case, monetary policy alone can

achieve both goals of output gap stabilization, Xt = 1, and elimination of the international risk-sharing

wedge, Zt = 0, without the use of foreign exchange rate interventions or capital controls.

Proof: See discussion above and Appendix A. �

When can we expect the �rst-best real exchange rate to be stable? In our setup, this is the case when
Balassa-Samuelson forces exactly o�set each other, and in particular the non-tradable productivity and
tradable endowment comove in lock-step. Formally, this would require a near random walk process in
both YTt andAt, so thatCTt tracks YTt and thusAt/CTt = const.13 More generally, real exchange rate
may also vary because of di�erential evolution of home and foreign tradable productivity under home
bias in tradable consumption. The divine coincidence principle generalizes to those environments, and

13In a linearized environment, this is exactly the case, as cTt = yTt under a random walk endowment, but in a full
non-linear problem, the path of CTt di�ers from that of YTt due to precautionary savings from uninsured idiosyncratic risk.
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still suggests that if one can argue that the �rst-best real exchange rate is stable, then a �xed nominal
exchange rate regime implements the constrained optimum and achieves both policy objectives without
the need to use other instruments such as exchange rate interventions or capital controls. In other
words, divine coincidence is exactly the case where in�ation (output gap) stabilization does not come
into con�ict with a �xed exchange rate, and thus trilemma, if present, is not binding.

Implementation We focused above on the direct implementation of the peg usingWt. Two remarks
are in order. First, the same allocation can be implemented using an interest rateRt rule, as pointed out
above. Second, and more importantly, either Wt or Rt implementation can either target output gap or
nominal exchange rate directly. Indeed, divine coincidence implies that �xed exchange rate equilibrium
corresponds to the zero output gap equilibrium. However, the implementation of the policy does matter,
as targeting output gap may be consistent with multiple exchange rate equilibria, one with σ2

t = 0

and another with σ2
t > 0, and only the former one ensures undistorted international risk sharing.14

Thus, in terms of implementation, a monetary policy that explicitly targets the nominal exchange rate
can be superior to stabilizing the output gap, even when it achieves the same goal. In this sense, the
model captures the idea of using a nominal peg to anchor expectations, although the focus is on the
�nancial market expectations rather than in�ation expectations of households and �rms (cf. Marcet
and Nicolini 2003).

4.3 Single instrument without divine coincidence

Proposition 1 characterized the optimal joint use of monetary policy and foreign exchange interven-
tions, which allows to implement the �rst best allocation by eliminating both the output gap and the
international risk sharing wedge state-by-state. Proposition 2 shows how monetary policy can fully
stabilize the nominal exchange rate, which immediately eliminates the risk sharing wedge without the
use of FX interventions, and further characterizes circumstances when it is also optimal from the point
of output gap stabilization. As a corollary, when prices are �exible and thus the output gap is absent
irrespective of monetary policy, the optimal risk sharing can be always achieved by monetary policy
that stabilizes the nominal exchange rate, without the use of FX interventions. In other words, equi-
librium nominal exchange rate volatility can be desirable only under sticky prices, when it needs to
accommodate the real exchange rate variation that cannot be achieved via adjustment of prices.

We now consider the reverse case of whether the output gap can be stabilized by foreign exchange
interventions alone, when monetary policy is constrained, e.g. by the zero lower bound Rt ≥ R or
�xed exchange rate Et = Ē .15 In contrast to the previous case, it is not possible to implement the �rst-

14Formally, compare the case with Wt = At and Wt = κCTt for some appropriately chosen κ > 0, which under divine
coincidence are both consistent with the optimal allocation. While the latter implementation ensures Et = const from (1)
and thus σ2

t = 0, the former may be consistent with multiple equilibria that solve βR∗tEt CTt
CT,t+1

= 1 + ωσ2
t
B∗

t−N
∗
t

R∗
t

where

σ2
t = R2

t ·vart
(
CT,t+1/CTt

At+1/At

)
, in addition to the budget constraint (14). The multiplicity of solutions for (CT,t, σ

2
t ) translates

into the multiplicity of solutions for Et, with the σ2
t = 0 solution favored over the others in terms of welfare.

