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Abstract

What are the effects of commercial real estate regulations on output, welfare, and the spatial alloca-
tion of workers and business activity across the U.S.? To answer this question, we develop a dynamic,
spatial, general equilibrium model that yields an intuitive formula for identifying the extent to which
commercial real estate investment decisions are distorted by zoning codes and other regulations. We
apply our theory to the near-universe of commercial property tax records from CoreLogic in order
to develop a model-consistent index of commercial regulations. We validate our index of commercial
real estate regulations by showing that among the cities for which zoning codes are reported in CoreL-
ogic, our index of commercial regulations positively correlates with several salient facets of statutory
zoning restrictions. We then use our estimated model to evaluate both national and local changes
to commercial regulations. Moderately loosening commercial regulation across all U.S. cities yields
welfare gains worth 0.9% to 2.8% of lifetime consumption, depending on the counterfactual. We also
measure how moving specific commercial parcels “up” zoning code rungs – with higher rungs being
less regulated– affects output and the spatial location of business activity. In New York City alone,
we find that moving each commercial parcel “up” three zoning codes rungs yields large local output
gains of 6.2%.
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1 Introduction

The simultaneous occurrence of low productivity growth (e.g. Fernald (2015) and Syverson (2017)), ris-
ing house prices in productive regions (e.g. Ganong and Shoag (2017)), and declining worker reallocation
across U.S. states (e.g. Molloy, Smith, and Wozniak (2014)) has spurred a large and growing literature
that uses equilibrium conditions and microeconomic data to measure the aggregate effects of residential
zoning restrictions (e.g. Hsieh and Moretti (2019), Herkenhoff, Ohanian, and Prescott (2018), Martellini
(2019), and Colas and Morehouse (2020) among others). Across a range of methodologies, estimated
welfare gains from moderate reductions in the stringency of residential real estate regulations are large,
commensurate with the $36 trillion dollar value of existing residential housing.1

While residential regulations have been studied and debated extensively, commercial regulations have
attracted less attention despite the $17 trillion dollar value of commercial real estate.2 Commercial struc-
tures are also an important factor of production for most goods and services, comprising nearly 20%
of the U.S. fixed asset stock.3 We hypothesize that just as high apartment rents deter talented workers
from America’s most productive cities, high rental payments for commercial buildings do the same for
businesses. In this paper, we develop a theory that allows us to measure the effects of commercial real
estate regulations on welfare, productivity, and the spatial allocation of workers and business activity
across the U.S. We use our theory to estimate address-level regulatory distortions from the near-universe
of commercial property tax records. Moderately loosening commercial regulation across all U.S. cities
yields welfare gains worth 0.9% to 2.8% of lifetime consumption.

Our paper makes three contributions. First, we develop a dynamic, spatial, general equilibrium
model that yields an intuitive formula for identifying the extent to which commercial real estate invest-
ment decisions are distorted by zoning codes and other regulations.4 In our framework, commercial
buildings are combined with capital and labor to produce goods and services, and we explicitly model
the intermediate production of commercial buildings. Zoning laws, as well as other regulatory restric-
tions, enter the problem by distorting the amount of commercial building square footage that is placed
on a plot of land. Optimization of commercial landlords implies an intuitive formula for identifying the
degree to which commercial real estate is distorted: properties with higher land shares of total building
value are more distorted. The primary benefit of this formula is that it relies on simple statistics available
in a number of datasets. Crucially, our regulatory distortions do not directly enter factor prices, which
means they are not commingled with factors that affect rents per building square foot (such as a desirable
location) or the cost of improvements (such as the physical difficulty of building in certain locations).

Our second contribution is to apply our theory to the near-universe of commercial property tax
records from CoreLogic in order to develop a model-consistent index of commercial regulations. We

1This is the 2020 value as estimate by Zillow, https://www.zillow.com/research/

zillow-total-housing-value-2020-28704/
2See to a report by NAREIT (2019).
3See NIPA Table 1.1, “Current-Cost Net Stock of Fixed Assets and Consumer Durable Goods,’ at US Bureau of Economic

Analysis (2021b).
4Building codes, review boards, etc. are policies captured by our address-level regulatory distortions.
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base our analysis on a rich source of address-level, a.k.a. parcel-level, micro-data: municipal tax assess-
ments compiled by CoreLogic. It includes the market- and assessment- based estimates of the total parcel
value, land value, and structure value (a.k.a. improvement value) as well as building square footage and
alphanumeric zoning codes, among other fields. Despite CoreLogic’s comprehensive coverage of the
commercial real estate market, we face three major measurement challenges: (1) most regulatory restric-
tions are unobserved in our data, and zoning codes are only observed in roughly half of our sample, (2)
even among properties with non-missing zoning codes, zoning codes have different meanings in differ-
ent locations (e.g. zoning code C1 in city A has height limits, whereas C1 in city B does not), and (3) most
regulatory restrictions are highly multi-dimensional, with zoning codes alone taking on many different
attributes (including height limits, setbacks, floor-area-ratios, etc.).

Our theory provides the insights necessary to address these challenges by showing that commer-
cial regulations are identified from land and improvement values alone. Applying our formula to each
individual commercial property in the CoreLogic database, we obtain an address-level index of commer-
cial regulatory distortions. This index collapses the multidimensional heterogeneity of zoning laws and
building regulations, of which it is near-impossible to determine the facets that may be binding, into a
single, model-consistent metric.

We validate our index of commercial regulations in several ways. Among a subset of cities for which
zoning codes are available, we hand-collected zoning code attributes, and we show that our index of
commercial regulations is correlated with statutory floor area ratios (which restrict the ratio of building
square footage to land square footage) and height limits (which restrict the physical height of the build-
ing).5 These correlations between our regulatory index and statutory zoning restrictions are positive,
yet imperfect, implying that floor-area ratios and height limits alone are insufficient to summarize the
myriad distortions generated by complex zoning laws and other forms of regulation.

We then examine how our commercial regulations compare across cities. Our results confirm the
common prior that cities in Texas such as Dallas-Fort Worth and Houston face significantly weaker com-
mercial real estate regulation than cities in California, and more generally we find that coastal cities face
the most severe distortions to commercial real estate production. Houston provides a useful litmus test
since it famously lacks zoning laws. We correctly identify Houston as a relatively undistorted – but not
the least distorted– city. While Houston lacks zoning laws, city ordinances and private deed restrictions
distort commercial real estate investment, and these zoning-code-workaround are reflected in our index.
According to our data, the least distorted city is Midland, Texas while the most distorted city is Urban
Honolulu, Hawaii.

Unlike many other attempts to measure the strength of local real estate regulations, such as the Whar-
ton Land Use Regulatory Index of Gyourko, Saiz, and Summers (2008), our measurement derives the
strength of regulations from a micro-founded model. We use a production-function based approach

5Note that for many cities, the details of zoning code laws are not available online. Moreover, most zoning code handbooks
are technical and opaque legal documents. These factors prevent systematic compilation of zoning codes across the U.S.,
even for a small subset of characteristics. The extent of regulations (including zoning codes) also cannot be extracted from
construction costs indices (which include building codes), such as RSMeans. This is partly due to their limited sampling of
buildings across cities, and partly because—as we will discuss in Section 2.3.1—regulations need not influence costs directly.
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and treat regulations as a distortion in the parcel-level builder’s problem. This allows us to distinguish
regulatory factors from demand factors that affect rents per building square foot and differential costs
of building across locations. Unlike the qualitative questions in Gyourko, Saiz, and Summers (2008),
from which principal component analysis yields the headline regulatory factor, our approach also al-
lows us to express zoning and other regulatory distortions in real terms, making it easily incorporated in
quantitative models. Lastly, our method yields a time series of commercial regulations, providing future
researchers with the opportunity to evaluate the effectiveness of zoning and regulatory reforms.

Our third contribution is quantitative. We evaluate both national and local changes to commercial
regulations. In our primary exercise, we raise average city-level regulations up to a deregulated bench-
mark (Midland, Texas) and solve for the new steady state, while leaving the dispersion of parcel-level
regulations unaltered.6 National output increases by 2.9% as commercial investment booms and work-
ers reallocate from the midwest to the now-less-regulated states of Florida, California, Oregon, and Min-
nesota. Notably, the building stock increases by 17%. Because removing these regulations improves the
allocative efficiency of the economy, the measured Solow residual increases by 2.3%. At the same time,
landlord profits fall as building supply expands and rental rates of commercial real estate decline.

Our framework also allows for very granular counterfactuals within narrowly defined geographies.
Because we recover regulatory distortions at the parcel-level, we can project our distortions down onto
specific features of zoning codes such as floor area ratios. We apply this counterfactual to New York City.
We find that doubling the floor area ratio in New York City would reallocate business activity toward the
upper west-side of Manhattan, and yield local output gains of 0.7%. We can also measure how moving
specific commercial parcels “up” zoning code rungs – with higher rungs being less regulated– affects
output and the spatial location of business activity. We apply this counterfactual to New York City as
well, and we find that moving each commercial parcel “up” three zoning codes rungs yields large local
output gains of 6.2%. The building stock increases by 15%, and 3.9% more workers enter the New York
metro area.

Our counterfactual exercises continue to yield large output gains from commercial deregulation if we
(1) recalibrate the economy so that 40% of the workforce is in a remote-work sector which does not rely
on commercial buildings to produce, and (2) incorporate disamenities of congestion. By addressing the
latter, we contribute a novel identification of the congestion costs of density. Since our model is invertible
in steady-state, our estimation recovers MSA-level amenity values. Ex-post, recovered amenity values
are free to be flexible functions of local characteristics. We specifiy a log-linear relationship between
amenities and business district congestion (workers per downtown-land-square-foot), and we estimate
a negative relationship between amenities and congestion. We find that allowing amenities to nega-
tively depend on density yields near-identical results for our baseline counterfactual because amenities

6Similar to the misallocation literature (e.g. Hsieh and Klenow (2009)), we treat (a) the average level of regulatory distor-
tions and (b) dispersion of parcel-level distortions as separate objects over which we conduct counterfactuals. We view our
primary exercise as conservative since it focuses on the average regulatory distortion and ignores dispersion, thus deregulation
does not improve the allocation of improvements within a city. As in models of misallocation like Hsieh and Klenow (2009),
the efficiency gains from reduced misallocation can potentially be large but can also be biased upwards by mismeasurement.
We nevertheless explore the impact of reducing dispersion in a different counterfactual.
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improve in regions that lose workers, offsetting the congestion costs in regions that gain workers.
Lastly, while we do not explicitly model the adoption of zoning code regulations (e.g. see models

with endogenous local resiential regulations by Parkhomenko (2018) and Bunten (2017) among others),
disamenities from congestion and landlord profits provide rationale for the existence of commercial reg-
ulatory distortions. Nonetheless, we estimate large welfare gains from moderate levels of deregulation
even with both mitigating factors at play.

