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Abstract

Abstract: Empirical economic research crucially relies on highly sensitive individual datasets.

At the same time, increasing availability of public individual-level data that comes from social

networks, public government records and directories makes it possible for adversaries to poten-

tially de-identify anonymized records in sensitive research datasets. Most commonly accepted

formal definition of an individual non-disclosure guarantee is referred to as differential privacy.

With differential privacy in place the researcher interacts with the data by issuing queries that

evaluate the functions of the data. Differential privacy guarantee is achieved by replacing the

actual outcome of the query with a randomized outcome with the amount of randomness deter-

mined by the sensitivity of the outcome to individual observations in the data.

While differential privacy does provide formal non-disclosure guarantees, its impact on the

identification of empirical economic models as well as its impact on the performance of estima-

tors in nonlinear empirical Econometric models has not been sufficiently studied. Since privacy

protection mechanisms are inherently finite-sample procedures, we define the notion of iden-

tifiability of the parameter of interest under differential privacy as a property of the limit of

experiments. It is naturally characterized by the concepts from the random sets theory and is

linked to the asymptotic behavior in measure of differentially private estimators.

We demonstrate that particular instances of regression discontinuity design may be problem-

atic for inference with differential privacy. Those parameters turn out to be neither point nor

partially identified. The set of differentially private estimators converges weakly to a random

set. This result is clearly supported by our simulation evidence. Our analysis suggests that

many other estimators that rely on nuisance parameters may have similar properties with the

requirement of differential privacy. Identification becomes possible if the target parameter can

be deterministically localized within the random set. In that case, a full exploration of the ran-

dom set of the weak limits of differentially private estimators can allow the data curator to select

a sequence of instances of differentially private estimators that is guaranteed to converge to the

target parameter in probability. We provide a decision-theoretic approach to this selection.
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1 Introduction

A large portion of empirical work in Social Sciences and most notably in Economics relies on highly

sensitive data. Sensitivity of the data may be well understood from the personal experiential per-

spective and is largely associated with risks of potential exposure of individuals in the data when

the data may reveal their personal or financial information which consequently would make them

sensitive to the adversaries or embarrass them. At the same time, there has been a long struggle

in attempts to formalize the concept of sensitivity of the data and the related concept of “privacy

guarantee” that would measure how and to what extent sensitive attributes of the data are protected.

The most significant progress in the efforts to formalize privacy protection has been made in the

Computer Science literature. The mainstream approach there would consider any attribute of the

data as “sensitive.” At the same time, the security risks are considered in the worst-case scenario

setting where public components of the protected dataset or its summaries are accessed by an

adversary. The adversary is assumed to have an arbitrary amount of auxiliary information that he

or she can use to expose individuals in the data.

In order to be able to talk about privacy-preserving approaches and their properties, one has to be

able to characterize formally the level of exposure induced by the adversary. This can done, for

instance, in accordance with the US Census Bureau’s analysis in [34] which distinguishes between

identity disclosure, where an adversary is able to identify if a specific data entry belongs to a certain

individual, and attribute disclosure where an adversary is able to find out if a particular individual has

a particular characteristic (e.g. belongs to a certain group). Formal legal approaches to protection

of individual data, for instance, behind HIPAA and FERPA are based on clear prioritization of

identity disclosure over attribute disclosure and mandate the removal of specific demographic and

personal identifiers to make the data “less sensitive.” Computer Science literature, at the same time,

clearly demonstrates that the reduction in “sensitivity” of the data based on potential exposure

level by removing individual characteristics is highly ineffective.1 The examples of successful attacks

on the “anonymized” data lead to the early work on the formal definition of privacy guarantees

that resulted, in particular, in the development and the implementation (see [50], [51], [52], [36],

[6], [37], [13], among others) of the so-called k-anonymity approach. A database instance is said to

provide k-anonymity, for some number k, if every way of singling an individual out of the database

returns records for at least k individuals. In other words, anyone whose information is stored in the

1For instance, [52] identified the medical records of William Weld, then governor of Massachusetts, by linking

voter registration records to “anonymized” Massachusetts Group Insurance Commission (GIC) medical encounter

data, which retained the birthdate, sex, and zip code of the patient. In another example in [46] the risk of disclosure

was identified in the so-called “Netflix prize dataset.” In 2009 Netflix announced a competition with a grand prize of

$1M for developers of the prediction algorithm that would use the information on past viewership history for given

consumer and how this consumer rated those movies and be be able to predict how that consumer would rate the

movies that he or she has not seen yet. For this competition Netflix released an “anonymized” dataset containing

100,480,507 ratings produced by 480,189 consumers. [46] used the public movie review data of users from imdb.com

and were able to link a significant fraction of “anonymous” consumers on Netflix to imdb.com users based on the

uniqueness of watch histories.
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database can be “confused” with k others. It is important to note that the k-anonymity approach

was primarily targeted to prevent the identity disclosure and, as is well known, does not prevent the

attribute disclosure. It also implicitly requires that the data curator responsible for protecting the

data is aware of all possible auxiliary information that could be available to the adversary. These

features make k-anonymity and its variants rather impractical.

The concept of differential privacy developed in [14] provides a measure of privacy guarantees with-

out these complications and addresses both identity and attribute disclosure concerns. Differential

privacy formalizes the interaction of a user with a “sensitive” database via queries that are sub-

mitted through a secure server with a privacy protection mechanism. These queries are functions

that need to be computed on the data representing summaries or tabulations of the data. The

assumed risk to the database is that the queries to the database can be issued by an adversary. The

privacy protection mechanism has two main elements that allow it to be effective against arbitrary

adversaries. First, it takes into account the “sensitivity” of the query to the data, that measures the

maximum change in the output of the function computed on the data if any data entry is deleted

or altered. Second, it independently randomizes the outcome of the query which ensures that the

produced outcome is not correlated with any auxiliary information that an adversary may have.

Differential privacy ensures that no single individual/observation in the data can have a significant

impact on the distribution of the randomized query and, thus, it gives a broad set of guarantees of

data protection from adversarial attacks.

Given the universal theoretical appeal of differential privacy, its adoption as a security standard has

been considered by a variety of private enterprises and government bodies. For instance, Facebook

recently announced ([4]) that it will provide public access to the data on shared links within the

social network via a differentially private protocol. In 2019 the US Census bureau has announced

([2]) that it will use differential privacy as the baseline for privacy protection in 2020 Census. The

transition to the differential privacy standards has caused an outcry in Social Science community

due to obvious concerns about the impact of the differential privacy technology on the quality of the

data-driven research and resulted in an open letter signed by a large number of academic researchers

([3]).

In the evaluation of privacy technologies the Computer Science literature focuses on the “privacy-

utility” trade-off. In this literature, e.g. discussed in [38], [28], [9], [56]), the main idea is that privacy

protection makes the data “noisier” which reduces its “utility” but at the same time does not preclude

one from recovering the parameter of interest from the data, albeit possibly less accurately. In our

previous work [32] we showed that this thought process is flawed for techniques in the spirit of

k-anonymity, which are aimed at the prevention of the identity disclosure. In particular, [32] argues

that since privacy protection is fundamentally a finite sample paradigm, its impact on the properties

of estimators has to be studied using the concept of limits of experiments. From this perspective,

the asymptotic behavior of the estimator of interest is viewed as the limit of experiments where

an estimator with privacy constraints is produced from samples of an increasing size. As it will be
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clear, this is a general approach we will also take in this paper albeit with some very important

differences in technical and practical implementation. Also, our earlier work [32] (as well as in

[30], [31]) does not analyze differential privacy as it is focused on the techniques in the spirit of

k-anonymity in a framework where the data needed for estimation has to be combined from split

datasets. [32] in particularly shows that the prevention of the identity disclosure when combining

split datasets using quasi-identifiers is incompatible with the parameter identification in conditional

moment models, which comprise many commonly used econometric models. Namely, in [32] with any

degree of identity disclosure prevention imposed in the data one can only recover a pseudo-identified

set for the parameter of interest. This set is generally a non-singleton subset of the parameter

space and it does not include the true parameter. In other words, the “privacy-utility” trade-off is

meaningless if one wants to enforce guarantees in the spirit of k-anonymity.

In this paper we develop a notion of identification under differential privacy. Differential privacy

guarantee is provided for finite samples whereas, as is well known, identification in Economics and

Econometrics is a population property. Thus, to bring these two worlds – the population and finite

sample – together, we propose to look at the identification (or lack of such) as the property of the

limit of experiments.2 We first consider a set of estimators that can obtained in a finite sample by

applying differentially private mechanisms for a particular privacy guarantee. We then analyze the

limit of this set as the sample size increases and associate parameter identification with limit being

a singleton.

In this paper we demonstrate that certain important classes of estimators may not be identified

with differential privacy in place. Moreover, they are also not partially identified, i.e. contained in

a non-trivial subset of the parameter space with probability 1. Finite sample differentially private

estimators turn out to have limits within a random set and thus cannot be analyzed via traditional

machinery used for inference in point or partially identified models. Instead, the analysis has to rely

on the well-developed theory of random sets of [44] and [45].

This result stems from the fundamental asymmetry of information between the data curator and the

researcher. Since the researcher cannot “explore” the data, she does not know the properties of its

distribution. As a result, some statistical functions that the researcher would like to evaluate may

not be accurately tuned to that distribution. Given this simple intuition, we emphasize that our

findings do not directly parallel existing impossibility results for differential privacy (e.g. [17] and

[26]) since those largely stem from the statistical lower bounds for inference of functions from data.

They instead arise from the asymptotic limits of finite sample data distribution and the noise-infused

differentially private output.

More importantly, point identification in our scenario is not impossible and can be achieved if the

data curator is willing to collaborate with the researcher. If the data curator is able to locate the

2We used a similar idea in our previous work [32] for privacy under data combination. However, the identification

approach we suggest under differential privacy is different from that in [32], which is not surprising given that

differentially privacy is a fundamentally distinct approach for privacy protection.
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parameter of interest relative to the limit random set of differentially private outputs, then she can

select an element of that limit random set which is the closest to the parameter of interest. This

allows her to construct a mapping selecting an element of the random set that results for any finite

data sample. We show that such a mapping accommodates the point identification of the target

parameter.

In the setting where the data curator cannot construct such a mapping but is able to convey the

procedure she used to produce the differentially private output to the data curator, point identifica-

tion may not be possible. However, the researcher can construct bounds for the target parameter via

Bayesian credible regions. These can serve as a simple to produce characterization of the differen-

tially private output without requiring the researcher to analyze the entire probability distribution

of the resulting random set.

In Section 2 we formalize the concept of identification with differential privacy guarantees and

provide formal characterization of the limit of the set of differentially private estimators applied to

finite samples.

In Section 3 we show how parameter identification can be restored with collaboration between the

researcher and the data curator and provide a decision-theoretic framework that leads to a consistent

estimator for the parameter of interest from the set of differentially private outputs. We also show

how a researcher can construct probabilistic bounds for the parameter of interest when the data

curator is not willing to collaborate with her to point identify the target parameter.

In Section 4 we conduct the identification analysis for differentially private estimators in regression

discontinuity design models. We establish the lack of identification for differentially private versions

of nonparametric regression at the boundary and local linear estimators. We also discuss implications

of differential privacy for specification tests in the RDD framework and present some simulation

evidence.

Section 5 concludes.

The proofs of all the results as well as additional examples are collected in the Appendix.

2 Limit Properties of Estimators with Formal Privacy Guarantees

2.1 Preliminaries

We start be reviewing a formal definition of differential privacy.

When the query to the data is an estimator θ̂, differential privacy requires to replace the point

estimator of interest θ̂ with a randomized function θ(PN , νN ), where PN is the empirical distribution

of the dataset and νN ∈ V is an independent random element which is assumed to be belong to a

Banach space V. In other words, it is required that the estimator is randomized using independent

noise. The independence of the random element ν from the data sample is essential, since any
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correlation may allow an adversary to recover potentially sensitive attributes of observations in the

data.

We now provide a formal definition of differential privacy in application to randomized estimator

θ(PN , νN ).

DEFINITION 1 ((ε, δ)-differential privacy [14]). A randomized estimator θ(PN , νN ) is (ε, δ)-

differentially private if for any two empirical measures PN and P′N over N support points and

differing in exactly two support points, we have that for all measurable sets A of possible outputs the

following holds:

PνN [θ(PN , νN ) ∈ A] ≤ eεPνN [θ(P′N , νN ) ∈ A] + δ, (2.1)

where ε > 0, δ ∈ [0, 1) are privacy parameters (sometimes we will refer to them as privacy constants

and probabilities are taken over randomness in νN .