15Recall that under sticky prices, PNt = 1, we have CNt = Wt, and the loss from the output gap can be written as
log CNt

At
− CNt−At

At
≤ 0. Furthermore, CNt must satisfy βRtEt{CNt/CN,t+1} = 1 and Et = γ

1−γ
CNt
CTt

, with the former
possibly constrained by the ZLB and the latter by the �xed exchange rate.
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best allocation with foreign exchange interventions. In particular, �xed exchange rate implies σ2
t = 0

in (4), and while it immediately eliminates the risk sharing wedge, it also makes FX interventions F ∗t
irrelevant for the equilibrium allocation. F ∗t can still a�ect allocation {CTt, CNt} under the zero lower
bound constraint if σ2

t > 0. However, under separable utility, F ∗t is optimally used to only eliminate the
risk sharing wedge in tradables without targeting the allocation of non-tradables and the output gap.16

This analysis in particular suggests that FX interventions cannot substitute for monetary policy. We
next explore the optimal use of monetary policy in the presence of both frictions when FX interven-
tions F ∗t are not available. In this case, optimal monetary policy closes the output gap on average and
trades o� the state-by-state variation in output gap with reducing the risk sharing wedge by partially
stabilizing the nominal exchange rate. Formally, the optimal monetary policy ensures EtXt+1 = 1,
where Xt+1 = Wt+1

At+1
= CNt

At
is the output gap, but varies Xt+1 6= 1 state-by-state to reduce σ2

t , in

particular in periods following large risk sharing wedges Zt = ωσ2
t
N∗t −B∗t
R∗t

6= 0.17 The policy increases
CN,t+1 = Wt+1 over and above At+1 when CT,t+1 is high, and vice versa, which reduces the volatility
of Et+1 = γ

1−γ
Wt+1

CT,t+1
by making tradable and non-tradable consumption more correlated. This is the

optimal trade-o� between the two frictions, namely giving up on fully stabilizing the output gap at t+1

to reduce the risk sharing wedge in borrowing from t to t+ 1.
We summarize these results in the following proposition and provide a formal proof in Appendix A):

Proposition 3 (i) Monetary policy can eliminate the risk-sharing wedge and implement the optimal in-

ternational risk sharing, while foreign exchange interventions cannot close the output gap when monetary

policy is constrained, and can only ensure constrained-optimal international risk sharing. (ii)Optimalmon-

etary policy in the absence of FX interventions eliminates the output gap on average and uses the state-by-

state variation in output gap to reduce the volatility of nominal exchange rate and the risk sharing wedge.

Discretionary policy An important property of the optimal policies in Proposition 1 was time con-
sistency and no need for commitment to implement them. As described above, the optimal monetary
policy in the absence of FX interventions trades-o� output gap stabilization at t + 1 for reducing the
risk sharing wedge at t. This requires commitment on the part of the monetary authority, as the only
time-consistent discretionary outcome is the state-by-state output gap stabilization, Xt+1 = 1, which
leaves a laissez-faire international risk sharing wedge Zt. This is, of course, suboptimal, as shown in
Proposition 3.

4.4 International transfers. Capital controls

We now consider the case with τ̃ ≡ 1−τ > 0 which features an international income transfer τ̃π∗t from
the �nancial transactions in the country budget constraint (3). Under these circumstances, eliminating

16With non-separable utility in (CTt, CNt), foreign exchange interventions can depart from the optimal risk sharing
βR∗tEt{CTt/CT,t+1} = 1 in order to relax the constraint imposed by βRtEt{CNt/CN,t+1} = 1 when Rt cannot adjust.
As in the general theory of second best, the constrained optimal policy introduces a wedge into international risk sharing
if it allows to reduce the domestic output gap. Unlike capital controls or other taxes, however, which can directly distort
βRtEt

{
CTt

CT,t+1

Et
Et+1

}
= 1, foreign exchange interventions are less capable and operate exclusively via their indirect a�ect

on CTt in (4). Cf. Farhi and Werning (2012), Correia, Farhi, Nicolini, and Teles (2013), Farhi, Gopinath, and Itskhoki (2014).
17In contrast, Xt+1 = 1 state-by-state in periods following Zt = 0.
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the risk sharing wedge Zt in (4) is still feasible, but no longer optimal. First, consider the optimal
policies from Proposition 1, namelyWt = At and F ∗t = B∗t −N∗t , which still eliminate both the output
gap and the risk sharing wedge. In this case, the country budget constraint becomes:

B∗t
R∗t
−B∗t = (YTt − CTt)− τ̃ R̃∗tψt−1,

where ψt−1 =
N∗t−1

R∗t−1
is the exogenous noise trader liquidity demand (for dollar relative to the national

currency), R̃∗t = R∗t−1 − R∗t−1
Et−1

Et is the realized carry trade return, and UIP (5) holds in expectation,
Et−1ΘtR̃

∗
t = 0, where Θt = β

CT,t−1

CTt
is the stochastic discount factor. As a result, this allocation

is associated with mean-zero idiosyncratic international transfers that contribute to national income
volatility of the home country, and thus contribute negatively to welfare. Can the government improve
upon this allocation? In particular, is it feasible to eliminate this risk or create systematic transfers from
the rest of the world.