Literature We contribute to a burgeoning literature on the aggregate effects of spatial policy. Hsieh
and Moretti (2019) argue that land use regulations cause significant spatial misallocation. Diamond
(2016) combines a shift-share instrument with estimated housing supply elasticities from Saiz (2010)
to recover the external effects of worker composition on amenities and productivity. Fajgelbaum and
Gaubert (2020) study optimal spatial transfers in the presence of heterogeneous skill types, congestion,
and agglomeration. Rossi-Hansberg, Sarte, and Schwartzman (2019) study spatial redistribution in the
presence of heterogeneous industries and occupations with variable patterns of spillovers, with an em-
phasis on the role of "cognitive non-routine" workers. Fajgelbaum, Morales, Suarez, and Zidar (2019)
find that heterogeneity in state taxes leads to significant misallocation across regions. Martellini (2019)
develops a model with learning spillovers and agglomeration effects in job search, quantifies their im-
pact on the urban wage premium, and studies their implications for the gains from housing deregulation.
Colas and Morehouse (2020) study how land use regulations affect carbon emissions. Herkenhoff, Oha-
nian, and Prescott (2018) use a similar production-function based approach and identify housing supply
restrictions as distortions in the first-order condition of the local housing sector. We build on this by
working with parcel-level microdata directly. Cun and Pesharan (2020) study the interaction of land use
regulations with migration. Grossman, Larin, and Steger (2020) find that low productivity growth in
the housing sector is partly to blame for an increase in the ratio of house wealth to income. Relative to
existing work, we provide the first, to our knowledge, macroeconomic analysis of commercial zoning
regulations, combining administrative micro-data with a spatial general equilibrium model. We then
quantify how commercial regulations distort capital and building investment decisions as well as the
spatial allocation of labor.7

Our paper also contributes to the field of leximetrics, or the quantification of the "strength" of regula-
tions, in the vein of La Porta, Lopez de Silanes, Shleifer, and Vishny (1998). We are not the first to bring
a leximetric approach to real estate regulations—an important antecedent is the Wharton Land Use Reg-
ulation Index of Gyourko, Saiz, and Summers (2008), which focuses on residential buildings (and more
recently, Gyourko, Hartley, and Krimmel (2021)). However, the Wharton Index measures the strength
of local land use regulations in a fundamentally different way, by itemizing qualitative responses into
categories and then taking the principal component of those categories. We provide a complementary
approach and infer the strength of regulations using a model of optimizing real-estate firms.

We contribute to an extensive literature that attempts to measure land use regulations and quantify

7Moreover, by abstracting from taste shocks, our model avoids the recent criticism of optimal place-based policy articulated
by Davis and Gregory (2021).
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their impact. Glaeser, Gyourko, and Saks (2005a) use construction cost data for residential structures, and
they find a significant and positive gap between price and cost. They argue that the difference is due to
zoning restrictions. The aforementioned Saiz (2010) attempts to measure physical constraints on housing
buildup. Tanure Veloso (2020) focuses on residential real estate but employs a complementary method
in which he regresses a Census tract-level housing supply productivity term on the tract-level share of
houses zoned as single-family units. This method links observed features of zoning codes to housing
supply productivity, which he exploits in counterfactual analysis. Delventhal, Kwon, and Parkhomenko
(2021) is, to our knowledge, the only other paper that studies commercial land use regulations, although
their focus is on one city (Los Angeles) and their discrete choice model and identification strategy are
more similar to Tanure Veloso (2020). Furth (2021) also identifies residential regulations at the parcel
level and measures the strength of multiple facets of land use regulations. Rivera-Padilla (2021) models
residential land use distortions as equivalent to a tax, rather than a productivity shifter, and identifies
them from the difference in rents between rural and urban regions in India. Tan, Wang, and Zhang
(2020) argue that the land share of residential building values is informative about regulatory strictness,
and they show that it is indeed correlated with floor area ratio restrictions in China. This paper’s iden-
tification strategy is the closest to our own. Our contributions are to (1) develop a theory that allows
us to measure the effects of commercial real estate regulations on welfare, productivity, and the spatial
allocation of workers and business activity across the U.S., (2) to use our theory to estimate address-level
regulatory distortions from the near-universe of commercial property tax records (which is made possi-
ble by the fact that our formula for regulations only requires the land share of total building value), and
(3) to estimate welfare gains from both national and local commercial deregulations.

An important precedent for our work is Davis and Heathcote (2007). They find that the value of
land, and the land share of housing prices, has been rising. They speculate that part of the reason for
the trends in land values may be due to cities that “implemented policies to slow further development".
Interestingly, they find very high land shares in cities where housing is thought to be heavily regulated,
such as San Francisco or San Jose, and they find low land shares in Houston, which is generally thought
to be lightly regulated. We formalize that intuition, and argue that variations in the land share are
informative about the strictness of land use regulations. Tan, Wang, and Zhang (2020) also identify
residential regulatory stringency using the land share of building value, although their focus is on one
specific dimension of regulation. We argue that the commercial land share is informative about a broader
range of regulations and distortions, as we discuss in greater detail in Section 2.3.1, and we show that
these distortions can aggregate tractably in a general equilibrium model.

Finally, our model features parcels with heterogeneous distortions and productivities, and is therefore
related to a wide class of firm dynamics models where firms have heterogeneous markups and productiv-
ities. It permits an aggregation result similar to, for example, Peters and Walsh (2021): we can separate
the impact of land use regulations into one term equivalent to an average “wedge" and a second term
that captures the effect of misallocation (or mismeasurement) across parcels.
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Outline The paper proceeds as follows: In Section 2 we describe the model that we use to interpret
the data. In Section 3, we introduce our data sources and explain how we use them for identification.
We validate our model-based measures of regulation in Section 4 by showing that they correspond well
with statutory measures of regulation. In Section 5, we perform several counterfactuals that demon-
strate the flexibility of our approach. We conclude the paper with Section 6, and consign certain proofs,
computational algorithms, and a more detailed description of our data to the appendices.

2 Model

In what follows, t ∈ {0, 1, ..., ∞} indexes time and j ∈ {1, 2, ..., N} indexes regions, corresponding to
241 major metropolitan statistical areas, plus a remote work sector (denoted j = r) and a rest-of-country
aggregate. Locations (“cities") are differentiated on amenities aj and TFP Aj. A stand-in household sends
workers to cities to earn wages, allocates capital, and receives profits from landlords and final goods
producing firms. The final goods firms hire workers and rent capital from the representative household,
rent buildings from landlords, and combine these factors to produce a numeraire final good. Landlords
combine a fixed factor (“land") with the final good to produce buildings, and they rebate their profits to
the stand-in household.

2.1 Households

The stand-in household has preferences over consumption ct and regional labor supply Lj,t. These pref-
erences feature city-specific disutilities of labor.8 Amenities aj decrease the marginal disutility of sending
workers to a given city. The household invests it in capital and allocates both workers Lj,t and capital
Kj,t across regions. The wage rate in region j is given by wj,t, and we make the assumption that capital is
perfectly mobile, implying a single national rental rate of capital rk,t. The household also receives profits
from landlords πj,b,t and from final goods firms πj, f ,t. The household solves the following optimization
problem:

max
ct,it,Kj,t,Lj,t

∞

∑
t=0

βt

(
c1−σ

t
1 − σ

− 1
1 + 1

η

N

∑
j=1

(
Lj,t

aj

)1+ 1
η

)
(1)

8Similar to Herkenhoff, Ohanian, and Prescott (2018), these preferences stand-in for congestion costs and other forces
that limit inter-regional mobility costs. As η → 0, it becomes more costly to send all workers to a given region. See Berger,
Herkenhoff, and Mongey (2019) for discrete choice micro-foundations of related firm-specific preferences.

7



subject to:

ct + it =
N

∑
j=1

(
πj,b,t + πj, f ,t + wj,tLj,t + rk,tKj,t

)
Kt+1 = ik,t + (1 − δk)Kt

N

∑
j=1

Kj,t = Kt

2.2 Final Goods

Final goods firms combine labor Lj,t, buildings Bj,t, capital Kj,t at the city level to produce the numeraire
final good.9 We assume they operate constant returns to scale Cobb-Douglas production technologies
with city-specific total factor productivity Aj. The building share χj is assumed to be zero in the remote
work sector (χr = 0) and both constant and positive across all other non-remote regions (χj > 0 ∀j ̸= r).
Firms pay a national rental rate for capital rk,t. They pay city-specific wages wj,t and building rents
rb,j,t. They maximize the following static profit function and rebate all profits (which will be zero in
equilibrium) to the household:

πj, f ,t = max
Kj,t,Lj,t,Bj,t

AjLα
j,tB

χj
j,tK

1−α−χj
j,t︸ ︷︷ ︸

Yj,t

−wj,tLj,t − rk,tKj,t − rb,j,tBj,t

2.3 Individual Landlords

Within each city, there are a finite number of differentiated parcels of land endowed to landlords.10 We
index parcels of land by i, where i maps to an address in the CoreLogic data. Parcel i in city j(i) is
described by its fixed land square footage xi, parcel productivity zi, and building cost qi, and its time-
varying building square footage BSFi,t. The parcel productivity term zi is meant to capture the fact that
a unit of building square footage may not be equally useful in all parts of the city (consider a warehouse
on the outskirts of a metro area compared to one in the central city), and it allows us to match the
variation in price-per-building square foot observed in the data. The time-invariant building cost qi

differs across parcels and captures the relative difficultly of building in some locations than others. These
differences may be due to differences in soil quality and unionization rates of local construction workers,
for example. Note the lack of time subscripts on x, z, and q, which are immutable. We refer to the sum of
productivity-weighted building square feet on parcel i simply as the building Bi,t placed on parcel i. That
is, Bi,t = zi · BSFi,t. We denote the stock of buildings in city j as Bj,t.