In addition, if δ = 0, then the estimator θ(PN , νN ) is referred to as ε-differentially private.

In this definition we use notation Pν(·) to emphasize that differentially private estimator θ(PN , νN )

is based on the distribution of random element νN while the distributions of two adjacent datasets

PN and P′N are fixed. The randomized estimator θ(PN , νN ) in Definition 1 ensures that information

regarding individual data entry cannot be reverse-engineered from its values. We treat νN as a “seed”

for randomness represented by a fixed standardized random variable that is then transformed by the

estimator into the random variable used in a particular mechanism for differential privacy.

There are two important features of the privacy preserving methodology we want to emphasize. The

first one is that even though the distribution of νN can be adjusted to the general properties of the

population data distribution in PN (such as the the number of variable and the support variables)

and can depend on the sample size N , it may not depend on the specific values of observations

producing PN . The second feature is that the privacy protection has to be guaranteed for every

possible realizations of the data PN and P′N different in one support point no matter how small

the probabilities of realizations of these datasets are. These two features contribute to the powerful

privacy-preserving framework delivered by differential privacy. However, as we will see later, these

two properties will contribute to the possible lack of identification of parameters in differentially

private versions of some important econometric models (examples of those are given in section 4).

One seemingly effective way to mitigate the randomness introduced by νN is by considering re-

peatedly sampled versions of the estimator θ(PN , νN ). This, however, is impossible since differential

privacy would require one to consider the entire set of those queries as a single query. This is often

implemented by allocating a privacy budget ε∗ to all statistical functions that would ever be evaluated

from a given dataset. Each function would be allocated a fraction of that ε∗ for the corresponding

(ε, δ) - differentially private output (desirably, with ε � ε∗) and the more functions are evaluated

from the data, the less of the the privacy budget ε∗ will be allocated to the remaining queries and,

consequently, the more noise will have to be added to those queries. A possible approach to avoid
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the unnecessary erosion of the privacy budget is to allow each unique function of the data to be

evaluated exactly once. Each subsequent evaluation of that function would use exactly the same

noise that would be added to ensure differential privacy and output the value identical to that in its

first ever evaluation. We will discuss the consequences of this design in the next section.

If δ = 0, the inequality (2.1) can be rewritten in terms of a more familial log-likelihood ratio:

log
Pν [θ(PN , ν) ∈ A]

Pν [θ(P′N , ν) ∈ A]
≤ ε,

with the constant ε capturing the maximum privacy loss. The differential privacy requirement with

δ = 0 is a rather strong one as it puts a bound on the privacy loss even for very unlikely events

(when PνN [θ(PN , νN ) ∈ A] or PνN [θ(P′N , νN ) ∈ A] is small). With δ > 0, “bad” events from the

perspective of the log-likelihood ratio are allowed to happen but the probability of such is bounded

by δ.

It is clear from the inequality in the definition of differential privacy that the knowledge that a

certain estimator is (ε, δ)-differentially private is not very precise in the sense that this estimator

can also be (ε′, δ′)-differentially private for some ε′ < ε or δ′ < δ, and smaller values of privacy

constants ε and δ obviously correspond to stricter privacy restrictions.3 This leads us to introducing

the notion of a sharp (ε, δ)-differentially private estimator.

DEFINITION 2 (sharp (ε, δ)-differential privacy). A randomized estimator θ(PN , νN ) is sharp

(ε, δ)-differentially private if there is exists a measurable set A such that (2.1) holds with equality

with a strictly positive probability PνN .

A sharp (ε, δ)-differentially private estimator by definition cannot be (ε′, δ′)-differentially private for

some ε′ < ε or δ′ < δ, and, thus, in this case ε and δ describe the exact privacy guarantees.

In practice privacy constants ε and δ are chosen by a data curator. As noted in [15], it is advisable

that parameters in the definition of (ε, δ)-differential privacy are calibrated such that both of them

are allowed to approach zero as the sample size increases. We therefore will write them as (εN , δN ).

Our coverage and the identification notion will allow for a variety of situations – we can(εN , δN ) to

be constant as well as decreasing with N and this is formally given in Section 2.2.

We now provide two examples that demonstrate different asymptotic “regimes” that arise when

the estimator of interest needs to be (ε, δ)- differentially private. In the first regime, the resulting

estimator is consistent and, moreover, additional statistical noise that ensures differential privacy is

asymptotically negligible relative to the sampling noise in the estimator (additional similar examples

can be found in [16], among others). In the second regime, the resulting estimator may not con-

verge in probability and, thus, the statistical noise added due to requirement of differential privacy

asymptotically dominates the sampling noise in the estimator.

3It is especially important for a smaller ε as it measures the range of the likelihood ratio of distributions of

randomized estimators with two adjacent datasets while δ measures the (lack of) overlap between the sets of these

randomized estimators).
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EXAMPLE 1 (Sample mean of a random variable with a bounded support). Suppose that our goal

is the estimation of the mean of a single-dimensional random variable X with support on [0, 1] from

the sample of i.i.d. observations {xi}Ni=1. We consider the following two mechanisms to produce

(ε, δ)-differentially private estimator for E[X].

Laplace mechanism: Let aN (νN ) ∼ Lap
(
0, 1

εN

)
, where Lap(0, λ) is a Laplace random variable

with density 1
2λ exp(−|z|/λ). The output is

θ(PN , νN ) = x̄+ aN (νN )

with x̄ = 1
N

∑N
i=1 xi.

Exponential mechanism: 4

Consider the distribution density p(z;PN ) ∝ exp(− 1
2ε

2N1−2γ
N∑
i=1

(z−xi)2) up to an appropriate scal-

ing constant with some small γ > 0. In other words, density p(z;PN ) is the scaled and exponentiated

quadratic loss whose minimizer is the sample mean (i.e. the estimator for the target E[X]). The

output is

θ(PN , νN ) ∼ p(z;PN ).

We note that both outputs of the Laplace mechanism and the exponential mechanism θ(PN , νN )

converge in probability to the target E[X].

For the Laplace mechanism, the variance of added Laplace noise is 1/(N2ε2), meaning that aN (νN )
p−→

0 and θ(PN , νN )
p−→ E[X] by the law of large numbers.

For the exponential mechanism, we note that its density can be written as

p(z;PN ) =
εN1−γ
√

2π
exp(−1

2
ε2N2−2γ (z − x̄)2),

which is the density of normal random variable with mean x̄ and variance 1/(ε2N2−2γ). In other

words, we can decompose θ(PN , νN ) produced by exponential mechanism as a sum of x̄ and aN (νN )

which is a mean zero normal random variable with variance 1/(ε2N2−2γ). Consequently, just as the

output of the Laplace mechanism, the output of the exponential mechanism converges in probability

to E[X].

To analyze privacy consider empirical distributions PN and P′N where in P′N a single observation xi

is replaced with an arbitrary value x′i. Next, consider the likelihood ratio of distributions of θ(PN , νN )

and θ(P′N , νN ) for each of the two mechanisms.

4We note that our mechanism does not match exactly the definition of the exponential mechanism used in the

differential privacy literature. It does, however, capture the spirit of that mechanism where the minimization of a

criterion function is replaced with sampling from a distribution constructed from that criterion function.
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For the Laplace mechanism the density of its output is

fθ(PN ,νN )(z) =
Nε

2
exp (−N ε |z − x̄|) .

Then

fθ(P′N ,νN )(z) =
Nε

2
exp (−N ε |z − x̄′|) =

Nε

2
exp

(
−N ε |z − x̄− 1

N
(x′i − xi)|

)
.

Then the log-likelihood ratio

log

(
fθ(PN ,νN )(z)

fθ(P′N ,νN )(z)

)
= −Nε

(
|z − x̄| − |z − x̄− 1

N
(x′i − xi)|

)
≤ ε|x′i − xi| ≤ ε,

where bound is sharp with xi = 1 and x′i = 0. According to Definition 2, the output θ(PN , νN ) of the

Laplace mechanism is sharply (ε, 0)-differentially private.

For the exponential mechanism the density of its output is

fθ(PN ,νN )(z) = p(z;PN ).

We note that the likelihood ratio in this case is unbounded due to the fast decay of normal distribution

tails. Instead, it is possible to bound it with a positive probability. To do that we first explicitly express

the log-likelihood ratio

log

(
fθ(PN ,νN )(z)

fθ(P′N ,νN )(z)

)
=

1

2
N−2γε2(x′i − xi)2 − ε2N1−2γ (x′i − xi)(z − x̄).

The log-likelihood ratio evaluated at the output of the exponential mechanism θ(PN , νN ) is a random

variable. Since we established that θ(PN , νN ) is normal with mean x̄ and variance 1/(ε2N2−2γ),

then log

(
fθ(PN,νN )(θ(PN ,νN ))

fθ(P′
N
,νN )(θ(PN ,νN ))

)
is normal with mean ε2

2N2γ (x′i − xi)2 and variance ε2

N2γ (x′i − xi)2. As

a result,

P

(
log

(
fθ(PN ,νN )(θ(PN , νN ))

fθ(P′N ,νN )(θ(PN , νN ))

)
≥ ε

)
= Φ

(
ε

2Nγ
|x′i − xi| −

Nγ

|x′i − xi|

)
≤ Φ (−Nγ + .5ε) ,

given that function a z − b/z for a, b > 0 is strictly increasing and the sharp bound is attained at

xi = 1 and x′i = 0. As a result, the output of the exponential mechanism is (ε,Φ (−Nγ + .5ε))-

differentially private.

As we can see in Example 1, it is possible to produce differentially private estimators for sample

means of the random variable with a bounded range with inference being pretty much the same

as for the original estimator. Note that the standard deviation of the noise associated with the

Laplace mechanism is 1/(εN) and the standard deviation of the noise associated with the exponential

mechanism is 1/(εN1−γ). Thus, if random variable X has finite variance, then the standard deviation

of the sample mean x̄ is O(1/
√
N). As a result, the noise associated with either mechanisms used to
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guarantee differential privacy ((ε, 0) and (ε,Φ (−Nγ + .5ε)) respectively) is asymptotically negligible

(provided that γ < .5) and the statistical analysis can proceed simply ignoring additional noise.

The situation may change if we allow the differential privacy parameters ε and δ to depend on N .

In particular, if εN is taken to converge to zero too quickly (εN = O(1/N)), then the described

differentially private estimator is no longer consistent as the variance of the noise dominates the

variance of the original estimator.

In Example 2 below we illustrate a contrasting scenario where differential privacy guarantee substan-

tially impacts the estimator of the target parameter making it inconsistent. This example involves

a weighted mean of a random variable of interest. The reason why we want to highlight this specific

example is because, as we discuss further in this paper, many relevant estimators in Economics can

be viewed as being constructed from weighted means. In fact, in the RDD models estimation in

Section 4 it will be clear that the lack of identifiability under differential privacy and poor statistical

performance of differentially private estimators (even with relatively weak privacy requirements) will

stem, in particular, from the weights of observations not being fixed but decided by the data. These

weights may vary in a certain fixed interval even when only one observation in the dataset becomes

different. Example 2 below considers an asymptotic regime where with the increase of the sample

size, the weights are more likely to take extreme values. In this case an increasing size of the data

is accompanied by an increase in its diversity with more individuals in the data having unique (low

probability) combinations of features. Example 2 is not directly related to the RDD setup and does

not provide any immediate result for RDD. However, the choice of thresholding in this example and

the impact of the ”effective number of observations” in RDD case have a similar flavor.

EXAMPLE 2 (Weighted sample mean of a random variable with bounded support). Consider a

different target to that in Example 1. In particular, suppose that X and W are single-dimensional

random variables independent from each other, each with support on [0, 1]. However, the object of

interest is the weighted mean E [X/W ] ∈ [0, 1] from the sample of i.i.d. observations {xi, wi}Ni=1.

Our goal in this example is to explore application of two mechanisms considered in Example 1:

Laplace mechanism and exponential mechanism to guarantee (ε, δ)-differential privacy.

In Example 1 we used scaling by ε in the noise addition for each of the two mechanisms to achieve

differential privacy guarantee. The direct analysis of the likelihood ratios for both Laplace and expo-

nential mechanisms shows that they are unbounded regardless of how these mechanisms are scaled.