One can show that departures from Wt = At, if UIP still holds in expectations, generate at most
third order bene�ts, while creating second order losses from departures from output gap. Thus, we focus
here for concreteness on monetary policy that stabilizes output gap, Wt = At, and explore the use of
FX interventions F ∗t in the presence of international transfers. We rewrite the budget constraint (3):

B∗t
R∗t
−B∗t−1 = (YTt − CTt)− τ̃ R̃∗t

[
ψt−1 +

Et−1ΘtR̃
∗
t

ωσ2
t−1

]
,

and the government has a direct control over the size of the UIP deviation, EtΘt+1R̃
∗
t+1 = Zt by

means of FX interventions, Zt = ωσ2
t
B∗t−N∗t −F ∗t

R∗t
, which simultaneously creates a risk-sharing wedge:

Zt = βR∗tEt
CTt

CT,t+1
−1. Therefore, the tradeo� faced by the policymaker is whether to engineer ex ante

UIP deviations, which distort risk sharing, yet can generate additional national income under certain
circumstances.

The expected discounted income (using home SDF) from FX interventions that allow for UIP devi-
ations (Zt 6= 0) is given by:

−τ̃EtΘt+1R̃
∗
t+1

[
ψt +

EtΘt+1R̃
∗
t+1

ωσ2
t

]
= −τ̃

[
ψtZt +

Z2
t

ωσ2
t

]
.

Therefore, the expected income is (weakly) negative in the absence of noise trader demand (when τ̃ψt = 0),
and thus Zt = 0 is optimal in this case as it guarantees both e�cient risk sharing and no expected
income losses. A corollary of this result is that, if noise traders are domestic and arbitrageurs are for-
eign, the government can also generate no expected income and should ensure Zt = 0 by setting
F ∗t = B∗t −N∗t as in Proposition 1.

In the presence of international noise trader demand, the policymaker can generate expected in-
comes by partially “leaning against the wind” of their currency demand and choosing Ft such that:

ψtZt ∝ N∗t · (B∗t −N∗t − F ∗t ) < 0.
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The income gains of the government are limited, however, by the arbitrageurs, who take positions in
the same direction as the government and inversely proportionally to ωσ2

t . As a result, in the limit of
ωσ2

t → 0, the government cannot sustain any expected income gains, even in the presence of noise
traders, and should not attempt to choose Zt 6= 0, which would be futile anyways. Finally, for any
ωσ2

t > 0, UIP deviations Zt in response to ψt 6= 0 generate income gains that are �rst order in Zt
and welfare losses from the resulting risk sharing wedge that are second order in Zt, around Zt = 0.
Therefore, non-zero UIP deviation Zt are necessarily desirable in this case, if su�ciently small.18

We summarize these results in the following proposition:

Proposition 4 (i) The expected discounted income from FX interventions is weakly negative in the absence

of noise trader demand (N∗t = 0), and thus it is optimal to fully o�setting the ex ante UIP deviations (with

F ∗t = B∗t − N∗t ) to ensure both no expected losses and e�cient risk sharing. (ii) In the presence of noise

trade demand (N∗t 6= 0), and for ωσ2
t > 0, there exist FX interventions F ∗t that partially lean against N∗t

and generate expected incomes that exceed welfare losses from the induced UIP and risk sharing wedges.

The �rst part of this proposition generalizes the optimal policy and divine coincidence results of
Propositions 1 and 2 by showing that they hold in frictional �nancial markets with arbitrageurs and
international transfers, but without noise traders. Under these circumstances, the policymaker never
wants to manipulate the UIP deviations, and thus two baseline policy tools are su�cient and are used
exactly in the same way as before to close the output gap and the risk sharing wedge.

We leave full characteristic of the optimal FX interventions to the linearized environment, and
note here two additional motivations of the policy. First, it may be possible to manipulate the ex post
exchange rate realization (e.g., with the monetary instrument) to increase expected income or smooth
national income �uctuations, that is increase the mean or reduce the variance of YTt − τ̃ R̃∗t

[
ψt−1 +

Et−1ΘtR̃
∗
t /(ωσ

2
t−1)

]
. Note that reducing the variance of national income �rst improves international

risk sharing from the point of view of the home country. Second, the planner may want to increase
the idiosyncratic volatility of the nominal exchange rate, σ2

t , in order to reduce the arbitrageur activity
and thus increase the maximum possible expected income transfers from the noise traders. This policy
of “destabilization” makes intermediation by arbitrageurs more costly, and increases the space and
e�ectiveness for the government FX interventions.