The landlords rent their building to final goods firms at the start of each period, earning rb,j,tBi,t

9As we will explain in more detail later, Bj,t maps into productivity-weighted building square feet supplied by the land-
lords.

10As the number of parcels is very large and each one comprises a small share of overall building value, we assume that
landlords act as price-takers.
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on parcel i in location j. For both realism and convenience, we assume “one-hoss-shay" depreciation
(Luttmer (2011)): building square footage is constant (BSFi,t = BSFi) until the building fully depreciates
all at once (i.e. the building is torn down), where the probability of full depreciation is a constant δb. We
denote the discounted stream of rental payments made to each efficiency-weighted building square foot
as pj,t:

pj,t =
∞

∑
s=t

(β(1 − δb))
s−trb,j,t

The building fully depreciates with probability δb after its use in production but before the start of
the next period. At the end of the period, if the current building has depreciated, the landlord may
combine the underlying land with final goods in order to create a new building that can be rented out in
subsequent periods. The building cost qi determines the efficiency with which final goods are converted
to improvements mi,t on parcel i. For example, purchasing one unit of the final good yields 1/qi units of
improvements on parcel i. The total cost of improvements MVi,t is qimi,t. We denote the new efficiency-
weighted building square footage built on a parcel at period t as BN

i,t. The building technology is Cobb-
Douglas, and the improvement share in production is γ:

BN
i,t = zi mγ

i,tx
1−γ
i︸ ︷︷ ︸

BSFi,t

(2)

The building is also subject to a regulatory distortion τi,t ∈ [0, 1], which includes all policies that
cause landlords to purchase fewer improvements than they would optimally like to, given factor prices.
At the extremes, τi,t = 1 is completely deregulated; τi,t = 0 effectively forbids construction.

Note that, because improvements are combined with depreciated parcels in this period but do not
begin earning rents until next period, the builder discounts these flow payments. We also denote the net
present value of payments made to the entire building as building value, BVi,t. Unlike our data object total
value, TVi,t, it does not include the option value of rebuilding after depreciation.

We are now ready to write out the problem of a landlord with a depreciated parcel:

max
mi,t

βτi pj,t+1zi(mi,t)
γx1−γ

i︸ ︷︷ ︸
BVi,t

− qimi,t︸ ︷︷ ︸
MVi,t

(3)

We denote i ∈ j as the set of parcels i in city J. We can now write out the law of motion for the
aggregate city-level building stock Bj,t:

Bj,t+1 = (1 − δb)Bj,t + ∑
i∈j

BN
i,t
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2.3.1 Different Interpretations of The Regulatory Distortion τi,t

Broadly speaking, τi,t is meant to capture any regulation that prevents landlords from building as much
as they would want to, given factor prices. These might include height restrictions, floor area ratios,
or setbacks. None of these regulations raise building costs or lower the rents that owners can earn per
building square foot; instead, they push landlords away from their optimality condition.

This model is isomorphic to one where landlords pay a tax 1/τi,t on each dollar of improvement and
rebate it to the representative household. Therefore, τi,t also captures costs that do not show up in the
price of improvements or in the value of the building. This may include the costs of hiring lawyers to
navigate the approval process or securing a variance, or paying for improvements in local infrastructure
to secure approval for construction.

Alternatively, τi,t may also capture the possibility that some projects are denied or delayed by local
zoning boards or in environmental reviews, especially if (as seems reasonable) the probability of rejection
is rising in how much the landlord builds on the parcel.

This specification rules out regulations that directly enter factor prices and productivities, which
means it avoids some potential pitfalls in trying to measure regulation but does not capture all possible
dimensions of land use regulations.11 Taxes and demand-side factors such as desirable locations will
be capitalized into the parcel-level price per building square foot pj,tzi, and will not show up in τi,t.
However, restrictions on what buildings may be used for will also be capitalized into pj,tzi, and so our
measure will not capture these kinds of regulations. Likewise, if different locations are inherently harder
or easier to build on (due to differences in soil quality, for example) this will be picked up in qi and not τi,t.
This does, however, mean that restrictions on building techniques will not be captured by this specifica-
tion. Schmitz (2020) studies bans on the use of prefabricated construction for residential buildings—our
method would not pick up the impact of such restrictions for commercial buildings. Hence, our results
will be a lower bound on the distortions imposed by land use regulations.

Notably, we do not model τi,t as a hard cap on development. In practice, zoning regulations typically
allow local governments to grant variances, which allow builders to exceed statutory restrictions on floor
area ratios and other restrictions. Our measure τi,t also incorporates the difficulty of getting variances.

2.4 Equilibrium

An equilibrium in this economy consists of prices {{rb,j,t, wj,t}∀j, rk,t}∞
t=0, quantities

{{Yj,t, Kj,t, Lj,t, Bj,t}∀j, {mi,t}∀i, it, ct}∞
t=0, and decision rules for investment, consumption, and labor

supply, such that, given prices, the stand-in household maximizes utility, firms maximize profits,
markets clear, and the resource constraint holds:

11Our regulatory distortion τi,t is not capitalized into the value of the building, which we call BVi,t. However, it is capitalized
into the total value of a parcel, our data object TVi,t, as it reduced the option value of rebuilding. We make this distinction clear
in Appendix B.2.
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ct + ik,t + ∑
j

(
∑
i∈j

qimi,t

)
= ∑

j
Yj,t

2.5 Aggregation

This model admits aggregation up to a representative city-level builder.12 The representative city-level
builder’s problem makes clear how regulatory distortions τi,t lower the quantity of improvements and
cause misallocation across parcels.

In what follows, it will be convenient to define a time-invariant parcel-level productivity term:

Ci = z
1

1−γ

i xiq
−γ

1−γ

i (4)

It is also useful to note that Ci is directly related to improvement value. We can show this by solving
Equation (3) for qimi,t, the quantity of improvement demand expressed in units of the final good. We
label this as improvement value, MVi,t:

(τi,t pj,tβγ)
1

1−γ Ci = qimi,t︸ ︷︷ ︸
MVi,t

(5)

We now define the problem of the representative builder in region j,

max
mj,t

βTj,t pj,t Dj,tm
γ
j,t(δbCj)

1−γ︸ ︷︷ ︸
BN

j,t

− mj,t︸︷︷︸
MVj,t

(6)

where the solution to this builder’s problem coincides with the aggregated solutions of all the indi-
vidual landlords’ problems in region j when Cj, Dj,t, and Tj,t take the following values:

Cj =

(
∑
i∈j

Ci

)
(7)

Dj,t =

∑i∈j τ
γ

1−γ

i,t Ci

∑i∈j Ci

/∑i∈j τ
1

1−γ

i,t Ci

∑i∈j Ci

γ

(8)

Tj,t =
∑i∈j τ

1
1−γ

i,t Ci

∑i∈j τ
γ

1−γ

i,t Ci

(9)

The term Cj is a measure of productivity, and does not depend on regulatory distortions. It is policy-
invariant (hence the lack of time subscripts—all the characteristics contained in Cj are immutable and

12Appendix B.1 contains more details on the aggregation results outlined in this section.
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fixed) and we do not focus on it moving forward.
The term Dj,t captures the allocative efficiency losses arising from dispersion in regulatory distor-

tions, under the assumption that τi,t are measured correctly. A simple application of Jensen’s inequality
reveals that this term is weakly less than 1, and is only equal to 1 if all τi,t are equal. Dj,t also does
not change if we scale each τi,t up or down by a constant. Hence, eliminating dispersion in τi,t while
keeping the aggregate Tj,t fixed will lead to productivity gains (note that Dj,t enters directly into the out-
put quantity BN

j,t, and therefore affects total factor productivity, whereas Tj,t does not.) As in models of
misallocation like Hsieh and Klenow (2009), these gains will be overstated if there is measurement error
in our parcel-level measures of regulatory distortion. Note that Dj,t can be estimated if improvement
values MVi,t and regulatory distortions τi,t are known, by substituting Equation (5) into Equation (8):

Dj,t =

(
∑i∈j MVi,t/τi,t

∑i∈j MVi,t/τ
1

1−γ

i,t

)/( ∑i∈j MVi,t

∑i∈j MVi,t/τ
1

1−γ

i,t

)γ

(10)

The term Tj,t is a measure of the average regulatory distortion in the economy. It takes on value 1
only if all τi,t are equal to 1. We can substitute Equation (5) into Equation (9) to show that Tj,t can be
expressed as a weighted average of improvement values:13

Tj,t =
∑i∈j MVi,t

∑i∈j MVi,t/τi,t
(11)

We will focus much of our attention on Tj,t going forward—it is an intuitive measure of regulatory
distortion, and it is not inflated by parcel-level measurement error.

We will also find it convenient, going forward, to write out the building supply curve in terms of a
supply shifter Ψ, which we derive in Appendix B.1:

pj,tBN
j,t = p

γ
1−γ

j,t δb · D
1

1−γ

j,t T
γ

1−γ

j,t Cj(βγ)
γ

1−γ︸ ︷︷ ︸
Ψj

(12)

3 Data and Identification

3.1 Parcel-Level Parameters

In this section we describe how we recover building depreciation δb, the improvement share of building
value γ, and parcel-level regulatory distortions τi. In this and all future sections, we will assume that the
economy is in a steady state and will therefore drop time subscripts to simplify notation.

Our primary data source comes from CoreLogic, a major private provider of real estate data. This
dataset consists of county tax assessors’ data on the near universe of commercial parcels in the United

13This is mathematically and conceptually similar to a cost-weighted average markup, which Edmond, Midrigan, and Xu
(2021) show is the correct way to aggregate markups. To see the similarity, define M ≡ 1/T and µ ≡ 1/τ and compare to the
definitions of M and µ in that paper. Here, improvements correspond to costs.
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States, from 2009 to 2018. It includes the total value of the parcel TVi, derived from either assessments,
appraisals, or market transactions. This value is subdivided into land value LVi and improvement value
MVi. For a smaller subset of buildings, which still comprise a large share of overall total value, the data
also includes building square footage BSFi, the alphanumeric zoning code z(i) to which the building is
subject (example names include “C8" and “OR1"), and building age ai. We describe our data in more
detail in Appendix A.1.

