Debt Moratorium: Theory and Evidence

Yasin Kürşat Önder Maria A. Ruiz Mauricio Villamizar
Ghent University Central Bank of Colombia Central Bank of Colombia

May 09, 2022

The opinions contained in this document are the sole responsibility of the authors and do not commit Banco de la República nor its Board of Directors
Motivation, why is it important?

A world of record-high debt levels, both public and private

- Shocks to private debt and government alleviation policies are at the center of macroeconomic debates.

- Debt moratorium, which refers to stipulating payment suspensions or extending the maturity of debt instruments plays a central role in these discussions.
Moratorium policies (Covid-19)
Moratorium policies (Covid-19)

<table>
<thead>
<tr>
<th>Country</th>
<th>Regulation issued date</th>
<th>Eligibility Criteria (days past due)</th>
<th>Cutoff date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panama</td>
<td>March 17</td>
<td>< 90</td>
<td>March 17</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>March 20</td>
<td>< 90</td>
<td>March 20</td>
</tr>
<tr>
<td>Cabo Verde</td>
<td>April 1</td>
<td>≤ 90</td>
<td>March 28</td>
</tr>
<tr>
<td>Cyprus</td>
<td>March 30</td>
<td>< 30</td>
<td>Dec 31, 2019</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>May 1</td>
<td>< 30</td>
<td>May 1</td>
</tr>
<tr>
<td>Malaysia</td>
<td>April 1</td>
<td>< 90</td>
<td>April 1</td>
</tr>
<tr>
<td>Malta</td>
<td>April 14</td>
<td>0</td>
<td>February 29</td>
</tr>
<tr>
<td>Montenegro</td>
<td>March 20</td>
<td>≤ 90</td>
<td>Dec 31, 2019</td>
</tr>
<tr>
<td>Romania</td>
<td>March 30</td>
<td>0</td>
<td>March 2</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>March 31</td>
<td>< 90</td>
<td>March 31</td>
</tr>
</tbody>
</table>
What we do

Three things:

1. Provide a theoretical explanation with a three period model
2. Empirically evaluate how these measures had an impact on the credit market
 - Debt moratorium policies date back to as early as 1820 for farm foreclosures in NY, USA
 - Provide causal evidence using highly granular loan level Colombian data.
3. A quantitative sovereign default featuring our findings and extend it for policy analysis.
Preview of Our Main Findings

1. Theory predicts different effects when accounting default risk as supply elasticities change.
 - Non-stressed: loan amount depends on elasticity, interest rate ↑
 - Stressed: loan amount ↑, interest rate depends on elasticity

2. A causal link is established for stressed and non-stressed firms.

3. Our quantitative default model can account for our findings effects and show that indebtedness and default risk become preferable as the policy eliminates liquidity concerns.
A three-period model environment

1. One-good, closed economy with competitive lenders and firms.

2. Firms have zero endowment in the first period, that is, $y_1 = 0$ and they discount the future at rate $\beta < 1$ while banks discount rate is taken to be unity for simplicity.

3. The utility function for both the bank and the firm is assumed to take the quasi-linear form, that $u(c) = Ac$ for the initial period and $v(c) = Ac + \frac{\phi}{2}c^2$ with $A > \phi$.

4. With a probability π, a liquidity shock ℓ hits. With the policy in place, payments are deferred to the next period.
A three-period model environment

- The maximization problem of the firm without the debt moratorium policy can be written as

\[
\max_b \left(u(qb) + \beta \left[\left(1 - \pi \right) v (1 - \delta b) + \pi v (1 - \delta b - \ell) \right] + \beta v (1 - (1 - \delta) b + \ell) \right)_{t_1} + \beta v (1 - (1 - \delta) b + \ell)_{t_2} + \beta v (1 - (1 - \delta) b + \ell)_{t_3}
\]
\[
\text{subject to } c \geq 0.
\] (1)

- FOC with the fraction of payment in \(t_2\) \((\delta = 1/2)\)

\[
b(q) : 2 \frac{A(q - \beta) + \beta \phi}{\beta \phi}.
\] (2)
With the policy

- The maximization problem of the firm with the debt moratorium policy

\[
\max_{b^P} u(qb^P) + \beta \left[(1 - \pi) v (1 - \delta b^P) + \pi v (1 - \ell) \right] + (3)
\]

\[
\beta \left[(1 - \pi) v (1 - (1 - \delta) b^P) + \pi v (1 + \ell - b^P) \right]
\]

Deferred payments are done

subject to \(c \geq 0 \).