Volatility of central bank’s balance sheet The policy of FX interventions, whether it results in
UIP deviations or not, leads to ex post income or losses borne by the central bank, even when expected
incomes and losses might be zero. In particular, the ex post income of the central bank is given by
R̃∗t+1

F ∗t
R∗t

=
[
1 − Rt

R∗t

Et
Et+1

]
F ∗t and its variance is given by σ2

t · (F ∗t /R∗t )2. Thus, two of the possible
constraints on the central bank’s balance sheet may be non-negative foreign reserves F ∗t ≥ 0 or a
value at risk constraint |F ∗t | ≤ αR∗t /σt. Both constraints may limit the ability of the central bank to
implement the optimal policies, and in particular the policy F ∗t = B∗t −N∗t from Proposition 1 may be
infeasible.

18The maximum expected income equals 1
4
τ̃ωσ2

tψ
2
t , and it is achieved when Zt = − 1

2
ωσ2

tψt, or equivalently F ∗t =
B∗t − 1

2
N∗t = B∗t − 1

2
R∗tψt. The optimal intervention additionally takes into account the welfare loss from the risk-sharing

wedge which is second order in Zt.
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Furthermore, the region of feasibility may not be connected, as there is a feedback between policy
F ∗t and equilibrium exchange rate volatility σ2

t . More speci�cally, limited interventions F ∗t may result
in large equilibrium exchange rate volatility σ2

t , while large interventions, vice versa, limit signi�cantly
the equilibrium σ2

t , thus possibly making the intermediate levels of interventions infeasible — a vague
analogy with an inverse La�er curve in taxation.

Finally, in cases when su�ciently large interventions are infeasible, and the lowest achievable σ2
t

with FX interventions is large, a fully �xed exchange rate by means of monetary policy may be superior
relative to the output-gap stabilizing monetary policy and the best feasible FX interventions. This can
be the case, in particular, even if the divine coincidence of Propositions 2 is not satis�ed. Thus, this
o�ers a justi�cations for some exchange rate pegs that are adopted despite the resulting output gaps
and suboptimal real exchange rate under the peg.

Capital controls So far, we have left out capital controls from our considerations. Indeed, Proposi-
tions 1 and 2 show that optimal allocations can be attained without any use of capital controls, as long
as there are no international transfers (τ = 1 in (3)) and both monetary policy and FX interventions
are available and unconstrained.19 As soon as we consider the full policy problem (6) which features a
general budget constraint (3) with a possibility of transfers, the capital controls become useful.

In particular, consider the full policy problem (6) with three constraints — the budget constraint (3)
and two Euler equations, (4) with R∗t and (2) with Rt, while treating equation (1) as the de�nition of Et
in the other equations (in the same way as the σ2

t de�nition in (4)). The only technological constraint is
the budget constraint, and it cannot be relaxed, while the two Euler equations can be relaxed provided
enough policy instruments. Indeed, FX interventions relax the risk sharing constraint (4), while capital
controls on households (or other intertemporal taxes) relax the household Euler equation (2). This
e�ectively makes Rt a free choice variable, allowing the government to manipulate UIP deviations
with both F ∗t and capital controls, thus further maximizing the rents that can be extracted from noise
traders. In general, these rents are limited by the intermediation of arbitrageurs, unless separate capital
controls can be levied on the arbitrageurs as well.

19There remains a questions of whether FX interventions or capital controls are a more desirable policy instrument? Indeed,
under certain circumstances, theoretically, capital controls are perfectly substitutable with FX interventions, with the only
di�erence that FX interventions eliminate the UIP wedge, while capital controls compensate domestic households for the
associated risk premium (provide a subsidy or a tax to ensure that their intertemporal decision is undistorted). From the
informational point of view, both instruments require the observation of the expected UIP deviations, EtΘt+1R̃

∗
t+1. One can

argue, however, that �exible state-speci�c FX interventions by the central bank are easier to implement than a comparable
state-contingent capital taxes and subsidies on international �nancial transactions. On the other hand, to the extent there
is a �xed permanent component of the UIP deviations, it may be easier to address it with a constant capital controls tax
(or subsidy).
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5 Linear-Quadratic Policy Problem