Therefore, for any scaling of those two mechanisms cannot provide differential privacy guarantee

without a further modification of the estimator.5

Problems with both considered mechanisms arise due to range of the weight wi being between 0 and

1 which means that the range of individual terms in the weighted sum xi/wi is unbounded.

One possible approach to attempt to address this issue is to exclude observations i where wi is close to

zero by using adaptive truncation by choosing a sequence of thresholds δN such that only observations

5This is formally evaluated in the appendix.
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with wi ≥ δN are included for consideration. The threshold δN is a free parameter that controls the

severity of truncation.

Suppose that F xN (·) and FwN (·) are finite-sample distributions of xi and wi respectively and suppose

that limits of these distributions exist as N → ∞. Let πN = 1 − FwN (δN ). N πN can be interpreted

as the “effective sample size” evaluating the expected number of observations where wi exceeds the

threshold. We will normalize the estimators using this effective sample size.6

Laplace mechanism in this case takes aN (νN ) ∼ Lap (0, 1/(εNπNδN )) and outputs

θ(PN , νN ) =
1

NπN

N∑
i=1

xi
wi

1{wi ≥ δN}+ aN (νN )

projected on [0, 1] (given that E[X/W ] ∈ [0, 1]). The first term corresponds to the mean in the trun-

cated sample normalized by the effective sample size NπN . Following the same steps as in Example

1, we can verify that the output of this Laplace mechanism with truncation is (ε, 0)- differentially

private.

Exponential mechanism takes density

p(z;PN ) ∝ exp

−1

2
ε2δ2

N (NπN )2−2γ

(
z − 1

NπN

N∑
i=1

xi/wi1{wi ≥ δN}

)2


and samples θ(PN , νN ) ∼ p(·;PN ) projected on [0, 1]. As for the Laplace mechanism, using the analy-

sis from Example 1 we can verify that the output of exponential mechanism is (ε,Φ (−(NπN )γ + .5ε))-

differentially private.

In other words, from the perspective of differential privacy guarantees, both mechanisms for weighted

means with truncation behave identically to those in case of an unweighted mean of a random variable

with a bounded range. Statistical convergence of the outputs θ(PN , νN ), however, will vary in three

different “regimes.”

Regime 1: N πNδN → 0. The variance of the noise in the Laplace mechanism (εNπNδN )−2 →∞
and the variance of the noise in the exponential mechanism (ε δN )−2(NπN )−2+2γ → ∞. Due to

projection on [0, 1], the outputs θ(PN , νN ) of both Laplace and exponential mechanism converge in

distribution to a Bernoulli random variable with parameter 1/2.

Regime 2: N πNδN → ∞ and δN → δ > 0. In this case the variance of the noise in both the

Laplace mechanism and the exponential mechanism converges to 0 as N →∞. At the same time the

truncated mean 1
N πN

∑N
i=1

xi
wi

1{wi ≥ δN} converges in probability to b = E[X/W 1{W ≥ δ}]. Due

to projection on [0, 1], the outputs θ(PN , νN ) of both Laplace and exponential mechanism converge

in probability to min {1,max {0, b}} . Depending on the value δ, the limit can be any point in [0, 1].

6Our results can be immediately to incorporate the actual sample size after truncation at the cost of additional

analysis that does not, however, change the results qualitatively.



12

Regime 3: N πNδN → ∞ and δN → 0. As in Regime 2 the variance of the noise in both the

Laplace mechanism and the exponential mechanism converges to 0 as N → ∞. Given that δN → 0

the truncated mean 1
N πN

∑N
i=1

xi
wi

1{wi ≥ δN} converges in probability to E[X/W ], the parameter of

interest. Thus the outputs θ(PN , νN ) of both Laplace and exponential mechanism converge to the

target parameter.

To summarize Example 2, depending on the asymptotic behavior of the weights in the weighted

sample mean, differentially private output can be (i) consistent and converge to the target parameter

E[X/W ]; (ii) inconsistent and converge to any point in the parameter range [0, 1]; (iii) not converge

in probability and instead converge to a random limit.

One reason we have focused on the consistency property so far is because it is a minimum desirable

property of a good estimator. The second reason is directly related to what we do in the remainder of

this section – our notion of identification is related to weak limits of differentially private estimators

and the property of consistency describe special cases of those weak limits.

In our previous work [32] we considered identification in models where a researcher has access to a

dataset that was obtained by combining split datasets subject to constraints on the prevention of

the identity disclosure. There, both the data combination procedure and the impositions of privacy

constraints such as k-anonymity) were intrinsically finite sample procedures. To reconcile the nature

of these procedures with the population nature of the identification, we argued that the identification

notion for econometric models from combined and privacy-protected data can only be defined as a

limit of a combined output of the privacy preserving procedure and finite sample distribution of the

data. In this paper, we aim to develop an approach to analyze identification of econometric models

when the data curator requires the output of the econometric procedure to be differentially private.

For that, we can use ideas related to those in [32].

2.2 Formal framework

In this section, we present our formal approach to identification for models with differentially private

outcomes.

We consider a sequence of statistical experiments indexed by the sample size N (N → ∞ along

this sequence), where for each N we generate an i.i.d. sample {zi}Ni=1 from the joint distribution of

d-dimensional random vector Z leading to empirical distribution PN . We assume that the parameter

of interest θ0 is in the interior of p-dimensional convex compact parameter space Θ ⊂ Rp

We then consider randomized estimators θ(PN , νN ) ∈ Θ where random element νN ensures that these

randomized estimators are (εN , δN )-differentially private for some sequences εN and δN . To ensure

protection from adversarial attacks on data PN added random element νN has to be statistically

independent from νN .

In our analysis in this section we use the techniques from the theory of random sets which reflect the
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spirit of data analysis with differential privacy: the random element νN or the technique that is used

to produce the randomized estimator θ(PN , νN ) aiming to represent parameter of interest θ0 may not

be available to the researcher. Instead, data curator controlling the dataset inducing the empirical

distribution PN reports parameters (εN , δN ) which yield the upper bound guarantee for differential

privacy of a given estimated output (and, possibly, the algorithm used for implementation of θ(·, ·)).
This means that there can be an entire class of estimators for parameter θ0 that satisfy differential

privacy with these parameters.

While we provided examples of mechanisms that can be used to achieve differential privacy in the

previous section, we need to formally define the structure of a general differentially private estimator.

A differentially private estimator takes as an input data sample that produced empirical distribution

PN and a random element νN and outputs a point in Θ. We now give a formal description of the

class of our considered estimators.

ASSUMPTION 1. The class of estimators is formed by a class of bounded operatorsM such that:

(i) M is a collection parametric families of operators such that operators Mθ,ν ∈ M are well-

defined for each θ ∈ Θ and ν ∈ V;

(ii) Mθ,ν : D(Rd; [0, 1]) 7→ Rp for all Mθ,ν ∈ M and all θ ∈ Θ and ν ∈ V (where D(Rd; [0, 1]) is

the Skorohod space of functions);

(iii) For each F ∈ D(Rd; [0, 1]) and parametric family {Mθ,ν : θ ∈ Θ, ν ∈ V}, Mθ,ν(F ) is Lipschitz-

continuous in θ and ν;

(iv) Differentially private estimator is θ(PN , νN ) is defined as a solution of the system of equations

Mθ,νN (PN ) = 0

for θ over parametric family {Mθ,ν : θ ∈ Θ, ν ∈ V} where PN is the empirical distribution of

sample {zi}Ni=1.

We can illustrate this assumption for differentially private estimate of a sample mean using Laplace

mechanism for the sample i.i.d. draws {Xi}Ni=1 of random varible with bounded support and random

element νN ∼ U [0, 1]. In this case Mθ,ν(F ) =
´ +∞
−∞ z dF (z) + diam(Θ)

NεN
F−1

Λ (ν)− θ (where F−1
Λ (·) is

the inverse cdf of the standard Laplace distribution). We note that the empirical moment induced

by this operator produces (εN , 0)-differentially private estimator as discussed in Example 1.

Once we imposed the structure on the class of estimators that we consider (that inherit the structure

of the underlying functional space), we want to focus our attention on the classes of differentially pri-

vate estimators that have certain desirable properties. These properties are formulated in Definition

3 below.

Here and thereafter we will consider differential privacy parameters (εN , δN ) such that εN ≤ ε̄ and

δN ≤ δ̄ for all N for some universal constants ε̄ and δ̄.
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DEFINITION 3. For a given sequence of (εN , δN ), we say that an (εN , δN )-differentially private

estimator θ(·, ·) : ZN ×V → Θ satisfying Assumption 1 is regular for the parameter of interest θ0 if

the following conditions hold:

(i) θ(PN , νN ) is a continuous random variable with respect to the Lebesgue measure;

(ii) in the absence of the mechanism noise – that is, when the estimator is θ(PN , 0), – there exists

a function R̄(Nκ), such that lim
N→∞

R̄(N,κ) = 0 that for all N and for all κ > 0:

P (‖θ(PN , 0)− θ0‖ > κ) ≤ R̄(N,κ); (2.2)

(iii) θ(PN , νN ) has a weak limit if the sequence (εN , δN ) is convergent.

Condition (i) states that the distribution of θ(·, ·) has a density. Condition (ii) implies that in the

absence of any mechanism noise are informative for the parameter of interest θ0 – in particular, the

estimator is consistent and has a guaranteed rate of convergence (in most practical scenarios R̄(N,κ)

would be required to be exponentially decreasing in N and κ). The condition that function θ(·, ·)
takes values in Θ only, ensures that in cases when the mechanism noise would drive the estimator

outside of the parameter space Θ, such an estimator would be projected on the boundary of Θ.

Finally, condition (iii) requires the differentially private estimator to converge in distribution.

Now, having defined a class of regular differentially private estimators, we make the next step towards

the notion of identification.

Our next notion will depend on the set of sequences of (εN , δN ) a data curator is willing to consider.

E.g. it could be the set of sequences where εN and δN do not change with N , or it could a set of

sequences converging to zero at a certain rate. We will refer to a fixed set of sequences as E . We

will suppose that this set of sequences is a join-semilattice in the coordinate-wise partial order for

(εN , δN ) – that is, the join of any two sequences from E is also in E .

Following [44], we use the concept of measurable selection to define the set of all regular differentially

private estimators.

DEFINITION 4. Consider set T∗N,E of all random variables θ(PN , νN ) : ZN × V 7→ Θ satisfying

Definition 3 and corresponding to sequences (εN , δN ) from E. We define random set TN,E referred

to as the set of regular differentially private estimators for θ0 for a given E as the completion of the

set T∗N,E ∩ L1(P) with respect to L1(P)-norm.

L1(P) is a space of measurable functions that map the elements of the σ-algebra on ZN (with

the product measure defined by the probability measure on Z) and the σ-algebra associated with

random elements νN mapping into Rp, and for which the Euclidean norm is integrable. By definition

of θ(·, ·) in 3 and compactness of Θ, all elements in T∗N,E and, thus, in TN,E as well are bounded in

the L1-norm.
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Random set TN,E is compact and convex in the sense of Definitions 1.30 and 4.32 in [44], as shown

in Lemma 1.

LEMMA 1. TN,E is convex and compact random set.

Our next step in the formulation of the identification notion is to suggest which notion of limit to

apply to random sets. At the first glance, the use of the probability limit might seem like a natural

approach if we want to somehow relate the identifiability of the parameter to the fact that random

sets TN,E overlap with an arbitrary neighborhood of θ0 with probability approaching 1. However,

the notion of the probability limit is too strong as it will not allow us to talk about the limit in the

following simple instance of regular differentially private estimators:

θ(PN , νN ) = θ(PN , 0) + aN (νN )

where the variance of aN (νN ) remains constant or increases as N → ∞ (the estimator θ(PN , 0) in

the absence of the mechanism noise is, of course, consistent by the condition (ii) in Definition 3).

As we will see later, such situations will be prevalent in the estimation of RDD models. In fact,

we already conveyed our intention to consider weak limits in condition (iii) in Definition 3. The

next lemma demonstrates that weak convergence is the strongest plausible convergence concept to

consider unless weak limits of regular differentially private estimators are constant.

LEMMA 2. Suppose that θ(PN , νN )
W→ τ as N → ∞. Then if τ is not constant with a positive

probability, then there exists κ̄ > 0 and γ > 0 such that for all κ ≤ κ̄

lim sup
N→∞

P (|θ(PN , νN )− τ | > κ) > γ.