As shown in Appendix B.2, we can recover the product of our aggregate measure of regulatory dis-
tortion Tj and the scale parameter γ as follows:

γ · Tj =

( 1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

β
(
1 + δb

1−β

∑i∈j MV
∑i∈j TV

) (13)

We get TV and MV from our CoreLogic sample. Under our depreciation assumption, δb is the inverse
of the average building age in our sample.14 We use a standard value of 0.96 for β, the last value needed
to identify Tjγ.

Unsurprisingly, we cannot separate Tj and γ without more assumptions or information. Regulatory
distortions cause landlords to spend too little on improvements as a share of total value, hence disentan-
gling distortions from the true improvement share is challenging. However, under the assumption that
Tj ≤ 1 for all j (i.e. that no city has “negative" regulations), every city-level observation of the left-hand
term in Equation (13) provides a lower bound for γ. Our approach is to treat the city with the highest
value of γ · Tj as a “deregulated benchmark", with Tj assumed to be equal to 1. In practice, we find
that the benchmark is Midland, Texas, a small metropolitan area with a large oil-producing sector. Our
assumption that TMidland = 1 yields an implied γ of 0.92.15

Even though our value of γ is likely an underestimate, it is very close to 1 and suggests that the
building production function is nearly linear in improvements. This is not dramatically out of line with
what other studies have found: Epple, Gordon, and Sieg (2010) estimate an improvement share of 0.84 for
residential buildings in Allegheny County, Pennsylvania, and they do not take into account regulatory
distortions. Combes, Duranton, and Gobillon (2021) finds a slightly lower share of 0.64 for single-family
homes in France, although they also do not directly measure regulation and only try to infer it from
observed (not statutory) floor area ratios.16 Glaeser, Gyourko, and Saks (2005b) find that construction
costs per building square foot are relatively flat across dramatically different residential building sizes,
which is consistent with a high improvement share in production. Moreover, a near-linear production
function is intuitively reasonable: roughly speaking, it suggests that a builder can double the number of
floors on a building for only slightly more than double the cost.

14Our calibrated value of 0.02 is fairly close to what Davis and Palumbo (2008) find under less stark assumptions about
depreciation.

15Note that if Midland has any degree of regulation—that is, if the true TMidland is less than 1—we will underestimate γ
and therefore overstate the degree of decreasing returns to replicable factors. Hence, we will underestimate the gains from
deregulation.

16Both of these papers also argue that the production function for buildings is reasonably well-approximated by a Cobb-
Douglas function in land and other inputs, which lends further support to our modeling choices.
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After having calibrated γ, we can recover Tj at the MSA level, and by modifying Equation (13) into
Equation (14), we can recover τi at the parcel level as well.

τi =

( 1−β(1−δb)
1−β

)MVi
TVi

γβ
(
1 + δb

1−β
MVi
TVi

) (14)

After having recovered τi, it is straightforward to use Equations (4) and (8) to get Dj.
Finally, we estimate pj from the subset of buildings jb with a recorded value for building square

footage BSF:

pj =
∑i∈jb BVi

∑i∈jb BSFi

3.1.1 Identifying τ from MV/TV

We can illustrate the variation in the data that allows us to estimate τi, and therefore also Tj and Dj. We
plot MV/TV, the key moment that identifies regulatory distortions, across all parcels in our sample in
Figure 1. We find that, for most parcels, this measure is significantly lower than what we would expect
to see in a world with no regulatory distortions and no measurement error.

Alongside the distribution of the data object MV/TV, we also plot the distribution of the model
object τ and show that—as one might expect from Equation (14)—the two distributions are quite similar
in shape.

Figure 1: Distribution of MV/TV
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Figure 2: Distribution of τ
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3.2 Other Parameters

We now identify the other parameters of the general-equilibrium model, again assuming a steady state
and dropping time subscripts. We set a subset of these parameters externally, using standard values, and
summarize these parameters in Table 1.
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Table 1: External Parameters

Parameter Description Value Source
β Discounting 0.96 Standard
σ CRRA 2 Standard
η Labor Curvature 2 Standard, i.e. Keane and Rogerson (2012)
δk Non-Structures Depreciation 0.032 Standard, i.e. McGrattan (2020)
α Labor Share 0.594 Penn World Table (Feenstra, Inklaar, and Timmer (2015))

We next discipline the factor shares in production, region-level total factor productivity, and also
productivity in the building sector. We summarize the data used for this exercise in Table 2.

Table 2: Additional Data Sources

Variable Description Source
Y Aggregate GDP US Bureau of Economic Analysis (2021b)
Yj MSA GDP US Bureau of Economic Analysis (2021a)
ik Equipment+IP Investment US Bureau of Economic Analysis (2021b)
Lj MSA Labor Supply ACS

ρL ≡ Lr/∑j Lj Remote Labor Supply Share ACS
ρW ≡ wrLr/∑j wjLj Remote Wage Bill Share ACS

We allocate labor supply across regions, and to the remote work sector, using the 2018 American
Community Survey (Ruggles, Flood, Goeken, Grover, Meyer, Pacas, and Sobek (2020) ). The variable
TRANWORK asks “How did this person usually get to work LAST WEEK?" (emphasis original), and
we define a remote worker as someone who answers “worked from home." We calculate the share of
remote workers ρL and set Lremote, the labor supply in the remote work region, as ρL times the aggregate
labor supply. We multiply each non-remote region’s labor supply by a factor 1 − ρL to avoid double-
counting workers.

We assume that the labor share is constant in the remote work and traditional regions. This means
that remote workers’ share of GDP will be proportional to their share of the wage bill. Analogously to
our procedure for labor supplies, we therefore calculate remote workers’ share of the aggregate wage bill
ρA, set Yremote to ρA times aggregate GDP, and multiply regional GDP in every other region by a factor
1 − ρA to avoid double-counting output.

We next turn to non-structures capital. We pin down the rate of return rk using standard parameters:

rk =
1 − β(1 − δk)

β

The aggregate capital stock is such that investment ik exactly offsets depreciation, hence:

15



K =
ik

δk

We can recover χn, commercial buildings’ factor share in non-remote regions, by noting that factor
payments to non-structures capital are equal to (1− α− χn)Yj in non-remote regions j ̸= r, and (1− α)Yr

in the remote region r. Summing across regions we get:

rk ∑
j

Kj = (1 − α − χn) ∑
j ̸=r

Yj + (1 − α)Yr

χn =
(1 − α)∑j Yj − rk ∑j Kj

∑j ̸=r Yj

We can now also allocate capital regionally:

Kj = (1 − α − χj)Yj/rk (15)

We recover the level of the building stock Bj and the level of the supply shifter Ψj from the region-j
final goods firm’s first-order condition—that is, we set the value of the building stock pjBj equal to the
net present value of factor payments made to these buildings. We do not take the value of the building
stock BVj ≡ pjBj directly from CoreLogic for several reasons. First, we use a filtered subset of all parcels
as described in Appendix A, as we do not have full information on the universe of buildings in our data.
Second, the value of the building stock will be depressed relative to true factor payments because of
property taxes. Third, state policies like Proposition 13 in California may cause assessment values to be
biased downwards—see Office of the Assessor, County of Santa Clara (2021) for details. Note that while
the level of improvement value and total value may be artificially low, especially in California, we do not
use the level directly and are instead concerned with improvement value’s share of total value. The share
should not be systematically biased by any of the factors we describe above, unlike the level. Likewise,
property taxes should be capitalized into the parcel-level price per building square foot pjzi, as discussed
in Section 2.3.1, and are not a direct threat to our identification.

Bj =
χjYj

pj(1 − β(1 − δb))

Ψj =
Bj

p
γ

1−γ

j

We recover the total amount of resources expended in improvements from the first-order condition
of the aggregate builder and the steady-state condition that new buildings replace depreciation:

pjBN
j = δpjBj
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mj = γβTjδb pjBj (16)

Next we can recover total factor productivity from the production function:

Aj =
Yj

Lα
j B

χj
j K

1−α−χj
j

We use ACS data on Lj and BEA data on Yj to recover wages:

wj =
αYj

Lj

Next we recover consumption by subtracting investment in improvements and capital from output:

c = ∑
j

(
Yj − δkKj − mj

)
Finally, we complete our identification by recovering amenities from the household’s first order con-

dition:

aj = exp
(σ log c + 1

η log Lj − log wj

1 + 1
η

)

4 Results and Validation

In this section, we display some of the results of our empirical analysis. We begin by plotting the distri-
bution of Tj and Dj, the level and dispersion of regulatory distortions in each MSA.

We next perform several validation exercises that test the central argument of this paper, which is
that the improvement share of total value provides information about the degree of land use regulation
in a given city. We test this argument by comparing our measure of regulation against several real-world,
statutory measures of regulation, and we compare our measures across regions where we expect a priori
to find differences in regulations. We find that our model-derived measure of regulation align well with
these real-world measures. We also examine the threat to our identification posed by differences in
building age and argue that it is not a first-order concern.

4.1 The Distribution of Tj and Mj

In Figures 3 and 4, we plot the distribution of the “average" regulatory distortion Tj and the dispersion
in distortions Dj at the MSA level. Most cities are clearly far from the deregulated benchmark, and in
most cities τ is quite dispersed across parcels. Dj takes on a maximum value of 1.0 if all parcels have the
same regulatory distortion, and it is isomorphic to productivity in the construction sector. Hence, these
plots suggest that both the level and dispersion of τ may induce significant inefficiencies.
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Figure 3: Distribution of Tj
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Figure 4: Distribution of Dj
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4.2 Zoning Code Dimensions

In this section, we plot our measure of regulatory distortion against two dimensions of statutory zoning
code strictness: floor area ratios in New York City, and height restrictions in Washington, DC. We chose
these cities and measurements because a high share of the parcels in these cities had non-missing zoning
codes, and because their websites made it easy for us to manually collect and clean these zoning code
features. 17

We first project parcel-level regulatory distortions τi down onto zoning codes, and recover a code-
level regulatory distortion τz. Denoting i ∈ z as the set of parcels subject to zoning code z, we write:

τz =
∑i∈z MVi

∑i∈z MVi/τi
(17)

We expect a positive correlation between the model-derived measure and the statutory measures, but
we do not expect it to be perfect. We plot τ against only one dimension of zoning codes, and we do not
attempt to account for variances given to individual buildings.