Lemmas 4 and 5 characterize the equilibrium system and the quadratic objective function respectively
in the linearized environment, and we reproduce the general linear-quadratic policy problem here:

min
{xt,zt,et,b∗t ,f∗t ,σ2

t }

1

2
E0

∑∞

t=0
βt
[
γz2

t + (1− γ)x2
t

]
subject to βb∗t = b∗t−1 − zt,

Et∆zt+1 = −ω̄σ2
t (ιb

∗
t − n∗t − f∗t ),

σ2
t = Ete2

t+1 −
(
Etet+1

)2 where et = q̃t + xt − zt,

given initial net foreign assets b∗−1 and the exogenous path of shocks {q̃t, n∗t }, where q̃t = at− c̃Tt is the
�rst best real exchange rate and n∗t is the aggregate demand for currency (including both fundamental
and noise sources), both described in Section 3.2. We can think of monetary policy as choosing directly
the path of output gap xt, while FX interventions f∗t control the path of the risk sharing wedge zt. The
policies, thus, interact in determining the equilibrium volatility of the exchange rate, σ2

t , which in turn
feeds back into shaping the equilibrium risk sharing wedge without being directly a goal of the policy
in itself. More speci�cally, the goal of the policy is to minimize the weighted average of the volatility
(in the mean squared error sense) of the output gap and the risk sharing wedge.

5.1 First best

The �rst best allocation features xt = zt = 0 for all t, as it is the global minimum of the loss function.
This allocation can be always delivered by a combination of monetary and FX interventions. Specif-
ically, in addition to monetary policy that stabilized output gap, xt = 0 (or wt = at), the optimal
FX interventions are f∗t = ιb∗t − n∗t = −n∗t , since this policy ensures zt = 0, and by consequence
b∗t = 0.20 As a result, the risk sharing wedge is fully o�set, and the optimal international risk sharing
is restored independently of the currency demand shocks n∗t . This solution is time consistent and its
implementation requires no commitment.

Proposition 5 If both policy instruments are available and unconstrained, the optimal policy fully stabi-

lizes both wedges, the output gap xt = 0 and the risk sharing wedge zt = 0, by targeting home PPI in�ation

with monetary policy (wt = at) and demand for currency with FX interventions (ft = ιb∗t − n∗t = −n∗t ).
This solution is time consistent and its implementation requires no commitment.

One notable feature of this result is that capital controls (see below) are not needed for implemen-
tation, as FX interventions are su�cient to achieve �rst best when combined with optimal monetary
policy. The second implication of this result is that FX interventions do not target exchange rate or
insure exchange rate stabilization. The optimal policy ensures xt = zt = 0, which in turn implies that

20Note that the policy rule f∗t = −n∗t also necessarily implies zt = b∗t = 0 as the unique solution, thus resulting in the
same outcome (see characterization in Section 3.2).
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the nominal exchange rate equals the �rst-best real exchange rate:

et = q̃t + xt − zt = q̃t = at − c̃Tt. (16)

Instead, optimal FX interventions eliminate UIP deviations:

it − i∗t − Et∆et+1 = Et∆zt+1 = 0, (17)

where it = logRt − log R̄ = Et{∆cT,t+1 + ∆et+1} and i∗t = logR∗t − log R̄∗ = Et∆c̃T,t+1, as we
describe in footnote 8.

5.2 Divine coincidence

We now study the optimal monetary policy when FX interventions are not available, that is f∗t ≡ 0.
We start we the case in which the �rst best is attainable with a single monetary policy instrument, and
by analogy with the closed economy literature we label this case divine coincidence.

Proposition 6 If the �rst best real exchange rate is stable, q̃t = 0, then monetary policy that fully sta-

bilizes the nominal exchange rate, et = 0, ensures the �rst best allocation with xt = zt = 0, even in the

absence of FX interventions f∗t = 0. An exchange rate peg is superior to in�ation targeting, as it rules out

multiplicity of exchange rate equilibria.

The �rst best solution (16) implies that the nominal exchange rate equals the �rst-best real exchange
rate, et = q̃t. Therefore, if q̃t = 0, then et = 0 is part of the �rst best allocation, and this implies
σ2
t = 0. With σ2

t , however, zt = 0 independently of (b∗t , n
∗
t , f
∗
t ). Hence, if et = 0 is consistent with

xt = zt = 0, then such policy ensures this �rst-best outcome as the unique equilibrium. Indeed, this is
a “divine coincidence”, as targeting one margin — a zero risk-sharing wedge zt = 0 — simultaneously
ensures an e�cient real exchange rate and an absence of the output gap xt = 0.