Theorem 1 establishes weak convergence of the convex compact random set TN,E when all the

sequences of (εN , δN ) in E are convergent.

THEOREM 1. For a E be the join-semilattice that consists of only convergent sequences of

(εN , δN ). The random set TN,E as defined in Definition 4 weakly converges to a random set TE ,

which is the closure of all weak limits of estimators in the respective random set T∗N,E .

The convergence result of Theorem 1 is essentially a result of what happens in the limit of statistical

experiments. Naturally, we will base our notion of identifiability on some characteristics of the

random set TE .

2.2.1 Characterization of the limit random set TE

Our next step will be to produce a tangible characterization of the random set TE and define the

information content delivered by this set TE with regard to the parameter of interest. The best case

scenario from the information content point of view is the case when TE is the degenerate distribution

concentrated at θ0, which essentially means that the sequence of the statistical experiments delivers
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the true parameter values in the limit. Generally, however, this may not be the case. One of the

main difficulties in characterizing this set and its information content is that it may not contain the

target parameter θ0 (i.e. it can be “biased”) and that the distribution of TE may not be degenerate

(i.e. it is not “consistently” estimating θ0). Some important work in the random sets literature, such

as [8] and [7], defined the information content (or, in other words, identified set) as the selection

expectation of a random set. In our previous work [32] we used the concept related to selection

expectation to analyze the impact of privacy guarantees (in particular, k-anonymity) under data

combination.7 Thus, selection expectation might seem like a promising approach to explore in our

framework as well, especially given that such characterization is deterministic, but for the reasons

explained earlier and again in more detail below (privacy budget for differentially private mechanisms

and the impossibility of repeated experiments), in the differentially private setting we do not see

this approach as a fruitful one.

Having given the gist of the content of this section, we now turn to a more detailed discussion.

First, as mentioned above, in the context of converging random sets, as for converging random

variables, the notion of the expectation or the median (or some other quantile) might appear a

natural way to characterize the limit (and consequently provide the framework for identification).

Recall that the selection (or Aumann) expectation of random set TN,E denoted ETN,E is the closure

of the set {E ξ : ξ ∈ TN,E}. However, the selection expectation (along with any first-order statistic,

such as the Vorob’ev’s expectation) fails to be “representative” for the limiting random set TE . This

lack of representativeness stems from the inherent impossibility to replicate a statistical experiment

whose outcome is the regular differentially private estimator driven by the required structure of

differentially private systems as discussed in [16]. Indeed, in the context of differentially private

systems no function evaluated on the data can be considered in isolation. Differential privacy is

the property of the entirety of all functions that have ever been or will ever be evaluated from a

given dataset. By the composition property of differential privacy, two different functions that, for

instance, are (ε/2, 0)-differentially private each constitute one combined (at most) (ε, 0)-differentially

private data query. As a result, if ε in the definition of differential privacy is considered to be a

policy parameter, then it determines the “privacy budget” of a given database. The more functions

need to be evaluated from the data, the more noise will need to be added to each function to ensure

the entire set of functions is within the “privacy budget.” The evaluation of K functions to ensure

(ε, 0)-differential privacy requires the output of each function to be (ε/K, 0)-differentially private,

i.e. each output should be K times less sensitive to arbitrary changes in individual observations in

the dataset.

One natural way to extend the “privacy budget” of a given dataset is to ensure that the output

corresponding to the evaluation of the exactly same function of the data always remains the same. In

this case, the random element νN to produce the regular differentially private estimator θ(PN , νN )

is generated only once and then any data user who wants to estimate a given parameter θ0 will

7As discussed in the introduction, k-anonymity is a formal privacy guarantee that predates differential privacy).
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observe exactly the same value of the randomized estimator θ(PN , νN ). In other words, repeated

identical queries to the data always result in the same (randomized only once) output.

From this perspective, the concept of the selection expectation or other related statistics is clearly

misleading for a characterization of the limiting random set TE . While it may be the case that

EνN θ(PN , νN ) is close to θ0 with high probability (asN →∞) for all measurable selections θ(PN , νN )

of TN,E , there is no guarantee that θ(PN , νN ) is also close to θ0 with high probability and under

“privacy budget” considerations there is no way a researcher can access repeated samples from the

distribution θ(PN , νN ) corresponding to a given empirical distribution PN to “average out” the

added noise νN . To put in other words, given the “privacy budget” considerations, the selection

expectation EνN θ(PN , νN ) is not “feasible” in the differentially private framework. Moreover, as we

illustrate in continuation of Example 2 below, differential privacy may be in conflict even with the

identification of expectations. It is clear that we need to use a different approach to characterizing

the limiting random set TE .

To provide a comprehensive characterization of random sets TN,E and TE we use the notion of the

containment functional adopted from [44]:

DEFINITION 5. Functional CX(K) = P (X ⊂ K) for convex compact subset of Θ is referred to

as the containment functional of random set X.

By Theorem 1.7.8 in [44] containment functional provides a complete characterization of convex

compact random set. Moreover, it is sufficient to choose the “test sets” K to be convex polytopes.

Coverage functional preserves the property of the weak convergence of the sequence of random sets.

We summarize this in the following theorem

THEOREM 2. Under conditions of Theorem 1 for any convex polytope K ⊂ Θ

CTN,E (K)→ CTE (K), as N →∞.

This theorem is a simple corollary of Theorem 1.6.5 in [44] and it ensures that the coverage functional

preserves the properties of the converging sequence of random sets TN,E and, more importantly, its

limit TN,E . The characterization of the limiting coverage functional would equivalently characterize

the limiting random set. In other words, the analysis of weak convergence of random sets can be

replaced with the analysis of pointwise convergence of the coverage function on the set of convex

polytopes contained in Θ.

EXAMPLE 2 (continued). We now return to our Example 2 that focused on the differentially

private estimation of the weighted mean θ0 = E[X/W ]. We considered this estimation in the asymp-

totic regime where finite sample distributions of (independent) random variables X and W , F xN (·)
and FwN (·) converge to their limits as N →∞. In order to ensure that differential privacy guarantees

can be achieved with a finite noise addition, we trimmed the sample with the adaptive trimming

threshold δN such that all observations with wi < δN are discarded.
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We note that for this example the operator Mθ,ν(·) discussed in Assumption 1 can be written explicitly

as

Mθ,ν(PN ) =
1

NπN

N∑
i=1

xi
wi

1{wi ≥ δN}+ F−1
Λ (νN )− θ

for the Laplace mechanism (where FΛ(·) is the cdf of the Laplace distribution with parameter 1/(εN πN δN )

and νN is the uniform random variable on [0, 1]). For exponential mechanism we can write it as

Mθ,ν(PN ) =

ˆ θ

−∞
p(t;PN ) dt− νN

where νN is the uniform random variable on [0, 1].

For the sake of the simplicity of the exposition, we ignore Regime 2 of Example 2 where δN → δ > 0

and instead focus on Regimes 1 and 3 where δN → 0. Let θ(1)(PN , νN ) be a single instance of the

output of either the Laplace or the exponential mechanism in Example 2 in Regime 1. Also, let

θ(3)(PN , νN ) be a single instance of the output of either mechanism in Regime 3.

Define T∗N,E = co{θ(1)(PN , νN ), θ(3)(PN , νN )}. Provided that random set T∗N,E is a convex com-

bination of two elements, then TN,E ≡ T∗N,E . Provided that θ(1)(PN , νN ) and θ(3)(PN , νN ) are

(ε, 0)-differentially private if Laplace mechanism was used (or (ε,Φ(−(NπN )γ + .5ε))-differentially

private if exponential mechanism was used) then each element of TN,E is also (ε, 0)- differen-

tially private ((ε,Φ(−(NπN )γ + .5ε))-respectively for the exponential mechanism). Moreover, as

N → ∞, regardless of the mechanism the output will be (ε, 0)-differentially private (provided that

lim
N→∞

Φ(−(NπN )γ + .5ε) = 0).

From Example 2 it follows that θ(1)(PN , νN ) converges in distribution to Bernoulli random variable

with parameter 1/2 and θ(3)(PN , νN ) converges in probability to θ0 = E[X/W ] ∈ [0, 1]. This also

means that (
θ(1)(PN , νN ), θ(3)(PN , νN )

)
W−→ (B(.5), θ0).

As a result, the limiting random set TE will be a convex hull of this vector. More explicitly, we can

write

TE =

{
[0, θ0] , with probability 1/2,

[θ0, 1] , with probability 1/2.

The containment functional also takes a simple form: CTE (K) = 1
2 1{[0, θ0] ⊂ K} + 1

2 1{[θ0, 1] ⊂
K}.

2.3 Smoothness and separability of differentially private estimators

While our previous discussion considers a general, possibly non-separable form for regular differen-

tially private estimator all existing approaches to inducing differential privacy lead to much simpler

(approximately) separable estimators. We now further narrow down the class of regular differentially

private estimators to reflect this property.
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DEFINITION 6. We say that regular differentially private estimator θ(PN , νN ) is smooth, if there

exists a functional ψ(·) and function aN with support on V such that

θ(PN , νN ) = ψ(PN ) + aN (νN ) + ∆N ,

with E
[(√

log 1
R̄(N,κ)

∆N

)2
]
→ 0 as N →∞ for all κ > 0, where R̄(N,κ) is provided in Definition

3.

Definition 6 focuses on the regular differentially private estimators that are approximately separable

in the way they depend on the data sample and on the added noise to achieve differential privacy.

The residual ∆N is required to be “small” relative to the rate of convergence of the version of the

estimator θ(P, νN ) that is infused with the “trivial” noise that does not perturb it.

We note that for two early mechanisms that were proposed to provide differential privacy: Laplace

and Gaussian mechanisms, Definition 6 applies trivially. In Laplace mechanisms differential privacy

is achieved by the addition of the double-exponential noise νN to the original estimator and in the

Gaussian mechanism νN is the additive normal noise. In other words, by construction for both of

these mechanisms ∆N ≡ 0.

We now consider additional classes of mechanisms for differential privacy that are not explicitly

additive.

One interesting example of a popular non-separable mechanism for differential privacy is the expo-

nential mechanism developed in [42]. In application to extremum estimators, the mechanism replaces

extremum estimator θ̂ that maximizes sample objective function Q(θ ; PN ) over θ ∈ Θ with a draw

from quasi-posterior distribution implied by Q(· ; PN ). This class of estimators is directly related to

randomized estimators developed in [12]. [12] consider the case where the population analog of the

objective function Q(θ ; PN ) satisfies the information matrix equality. To form the estimator they

propose to consider a prior distribution π(·) over θ and a quasi-likelihood function exp (Q(θ ; PN )) (so

that the original objective function is quasi-log-likelihood function). Then the estimator is a mean

of quasi-posterior distribution ∝ exp (Q(θ ; PN )) π(θ) which consistently estimates the maximizer

of the population objective function regardless of the shape of the prior distribution π(·) (under

mild regularity conditions). Moreover, the variance of this quasi-posterior distribution accurately

estimates the asymptotic variance of the original extremum estimator. A significant advantage of

this estimator over the original extremum estimator θ̂ is that it does not require maximization of

potentially non-smooth or hard to optimize function Q(θ ; PN ).

In the follow-up work in [33] for the cases where Q(θ ; PN ) may be steep in the vicinity of the

maximum, which may lead to slow convergence of the simulations required to sample from the quasi-

posterior, it is proposed to scale the exponent in the pseudo-likelihood function as exp (λQ(θ ; PN ))

using a constant λ which is selected based on the speed of mixing of the simulated Markov Chain

(produced using the new pseudo-posterior). The corresponding posterior mean remains a consistent

estimator for the maximizer of the population objective function while its asymptotic variance can
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be estimated by scaling the variance of the quasi-posterior using λ.

The exponential mechanism for differential privacy considered in [42] is a simple implementation of

the idea in [12]: the estimator is a single draw from the quasi-posterior ∝ exp(λQ(θ ; PN ))π(θ).

The resulting estimator turns out to be (λ,∆Q , 0)-differentially private, where

∆Q = sup
θ∈Θ, PN ,P′N

|Q(θ ; P′N )−Q(θ ; PN )|

is the global sensitivity of the objective function Q(θ ; PN ) evaluated over all empirical distributions

P′N that are different from PN in any one single support point if ∆Q is finite. If ∆Q is infinite,

the estimator is (ε, δ) -differentially private with vanishing δ for an appropriately calibrated scaling

constant λ.