We plot a binscatter of zoning-code level τz against these two statutory measures of regulation in
Figures 5 and 6. To construct the red best-fit line, we weight each zoning code by the sum of building
value subject to that code. We find a positive relationship in both cases, as expected.

4.3 Downtowns

We next provide another graphical illustration of our measure of regulatory distortion and how it maps
onto the real world.

In Figures 7 and 8, we map the most and least distorting zoning codes in San Francisco, and contrast
this to statutory height restrictions provided in San Francisco Planning (2021). More specifically, we

17The original data is available at City of New York (2021) and DC Office of Zoning (2021a), respectively. We go into greater
detail in Appendix A.2.
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Figure 5: FAR in NYC
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Figure 6: Height Limits in DC
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rank all parcels by their code-level regulatory distortion τz
18 and map the top decile (least-regulating,

in red) and bottom decile (most-regulating, in black.) We find that our model identifies downtown San
Francisco, the site of many of its most iconic skyscrapers, as relatively deregulated. We also find that
our measure of regulatory distortion tracks reasonably well with statutory measures of regulation, even
within a single jurisdiction where demand-side factors should be relatively similar. This suggests that
our measure is picking up underlying regulations rather than simple demand-side factors.

Figure 7: Model Zoning Distortion
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Figure 8: SF Height Limit Zoning Map, 2021

4.4 Cities in California and Texas

Much of the prior literature on land use regulation has argued that Texas is less regulated than Califor-
nia. In general, we expect to find that liberal coastal states should have stricter regulations than more
conservative states. We show in this section that this is the case for our measure of regulation.

18We use this aggregated measure of τ instead of the individual parcel-level τ in order to reduce the impact of outliers and
measurement error, and to address issues with older buildings that we explain in greater depth in Section 4.5.
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In Figure 9, we plot our measure of regulation Tj for each of the ten years in our sample (2009-2018)
in the largest MSAs in those two states (Dallas and Houston in Texas; San Francisco and Los Angeles
in California.) We find that, as expected, the major cities in California are more regulated than those in
Texas. Indeed, Los Angeles is one of the most tightly regulated major cities in our sample. Figure 9 also
demonstrates that our measure of regulation is, reassuringly, stable across years.

Figure 9: Cities in Texas and California
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4.5 Older Buildings

One possible issue with our identification strategy is that it might systematically overestimate regulation
for older buildings.19 If improvement value MV is fixed, or perhaps even declining as the building ages,
but the option to rebuild becomes more valuable as the economy grows, then older buildings should
have a low measured τ even if they are not truly more regulated.

We offer a few responses to this potential criticism. First and most importantly, we show that τ is
not as tightly connected to age as one might expect. We regress parcel-level τ on age, as well as county
fixed effects, for the subset of parcels where we have building age, and report the results in Table 10. We
weight parcels by BV. We find that the impact of age on measured τ is surprisingly small—a 50-year-
old building would on average have a τ less than 0.1 lower than a brand-new building. Hence, these
measured age effects in and of themselves cannot explain much of the variation in τ seen in Figure 2.20

19We thank Salim Furth for a very helpful conversation on this topic.
20Admittedly, this may understate the impact of aging on τ if old buildings were far less regulated than new ones.
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Figure 10: Regression of τ on age

(1) (2) (3) (4) (5) (6)
τ τ log τ log τ log τ log τ

Age -0.00189*** -0.00188*** -0.00350*** -0.00350***
(3.44e-06) (3.48e-06) (6.96e-06) (7.20e-06)

log(Age + 1) -0.105*** -0.0993***
(0.000225) (0.000227)

Constant 0.910*** 0.910*** -0.116*** -0.116*** 0.0995*** 0.0820***
(0.000162) (0.000158) (0.000328) (0.000327) (0.000765) (0.000768)

FIPS FE No Yes No Yes No Yes
Observations 4,650,804 4,650,787 4,650,804 4,650,787 4,649,281 4,649,264
R-squared 0.061 0.212 0.051 0.171 0.044 0.163

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Also, we have not used the parcel-level τ directly in our validation exercises and we will not use
them in our counterfactuals. We will aggregate them up and treat zoning codes or MSAs as our units
of observation. Older buildings may drive down the average τ and drive up its dispersion within a
zoning code or MSA, but we remove these effects in our counterfactual by using more-aggregated units
of observation. This leaves differences in the impact of aging on the level and dispersion of τ across our
units of observation, but these differences may actually pick up on the effects of regulation if builders in
more-regulated MSAs or zoning codes rebuild less frequently.

5 Counterfactuals

We can use our model for large-scale counterfactuals that illustrate the aggregate consequences of com-
mercial land use regulation, and we can use the same framework to simulate detailed local counterfac-
tuals. In this section, we provide some examples of both. We explain how we compute counterfactuals
in Appendix C.

5.1 Aggregate Counterfactuals

This first set of counterfactuals demonstrates that land use regulations are consequential for both ag-
gregate output and the distribution of economic activity across space. The first experiment shifts the
“average" level of regulation in each city up to the benchmark by setting Tj = 1, the second experiment
reduces dispersion in zoning codes; the third experiment tests whether there are still meaningful gains
from deregulation in a world where remote work is more common, the fourth experiment studies how
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local counterfactuals can have aggregate effects, and the fifth experiment tests whether congestion ex-
ternalities can reverse the welfare gains from deregulation. We summarize the counterfactuals in Table
3 and explain them in greater detail in the next few sections.

Table 3: Aggregate Counterfactuals: Description

Counterfactual T D Amenities
Baseline Set to 1.0 Unchanged Exogenous
Less Dispersion Unchanged max[Second Highest, Dj] Exogenous
More Remote Set to 1.0 Unchanged Set so ρL = 0.4
Local Deregulation τc f = max[τ, min[Median in FIPS, 2τ]] Exogenous
Congestion Set to 1.0 Unchanged Function of L/X

We report the major results from these exercises in Table 4. We calculate the percent change in GDP
Y, labor supply L, capital stock B, and (efficiency-weighted) building stock B, aggregate landlord profits
(given by the rental payments made to buildings ∑j χYj less the cost ∑j mj needed to offset depreciation),
and consumption.

Finally, we compute the percentage change in consumption in the original steady state needed to
make the representative household equally well-off as in the new steady state. We derive this analytically
in C.2.

Table 4: Aggregate Counterfactuals: Results

Baseline Less Dispersion More Remote Local Deregulation Congestion
%∆Yj 2.9% 5.4% 1.7% 2.6% 2.9%
%∆Lj -1.0% -3.3% -0.6% -2.9% -0.9%
%∆Kj 2.5% 4.7% 0.4% 2.2% 2.6%
%∆Bj 16.6% 59.9% 19.8% 25.0% 17.0%
%∆ Landlord Profits -2.9% 6.9% -0.0% 10.5% -2.8%
%∆c 2.1% 5.5% 1.3% 3.5% 2.1%
%∆ Consumption Equiv. 1.5% 2.8% 0.9% 1.4% 1.5%

5.1.1 Baseline

In our baseline exercise, we simply set Tj = 1 in all regions and keep all other parameters the same. This
is an extremely conservative exercise that treats all of the dispersion in τ within a region as measurement
error; in other words, it leaves Dj unchanged. We report the results in the first column of Table 4. We find
that this leads to a roughly 3 percent increase in GDP, and a slightly smaller increase in consumption.
Removing regulatory distortions means that landlords invest more resources in their building stock,
leaving fewer to rebate to the household for consumption. The stand-in household in the original steady
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state would be indifferent between a 1.5 percent increase in consumption and switching to the counter-
factual steady state. Interestingly, we find that landlord profits fall in the new steady state due to the
drop in price per building square foot. This is not surprising: regulations in this model effectively force
landlords to spend “too little" on construction. which saves them money directly and indirectly leads to
higher equilibrium prices per building square foot. Higher construction expenditures for landlords also
leave fewer resources available for consumption, explaining why consumption and welfare increase less
than output. We speculate that part of the reason why these regulations persist is because, while each
individual landlord would be better off if their τi were set to its maximal value of 1, deregulating every
parcel would lower prices and profits for all landlords.21

In Table 5, we show what MSAs grow and shrink the most in our baseline deregulation. We report the
regulatory distortion Tj, along with the change in GDP per capita and the change in labor supply after the
deregulation. We find that the least regulated cities are generally in the South, and that many of the most
regulated cities are beach towns. We speculate that certain cities with desirable natural amenities might
use these restrictions to avoid over-developing and lowering the value of those amenities. Interestingly,
our finding that Honolulu is the most regulated city mirrors what Gyourko, Saiz, and Summers (2008)
found for residential buildings: Honolulu singlehandedly pushed Hawaii to the top of their rankings of
most-regulated states.

Table 5: Most and Least Regulated MSAs

Distortion Tj Change in Yj/Lj Change in Lj
Midland, TX 1.000 0.2% -7.7%
Shreveport-Bossier City, LA 0.998 0.2% -7.6%
Monroe, LA 0.987 0.4% -7.1%
Tuscaloosa, AL 0.985 0.5% -7.1%
Baton Rouge, LA 0.983 0.5% -7.0%
Lebanon, PA 0.701 8.2% 7.9%
Myrtle Beach-Conway-North Myrtle Beach, SC-NC 0.693 8.6% 8.5%
Ocean City, NJ 0.598 12.1% 15.7%
El Centro, CA 0.597 12.1% 15.7%
Urban Honolulu, HI 0.547 14.3% 20.3%

We also find that, as expected, deregulation generally shifts labor from cities in initially less-regulated
states like Texas to cities on the more-regulated coasts. In Figure 11, we show the change in labor supply
in all cities within a state.22

In Appendix D, we test how the results of this counterfactual vary as we change our data sample and
parametrization.