This case provides a rationale for pegging the exchange rate. Moreover, in this case, a nominal
exchange rate peg by means of monetary policy is not only e�cient, but also e�ective, as it immediately
eliminates the possibility of multiple equilibria. Consider the alternative policy of in�ation targeting
with wt = at, which ensures xt = 0 independently of zt = 0. Under divine coincidence, such policy
is consistent with an equilibrium zt = et = σ2

t = 0, however, this is not a unique equilibrium. Indeed,
consider our example in Section 3.2, where n∗t follows an AR(1). In this case, in light of q̃t = xt = 0,
the solution for the nominal exchange rate is et = −zt = −(1− βλ1)b∗t−1 + βλ1ω̄σ2

1−βρλ1
n∗t , which implies:

σt = σ =
βλ1ω̄σ

2

1− βρλ1
stdt

(
εnt+1

)
.

Thus, it generally adopts a solution with σ = 0 and with σ > 0, the latter being a suboptimal outcome
with zt 6= 0. Thus, under divine coincidence, exchange rate peg dominates in�ation targeting, even
though the outcome of exchange rate peg is stable in�ation in this case.
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How does divine coincidence work? The nominal exchange rate has a dual role. On one hand, its
movements ensure expenditure switching in the goods market, changing the relative price of domestic
(home or non-tradable) and international (foreign or tradable) goods. In the presence of sticky prices,
without such exchange rate movements — and corresponding exchange rate volatility — the real ex-
change rate departs from its �rst-best level and, as a result, the goods market does not achieve the
e�cient allocation, as re�ected in the output gap xt 6= 0. At the same time, nominal exchange rate
volatility, σ2

t > 0, results in UIP deviations for a given (ιb∗t − n∗t − f∗t ) 6= 0, and thus departures from
frictionless international risk sharing, zt 6= 0. These deviations are increasing in the unpredictable ex-
change rate volatility, thus resulting in a con�ict between the two policy objectives, or a policy tradeo�.

Divine coincidence is the situation when this policy tradeo� is absent, as it occurs when the �rst-
best real exchange rate is stable q̃t = 0, and thus et = 0 ensures both xt = 0 and zt = 0 — the
latter due to σ2

t = 0, and the former as a coincidence due to q̃t = 0. Note that in our baseline model,
q̃t = at − c̃Tt re�ecting the Balassa-Samuelson forces in the model with non-tradables. In particular,
if both non-tradable productivity at and tradable endowment yt follow an identical random walk, the
c̃Tt = yt = at, resulting in a divine coincidence q̃t = 0. This is, of course, a knife-edge case which we
do not expect to systematically hold in the data, yet it provides a key benchmark for our analysis and
a stark illustration to the model’s mechanism.

How special is the divine coincidence result? We explore its robustness below, where we show in
particular that it does not rely on the speci�c model of the real exchange rate, namely the Balassa-
Samuelson model with non-tradables and the law of one prices for tradables. What is crucial, however,
is the model of the �nancial market in which ex post stable exchange rate, et+1 = 0, implies ex ante
certainty, namely σ2

t = vart(et+1) = 0, and it in turn guarantees that UIP holds and risk sharing is
undistorted. This nests two assumptions. First, it requires that commitment to a peg is ex ante credible.
Second, it relies on the structure of the model in which a fully stabilized exchange rate eliminates UIP
deviations via the endogenous response of arbitrageurs, who are willing to take unbounded positions
in the absence of exchange rate risk if UIP is violated. If either the peg is not credible, and there is a
chance that et+1 6= Etet+1, or UIP deviations may coexist with σ2

t = 0, then divine coincidence result
breaks down. To the extent a peg eliminates a large portion of UIP deviations, this result nonetheless
may o�er an accurate quantitative approximation, emphasizing robust economic forces at play.
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Appendix

A Derivations and Proofs

Lemma 2 (country budget constraint) Substitute �rm pro�ts Πt = PNtYNt −WtLt and household
consumption expenditure PtCt = PNtCNt + PTtCTt into the household budget constraint and use
market clearing CNt = YNt to obtain:

Bt
Rt
−Bt−1 = NXt + Tt,

where NXt = PTtYTt − PTtCTt = Et(YTt − CTt). Next combine the household and government
budget constraints to obtain:

Bt + Ft
Rt

+
EtF ∗t
R∗t
−Bt−1 − Ft−1 − EtF ∗t−1 = NXt + τEtπ∗t .

De�neB∗t such that B
∗
t

R∗t
=

F ∗t
R∗t

+ Bt+Ft
EtRt and use the market clearingBt+Dt+Nt+Ft = 0 and Lemma 1

that B∗t = D∗t +N∗t + F ∗t to rewrite:

EtB∗t
R∗t
− EtB∗t−1 + Et(D∗t−1 +N∗t−1) + (Dt−1 +Nt−1) = NXt + τEtπ∗t .