[12] and later [33] focus on the cases where Q(θ ; PN ) is stochastically equicontinuous and the quasi-

posterior is asymptotically equivalent to

∝ exp

(
−1

2
λ(θ − θ̂)′H (θ − θ̂) + op(‖θ − θ̂‖2)

)
,

where H is the Hessian of the population objective function. This means that a single draw from

this quasi-posterior, corresponding to the exponential mechanism for differential privacy can be

represented as

θ̃ = θ̂ + λ ξ + op(1),

where ξ is a multivariate normal random vector with mean zero and covariance matrix H−1. The

extremum estimator θ̂ is only depends on the data distribution PN and is not affected by the noise.

Therefore, the exponential mechanism is smooth in the sense of Definition 6.

We now present a simple lemma that outlines the additive representation of smooth differentially

private estimators which we will use in our applications.

LEMMA 3. Consider additive randomized estimator θ∗(PN , νN ) = ψ(PN ) + aN (νN ), where

• For each κ > 0, lim
N→∞

P (|ψ(PN )− θ0| > κ) = 0

• aN (0) = 0 for all N.

Then estimator θ∗(PN , νN ) is regular in the sense of Definition 3. Moreover for any converging

sequence (εN , δN ) and any smooth (εN , δN )- differentially private estimator θ(PN , νN ) (i.e. as in

Definition 6) there exists an asymptotically equivalent regular estimator θ∗(PN , νN ).

This lemma, which follows from our smoothness definition, allows us to focus our further analysis

on such separable estimators. Given the asymptotic equivalence, the set of weak limits of these

estimators coinsides with the target random set TE .
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3 Point and Set Identification with Formal Privacy Guarantees

3.1 Preliminarities

Given that, as established in the previous section, the set of regular differentially private estimators

weakly converges to a limiting random set, we can define the pseudo-identified set (we use the prefix

“pseudo-” because it does not necessarily contain the true parameter value) as the random set TE

itself. The notion of a random identified or a random pseudo-identified set is not traditional in

econometrics as usually researchers are able to extract deterministic consensus about which param-

eter values can be driving observables. We argue that in the differentially private setting this is the

preferable approach. Some other work, such as [29] employed the notion of random identified set.

In [29], the source of probability that induces the random identified set is the posterior uncertainty

for the identifiable parameters. In our case, this source is a combination of the sampling uncertainty

of the observations and the mechanism noise, and it is not possible to separate these two sources.

We now formulate the notion of identifiability of the parameter of interest.

DEFINITION 7 (Identifiability of parameter under differential privacy). Let E include only some

converging sequences of (εN , δN ). We will say that the parameter θ0 is identified in the regular

(εN , δN )-differentially private framework, where the sequences of (εN , δN ) belong to E, if and only if

for any α ∈ (0, 1) and any convex polytope K 3 θ0

CTE (K) ≥ 1− α.

Theorem 3 below gives necessary and sufficient conditions for the identification of parameter θ0.

THEOREM 3. Suppose the conditions of Theorem 1 hold. For any sequence of (εN , δN ) from E
it holds that any regular (εN , δN )-differentially private estimator θ(PN , νN ) is such that

θ(PN , νN )
p→ θ0,

if and only if for any α ∈ (0, 1) and any convex polytope K 3 θ0 we have CTE (K) ≥ 1−α and, thus,

the parameter θ0 is identifiable even under differential privacy.

Theorem 3 provides our characterization of identifiability which corresponds to the convergence of

the sequence of random sets to a singleton. In other words, this parallels consistency for sequences

of ordinary random variables.

Based on the same principles we can characterize the case of non-identifiability .

DEFINITION 8 (non-identifiability of parameter under differential privacy). Let E consist of

converging sequences of (εN , δN ). We will say that the parameter θ0 is non-identified in the regular

(εN , δN )-differentially private framework, where the sequences of (εN , δN ) belong to E, if and only if

there exists β ∈ (0, 1) and a convex polytope Kβ 3 θ0 such that

CTE (Kβ) ≤ 1− β.
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Non-identifiability implies that the limiting random set is not degenerate. Therefore, it becomes

impossible to pinpoint the true parameter θ0 by tracing a “mass point” of the coverage function of

that limiting random set TE . This makes the analysis of partial identification in our case different

from the traditional approach where partial identification aims to construct a deterministic set that

contains the parameter of interest θ0. In our case where the coverage function is non-degenerate in

the limit it is impossible to construct such a deterministic set. At the same time, coverage function

itself may be difficult to work with in practice. In the next section we focus on developing a more

practical approach to identification as well as construction of coverage sets for the parameter of

interest.

3.2 Identification

3.2.1 Identification from data curator’s decisions

As we show in the applications below, the setting where the limiting random set TE is not a singleton

is not an exception but instead may be a commonplace scenario. This means, that even when N

is large a smooth regular differentially private estimator θ(PN , νN ) is not guaranteed to be close to

the target parameter θ0 with a high probability. Even more importantly, given that limit TE is a

random set it itself cannot be the target of inference since events {TE ⊂ K} for convex polytopes

K may occur with non-singular probability (i.e. strictly between 0 and 1). This means that general

settings of differential privacy provide the framework where the in the absence of point identification

one cannot use the classic tools of partial identification (see [40] and [8]) where target set containing

parameter θ0 can be contained with probability approaching 1 as N →∞. The parameter of interest

is then neither point nor partially identified.

One important key component in the proposed “practical” implementation of differentially private

data analysis (e.g. [1]) is the adherence to a specific protocol for noise infusion to ensure differential

privacy of the target output. This means that the differential privacy guarantee becomes “verifiable”

where one can re-trace all the steps of the algorithm for differential privacy starting from raw data

to the final output. In the context of our result characterizing the limits of regular differentially

private outputs as a random set, we can formalize this idea by introducing a decision functional that

takes random set TN,E and selects its specific element θ(PN , νN ).

DEFINITION 9. Mapping τf from the elements of Fell topology on Θ into Θ indexed by a strongly

convex function f on Θ and constant h ∈ Θ such that for a fixed realization of TN,E

τf (TN,E) = Argminz∈TN,E f(z)

is referred to as the decision mapping of the data curator.

Definition 9 provides two key elements of “transparent behavior” of the data curator who wants

to impose differential privacy constraints. First, the data curator learns the entire random set

TN,E containing regular differentially private estimators for the target parameter. Second, she uses
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a principled way of selecting a point within that set that depends on the shape of that set by

minimizing a convex function f(·) that she communicates to the public.

We note that this definition is conceptually different from the idea of “transparent reproducible

algorithm” for differential privacy, which simply corresponds to an element of the random set TN,E
without the guarantee that it is some special element of that set (such as its center of gravity). As

we discuss this formally below, without the knowledge of a relative position of given differentially

private output in TN,E one would not be able to identify the parameter of interest θ0.

LEMMA 4. Decision mapping τf (TN,E) is a random variable.

Proof: Given that TN,E is convex and compact then Argminz∈TN,E f(z) ⊂ TN,E . Moreover, it is a

singleton by strong convexity of f(·). As a result, τf (TN,E) is a measurable selection of TN,E and,

therefore, a random variable. Q.E.D.

Next we analyze how the convergence of random sets TN,E to the limit TE translates into the

covergence of the realizations of the decision mapping. To do that note that τf (TN,E) ≤ t means

that sets TN,E and convex compact set {f(z) ≤ t} overlap. In other words

P (τf (TN,E) ≤ t) = P (TN,E ∩ {f(z) ≤ t} 6= ∅) = 1− CTN,E ({f(z) > t}) .

Combining this result with Theorem 1 we formulate the following theorem.

THEOREM 4. The sequence of random variables τf (TN,E) weakly converges as N →∞ with the

limit τf (TE) .

Since τf (TN,E) is a measurable selection of TN,E , by our construction it is an absolutely continuous

random variable. Thus, we can write its likelihood function `f,TN,E (t). Note that generically this

likelihood function cannot be used directly since one gets a single draw of the random variable

τf (TN,E) (due to the privacy budget considerations discussed above). The only instance where it

could be used directly is when function f(·) determining the decision mapping ensures that the

limiting distribution of τf (TE) is degenerate at θ0.

Finding an appropriate f(·) (adapted to the structure of the random set TE for a given problem) is

the most important task of the data curator that would ensure that the differential privacy framework

renders the dataset “useful” for estimation of the target parameter θ0.

We note that the distribution of the random set characterized by the containment functional CTE (·)
is ultimately determined by the data generating process indexed by parameter θ0 and, thus we can

write CTE (·; θ0) indexing the containment functional by θ0. The distributional knowledge of the data

curator regarding the structure of the of the limiting random set TE implies that for parameter of

the data generating process θ, CTE (·; θ) is known. Moreover, for each realization of the random set

TE , parameter θ can be geometrically located within TE (e.g. relative to the extreme points of this

realization).
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This means that the data curator with full distributional knowledge of TE can select f(·) such that

P (τf (TE) = θ ; θ) = 1.

The decision mapping with this property ensures that regular differentially private output selected

by the data curator is “meaningful” by approximating θ0 with high probability.

THEOREM 5. Suppose that the decision rule of the data curator is such that P (τf (TE) = θ ; θ) =

1 for almost all θ ∈ Θ, then

τf (TN,E)
p−→ θ0.

The proof of this theorem follows directly from the proof of Theorem 4 and equivalency of the weak

convergence and the convergence in probability when both have degenerate limits.

We now illustrate this point using an extremely simplified example, that has an advantage of the

closed-form expression for the limiting random set TE and a suitable decision function of the data

curator.

EXAMPLE 2 (continued). We continue discussion of Example 2 focusing on estimation of a

weighed mean where we demonstrated that the limit random set of considered differentially private

outputs are such that all of its elements are (ε, 0) -differentially private. The limit random set takes

the form

TE =

{
[0, θ0], with probability 1

2 ,

[θ0, 1] , with probability 1
2 .

Note that this structure reflects the point that we made in this section: if the data curator fully

explores the distributional structure of the limit random set then she knows the structure of the

containment functional CTE (K) = 1
21{[0, θ0] ⊂ K} + 1

21{[θ0, 1] ⊂ K}. This means that if she

constructs the decision mapping that “picks out” the extremal point of the random set that is not

on (or close to) the boundary of the parameter space, then she can estimate the target parameter θ0.

For instance, we can construct the decision mapping by minimizing

f(z) =

(
z − min

z∈TE
z 1{| max

z∈TE
z − 1| < δ} − max

z∈TE
z 1{| min

z∈TE
z| < δ}

)2

(3.3)

over TE for some small δ. This function attains its minimum at θ0 for any realization of TE .

As a result, the decision mapping that minimizes (3.3) for finite sample realization TN,E selects

its element which is a consistent regular differentially private estimator for θ0. Therefore, θ0 is

identified in terms of Definition 7.

We note that “non-strategic” choice of the point within TE leads to the loss of identification. For

instance, suppose that the data curator chooses a point within TE uniformly at random. In this case

output θ(PN , νN ) is a continuous random variable with density

ϕθ(PN ,νN )(t) =

{
.5
θ0
, if t < θ0,
.5

1−θ0 , if t > θ0.
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This distribution is not degenerate at θ0 and by Definition 8, θ0 is not identified.

We note that uniformly at random choice of a point within TE in Example 2 above satisfies the

“transparency” principle of differential privacy (e.g. considered in [20]). In fact, an external re-

searcher can re-trace all steps undertaken by the data curator from the raw data to the final output.

However, the resulting regular (εN , δN ) - differentially private output is not a consistent estimator

for the target parameter. Consistent estimation in these settings requires a complete knowledge of

the distribution of the random set by the data curator and a carefully constructed decision mapping

that selects the point in each realization of the limiting random set.

3.2.2 Computational approach

Example 1 above gives a parsimonious closed form expression for the limiting random set of regular

differentially private estimators and the decision mapping of the data curator. We envision the

data curator to engage in a case-by-case analysis of the distribution structure of the random set

that would produce a suitable decision mapping. When such an analysis is difficult or impossible

we can consider computational approach which produces a numerical approximation to the decision

mapping under an additional condition.

Parameter location within the random set: Denote by Tθ
E the limiting random set of regular

differentially private estimators corresponding to the data generating process with parameter θ ∈ Θ.

