Determinacy without the Taylor Principle

George-Marios Angeletos¹ Chen Lian²

¹MIT and NBER

²UC Berkeley and NBER

February 23, 2022

1 Introduction

- 2 A Simplified New Keynesian Model
- 3 The Standard Paradigm
- Uniqueness with Fading Memory
- **5** Extensions and Applications

A Perennial Issue: Indeterminacy in a Monetary Economy

- Core questions of the monetary economics depends on equilibrium selection:
 - What determines the price level?
 - Can monetary policy regulate AD and inflation?
 - Does the ZLB trigger a deflationary spiral?
- Basic problem (back to Sargent & Wallace, 75):
 - ▶ Same path for $R \Rightarrow$ multiple bounded equilibrium paths for π and y
 - \blacktriangleright Different selections \Rightarrow different answers to core monetary questions
- State of the art: two alternatives
 - **Taylor principle** (TP, raise *i* more than 1-1 with π)
 - Fiscal Theory of the Price Level (FTPL, non-Ricardian fiscal policy)

A New Perspective

- Indeterminacy requires strong intertemporal coordination ("infinite chain")
 - · Current agents respond to sunspots if future agents respond in a specific way.
 - Future agents respond only if they expect agents further in the future respond; and so on.
- Small perturbations in memory/coordination \Rightarrow breaks the chain \Rightarrow determinacy
 - Always selects the standard eq. (MSV), even with interest rate pegs
- A new perspective on both the Taylor principle and FTPL
 - ► Recast Taylor principle as stabilization instead eq. selection
 - ► Reformulate FTPL outside the eq. selection logic

1 Introduction

- 2 A Simplified New Keynesian Model
- 3 The Standard Paradigm
- Oniqueness with Fading Memory
- **5** Extensions and Applications

A Simplified NK Model

O DIS, with overlapping generations of consumers (who live for 2-periods):

$$c_{t} = \bar{E}_{t} \left[\frac{1}{1+\beta} y_{t} + \frac{\beta}{1+\beta} y_{t+1} - \frac{\beta}{1+\beta} \sigma(i_{t} - \pi_{t+1} - \rho_{t}) \right]$$
(DIS)
$$y_{t} = c_{t}$$

Phillips curve:

$$\pi_t = \kappa y_t + \xi_t$$
 (PC)

3 Taylor rule $(\phi \ge 0)$:

$$i_t = z_t + \phi \pi_t$$
 (MP)

An Equivalent Representation

 $\bullet\,$ Substituting monetary policy and Phillips curve in IS curve $\Rightarrow\,$

$$c_t = ar{E}_t \left[(1-\delta_0) heta_t + \delta_0 c_t + \delta_1 c_{t+1}
ight]$$

where
$$\{\theta_t\}$$
 is a transformation of $\{\rho_t, \xi_t, z_t\}$ and $\delta_0 \equiv \frac{1-\beta\sigma\phi\kappa}{1+\beta} < 1$ and $\delta_1 \equiv \frac{\beta+\beta\sigma\kappa}{1+\beta} > 0$

- NK economy = a game among consumers
 - $\blacktriangleright~\delta_0$ and δ_1 measure strategic complementarity within and across time
 - ▶ summarize all GE feedbacks: income \leftrightarrow spending, output \leftrightarrow inflation, MP response

Fundamentals, Sunspots, and the Equilibrium Concept

• Fundamentals & sunspots:

$$heta_t \sim_{\mathsf{i.i.d}} \mathscr{N}(\mathsf{0},\mathsf{1}) \quad \mathsf{and} \quad \eta_t \sim_{\mathsf{i.i.d}} \mathscr{N}(\mathsf{0},\mathsf{1})$$