Finally, recall that π∗t = R̃∗t
D∗t−1+N∗t−1

R∗t−1
=
[
1− Rt−1

R∗t−1

Et−1

Et

]
(D∗t−1 + N∗t−1). Subtract Etπ∗t on both sides

of the budget of the budget constraint to obtain:

EtB∗t
R∗t
−EtB∗t−1 + (Dt−1 +Nt−1) +

Rt−1

R∗t−1

Et−1(D∗t−1 +N∗t−1)︸ ︷︷ ︸
=0 as zero capital portfolio at t− 1

= NXt− (1− τ)R̃∗t
Et(D∗t−1 +N∗t−1)

R∗t−1

,

Divide through by Et, use the fact that NXt/Et = YTt − CTt, and Lemma 1 that D∗t−1 + N∗t−1 =

B∗t−1 − F ∗t−1 to rewrite:

B∗t
R∗t
−B∗t−1 = (YTt − CTt)− (1− τ)R̃∗t

Et(B∗t−1 − F ∗t−1)

R∗t−1

,

completing the proof of the lemma. �
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Proposition 1 (constrained optimum) The planner solves in this case:

W0 = max
{CTt,B∗t ,Et,Rt,Wt,F ∗t ,σ

2
t }
E0

∞∑
t=0

βt
[
γ logCTt + (1− γ)

(
logWt −

Wt

At

)]
,

subject to
B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CT,t+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

, σ2
t = R2

t · vart

( Et
Et+1

)
,

βRtEt
{

CTt
CT,t+1

Et
Et+1

}
= 1, Et =

γ

1− γ
Wt

CTt
.

The Lagrange multipliers on all constraints, but the budget constraint must be zero, and thus the prob-
lem is equivalent to maximizing the objective with respect to {CTt, B∗t ,Wt} subject to the budget
constraint only. First, note that Lagrange multipliers on the two constraints in the third line must be
zero: sinceF ∗t enters only one constraint, and σ2

t enters only one other constraint, and neither enter the
objective, F ∗t can be chosen to relax both constraints (ensure zero multipliers). Second, dropping these
constraints, optimization over Rt and Et, which are featured only in the two of the remaining three
constraints and not in the objective, ensures zero Lagrange multiplier on those constraints as well.

Solving the remaining problem, as stated in the proposition, results in the solution {C̃Tt, B̃∗t , W̃t}
with W̃t = At and {C̃Tt, B̃∗t } the unique solution of:

βR∗tEt{CTt/CT,t+1} = 1 and
B∗t
R∗t
−B∗t−1 = YTt − CTt.

Using the remaining constraints of the problem, we back out {Ẽt, R̃t, F̃ ∗t , σ̃2
t }, and in particular we have

F̃ ∗t = B̃∗t −N∗t and Ẽt = γ
1−γ

At
C̃Tt

. �

Proposition 2 (divine coincindence) ... �
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Proposition 3 (single instrument)

max
{CTt,CNt,B∗t ,Et,Rt,F ∗t ,σ2

t }
E0

∞∑
t=0

βt
[
γ logCTt + (1− γ)

(
logCNt −

CNt
At

)]
,

B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CT,t+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

,

βRtEt
CNt
CN,t+1

= 1,

Et =
γ

1− γ
CNt
CTt

,

σ2
t = R2

t · vart

( Et
Et+1

)
.

max
{CTt,CNt,B∗t ,Et,Rt,σ2

t }
E0

∞∑
t=0

βt
[
γ logCTt + (1− γ)

(
logCNt −

CNt
At

)]
,

subject to
B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CT,t+1

= 1 + ωσ2
t

B∗t −N∗t
R∗t

,

βRtEt
CNt
CN,t+1

= 1,

Et =
γ

1− γ
CNt
CTt

,

σ2
t = R2

t · vart

( Et
Et+1

)
.

which reduces to by solving out Rt and Et using the 3rd and 4th constraints:

max
{CTt,Γt,B∗t ,σ2

t }
E0

∞∑
t=0

βt
[
γ logCTt − (1− γ)

(
log Γt +

1

AtΓt

)]
,

subject to
B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CT,t+1

= 1− ωσ2
t

N∗t −B∗t
R∗t

,

β2C2
Tt(EtΓt+1)2σ2

t = Et
(
Γt+1CT,t+1

)2 − (EtCT,t+1)2 (EtΓt+1)2,
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where Γt ≡ 1/CNt. Use Lagrange multipliers (λt, µt, δt) for the three constraints:

L = E0

∞∑
t=0

βt

{[
γ logCTt − (1− γ)

(
log Γt +

1

AtΓt

)]
+ λt

[
B∗t−1 + YTt − CTt −

B∗t
R∗t

]
+ µt

[
1− ωσ2

t

N∗t −B∗t
R∗t

− βR∗tEt
CTt
CT,t+1

]
+ δt

[
β2C2

Tt(EtΓt+1)2σ2
t + (EtCT,t+1)2 (EtΓt+1)2 − Et

(
Γt+1CT,t+1

)2]}
.