21However, landlord profits do increase under counterfactuals where we allow Dj to change.
22But note that we do not include the rest-of-country aggregator or remote work sector in this figure.
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Figure 11: Population Changes Across Cities in Baseline Counterfactual
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5.1.2 Reducing Dispersion

In this exercise, we take our measure of dispersion more seriously and perform an exercise inspired
by Hsieh and Klenow (2009): we move dispersion Dj up to a minimally-dispersed benchmark and re-
calculate the equilibrium. That is, we leave the average level of regulation in a city (Tj) fixed but reduce
the dispersion of regulation. We interpret “reduced dispersion" as allowing more-equal development
within a city as opposed to clustering commercial real estate in business districts.

Dj is tightly concentrated in a range of 0.04-0.07, with a single outlier observation (namely Yuma,
AZ) at roughly 0.13. Hence, we move Dj in all regions up to the maximum of their pre-reform Dj or the
second highest Dj in our sample (Youngstown-Warren-Boardman, OH-PA), so that the one outlier does
not skew our results.

We find that the gains from this exercise are very large: output goes up by more than 5%, and
consumption-equivalent welfare rises by almost 3%.

However, the benefits from this form of deregulation depend heavily on agglomeration and conges-
tion externalities. If de-centralizing commercial real estate reduces congestion by spreading out employ-
ment, this exercise may understate the benefits of reducing dispersion. If agglomeration externalities
have an increasing elasticity with respect to economic activity (that is, if reallocating activity from busi-
ness districts to the outskirts causes a net weakening of agglomeration forces), then moving such activity
away from the central business district will lessen the benefits of agglomeration, and so this exercise
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would overstate the benefits of reducing dispersion. We intend to study this in greater detail in future
research.

5.1.3 Expanded Remote Work

In the wake of the COVID-19 pandemic and the shift to remote work, one might wonder whether com-
mercial real estate regulations are as important. We have taken an extreme stance by setting the factor
share of buildings in the remote work sector to zero, and can therefore use our model to calculate a
“worst case" scenario for the gains from deregulation. Dingel and Neiman (2020) argue that almost 40
percent of jobs can be done from home, a number we treat as a rough upper bound for the near-future
impact of remote work. We now ask what happens to the benefits of deregulation after a large shift to
remote work.

We first use the counterfactual algorithm detailed in Appendix C to compute a new initial steady
state where remote work comprises 40% of the labor force. To do so, we scale down amenities aj in
all non-remote regions by a common factor υ, recalculate the steady-state share of remote work, and
continue scaling down until we find the υ∗ that delivers our desired remote work share.

Next, we start from the new high-remote work benchmark and perform our baseline deregulation.
We report the results in the second column of Table 4. We find that the gains from deregulation are
attenuated, but still amount to nearly a 1% consumption equivalent gain in welfare in a world where
four in ten jobs are done remotely.

5.1.4 The Aggregate Consequences of Local Reforms

We next consider a simple counterfactual conducted at the local level: what if every county up-zoned
its most regulated buildings by moving every τz up to the median? Our goal is to understand whether
relatively conservative, easy-to-interpret policy changes at the local level can aggregate up and have
significant consequences at the national level. We also use this counterfactual to demonstrate that our
method can be used to perform detailed, specific policy counterfactuals and give granular advice to local
policymakers.

We first project regulatory distortions down onto zoning codes and recover τz as in Equation (17),
and treat buildings in each zoning code as if there was no dispersion in distortions. We now recalculate
Equations (10) and (11) after projecting down onto zoning codes:

MVz ≡ ∑
i∈z

MVi (18)

Dj =

(
∑z∈j MVz/τz

∑z∈j MVz/τ
1

1−γ
z

)/( ∑z∈j MVz

∑z∈j MVz/τ
1

1−γ
z

)γ

(19)

Tj =
∑z∈j MVz

∑i∈j MVz/τz
(20)
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The misallocation term Dj does not stay the same—it gets closer to 1.0 as this procedure removes any
within-zoning-code dispersion in τ. The average dispersion Tj is unchanged after we project regulatory
distortions down onto zoning codes—this is immediately apparent after substituting Equations (18) and
(17) into Equation (20) and contrasting it with Equation (11). To perform this counterfactual, we change
τz, recalculate Tj and Dj in Equations (20) and (18), and use the algorithm in Appendix C.

We emphasize that, due to our data limitations, this is an extremely conservative exercise. Some
counties do not report their zoning codes at all in the datasets that CoreLogic compiles, hence these
counties would see no change in the extent of their regulation in our counterfactual. We do not allow
any τz to go up by more than a factor of 2, and we also cap Tj and Dj at 1.0 to prevent any city from
having “negative" average regulation or dispersion. Our results indicates that this modest reform could
increase output by roughly 2.6%.

5.1.5 Endogenous Amenities

Our analysis will overstate the gains from deregulation if there are countervailing benefits to these reg-
ulations. One possibility is that more commercial development would lead to more congestion and
therefore a lower quality of life. As noted earlier, the fact that many most regulated towns are famous
for their natural amenities lends some credence to this theory. In our preferred specification, captured in
Equation (21), we regress amenities aj against a measure of congestion: the ratio of workers lj to the sum
of commercial land square footage Xj.23 We find a small but statistically significant negative relationship
between amenities and our measure of congestion, suggesting that the increased labor supply attracted
to a region by a larger building stock might make a place less desirable. We address this concern by
incorporating the estimated relationship between congestion and amenities into our counterfactual, as
explained in Appendix C.1.

log aj = µ︸︷︷︸
−0.165∗∗∗

[0.0253]

log(Lj/Xj) (21)

We report the results of this counterfactual in the third column of Table 4. Perhaps surprisingly, we
find that aggregate outcomes barely change. Upon closer inspection, we find that this is because in-
creases in congestion in initially more-regulated cities, which gain more workers when we loosen regu-
lations, are offset in the aggregate by decreases in congestion in initially less-regulated cities. We show in
Figure 12 that these responses differ greatly between the benchmark case with exogenous amenities and
the case with endogenous amenities. In the latter case, amenities worsen in cities with larger increases in
Tj and greater labor supply increases, but they improve in cities that lose workers. Endogenizing ameni-
ties therefore dampens the labor supply response to deregulation, with only a minor effect on aggregate
outcomes.

23We sum land square footage xi across all parcels with a non-missing value, not only the ones in our filtered sample. We
drop the rest-of-country aggregator or the remote work sector in this regression and weight MSAs by their labor supply Lj.
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Figure 12: Exogenous vs Endogenous Amenities
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5.2 Local Counterfactuals

We can also use our framework to perform detailed counterfactuals that change individual parcel-level
regulatory distortions, and can therefore provide advice to local policymakers. Below, we provide two
examples of fine-grained counterfactuals within New York City: doubling floor area ratios, and moving
each parcel “up" three zoning codes as ranked by τz.

In each of these two local counterfactuals, we alter τz and recompute the new steady state. We re-
port the outcome of both experiments in Table 6, and find nontrivial gains in output from both of these
exercises. Note that the counterfactual takes place in New York City proper, whereas (to preserve com-
patibility with the rest of our model and analysis) we calculate changes in GDP at the level of the New
York City MSA. Hence, these percentage gains are diluted by the many cities and suburbs in the NYC
metro that do not deregulate in this counterfactual.

Table 6: NYC Counterfactuals

Double FAR “Move Up"
%∆YNYC 0.7% 6.2%
%∆KNYC 0.7% 6.2%
%∆BNYC 1.8% 15.8%
%∆LNYC 0.5% 3.9%
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5.2.1 Doubling Floor Area Ratios

In our first local counterfactual, we revisit floor area ratios in New York City. We first regress τz on FAR
at the zoning code level, weighting zoning codes by their summed BV:

log τz = α︸︷︷︸
0.0343∗∗∗
[0.00433]

log FARz

This projects our measure of regulatory distortion down onto a real measure of regulation, and cap-
tures the impact of one dimension of regulation on zoning code strictness. We can use this projection to
estimate a counterfactual τz,c f under a doubling of FAR:

τz,c f = exp(α log(2))τz

We “cap" the zoning codes at 1, preventing us from having negative regulations, in the following
sense: If τz > 1, we do not change it in the counterfactual. If τz < 1 but τz,c f would be greater than 1, we
set τz,c f = 1.

We then use Equations (19) and (20) to calculate M and T under the new τz,c f , and use them to
compute a counterfactual. Note that this is an extremely conservative counterfactual, in that we are only
changing one dimension of regulation in one city, not even the whole MSA.

We find nontrivial local gains from this counterfactual, on the order of one percentage point of metro-
area GDP. Note that the metro-level (efficiency-weighted) building stock goes up only slightly when we
double FARs in the largest city in the MSA. This suggests that FARs do not bind for many buildings.
Indeed, most buildings in our sample are not particularly close to their statutory floor area ratio. This
illustrates another advantage of our method: we can project our measure τ onto statutory characteristics
of regulations such as floor area ratios, and figure out which of these characteristics are truly distor-
tionary and which ones are not.

5.2.2 Moving “Up" Zoning Codes

Our second counterfactual is even simpler conceptually: we rank every zoning code in New York City
by τz, and we move every parcel “up" by up to three zoning codes. That is, denote τN

z as the Nth highest
(least regulated) zoning code. We set τN

z,c f = τN−3
z (i.e. we move up 3 codes), and use Equations (19) and

(20) to calculate the resulting new T and D. This exercise is also conservative, as we “cap" τc f to prevent
it from going above 1 and only deregulate within New York City (not the whole MSA). We find that the
New York MSA’s GDP rises by over 6% in this (still relatively modest) counterfactual, suggesting that
local policymakers can significantly increase economic activity within their cities by relaxing commercial
real estate regulations.
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6 Conclusion

We have presented the first macroeconomic analysis of commercial real estate regulations, and in the
process introduced a novel method for measuring the strength of regulations. This analysis suggests
that commercial land use regulations have significant aggregate effects, and that they matter for the
spatial allocation of economic activity. We have also shown that our method can be used for extremely
detailed local counterfactuals, and can be of use to policymakers at lower levels of government.