In paper: general stochasticity

• State of nature, or (infinite) history, at t:

$$h^t = \{\theta_{t-k}, \eta_{t-k}\}_{k=0}^{\infty}$$

• Equilibrium concept: REE (based on potentially limited information about h^t)

$$c_t = \sum_{k=0}^{\infty} a_k \eta_{t-k} + \sum_{k=0}^{\infty} \gamma_k \theta_{t-k}$$

• Focus on bounded eq. (can be justified by escape clauses)

1 Introduction

- 2 A Simplified New Keynesian Model
- 3 The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **5** Extensions and Applications

The Standard Paradigm

• FIRE/perfect social memory benchmark:

$$c_{t}= heta_{t}+\delta\left(\phi
ight)\mathbb{E}_{t}\left[c_{t+1}
ight]$$

- $\mathbb{E}_t[\cdot]$ is rational expectation conditional on entire history h^t
- The MSV (minimum state variable) solution:

$$c_t = c_t^F \equiv heta_t$$

- Is MSV the only solution?
 - Standard: depends on the Taylor principle
 - Our perturbation: always

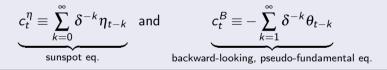
The Standard Paradigm

Proposition 1. Perfect Recall Benchmark

- ${\, \bullet \,}$ When $\phi > 1$ (Taylor principle), the MSV equilibrium is the unique eq
- When $\phi < 1$, there exist a continuum of equilibria

$$c_t = (1-b)c_t^F + bc_t^B + ac_t^\eta,$$

where $a, b \in \mathbb{R}$ are arbitrary scalars and



- Infinite chain: Current agents respond to payoff-irrelevant histories because they expect future agents to do the same, ad infinitum
- What's Next: small perturbations breaking the infinite chain

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- Oniqueness with Fading Memory
- **5** Extensions and Applications

The First Perturbation: Fading Social Memory

- At every t, the young consumer learns $(heta_t,\eta_t)$
- With prob. λ , she learns nothing more
- With prob. 1λ , she inherits the info of a random old consumer

Assumption. Fading Social Memory

In every t, information set are given by

$$I_{i,t} = \{(\theta_t, \eta_t), \cdots, (\theta_{t-s}, \eta_{t-s})\},\$$

where $s \in \{0, 1, \dots\}$ is drawn from a geometric distribution with $\lambda \in (0, 1)$.

Determinacy without the Taylor Principle

- As $\lambda \to 0$, almost all agents have arbitrarily long memory
 - ▶ nearly perfect informed about $\{\theta_{t-k}, \eta_{t-k}, c_{t-k}, \pi_{t-k}\}$
- But for any $\lambda > 0$, zero mass of agents has *infinite* memory
 - ▶ $\lim_{k \to +\infty} \mu_k = 0$ where $\mu_k \equiv$ mass of agents that knows histories of length k or higher

Proposition 2. Determinacy without the Taylor Principle

With fading social memory, the MSV solution is the unique equilibrium

- Regardless of δ , or equivalently MP ϕ (e.g., even with pegs).
- No matter how slow the memory decay is (how small $\lambda > 0$ is).

Logic

Key to the proof: anticipation that social memory will fade

 \implies perceived complementarity fades with horizon

 \implies determinacy

Logic:

- I can see the current sunspot very clearly
- It would make sense to react if all future agents will keep responding to it in perpetuity
- But I worry that agents far in the future will fail to do so
 - either because they will forget it
 - ▶ or because they may worry that agents further into the future will forget it
- It therefore makes sense to ignore the sunspot

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **(5)** Extensions and Applications

Robustness

• Sunspot eq. can be represented in recursive form as

$$c_t = \eta_t + \delta^{-1} c_{t-1}.$$

- ▶ supported by $I_{i,t} = \{\eta_t, c_{t-1}\}$
- c_{t-1} serves as memory/coordination device

Robustness

• Sunspot eq. can be represented in recursive form as

$$c_t = \eta_t + \delta^{-1} c_{t-1}.$$

- ▶ supported by $I_{i,t} = \{\eta_t, c_{t-1}\}$
- ► c_{t-1} serves as memory/coordination device