Note that µt has the same sign as σ2
t (N

∗
t −B∗t ) so that µtσ2

t (N
∗
t −B∗t ) ≥ 0 and δt ≥ 0, with equalities

only if σ2
t (N

∗
t − B∗t ) = 0. Also note that Et in the Lagrangian stands for

∑
st+1

πt(st+1), where
πt+1 = πt(st+1) is the probability of state st+1 at t + 1 conditional on state st at t. We need to take
FOCs with respect to σ2

t and Γt+1 in state st+1:

− µtω
N∗t −B∗t

R∗t
+ δtβ

2C2
Tt(EtΓt+1)2 = 0,

βπt+1(1− γ)
1

Γt+1

(
1

At+1Γt+1
− 1

)
+ 2δtπt+1

[ (
β2C2

Ttσ
2
t + (EtCT,t+1)2

)
(EtΓt+1)− C2

T,t+1Γt+1

]
= 0.

We simplify and rewrite:

δtβ
2C2

Tt(EtΓt+1)2 = µtω
N∗t −B∗t

R∗t
,

β(1− γ)

(
1

At+1Γt+1
− 1

)
= 2δt

[
(Γt+1CT,t+1)2 −

(
β2C2

Ttσ
2
t + (EtCT,t+1)2

)
(EtΓt+1)Γt+1

]
.

Next take the expectation Et of the second condition and use the de�nition of σ2
t to simplify:

β(1− γ)Et
(

1

At+1Γt+1
− 1

)
= 2δt

[
Et(Γt+1CT,t+1)2 −

(
β2C2

Ttσ
2
t + (EtCT,t+1)2

)
(EtΓt+1)2

]
= 0

as the RHS corresponds to the de�nition of σ2
t . Thus, average output gap is zero. Now substitute out δt:

β(1− γ)

(
1

At+1Γt+1
− 1

)
=

2ωµt
β2

N∗t −B∗t
R∗t

[
(Γt+1CT,t+1)2

C2
Tt(EtΓt+1)2

−
Et
(
Γt+1CT,t+1

)2
C2
Tt(EtΓt+1)2

Γt+1

EtΓt+1

]
,

where we used:

β2σ2
t + (EtCT,t+1/CTt)

2 =
Et
(
Γt+1CT,t+1

)2
C2
Tt(EtΓt+1)2

.

Rewrite in terms of CNt and Et:

β(1−γ)

(
CN,t+1

At+1
− 1

)
=

2ωµt
β2

Et(N∗t −B∗t )

R∗t

[
(1/Et+1)2

(Et CTt
CT,t+1

Et
Et+1

)2
−

Et
(
1/Et+1

)2
(Et CTt

CT,t+1

Et
Et+1

)2

1/(Et+1CT,t+1)

Et1/(Et+1CT,t+1)

]
,
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and further simplify by noting that Et CTt
CT,t+1

Et
Et+1

= Et Wt
Wt+1

= 1/(βRt):

β(1− γ)

(
CN,t+1

At+1
− 1

)
= 2ωR2

tµt
Et(N∗t −B∗t )

R∗t

[
1

E2
t+1

− Et
1

E2
t+1

1/(Et+1CT,t+1)

Et1/(Et+1CT,t+1)

]
,

or

β(1− γ)

(
CN,t+1

At+1
− 1

)
= 2ωR2

tµt
Et(N∗t −B∗t )

R∗t Et+1CT,t+1

[
CT,t+1

Et+1
−

Et
(
1/Et+1

)2
Et1/(Et+1CT,t+1)

]
,

or

βγCN,t+1

(
CN,t+1

At+1
− 1

)
= 2ωR2

tµt
Et(N∗t −B∗t )

R∗t

[
CT,t+1

Et+1
−

Et
(
1/Et+1

)2
Et1/(Et+1CT,t+1)

]
,

or

βγCN,t+1 (Xt+1 − 1) =
2EtR2

tµtZt
σ2
t

[
CT,t+1

Et+1
−

Et
(
1/Et+1

)2
Et1/(Et+1CT,t+1)

]
,

Increase CN,t+1 above At+1 when CT,t+1 is particularly high, and vice versa, to reduce σ2
t and thus

the period t risk sharing wedge Zt.
�
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