There exists fixed continuous mapping M(·) defined by Lipschitz-continuous function m(·) such that

for each realization of the random set Tθ
E ,

θ = M
(
Tθ
E
)

=

ˆ
TθE

z m(z) dz (3.4)

Condition (3.4) implies that the location of the parameter of the data generating process is encoded

in the shape of the realization of the random set as an integral over the fixed function. Once a

particular realization is fully known, the parameter of the data generating process can be recovered.

This condition can be given a different interpretation by invoking the divergence theorem. In par-

ticular, if µ(·) is such that

m(z) =

p∑
i=1

∂(ziµ(z))

∂zi
,

then by the divergence theorem
ˆ
TθE

m(z) dz =

˛

∂TθE

z µ(z) dS, (3.5)

where
¸

∂TθE

is the surface integral over the boundary ∂Tθ
E of the realization of the random set. As a

result, with application of the divergence theorem, Condition (3.4) implies that the parameter θ of
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the generating process is encoded in the boundary of all realizations of the random set. We can then

interpret this as formalization of the result in Example 1 where the parameter of the data generating

process always belongs to the boundary of the realization of the random set and, thus, it can be

located as the point in the random set that does not belong to the boundary of the parameter space.

Expression (3.5) expresses the parameter of the data generating process as the center of mass dis-

tributed over the boundary of the realization of the random set Tθ
E with density µ(·).

The decision mapping of the data curator can constructed in this case by minimizing

f (z) =

∥∥∥∥∥∥∥z −
˛

∂TθE

z µ(z) dS

∥∥∥∥∥∥∥
2

.

Our computational strategy relies on two requirements for computing abilities of the data curator.

First, the data curator is able to construct realizations of random sets TE for data generating process

indexed by θ ∈ Θ. Second, the data curator represents random sets TE by encoding their boundaries

(e.g. via vertices of an approximating polyhedron).

Then the goal of the data curator will be to find a numerical approximation to µ(·) in (3.5). To

operationalize this approximation, we define a grid G = {θ(k)}Kk=1 over the parameter space Θ. For

each grid point θ(k) we simulate a single realization Tθ(k) of the random set Tθ(k)

E .

We represent “density” µ(·) as

µ̂(z) =

R∑
r=0

αr hr(z)

using orthogonal polynomials hr(·). This representation allows us to reduce the problem of finding

function µ(·) to the problem of finding R+ 1 coefficients of its orthogonal representation.

Then for each simulated realization Tθ(k) , we compute 2(R+ 1) surface integrals

Hrk =

˛

∂T
θ(k)

z hr(z) dS, and Qrk =

˛

∂T
θ(k)

hr(z) dS, r = 0, . . . , R.

Coefficients α̂r of the orthogonal representation are found by solving a constrained quadratic opti-

mization problem:

min
α0,...,αR

K∑
k=1

(
θ(k) −

R∑
r=0

αrHr

)2

,

s.t. 1
K

K∑
k=1

αrQrk = 1.

(3.6)

The constraint ensures that numerical approximation for the density µ(·) approximately integrates

to 1 over the instances of Tθ(k) .



27

Then the numerical approximation for the convex function used by the data curator for the realization

of the random set TN,E

f̂(z) =

∥∥∥∥∥∥∥z −
R∑
r=0

α̂r

˛

∂TN,E

z hr(z) dS

∥∥∥∥∥∥∥
2

.

LEMMA 5. Mapping M̂(·) constructed as

M̂(T ) =

R∑
r=0

α̂r

˛

∂T

z hr(z) dS

over elements T of Fell topology on Θ where α̂r solve (3.6) uniformly converges to mapping M(·) in

(3.4).

Proof: By Theorem III.3 in [55] linear partial differential equation

p∑
i=1

∂(ziµ(z))

∂zi
= m(z)

has solution µ(·) which is unique for each Lipschitz-continuous function m(·). Moreover, the solution

is also Lipschitz-continuous. From the divergence theorem (3.5) mapping M(·) in (3.4) can be

represented via surface integral. By uniqueness of representation of m(·) via µ(·), this surface

integral representation is also unique.

Finally, by Lipschitz-continuity of µ(·) by Weirstrass’ theorem it can be approximated by high-degree

polynomial with approximation error decreasing as the degree of the polynomial grows Q.E.D.

3.2.3 Bayesian credible regions

In some circumstances the data curator may be unable or unwilling to use a decision mapping that

produces the target parameter θ0 for the limiting random set (e.g. due to institutional constraints).

The corresponding differentially private output of the decision mapping τf (TN,E) weakly converges

to a random limit.

In this case the goal of the researcher would be to use all available information including possible

structure of the random set and the rule used by the data curator to produce a differentially private

output to make the best possible inference regarding the target parameter.

Our proposed approach of researcher for inference in this setting parallels that in either classic point

estimation or set estimation for partially identified models uses a Bayesian approach. Attractive

features of the Bayesian approach include, first of all, to incorporate prior information regarding the

target parameter. This becomes convenient when preliminary inference can be done using a public

dataset that does not require differential privacy guarantees. Then inference using curated dataset

that requires differential privacy can be viewed as improving the accuracy of the estimate produced
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from the publicly available data. Second, Bayesian approach allows one to produce credible regions

for target parameter θ0. Although, unlike traditional confidence sets, when the limiting random set

TE is not singleton the credible region does not shrink as sample size increases, operationally it is

very similar to the confidence set. This makes it a convenient tool for practitioners to use when

differential privacy requirement is imposed by the data curator but the differential private output

produced by the data curator is not tailored for the parameter of interest θ0.

The Bayesian model utilizes the likelihood function `f,TθN,E (t) of the output of the decision mapping

constructed from its distribution P (τf (TN,E ; θ) ≤ t) induced by the distribution of the random set

TN,E . We explicitly use index θ ∈ Θ for the probability to indicate that TN,E is the random set of

regular differentially private estimators corresponding to the data generating process indexed by θ.

The Bayesian model then is determined by the tuple (TN,E , f(·), π(·)) where π(·) is the prior of the

researcher over the values of the parameter of the data generating process.

The researcher combines the likelihood function `f,TN,E (t; θ) with the information from the prior to

form the posterior distribution for the target parameter given the realization t = τf (TN,E) of the

decision mapping of the data curator :

ΠN (B ; t) ∝
ˆ
B

`f,TN,E (t; θ)π(θ) dθ,

where prior π(·) plays the role of weighting the likelihood functions corresponding to data generating

processes indexed by a given θ.

By weak convergence of random sets TN,E to TE , the posterior ΠN (B ; t) converges pointwise to the

limiting distribution

Π(B ; t) ∝
ˆ
B

`f,TE (t; θ)π(θ) dθ,

as N → ∞. We then view inference drawn from finite sample prior ΠN (B ; t) as an approximation

for inference that would be drawn from the limiting distribution of the random set TE and the

corresponding posterior Π(B ; t).

DEFINITION 10. Let ΠN (S ; θ̃) be the posterior distribution constructed as above from a single

realization t of the differentially private output θ(PN , νN ). Then set B(t) with the property

Π (B(t) ; t) ≥ 1− α, α ∈ (0, 1)

is referred to as the α-level credible region for target parameter θ0.

α-level credible region is our proposed method to draw informative inference whenever the data

curator does not tailor the decision mapping to the target parameter.

EXAMPLE 2 (continued) Suppose that the data curator picks the point in the random set of

regular differentially private estimators uniformly at random and the researcher uses uninformative
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prior. Based on our previous discussion the likelihood for the difrerentially private output t can then

be expressed as

`f,TE (t; θ) =

{
.5
θ , if t < θ,
.5

1−θ , if t > θ.

Then the posterior density can be expressed as

p(θ ; t) =

{
C

1−θ , if θ < t,
C
θ , if θ > t,

where 1/C(t) = − log(t(1− t)). Thus, we can define credible region B(t) = [z(t), 1− z(t)] such that

ˆ 1−z(t)

z(t)

p(θ ; t) dθ = 1− α.

Solving this equation for z(t) yields z(t) = 1 − (t(1 − t))α and B(t) = [1 − (t(1 − t))α, (t(1 − t))α]

whenever data curator produces a differentially private output t.

4 Regression discontinuity design

Regression discontinuity design is an important empirical tool for estimation of treatment effects in

a variety of disciplines. The literature on RDD goes back to the work by [53]. A lot of important

theoretical and empirical work on RDD has emerged in Economics the last two decades, with too

many papers to list here. For a general review of this literature, see [22], [25], [35], [11].

In the usual setting for the RD design, the object of interest is the causal effect of binary treatment

on the outcome and units are either exposed or not exposed to a treatment. The effect of the

treatment can be heterogenous across units but we will focus on the case of when this effect is

homogeneous as our main goal is to highlight the loss of identification of of the treatment effect in

these models when estimator is subject to differential privacy guarantees.

Following the tradition of the treatment effect literature, we let Y0 and Y1 denote the pair of potential

outcomes (without the treatment with exposure to the treatment, respectively) and the actual

treatment denoted by Y and defined as

Y = W · Y1 + (1−W ) · Y0,

where W is the treatment indicator. The goal is to evaluate the average treatment effect (ATE) of

the treatment. The observables are (W,Y,X), where X is a pre-treatment covariate (the so-called

forcing or running variable).

We first give a review of two main designs used in this literature. We then formulate conditions

under which differentially private mechanism applied to traditional RDD methods leads to the lack

of identification of the treatment effect. We then show that these situations of non-identifiability

will be generic due to the global sensitivity of RDD estimators being bounded away from zero even
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as the sample size increases. These findings no doubt will be of interest to researchers as usually

RD design is considered to be one of the most credible identification strategies for causal inference

and it loses this powerful feature under differential privacy.

4.1 Overview

4.1.1 Sharp regression discontinuity design

In the sharp design there is a deterministic relation between the running variable and the treatment

indicator:

W = 1(X ≥ c),

and the average causal effect β is given by the discontinuity in the conditional expectation of the

outcome given the covariate effect of the treatment:

β = lim
X↓c

E[W |X]− lim
X↑c

E[W |X].

Even though sometimes researchers rely on parametric methods by estimating, for instance, the

linear model

Y = α+ γW + β ·W + δ ·DW + ε

(or analogous models with more polynomial terms), these approaches may work poorly in practice

due to their reliance on a functional form.

The state-of-the art methods are local and rely on learning β from a small neighborhood of c, the size

of which becomes increasingly smaller as the sample size increases. In other words, these approaches

rely on employing only observations in a small neighborhood (c−h, c+h) of c, where the size of the

neighborhood is described by bandwidth h = h(N) that depends on sample size N , where h(N)→ 0

as N →∞. Such estimators can be roughly classified into two categories: nonparametric regression

at the boundary and local linear regression.

Nonparametric regression at the boundary This method selects a kernel K(·) and takes the

estimator

τ̂S,NR = τ̂r(c)− τ̂l(c), (4.1)

where

τ̂r(c) =

∑
Xi≥c Yi ·K

(
Xi−c
h

)∑
Xi≥cK

(
Xi−c
h

) , τ̂l(c) =

∑
Xi<c

Yi ·K
(
Xi−c
h

)∑
Xi<c

K
(
Xi−c
h

)
for a chosen bandwidth h = h(N). Even though this estimator is quite intuitive, it has well-known

drawbacks particularly with respect to the bias term being linear in bandwidth, as discussed in [22],

[48] and [25], among others. Nevertheless, it is instructive for us to analyze a differentially private

version of this estimator.
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Local linear regression This method conducts two optimization problems by fitting linear re-

gression functions to the observations within an h-neighborhood on either side of the discontinuity

point:

(α̂L, β̂L) = arg min
αL,βL

∑
i:Xi<c

K

(
Xi − c
h

)
(Yi − αL − βL(Xi − c))2,

(α̂R, β̂R) = arg min
αR,βR

∑
i:c≤Xi

K

(
Xi − c
h

)
(Yi − αR − βR(Xi − c))2,

and then estimating the average treatment effect as

τ̂S,LocLin = α̂R − α̂L. (4.2)

The asymptotic properties of this estimator can be found e.g. in [22], among others, and they are

based on the theory in [18] and [19].

There is a significant literature that analyzes the properties and performance of these estimators

as well as the choice of the bandwidth and the construction of confidence sets. These issues, even

though important, are not immediately relevant to our research question which is to illustrate that

a generic differential privacy algorithm will prevent researchers to be able to to identify the average

treatment effect in RD design in the limit of statistical experiments. We aim to keep the discussion

as general as possible without focusing on just one specific local estimation approach.