Proposition 3

Sunspot eq. unravel with tiny idiosyncratic noise in the observation of c_{t-1}

 $I_{i,t} = \{\eta_t, s_{i,t}\}, \quad \text{with} \quad s_{i,t} = c_{t-1} + \varepsilon_{i,t}.$

Robustness

• Sunspot eq. can be represented in recursive form as

$$c_t = \eta_t + \delta^{-1} c_{t-1}.$$

- ▶ supported by $I_{i,t} = \{\eta_t, c_{t-1}\}$
- c_{t-1} serves as memory/coordination device

Proposition 3

Sunspot eq. unravel with tiny idiosyncratic noise in the observation of c_{t-1}

$$I_{i,t} = \{\eta_t, s_{i,t}\}, \quad \text{with} \quad s_{i,t} = c_{t-1} + \varepsilon_{i,t}.$$

Proposition 4

Even with perfect knowledge of $\{c_{t-k}, \pi_{t-k}\}_{k=0}^{K}$, uniqueness provided K is finite and tiny forgetfulness about θ_{t-1}

The Full NK Model: Same Results

• Intertemporal Keynesian cross (proper DIS):

$$c_{t} = \mathscr{C}\left(\left\{\bar{E}_{t}[y_{t+k}]\right\}_{k=0}^{\infty}, \left\{\bar{E}_{t}[i_{t+k} - \pi_{t+k+1}]\right\}_{k=0}^{\infty}\right) + \rho_{t}$$

• Standard NKPC:

$$\pi_t = \kappa c_t + \beta E_t \left[\pi_{t+1} \right] + \xi_t$$

• Monetary policy:

$$i_t = z_t + \phi_c c_t + \phi_\pi \pi_t$$

Proposition 5

With fading social memory ($\lambda > 0$), the equilibrium is **unique** and is given by the **MSV** solution.

A Smooth Taylor Principle

- Our result removes the need for equilibrium selection but leaves ample room for sunspot-like fluctuations in the form of
 - overreaction to noisy public news (Morris-Shin, 02)
 - shocks to higher-order beliefs (Angeletos-La'O, 13)
 - bounded rationality (Angeletos & Sastry, 21)
- The slope of the Taylor rule admits a new function:
 - ► regulates the magnitude of sunspot-like fluctuations along the unique eq.
 - by regulating the overall complementarity in the economy
- Recast Taylor principle as stabilization instead eq. selection

Fiscal Theory of Price Level

Proposition 6.

Assume first-order knowledge of government budget & market clearing + no rational confusion.

Then, gov debt and deficits are **payoff irrelevant** (sunspots)

• Regardless of memory, regardless of monetary/fiscal policy

- Corollary: eq. selected by FTPL is not robust to our perturbations
- Fiscal policy has to be Ricardian even when monetary policy is passive

Standard Result			
	Fiscal Policy is		
	Ricardian	Non-Ricardian	
Taylor holds	Determinacy	No equilibrium	
does not hold	Multiplicity	Determinacy	

With Our Perturbation			
	Fiscal Policy is		
	Ricardian	Non-Ricardian	
Taylor holds	Determinacy	No equilibrium	
does not hold	Determinacy	No equilibrium	

1 Introduction

- 2 A Simplified New Keynesian Model
- 3 The Standard Paradigm
- Oniqueness with Fading Memory
- **5** Extensions and Applications

Take-home Messages

- Warning: as in global games, multiplicity can strike back with enough CK
- Still, our results
 - illustrate fragility of sunspot/backward looking solutions
 - help escape the equilibrium selection conundrum
- A new perspective on both the Taylor principle and FTPL
 - ► Recast Taylor principle as stabilization instead eq. selection
 - Reformulate FTPL outside the equilibrium selection logic
 e.g., model MP-FP interaction as a game of between monetary & fiscal authority