The solution to this problem is

\[
b^P(q) : \quad 2 \frac{A(q - \beta)}{\beta \phi} + \beta \frac{\pi (A - \phi) + \pi \phi \ell}{\beta \phi}.
\]
Lender’s problem

- The maximization problem with and without the policy:

\[
\max_b \quad u(1 - qb) + v(1 + \delta b) + v(1 + (1 - \delta)b) \\
\text{subject to } c \geq 0.
\] (5)

- With the policy it reads

\[
\max_{b^p} \quad u(1 - q b^p) + \left[(1 - \pi) v(1 + \delta b^p) + \pi v(1) \right] + \left[(1 - \pi) v(1 + (1 + \delta)b^p) + \pi v (1 + b^p) \right] \\
\text{subject to } c \geq 0.
\] (6)
The solution to these problems are

\[b(q) : 2 \frac{A(1 - q) - \phi}{\phi}, \quad (7) \]

\[b^p(q) : 2 \frac{A(1 - q) - \phi}{\phi(1 + \pi)}. \quad (8) \]
Results

Figure: Demand and supply of loans with and without the policy.
When default risk is accounted

- The solution to firm’s problem

\[
\begin{align*}
b(q) & : \ 2 \frac{A(q - \beta) + \beta \phi}{\beta \phi - 2A \frac{\partial q}{\partial b}} , \\
& \quad \text{always} \geq 0
\end{align*}
\]

\[
\begin{align*}
b^p(q) & : \ 2 \frac{A(q - \beta) + \beta \phi + \beta \pi(A - \phi) + \pi \phi \ell}{\beta \phi - 2A \frac{\partial q}{\partial b}} - 2A \frac{\partial q}{\partial b} , \\
& \quad \text{always} \geq 0
\end{align*}
\]

- The solution to lenders’ problem

\[
\begin{align*}
b(q) & : \ 2 \frac{A(1 - q) - \phi}{\phi + 2A \frac{\partial q}{\partial b}} , \\
& \quad \text{depends on price’s responsiveness}
\end{align*}
\]

\[
\begin{align*}
b^p(q) & : \ 2 \frac{A(1 - q) - \phi}{\phi(1 + \pi) + 2A \frac{\partial q}{\partial b}} .
\end{align*}
\]
During crisis, that is, when price q is highly responsive to the loan amount b, $\frac{\partial q}{\partial b}$.

Figure: Demand and supply of loans with and without the policy when default risk is accounted.
Empirical strategy

Data

- Colombian credit registry (at the loan level) from Q1-2019 to Q4-2020 (4.4 million observations).
 - Includes information on: interest rates, maturities, amounts, issuance dates, expiration dates, ex-ante credit ratings

- Yearly firm-level balance sheet information (corporate registry, 250,000 observations)

- The database has a total of 37 private banks and 9,000 firms and we match 563,000 loans of which 292,000 correspond to new loans.
Identification

- Regression Discontinuity Design
 1. Eligibility criterion according to how the Colombian regulation was enacted: eligible borrowers could not exceed 60 past due days on their credit as of the 29th of February 2020.
 2. So firms who defaulted before/after January 1st 2020 are expected to be ex-ante to have similar characteristics as they barely meet/miss the criteria.
Descriptives

Figure: Treated and Non treated Loans and McCrary’s Test

(a) Treatment Distribution

(b) McCrary’s Test

- McCrary test doesn’t reject the null hypothesis with a p-value of: 5%
Empirical model

Assignment of treatment:

\[\hat{D}_{ij,t} = 1 \{ X_{ij,t} \geq 0 \} \]