In future work, we intend to dig deeper into the relationship between regulatory distortions and
amenities, perhaps by delving deeper into event studies where specific neighborhoods were deregulated.
We also intend to extend the model by adding housing, heterogeneous workers, and intangible capital,
and by calculating welfare gains along the transition path after deregulation. Our framework is also
well-suited for studying how regulations distort the allocation of resources and workers not only across
cities but within a given city, another topic we intend to study in future work.
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A Data

A.1 CoreLogic

CoreLogic’s dataset is the most comprehensive available source of commercial parcel-level data. How-
ever, it is limited by the quality and quantity of the data compiled by local assessors.24 Not all of these
variables are available for all parcels in all cities, particularly building square footage. We restrict our
sample to buildings where total value, improvement and/or land value, and land square footage are
available. We also find that, for some parcels, MV/TV takes on values outside [0, 1], or in some cases
either MV or LV are recorded as 1 dollar. As the improvement share of building value is an important
object in our analysis, we drop buildings where the ratio MV/TV is greater than .99 or less than .01.
CoreLogic has also harmonized county-level land use codes, which explain what a parcel is primarily
used for. Our sample excludes all buildings which CoreLogic has identified as primarily residential;
hence, we treat the stock of commercial parcels as fixed and do not explore the decision to build a res-
idential or commercial building on a given plot of land. The buildings we keep after filtering account
for roughly 23 percent of all non-public parcels in CoreLogic’s sample, but their total values sum to 73
percent of the total value of all non-public parcels in the unfiltered sample.

Table 7 shows the availability of different variables in the 2018 sample, in both the raw version of the
data and the filtered version we use for our analysis. N and ∑ TV indicate the share of parcels, and the
share weighted by total value, preserved in the filtered sample. The variable a denotes the availability
of the age variable in the filtered and unfiltered samples, whereas ā indicates its mean value. Note that
some parcels list only MV or only LV. In those cases, we impute the missing value by subtracting the
non-missing value from TV. We record value availability after doing this imputation. We also record
what share of parcels have land square footage x, building square footage BSF, and an alphanumeric
zoning code z

Table 7: Variable Availability

Full Sample Filtered
TV .97 1.0

MV .9 1.0
x .97 .98

BSF .17 .63
a .15 .57
z .32 .39

N 1.0 .23
∑ TV 1.0 .74

ā 49 50

CoreLogic offers multiple measurements of land and total value depending on what information

24To give one example of the limitations of using raw assessor data: we manually inspected parts of the data and found that
zoning codes “C-3" and “C3", with and without hyphens, coexisted in one jurisdiction. We therefore drop hyphens when we
analyze alphanumeric zoning codes.
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each county tax assessor offers. These include the assessor’s estimate of market value, the assessed value
used for tax purposes, and estimated values from third-party appraisers. Not all jurisdictions report all
three values, and the first two have much better coverage than the third. CoreLogic also provides a
"calculated" value based on which of these three they think is the closest to the true market value. We
use this "calculated" value but find that this choice is not very consequential—we recalculate our indices
using market and assessed values instead of CoreLogic’s preferred value, and find that over 90 percent
of our observations of Tj and Mj change by less than 10 percent in either direction, and that most do not
change at all. We provide more proof that this choice is not very important in Appendix D.

We also highlight one important decision here: we do not treat buildings without an alphanumeric
zoning code as unregulated. Several jurisdictions such as Houston do not have any formal zoning codes,
and yet they still have land use restrictions such as parking minimums as documented by Schmitt (2019).
Also, some jurisdictions such as Chicago (but not all of Cook County, Illinois) do have zoning codes but
do not report them in the tax assessments used by CoreLogic. We also do not treat missing zoning
codes as an unregulated or minimally-distorting benchmark in jurisdictions where they coexist with
non-missing zoning codes.

A.2 Zoning Code Parameters

We hand-collected zoning code data for New York City and Washington, DC from City of New York
(2021) and DC Office of Zoning (2021a), respectively. We also needed to supplement DC Office of Zoning
(2021a) with information from DC Office of Zoning (2021b) for zoning codes such as WR-3.

Some zoning codes had a range of parameters associated with them—for example, “C1" districts
in New York City have a maximum permissible FAR of 1 or 2 depending on whether the residential
buildings in their neighborhoods are in R1-R5 districts or R6-R10 districts. As we do not observe all of
the different possible contingencies that may affect the FAR of a given building in a given zoning code,
whenever we see a New York City zoning code reported multiple possible FARs, we simply use the
midpoint of the highest and lowest values reported in the zoning reference tables in City of New York
(2021). We did not include attic allowances.

In DC Office of Zoning (2021a), the set of contingencies was even more complicated. Many zoning
codes were associated with a list of height limits, rather than one or two at most in NYC. If a zoning code
provided a list of possible height limits, we used either the median height limit or the average of the
middle two. STE-19 did not report a height limit, so we listed it as missing. Many codes listed a height
limit of 35 feet, or 40 feet if the building adjacent to them was already over 40 feet. We counted these as
35 feet. If a zoning code could apply to residential or non-residential buildings, we only used the height
limits associated with non-residential buildings. We also do not count the additional floors allowed for
penthouses in STE-7.
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B Aggregation Results

B.1 Individual and Aggregate Landlords

In this section we establish the connection between the problems of the individual landlord and the
aggregate landlord. In order to do so, we solve Equations (3) and (6), and show that they yield the same
quantity of improvements demanded and quantity of buildings supplied. We assume a steady state and
drop time subscripts.

First, we take the first-order condition of Equation (3) and solve for the optimal quantity of improve-
ments, expressed in units of the final good.

qimi︸︷︷︸
MVi

= (pjτiβγ)
1

1−γ z
1

1−γ

i xiq
−γ

1−γ

i︸ ︷︷ ︸
Ci

Next, we divide both sides by qi and use the resulting expression for mi to solve for the individual
landlord’s building production function in terms of prices and exogenous parameters:

BN
i = (pjτiβγ)

γ
1−γ Ci

Only a random share δb of buildings depreciate and are rebuilt in each period, hence we can recover
the sum of individual landlords’ improvement demand and building supply curves in each period. Note
that the improvement demand curve is in units of the final good.

∑
i∈j

qjmj︸ ︷︷ ︸
MVj

= δb(pjβγ)
1

1−γ ∑
i∈j

τ
1

1−γ

i Ci

∑
i∈j

BN
i︸ ︷︷ ︸

BN
j

= δb(pjβγ)
γ

1−γ ∑
i∈j

τ
γ

1−γ

i Ci

Next we solve Equation (6) for both quantity of improvements demanded and quantity of new con-
struction supplied, mirroring the derivation above. Note that the technology that the representative
landlord uses to convert the final good to the improvement good is one-for-one, as qi is swept into the
parcel-level efficiency terms.
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mj︸︷︷︸
MVj

= δb(pjβγ)
1

1−γ D
1

1−γ

j T
1

1−γ

j Cj

BN
j = δb p

γ
1−γ

j (βγ)
γ

1−γ D
1

1−γ

j T
γ

1−γ

j Cj︸ ︷︷ ︸
Ψj

It is straightforward to use Equations (7), (8), and (9) to replace Cj, Dj, and Tj in the above two equa-
tions and thereby establish that the improvement demand and building supply curve of the representa-
tive landlord are identical to the summed-up demand and supply curves of the individual landlords.

B.2 Estimating τi and Tj

In this section, we explain in more detail how we estimate the regulatory distortions τi and Tj.
We first recover τi. Because we focus on a single parcel in the steady state, we drop time and parcel

subscripts.
The total value of the parcel (TV) is the net present value of payments made to the building stock Bi,

plus the option to rebuild on the parcel after the building depreciates. We denote the option to rebuild as
Vf , and note that it is available with probability δb. We may therefore write the total value of the parcel
as:

TV ≡ V(B, τ, z, q, x) = rb,jB + (1 − δb)βV(B, τ, z, q, x) + δbVf (τ, z, q, x)

If the building falls, the parcel owner puts improvements on the building today and starts earning
rents tomorrow. We denote m∗ as the solution to the parcel-owner’s problem and write:

Vf (τ, z, q, x) = βV(B, τ, z, q, x)− qm∗

In a steady state, qm∗ = MV, and therefore MV and B are constant every time the building needs to
be rebuilt. We can therefore take the infinite sum of payments and get that:

TV =
rb,jB
1 − β

− δbqm∗

1 − β

Recall:

MV = qm∗ = βγτBVi

And by definition, BV is the flow value of payments made to the building:

BV =
rb,jB

1 − β(1 − δb)
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Let us rewrite the first expression in TV in terms of BV:

rb,jB
1 − β

=
1 − β(1 − δb)

1 − β
BV

Hence we can add up and rearrange some terms to relate the total value of the parcel to the total
value of the building :

TV =
(1 − β(1 − δb)− δbβγτ

1 − β

)
BV

And let us again substitute MV:

TV =
(1 − β(1 − δb)− δbβγτ

1 − β

)MV
τβγ

Let us rearrange this expression in order to get γ in terms of TV, MV, and τ:

τβγ =
(1 − β(1 − δb)− δbβγτ

1 − β

)MV
TV

τ =

( 1−β(1−δb)
1−β

)MV
TV

γβ
(
1 + δb

1−β
MV
TV

)
This yields Equation (14).
We now turn to Tj and reintroduce the parcel-level index i. We can replace τi on the left hand side of

Equation (11) with Equation (14) and recover Equation (13):

Tj =
∑i∈j MVi

∑i∈j MViγ
(

β + δb β
1−β

MVi
TVi

)
/
(( 1−β(1−δb)

1−β

)MVi
TVi

)

=

( 1−β(1−δb)
1−β

)
∑i∈j MVi

βγ
(

∑i∈j TVi +
δb

1−β ∑i∈j MVi
)

We now multiply both the numerator and denominator by ∑i∈j TVi:

Tj = T1
j

∑i∈j TV

∑i∈j TV
=

( 1−β(1−δb)
1−β

)
∑i∈j MV

βγ
(

∑i∈j TV + δb
1−β ∑i∈j MV

) ∑i∈j TV

∑i∈j TV
=

( 1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

βγ
(
1 + δb

1−β

∑i∈j MV
∑i∈j TV

)
We now recover Equation (13):

γ · Tj =

( 1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

β
(
1 + δb

1−β

∑i∈j MV
∑i∈j TV

)
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C Computing Counterfactuals

For each counterfactual, we alter a subset of parameters and recompute a new steady state. At a high
level, our algorithm takes as an input a vector of Yj, feeds it through all the equilibrium conditions of the
model, and gives as output a new guess for Yj.