4.1.2 Fuzzy regression discontinuity design

In the fuzzy RD design, there is a jump in the probability of assignment to the treatment at the

threshold:

lim
x↑c

P (Wi = 1|Xi = x) 6= lim
x↓c

P (Wi = 1|Xi = x) ,

and average treatment effect in defined as

τFRD =

lim
x↓c

E[Y |X = x]− lim
x↑c

E[Y |X = x]

lim
x↓c

P (W = 1|X = x)− lim
x↑c

P (W = 1|X = x)
.

One way to estimate τFRD would be to use the estimator in (4.1). As first pointed out by [22], in the

context of the fuzzy design this estimator is a Wald estimator or, in other words, the IV estimator

that treats Wi as an endogenous regressor and the indicator 1(Xi ≥ c) as an instrument.

The local linear regression estimator is defined as

τ̂F,LocLin =
α̂y,R − α̂y,L
α̂w,R − α̂w,L

, (4.3)
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where the objects on the right-hand side are obtained from the following estimations:(
α̂y,L, β̂y,L

)
= arg min

αy,L,βy,L

∑
i:c−hN≤Xi<c

(Yi − αy,L − βy,L(Xi − c))2,

(
α̂y,R, β̂y,R

)
= arg min

αy,R,βy,R

∑
i:c≤Xi≤c+hN

(Yi − αy,R − βy,R(Xi − c))2,

(
α̂w,L, β̂w,L

)
= arg min

αw,L,βw,L

∑
i:c−hN≤Xi<c

(Wi − αw,L − βw,L(Xi − c))2,

(
α̂w,R, β̂w,R

)
= arg min

αw,R,βw,R

∑
i:c≤Xi≤c+hN

(Wi − αw,R − βw,R(Xi − c))2.

As is well known, this estimator can be interpreted as the IV estimator with the main equation

being the regression of Yi on exogenous constant, 1 (Xi − c < 0) (Xi− c), 1 (Xi − c ≥ 0) (Xi− c) and

endogenous Wi, while using the indicator 1(Xi ≥ c) as the excluded instrument. This estimator

can, of course, be easily generalized to include more polynomial terms in each estimation. In the

definition of α̂y,L, α̂y,R and α̂w,L, α̂w,R we, for simplicity, used the uniform kernel. However, one

could use other kernels.

4.2 Asymptotic behavior of global sensitivity and parameter non-identifiability

In this section, we establish general results that connect the asymptotic behavior of the global

sensitivity with the inconsistency of regular differentially private estimators, allowing us, in light

of our notion of identification in Section 2, to make conclusions about the non-identifiability of the

parameter of interest under differentially private mechanisms.

We consider smooth estimators as given in Definition 6. The smoothness property allows us to

essentially consider estimators with an additive mechanism noise ξN :

θ̂ = ψ(PN ) + ξN (4.4)

(as discussed in the introduction, νN in the Definitions 3 and 6, among others, play the role of the

“seed” and, thus, the actual independent from the data additive noise ξN is a transformation of νN ).

For this estimator to satisfy regularity requirements in Definition 3, it has to, among other things,

be consistent in the absence of any mechanism noise, thus giving the identification of the parameter

in the limit of statistical experiments. This immediately leads us to the condition that

ψ(PN )
p→ θ0, (4.5)

where θ0 denotes the true parameter value.

Suppose the family from which the distribution of ξN is drawn is described by the density fN ;σ2 ,

where σ2 denotes the variance (the actual value of σ2 in practice depend on the sample size). The

notation fN ;σ2 is not meant to say that the distributional family for the additive noise is fully

described by the variance parameter. This parameter is introduced explicitly in the notation as
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usually the situations when differentially private mechanisms do not prevent the identification of θ0

in the limit are characterized the behavior of this parameter as the sample size increases.8 Even

though for now we consider just one distributional family, one has to keep in mind that potentially

several different distributions could be used, in which one has to consider all of them. To keep this

exposition simple, we will focus on one family fσ2 , as this already will give us a rather comprehensive

analysis.

For any ∆ > 0, σ2 and a < b, define

DN (∆, σ2, a, b) ≡ sup
z∈[a,b]

| log fN ;σ2(z)− log fN ;σ2(z + ∆)|, (4.6)

which is the discrepancy between the logarithms of two densities with a fixed variance, from which

one is calculated with a shifts ∆, on some interval [a, b]. As can be seen from the Definition 1 of

differential privacy, the behaviour of this object across different ∆ and σ2 is directly related to the

parameters of the differential privacy. The properties of a density imply that if [a, b] is large enough,

then for a fixed sample size N we have

DN (∆, σ2, a, b)→ +∞ as σ2 → 0, ∆ 6= 0. (4.7)

In the majority of applications the family of distributions fN ;σ2 is not indexed by N and the change

in the distribution of the estimators with the sample size may be driven by different variances. In

fact, this is the case for all commonly used mechanisms – Laplace, Gaussian, exponential mechanisms

and their variations. To make our discussion more general, we can allow for different distributional

families across different N , in which case we will require the following

Algorithm condition 1 (AC1). For any ∆, σ2 and a < b

sup
N
DN (∆, σ2, a, b) ≤ D(∆, σ2, a, b) (4.8)

D(∆, σ2, a, b)→ +∞ as σ2 → 0, ∆ 6= 0. (4.9)

As is clear from the discussion later, in the differential privacy implementation ∆ will be associated

with with the global sensitivity of ψ(PN ). Condition AC1 tells us that if the global sensitivity

remains bounded away from 0 as the sample size increases, then the diminishing variance of the

noise and (εN , δN ), εN ≤ ε̄, δN ≤ δ̄ differential privacy guarantees are incompatible with each other.

This will allow us to immediately draw conclusions about the situation of non-identifiability in the

limit of statistical experiments of the parameter of interest.

We give another algorithmic condition on the family of the distribution of the noise variable, which

holds generally for differentially private mechanisms and which also help to establish further results

related to the identifiability (or lack of such) of the parameter.

8For very popular mean-zero Laplace and Gaussian mechanisms, the distribution of ξN is fully characterized by

the variance parameter.
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Algorithm condition 2 (AC2). For any ∆N → 0 as N → ∞, it is possible to indicate σ2
N → 0

and [aN , bN ] such that

H ([aN , bN ],R)→ 0

and

D(∆N , σ
2
N , aN , bN )→ 0, (4.10)

where D(∆, σ2, a, b) is as defined in (4.10).

To give an example, consider the Laplace mechanism (discussed in Example 1) and note that

log f2λ2(z + ∆) = − |z+∆|
λ , and thus,

D(∆, σ2, a, b) ≤ |∆|
λ
,

which in particular implies that we can even take a = −∞ and b = +∞ in AC2. We can see that

this case trivially satisfies AC2 and, of course, condition AC1 if one chooses the Laplace mechanism

for any N .

It is exactly condition AC2 that would give a hope for the identifiability of the parameter of interest

in cases when global sensitivity of ψ(PN ) goes to 0. Indeed, the convergence ∆N → 0 is meant to

capture the case when the global sensitivity of the estimator converges to zero.

When this happens, condition AC2 says that it is possible to take σ2
N → 0 and [aN , bN ] converging

to the whole real line at the right rates (which clearly depend on the rate of a decreasing global

sensitivity) in such a way that D(µ1,N , µ2,N , σ
2
N , aN , bN ) remains bounded by a small εN → 0 with

the probability of at least 1 − δN . This will ensure that the differentially privacy criteria will be

satisfied for some sequences εN , δN ) converging to (0, 0) while delivering consistent differentially

private estimator. This is given in Proposition 1 below.

Proposition 1. Consider a smooth (εN , δN )-differentially private estimator – without a loss of

generality represented as (4.4), – and suppose that in the absence of the mechanism noise this

estimator (denoted as ψ(PN )) is consistent, i.e. (4.5) holds. Suppose that the global sensitivity of

ψ(PN ) denoted as G(N) converges to 0 with the sample size and the mean on ξN converges to 0. If

AC2 holds, then the differentially private estimator is consistent if εN and δN both converging to 0

have slow enough rates.

Note that under the conditions of Proposition 1 implies that an (ε, δ)-differentially private estimator

is consistent for fixed (ε, δ) as well since these requirements are weaker than requiring that (εN , δN )

converges to 0. The result of Proposition 1 gives a hope that the parameter of interest can be

identified in the limit of experiments with a suitable choice of the set E of sequences (εN , δN ).

Our next step is to establish that a generic (εN , δN )-differentially private algorithm will give an

inconsistent estimator if the global sensitivity remains bounded away from zero as the sample size

increases even if the mean of the mechanism noise ξN converges to 0.
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THEOREM 6. Consider a smooth (εN , δN )-differentially private estimator θ̂ – without a loss

of generality represented as (4.4), – and suppose that in the absence of the mechanism noise this

estimator (denoted as ψ(PN )) is consistent, i.e. (4.5) holds. Suppose that AC1 holds and the global

sensitivity of ψ(PN ) denoted as G(N) does not converge to 0 with the sample size whereas the mean

on ξN converges to 0.

Then this (εN , δN )-differentially private estimator is inconsistent even if εN does not change with

N .

We end this section by giving sufficient condition for when the parameter of interest is not identified

from the differential privacy estimation in the limit of statistical experiments.

COROLLARY 1. Consider a class of smooth (εN , δN )-differentially private estimators θ̂ – without

a loss of generality represented as (4.4), – and suppose that in the absence of the mechanism noise

these estimators (correspond to ψ(PN )) are consistent, i.e. (4.5) holds. Suppose that AC1 holds and

the global sensitivity of ψ(PN ) denoted as G(N) does not converge to 0 with the sample size whereas

the mean on ξN converges to 0.

For any join-semilattice E of sequences of (εN , δN ), with εN ≤ ε̄, δN ≤ δ̄, parameter θ0 is not

identified in the limit of experiments.

This corollary directly follows from Theorem 6.

4.3 Regression discontinuity under differential privacy

In this section, we use results of Section 4.2 to analyze the identifiability of the average treatment

effect of differentially private regression discontinuity design estimators. Even though this section

will be focused on the issue of identifiability, there are other important issues one would want to

explore in the RDD framework. One of these issues is the question of how differential privacy

requirements would affect the visual analysis of the data, which is on e of the fundamental steps

in the practice of RDD. Another issue is the the question of the credibility of specification tests

(continuity of the density of the running variable at the cut-off, placebo tests with pre-treatment

covariates), under differential privacy. Even though our main focus is on identifiability of the average

treatment effect under differential privacy, we do discuss these other related issues in Section 4.4

albeit in less detail.

Even though sometimes there are some parametric RDD estimation methods which are global in

nature, the state-of-the-art RDD techniques are local in nature and employ some elements of non-

parametric methods. These latter methods focus on a neighborhood around the switch point with the

size of this neighborhood being determined by a kernel K(·) and a respective bandwidth h = h(N).

We will suppose that h(N) is chosen by a certain differential privacy algorithm according to some

rule in such a way that h(N) = o(1) as N → ∞. Then the expected number of observations from

a sample of size N in a right-hand side neighborhood of c is N · Pr (c ≤ X < c+ h(N)), and in the
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left-hand side neighborhood is N · Pr (c− h(N) < X < c). There are, of course, some well known

approaches for selecting a bandwidth, such as [24], [10], among others. Our analysis will apply to

general bandwidth choices subject.

4.3.1 Sharp RD under differential privacy

We start with the analysis of differentially private RDD estimators for the sharp design. We begin

our series of formal results with establishing the results on the global sensitivity of nonparamet-

ric regression at the boundary and local linear (polynomial) estimation. Propositions 2-4 look at

nonparametric regression at the boundary and various properties of kernels that affect the global

sensitivity result. Proposition 5 looks at the local linear estimation. In light of the results in Section

4.2, the knowledge of the asymptotic behavior of the global sensitivity of these estimators will allow

us to analyze wether smooth differentially private approaches are compatible with the identifiability

of the ATE of interest. As we show, the exact results on the global sensitivity even depend on the

type of kernel used in the above-mentioned estimation techniques.

Before formulate to Proposition 2, we formulate what we mean by kernels with a bounded support.

DEFINITION 11. We say that the kernel function K(·) : R→ R+ has a bounded support if there

is a value u0 > 0 such that K(u) = 0 when |u| > u0. If this condition is not satisfied, then we will

say that the kernel has an unbounded support.

Uniform, Epanechnikov, triangular kernels are examples of kernel functions with bounded supports.