We estimate:

\[
\arg \min_{\theta} \sum_{i,j=1}^{I \times J} \sum_{t=0}^{T} \left[\text{Loan}_{ij,t+1} - \alpha - \theta \hat{D}_{ij,t} - b(X_{ij,t}) - \tau \hat{D}_{ij,t}(X_{ij,t}) \right]^2 K \left(\frac{X_{ij,t}}{h} \right)
\]

(14)

- \(\theta = (\theta_1, ..., \theta_J)' \) are impulse-response coefficients for \(D_t \)
- \(K(\cdot) \) is a kernel function
- \(h \) is the bandwidth (Calonico, 2014)
Main challenges

- In 2007 the Financial Superintendency enacted a provisioning scheme based on the same number of non-performing days as those used to grant the debt moratorium benefit to corporates.

- Hence, to disentangle the effects of the debt moratorium policy, we use pre-pandemic “placebo” time periods ($\hat{\theta}_{Pre_Pandemic}$), in which only the provision effect was active.

 - To narrow in on these placebos, i.e. to make them more comparable with θ, we restrict the same firms that had an existing credit line in Q1 of 2020.

- “RDD Difference-in-Difference”: $\hat{\theta} - \hat{\theta}_{Pre_Pandemic}$
Results (Stressed firms)

<table>
<thead>
<tr>
<th></th>
<th>Loan Amount</th>
<th>Provision</th>
<th>Credit Rating</th>
<th>Days past due</th>
<th>Interest rate</th>
<th>Maturity</th>
<th>Collateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.114**</td>
<td>0.048*</td>
<td>0.020</td>
<td>-49.220***</td>
<td>-6.018***</td>
<td>0.639</td>
<td>0.084**</td>
<td></td>
</tr>
<tr>
<td>(0.0475)</td>
<td>(0.0268)</td>
<td>(0.107)</td>
<td>(7.247)</td>
<td>(0.573)</td>
<td>(0.593)</td>
<td>(0.0345)</td>
<td></td>
</tr>
<tr>
<td>w/bank &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.078**</td>
<td>0.037***</td>
<td>0.019</td>
<td>-33.82***</td>
<td>-3.976***</td>
<td>0.020</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>(0.0401)</td>
<td>(0.0152)</td>
<td>(0.0570)</td>
<td>(11.24)</td>
<td>(0.125)</td>
<td>(0.480)</td>
<td>(0.0506)</td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>587,843</td>
<td>573,888</td>
<td>587,843</td>
<td>575,413</td>
<td>533,781</td>
<td>451,273</td>
<td>585,997</td>
</tr>
<tr>
<td>Restricted Firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.102***</td>
<td>0.044*</td>
<td>-0.034</td>
<td>-34.790***</td>
<td>-4.745***</td>
<td>0.755</td>
<td>0.078**</td>
<td></td>
</tr>
<tr>
<td>(0.0303)</td>
<td>(0.0239)</td>
<td>(0.0980)</td>
<td>(8.340)</td>
<td>(1.046)</td>
<td>(0.613)</td>
<td>(0.0348)</td>
<td></td>
</tr>
<tr>
<td>w/bank &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.073***</td>
<td>0.036</td>
<td>0.018</td>
<td>-26.15***</td>
<td>-3.366***</td>
<td>0.252</td>
<td>0.052**</td>
<td></td>
</tr>
<tr>
<td>(0.0275)</td>
<td>(0.0310)</td>
<td>(0.0906)</td>
<td>(8.242)</td>
<td>(0.632)</td>
<td>(0.444)</td>
<td>(0.0236)</td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>391,074</td>
<td>378,510</td>
<td>391,074</td>
<td>383,768</td>
<td>348,753</td>
<td>391,074</td>
<td>389,302</td>
</tr>
</tbody>
</table>
Acknowledge that the causal link is not as clean as the RDD.

Potential selection bias.

We aim to bring theory closer to the data.