All of our counterfactuals involve altering the τi terms in Equations (8) and (9), or altering the τz in
Equations (19) and (20), and recovering new values for T and D. Recall the building supply curve from
Equation (12) and denote Ψp

j as the pre-counterfactual Ψj. If we increase Dj by some factor Φ1 and Tj by
some factor Φ2, we increase Ψj as follows:

Ψj = (Φ1)
1

1−γ (Φ2)
γ

1−γ Ψp
j

Having recovered the new T, D, and Ψ, we move on to the rest of the counterfactual algorithm. We
will proceed by substituting out endogenous variables until we are left with a function that only takes
as inputs the vector Yj and exogenous parameters. We begin by rewriting the consumption equation:

c = ∑
j

Yj − δkKj − mj

In a steady state, Kj = (1 − α − χj)Yj/rk, hence we can replace Kj:

c = ∑
j

Yj − Yjδk(1 − α − χj)/rk − mj

Recall mj = TjγδbβpjBj, and pjBj = χjYj/(1 − β(1 − δb)), hence:

c = ∑
j

Yj − Yjδk(1 − α − χj)/rk − YjTjδbγβχj/(1 − β(1 − δb)) ≡ ∑
j

θjYj

Recall the labor supply equation:

Lj = (a
1+ 1

η

j c−σwj)
η

We can express wages in terms of labor supply, GDP, and factor shares and rewrite this as:

L
1
η

j = (a
1+ 1

η

j c−σαYj/Lj)

L
1
η +1
j

(a
1+ 1

η

j c−σα)

= Yj

We can also express L in terms of Y, B, and K:
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Lj =

 Yj

AjK
1−α−χj
j B

χj
j

 1
α

(22)

We can also use our supply function to recover B in terms of Y:

BVj = pjBj =
χjYj

1 − β(1 − δb)

BVj = pjBj = p
1

1−γ

j Ψj

pj =

(
BVj

Ψj

)1−γ

Bj = BVj/pj = BVγ
j (Ψj)

1−γ

=

(
χjYj

1 − β(1 − δb)

)γ

(Ψj)
1−γ

Because we already solved for K in terms of Y, we can now get labor entirely in terms of a guess for
Y:

Lj =

 Yj

Aj

(
(1−α−χj)Yj

rk

)1−α−χj
((

χjYj
1−β(1−δb)

)γ
(Ψj)1−γ

)χj


1
α

Now we replace Lj in Equation (22) with the above expression to get:

 Yj

Aj

(
(1−α−χj)Yj

rk

)1−α−χj
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χjYj
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(a
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η

j (∑k θkYk)
−σ α)

= Yj

We rearrange this expression one last time, as we find that this final expression converges more easily:

Yj =

(Aj
(
Kj
)1−α−χj

(
Bj
)χj
) 1

η +1
α

(
Yj(a

1+ 1
η

j

(
∑

k
θkYk

)−σ

α)

) α
1
η +1

(23)

Now we can take a guess for the vector Y, put it on the right-hand-side of the above equation, and
back out a new Y on the left. We use a “damped" algorithm: we start with a guess YG on the left, get the
new YN on the right, calculate a weighted average YW = p ∗YG + (1 − p)YN , and use YW as the new YG

in the next iteration. In practice we set p = 0.9.
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C.1 Endogenous Amenities

Here we briefly discuss how we compute the model with endogenous amenities. First, our guess for Yj

also yields a guess for the counterfactual Lj, which we now call Lc f
j in Equation (22). Second, we have

already computed the relationship between amenities and labor supply in Equation (21) and computed
the key coefficient µ in the process. We can combine these expressions, along with the original amenity
vector aj and labor supply vector aj, to calculate how amenities change if the current guess for Yj is
correct. More specifically, we recover the ratio rj between new and old amenities in Equation (24):

rj =
ac f

j

aj
=

exp(µ log(Lc f
j /Xj)

exp(µ log(Lj/Xj)
=
(Lc f

j

Lj

)µ
(24)

We multiply amenities in Equation (23) by rj, and keep the algorithm otherwise unchanged. Note that
we do not change amenities in the remote work region, and note that Xj divides out of this equation.

C.2 Certainty Equivalent

Consider a move between steady states A and B. We calculate the consumption-equivalent welfare in-
crease caused by moving from A to B by scaling consumption in A by some factor λ such that the
consumer is indifferent between it and B. Below we show how to use Equation (1) to get λ. Note that, in
the case where amenities depend on congestion, we must combine this with the method described above
in Appendix C.1 to account for the change in amenities.

We know consumption, amenities, and the labor supply in both the original and final steady states.
We can therefore write:

(λcA)1−σ

1 − σ
− 1

1 + 1
η

∑
j

(
LA

j

aA
j

)1+ 1
η

=
(cB)1−σ

1 − σ
− 1

1 + 1
η

∑
j

(
LB

j

aB
j

)1+ 1
η

Some algebra yields:

λ =

(1 − σ)

 (cB)1−σ

1 − σ
+

1
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η

∑
j

(LA
j
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)1+ 1
η

−
(

LB
j

aB
j

)1+ 1
η


1

1−σ /
cA

We record λ − 1, i.e. the percentage change in consumption needed to equate utility in the old steady
state with the new, in Table 4.
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D Robustness Exercises

In this section, we test the robustness of our results to different data filtering choices and calibrations.
In particular, we re-do the baseline counterfactual described in Section 5.1.1 and test how much the
headline results change. We explain these exercises in more detail below and report their results in Table
8.

Table 8: Robustness Exercises

Baseline Mkt. Value Assd. Value χ = .13 χ = .10 No Agriculture
%∆Yj 2.9% 3.1% 2.8% 2.4% 1.9% 2.8%
%∆Lj -1.0% -0.9% -1.0% -0.8% -0.6% -0.9%
%∆Kj 2.5% 2.7% 2.4% 2.2% 1.7% 2.5%
%∆Bj 16.6% 22.6% 15.3% 16.3% 15.9% 16.2%
%∆ Landlord Profits -2.9% -3.1% -2.8% -3.4% -4.0% -2.8%
%∆c 2.1% 2.2% 2.0% 1.8% 1.4% 2.0%

In our first two robustness exercises, we test whether using CoreLogic’s preferred “calculated" values
instead of the assessors’ “market" or “assessed" values makes a significant difference. We recalculate all
regional parameters (TFP Aj, amenities aj, regulatory distortions Tj, dispersion Dj, etc) and recompute
the new steady state for each of our alternative data choices. Note that some of these measures are
missing in certain MSAs, hence we end up with 193 regions for market value and 233 for assessed,
compared to 243 with our preferred measure. The missing MSAs are thrown into the rest-of-country
aggregator. We find that our headline results mostly change by less than 10 percent.

We next test the sensitivity of our results to the value of χ. We get χ ∼ .15, at least for non-remote
regions. Our calibration is based on getting the factor share for non-structures capital, using an off-the-
shelf value for the labor share. then assigning the residual factor share to structures. First, let us go
through a back-of-the-napkin alternative calibration showing that this is not unreasonable.

Investment in non-residential structures in 2018 was 550 billion dollars per US Bureau of Economic
Analysis (2021b). This corresponds to flow investment MV = βγTδbBV in our model. Using the average
value of .87 for T, we get that 550b = 0.96 ∗ 0.923 ∗ 0.87 ∗ 0.0198 ∗ BV = 0.0152BV. This suggests a
structures capital stock of around 36 trillion, or nearly 1.9 times GDP. Hence we get: BV = χY

1−β(1−δb)
∼

χY
0.059 . Using this and the fact that BV ∼ 1.9Y, we get:

1.9 ∗ 0.059 = χ ∼ 0.11

So this rough alternative calibration yields a building share only slightly lower than our baseline,
which in turn only applies to non-remote work (in remote work, χ is 0.)

Even this is depressed by property taxes, which are around 2 of assessed building values in many
major cities according to Lincoln Institute of Land Policy and Minnesota Center for Fiscal Excellence
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(2021). These generate a second wedge, between BV and the true factor share of structures. This may
be exaggerated because assessments are lower than true values, so let us be conservative and instead
use 1 percent below. That would correspond to 360 billion in commercial property tax, which is around
60 percent of the property tax bill reported in Urban Institute (2018). We do not know what share of
property tax revenue comes from commercial properties. Note that 1 percent is not a random number:
NAREIT (2019) suggests a value of 15 trillion for the sum of commercial properties, roughly half of what
our calibration implies. Building values are depressed by these taxes, as the payments to buildings now
comprise factor payments χY less taxes, 0.01BV. Hence we can write:

BV =
χY − 0.01BV
1 − β(1 − δb)

∼ χY − 0.01BV
0.059

We can rearrange to get:

(1 + 0.01/0.059)BV ∗ 0.059 = χY

(1.17)BV ∗ 0.059 = χY

1.17 ∗ 1.9 ∗ 0.059 = χ ∼ 0.13

This is not far from the original calibrated value.
Nevertheless, we test how our results change at different values of χ, specifically at χ = 0.13 and

χ = 0.1. It remains zero in remote work. We assign the missing factor share to labor, i.e. we set α so
that factor shares sum to 1. Starting from Equation (15), we redo our identification and recalculate a new
initial steady state. Starting from this steady state, we redo our baseline counterfactual. Unsurprisingly,
we find lower output gains at lower values of χ, but even at χ = 0.1 the gains are significant.

Finally, we test whether agricultural parcels (which arguably use a different technology with a dif-
ferent γ) skew our results. We drop parcels whose primary land use is listed as agriculture, golf, or wild
lands, and we drop parcels that are listed as empty space zoned for commercial or industrial uses. That
is, we drop all parcels with a CoreLogic land use code starting with “4." We then re-calculate γ from
this sample based on the least-distorted MSA and find that it is basically unchanged. We recalculate all
regional parameters using this slightly smaller sample and recompute the new steady state. Using that
as our starting point, we redo our baseline counterfactual. We find that this makes almost no difference,
as agricultural parcels are simply not very economically significant.
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