<table>
<thead>
<tr>
<th>All firms</th>
<th>Loan Amount</th>
<th>Provision</th>
<th>Credit rating</th>
<th>Days past due</th>
<th>Interest rate</th>
<th>Maturity</th>
<th>Collateral</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.036***</td>
<td>0.007***</td>
<td>-0.026*</td>
<td>0.636</td>
<td>2.012***</td>
<td>0.068</td>
<td>0.036***</td>
<td>1,194,333</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.002)</td>
<td>(0.015)</td>
<td>(0.707)</td>
<td>(0.206)</td>
<td>(0.108)</td>
<td>(0.008)</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Theory</th>
<th>Loan amount</th>
<th>Interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stressed</td>
<td>↑</td>
<td>?</td>
</tr>
<tr>
<td>Non-stressed</td>
<td>?</td>
<td>↑</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empirical</th>
<th>Loan amount</th>
<th>Interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stressed</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Non-stressed</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
Real sector effects

\[y_i = \alpha_{sector} + \alpha_{firm-size} + \beta D_i + \epsilon_i \]

- We control for firm-sector and firm-size fixed effects.
- Employment data are not complete yet. Will update once it is complete.

<table>
<thead>
<tr>
<th></th>
<th>(\Delta) Op. Income</th>
<th>(\Delta) Profit</th>
<th>(\Delta) Assets</th>
<th>(\Delta) Liabilities</th>
<th>(\Delta) Equity</th>
<th>(\Delta) Investment</th>
<th>(\Delta) Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only stressed firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.078***</td>
<td>0.125***</td>
<td>0.029***</td>
<td>0.046***</td>
<td>-0.009</td>
<td>0.029*</td>
<td>0.133***</td>
</tr>
<tr>
<td></td>
<td>(0.0188)</td>
<td>(0.0398)</td>
<td>(0.00761)</td>
<td>(0.00922)</td>
<td>(0.00979)</td>
<td>(0.0174)</td>
<td>(0.0338)</td>
</tr>
<tr>
<td>Obs</td>
<td>16,209</td>
<td>15,255</td>
<td>17,183</td>
<td>16,648</td>
<td>16,141</td>
<td>8,121</td>
<td>4,933</td>
</tr>
<tr>
<td>Only non-stressed firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.016</td>
<td>0.027</td>
<td>0.015***</td>
<td>0.048***</td>
<td>-0.009</td>
<td>0.003</td>
<td>0.150***</td>
</tr>
<tr>
<td></td>
<td>(0.0115)</td>
<td>(0.0226)</td>
<td>(0.00495)</td>
<td>(0.00726)</td>
<td>(0.00614)</td>
<td>(0.0124)</td>
<td>(0.0329)</td>
</tr>
<tr>
<td>Obs</td>
<td>32,755</td>
<td>30,806</td>
<td>34,433</td>
<td>33,613</td>
<td>33,051</td>
<td>15,015</td>
<td>8,030</td>
</tr>
</tbody>
</table>
Model outline

- Add **liquidity shocks** in the form of lenders’ increased risk aversion.

- Introduce production economy

- Each period, the government
 1. observes aggregate income and **liquidity shocks**,
 2. chooses whether to default,
 3. borrows using **non-contingent bonds and contingent debt**
Debt moratorium asset

- Automatic payment suspension with adverse “liquidity” shock.
- If payment suspension clause activates at $t + 1$, unpaid coupon is paid (with interest) when liquidity shock is over.
Recursive formulation (Standard)

Let \(s \equiv (A, p) \) denote the vector of exogenous states

\[
V(b_m, b, s) = \max \left\{ V^R(b_m, b, s), V^D(b_m, b, s) \right\},
\]

\[
c = Af(K, L) - If^f(r^*) - \delta b - [1 - \mathcal{I}(p)] \delta_m b_m + q(b', b'_m, s)i + q_m(b', b'_m, s)i_m,
\]

\[
i = b' - b(1 - \delta),
\]

\[
i_m = b'_m - [1 - \mathcal{I}(p)] b_m(1 - \delta_m) - \mathcal{I}(p)b_m e^{r_m},
\]

\[
q(b', b'_m, s) \geq q \ \forall \ b' > b(1 - \delta),
\]

\[
q_m(b', b'_m, s) \geq q \ \forall \ b'_m > [1 - \mathcal{I}(p)] b_m(1 - \delta_m) + \mathcal{I}(p)b_m e^{r_m},
\]

\(r_m \) is suspension rate.
Equilibrium bond prices

\[d' = \text{next-period default decision} = \hat{d}(b', b'_m, s'), \]
\[b'' = \text{next-period non-contingent debt decision} = \hat{b}(b', b'_m, s'), \]
\[b''_m = \text{next-period debt moratorium decision} = \hat{b}_m(b', b'_m, s'). \]

\[q(b', b'_m, s) = \mathbb{E}_{s'|s} \left[M(\varepsilon', p) \left[d' \alpha q \left(\alpha b', \alpha b'_m, s' \right) \left(1 - d' \right) \left[\delta + (1 - \delta)q \left(b'', b''_m, s' \right) \right] \right] \right], \quad (15) \]

\[q_m(b', b'_m, s) = \mathbb{E}_{s'|s} \left[M(\varepsilon', p) \left[d' \alpha q_m \left(\alpha b', \alpha b'_m, s' \right) \left(1 - d' \right) \left[\delta + (1 - \delta)q_m \left(b'', b''_m, s' \right) \right] \right] + \left(1 - d' \right) \left[\left[1 - \mathcal{I}(p', g') \right] \left[\delta_m + (1 - \delta_m)q_m \left(b'', b''_m, s' \right) \right] \right] + \mathcal{I}(p', g') e^{r_m} q_m \left(b'', b''_m, s' \right) \right] \]
Parameterization

- Follow Hachtondo et al. (2022) for global liquidity shock:
 - Three 1.25-year p_H episodes every 20 years, o.w. $p_L = 0$
 - Spread is on average 200 basis points higher with p_H
 - With negative correlation between shocks to global risk premia and domestic income shocks

$$Pr(p' = 1 \mid p = 0) = \min \left\{ \pi_{lh} e^{-\lambda \log(y')} - 0.5 \sigma_{\log(y)}^2 \lambda^2, 1 \right\}$$

- Parameter λ determines correlation between global premium shocks and domestic endowment.
Long-run Simulation results

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Benchmark</th>
<th>With Moratorium Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean debt/y (%)</td>
<td>38.3</td>
<td>36.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Mean moratorium debt/y (%)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>42.0</td>
</tr>
<tr>
<td>Mean r_s (%)</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Mean moratorium r_s (%)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.7</td>
</tr>
<tr>
<td>Defaults per 100 years</td>
<td>2</td>
<td>2.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Duration</td>
<td>5.0</td>
<td>5.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Duration moratorium</td>
<td>n.a.</td>
<td>n.a.</td>
<td>6.0</td>
</tr>
<tr>
<td>Probability high-risk-premium starts (%)</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Lower income during high-risk-premium (%)</td>
<td>4.0</td>
<td>4.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Δr_s with high-risk-premium shock</td>
<td>2.0</td>
<td>2.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Δr_s moratorium with high-risk-premium shock</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.7</td>
</tr>
<tr>
<td>Fraction of defaults triggered by liquidity (%)</td>
<td>3.2</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Welfare gains

- Equivalent % increase in consumption.
- Initial debt = mean debt in the simulations.

Figure: Welfare gains from switching to debt moratorium economy
Tightening the link between empiric and model

- Policy increases the investment for distressed firms as interest rate declines.
- Policy eliminates liquidity related delinquencies (but may generate higher delinquencies in the future if not addressed).
- For non-stressed firms, interest rates are higher.
Ways to improve the contract design

Welfare gains

- Equivalent % increase in consumption.
- Initial debt = mean debt in the simulations.
Conclusions

- Non-stressed firms: loan amount ↓, interest rate ↑
- Stressed firms: loan amount ↑, interest rate ↓
- The stressed firms that receive the treatment improve compared with those that don’t.
Thank you!