Gaussian and logistic kernels are examples of kernel functions with unbounded supports. Even if

one considers kernels with a bounded support, we will see that it will make a difference whether the

kernel is continuous (like the triangular kernel) or has discontinuities (like the uniform kernel).

DEFINITION 12. For a given kernel function K(·) with a bounded support and a given bandwidth

h, we define a K-h-neighborhood to the right of c as a set [c, c+ ∆K,r(h)), where ∆K,r(h) > 0, such

that K(u−ch ) > 0 for u > c if and only if u ∈ [c, c+ ∆r(h)). In other words, this is the set of point

to the right of c that will be used in the nonparametric regression.

Analogously, we define a K-h-neighborhood to the left of c as a set (c−∆K,l(h), c), where ∆K,l(h) > 0,

such that K(u−ch ) > 0 for u < c if and only if u ∈ (c−∆K,l(h), c).

A differentially private algorithm takes the support of the observed variables as given and usually

depends on this support, and thus, uses the supports of Y in both right-hand side and left-hand side

K-h-neighborhoods as inputs. For a kernel with a bounded support, these supports can be denoted

as Yr(h) and Y l(h), respectively, and may generally depend on h. However, they are naturally

approximated by

Yr = lim
h↓0
Yr(h) and Y l = lim

h↓0
Y l(h) (4.11)

that no longer depend on the bandwidth choice (these limits are well defined as {Yr(h)} and {Y l(h)}
are sequences of monotonically decreasing events.)
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We will suppose that Yr and Y l are convex non-singleton sets. As further notations, we will use

Y
r

= supYr, Y r = inf Yr,

Y
l

= supY l, Y l = inf Y l.

We now present a series of results on the global sensitivity.

Proposition 2. Consider a nonparametric regression at the boundary estimator that uses a con-

tinuous kernel with a bounded support.

Suppose that for a data-driven choice of bandwidth h = h(N), for any sample size N it is possible to

have realizations of the data {(Yi,Wi, Xi)}Ni=1 that will deliver the minimum number of observations

mr(N) ≥ 1 in the K-h-neighborhood to the right of c and the minimum number of observations

ml(N) ≥ 1 in the K-h-neighborhood to the left of c.

(a) If the supports Yr and Y l are bounded, then the global sensitivity of the nonparametric regres-

sion at the boundary estimator is

Y
r − Y r + Y

l − Y l

and, hence, it does not depend on the sample size.

(b) If at least one of the supports Yr and Y l is unbounded, the global sensitivity of of the nonpara-

metric regression at the boundary estimator is +∞.

We next consider the case of a kernel function with a bounded support and discontinuities at the

support boundaries −u0 and u0 with the main example here being the uniform kernel. We define

K ≡ inf
u∈(−u0,u0)

K(u). (4.12)

The discontinuities of K(·) at −u0 and u0 imply that K > 0. For expositional simplicity, in the

formulation of Proposition 3 we only indicate the rate of the global sensitivity. However, the proof

of this proposition in the Appendix gives the exact expression for this sensitivity.

Proposition 3. Consider a nonparametric regression at the boundary that uses a kernel with a

bounded support and K > 0, where K is as defined in 4.12.

Suppose that for a data-driven choice of bandwidth h, for any sample size N it is somehow possible

to guarantee the minimum number of observations mr(N) ≥ 1 in the K-h-neighborhood to the right

of c and the minimum number of observations ml(N) ≥ 1 in the K-h-neighborhood to the left of c.

(a) If the supports Yr and Y l are bounded are bounded, then the global sensitivity of the nonpara-

metric regression at the boundary estimator is proportional to 1
min{mr(N),ml(N)} .
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(b) If at least one of the supports Yr or Y l is unbounded, the global sensitivity of of the nonpara-

metric regression at the boundary estimator is +∞.

Part (a) in Proposition 3 seemingly gives some hope of achieving the situation when the global

sensitivity may be going to zero as N → ∞ if it can be ensured that min{mr(N),ml(N)} → ∞.

This hope, however, is a false one as the situation of being able to guarantee a minimal number

(growing to ∞) of observations in each neighborhood for any sample {Xi}Ni=1 with a given support

of X is a rather hypothetical scenario as the probabilities that the number of observations in the

right- and left-hand side neighborhoods is strictly less than mr(N) and ml(N), respectively:

mr(N)∑
k=0

(
N

k

)
FX(c)N−k (1− FX(c))

k

is the probability of fewer than mr(N) observations to the right of c,

ml(N)∑
k=0

(
N

k

)
FX(c)k (1− FX(c))

N−k

is the probability of fewer than ml(N) observations to the left of c.

Both these probabilities are clearly strictly positive when c is an interior point of the support of X.

The non-stochastic nature of the global sensitivity concept effectively leads to the situation of the

global sensitivity always being bounded away from 0 as N → ∞ in the case of the kernel with a

bounded support and K > 0.

Our final case is that of a kernel with an unbounded support, that is, the kernel is strictly positive

on the whole real line and approaches 0 at ±∞ (such as the Gaussian kernel). In this case we will

take that a differentially private algorithm uses the supports of Y |X ≥ c and Y |X < c since the

kernel weights are technically never equal to zero. Let’s denote these supports as Yrall and Y lall,
respectively.9 Also denote

Y
r

all = supYrall, Y rall = inf Yrall,

Y
l

all = supY lall, Y lall = inf Y lall.

Since the kernel approaches zero arbitrarily closely, the global sensitivity results for this case will

be similar to those in Proposition 4 where the infimum of the values of the kernel on its support

bounded support is 0.

Proposition 4. Consider a nonparametric regression at the boundary that uses a kernel function

with a unbounded support.

9Potentially differentially private algorithms may use more a complicated support for Y |X that could depend on

X. This is not going to change our qualitative findings on the global sensitivity being bounded away from 0, even

though the exact numerical values for global sensitivities may be different.
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(a) If the supports Yrall and Y lall are bounded, then the global sensitivity of a nonparametric regres-

sion at the boundary estimator is

Y
r

all − Y
r
all + Y

l

all − Y
l
all

– that is, it does not depend on the sample size.

(b) If at least one of the supports of Yrall and Y lall is unbounded, then the global sensitivity of a

nonparametric regression at the boundary estimator is +∞.

Thus, the results of Propositions 2-4 and the discussion following Proposition 3 lead us to con-

clude that the global sensitivity of a nonparametric at boundary estimator is always bounded away

from zero. The implications of this for asymptotic properties of differentially private estimators

is given in Theorem 6 and Corollary 1 allow us to conclude that the ATE is not identified in the

limit of statistical experiments of smooth differentially private nonparametric regression at boundary

estimators.

Our next step is to analyze whether things get better with a local linear (and more generally,

polynomial) estimator as defined in (4.2). Proposition 5 below establishes that this is not the case

and the global sensitivity of this estimator is in fact infinite even if the support of the outcome

variable is bounded.

Proposition 5. Consider the local linear estimator as defined in (4.2). The global sensitivity of

this estimator is bounded away from zero as N →∞.

Theorem 6 and Corollary 1 allow us to conclude that the ATE is not identified in the limit of

statistical experiments of smooth differentially private local linear estimators.

Our findings for the sharp design are summarized in Theorem 7.

THEOREM 7. In the sharp regression discontinuity design case, any smooth (εN , δN )-differentially

private nonparametric regression at the boundary estimator and any smooth (εN , δN )-differentially

private local linear estimator is inconsistent for any bounded sequences of positive {εN} and non-

negative {δN}.

If we add other covariates to our estimation or use more terms in the local polynomial estimation, the

conclusion of Theorem 7 remains exactly the same, even though in Propositions 2-5 quantitatively

the global sensitivities of the estimators could be different. Indeed, from the proofs in the Appendix

one could easily see that the global sensitivity for the local polynomial estimator would once again

rely on the formula for the OLS estimator for the intercept whereas in the nonparametric regression

at the boundary estimator the lower bounds on global sensitivities could be obtained in the same

way as the proofs in Propositions 2-4.
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4.3.2 Fuzzy RD under differential privacy

In the case of the fuzzy design the results for the global sensitivities of the estimators are analogous

to the sharp design case. Naturally, we are also able the conclude that differentially pirate versions

of traditional estimators in this framework are inconsistent.

Indeed, as discussed in Section 4.1.2, the estimator (4.1) may be used in the fuzzy design case as

well, with the asymptotic properties analogous to the sharp design scenario. The global sensitivity

of this estimator remains the same and, therefore, its properties are described by Propositions 2-4.

As for the local linear estimator, the result is the same, once again, even though the proof is slightly

more elaborate than in the sharp design case. For the sake of completeness, we establish this result

formally in Proposition 6 below.

Proposition 6. Consider the local linear estimator as defined in (4.3). The global sensitivity of

this estimator is bounded away from 0 as N →∞.

The proof of Proposition 6 in the Appendix for simplicity does not employ other covariates. It is

worth mentioning, however, that the situation with other covariates (let’s call them Si with the

support S) may be even worse as in the case we may have that

inf
SiS

∣∣∣∣limx↑c P (Wi = 1|Xi = x) 6= lim
x↓c

P (Wi = 1|Xi = x)

∣∣∣∣ = 0.

If this situation occurs, then even in the nonparametric regression at the boundary type of estimators

the global sensitivities may be converging to ∞ as N → ∞, giving even more severe implications

for the asymptotic properties of smooth differentially private estimators.

In the definition of the local linear estimator in Section 4.1.2 we for simplicity used the uniform

kernel. However, the result of Proposition 6 remains true of other kernels are used.

Then, relying on the results in Propositions 2-5, 6 and Theorem 6, we can immediately obtain the

result of Theorem 8 below.

THEOREM 8. In fuzzy regression discontinuity design, any smooth (εN , δN )-differentially private

nonparametric regression at the boundary estimator and any smooth (εN , δN )-differentially private

local linear estimator is inconsistent for any bounded sequences of positive {εN} and non-negative

{δN}.

To summarize the results of Theorems 7 and 8 in Sections 4.3.1 and 4.3.2, in the sharp and fuzzy

regression discontinuity design the requirements of (ε, δ)-differential privacy either with fixed ε, δ or

with these parameters decreasing with the sample size are incompatible with the consistent estimation

of the average treatment effect. Therefore, given our notion of identifiability in Section 2, they are

also incompatible with the identifiability of the average treatment effect in the limit of statistical

experiments.
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4.4 Specification testing

So far we mostly have focused on the non-identifiability of the average treatment effect under smooth

differentially private mechanisms. However, every regression discontinuity design analysis is tradi-

tionally accompanied by specification testing. This includes checking for the possibility of other

changes at the cutoff value c of the forcing variable Xi and also checking for the manipulation of Xi.

The first type of checks include testing the null hypothesis of a zero average effect on pseudo outcomes

known not to be affected by the treatment. The outcomes of such placebo tests would also have to

be (εN , δN )-differentially private. A traditional differentially private literature approach in this case

would add noise to the true test statistic and then adjust the asymptotic distribution to compute

correct p-values (see e.g. [54]).10 It is not surprising that, once again, this brings a range of issues

in the context of placebo tests in regression discontinuity designs. Indeed, let τ̂pl denote the true

regression discontinuity design estimator in the analysis of treatment of pseudo-outcomes, and let

τpl denote the true parameter. The testing of the null H0 : τpl = 0 is based on the t-ratio
τ̂pl

se(τ̂pl)
.

Without giving formal results on this, we nevertheless want to point out that utilizing our techniques

in the proofs of Propositions 2-5 and 6, we can establish that the global sensitivity of this ratio either

increases to ∞ with the sample size or is already ∞ in a finite sample. This implies that the noise

added to this ratio would asymptotically dominate this ratio. Even if the critical values are corrected

to account for the added noise, it is clear that the conclusion of the (εN , δN )-differentially private

test based on such a procedure are not credible and, in particular, result in a lower power of the

test (in the limit, the power of this test is trivial). To make our point more transparent, let us focus

on a stylized version of the test when the asymptotic variance of
√
Nh (τ̂pl − τpl) is known. We will

denote is as Avar (τ̂pl). In this stylized version we want to create a differentially private version of

the test statistic tN =
√
Nhτ̂pl√

Avar(τ̂pl)
.

As we have shown in Sections 4.3.1 and 4.3.2, the global sensitivity of τ̂pl may be constant and

bounded away from zero or may even be infinite for every N (in situations when we add other

covariates, it may be increasing to ∞ wth the sample size). Given that h = h(N) is chosen in a way

to give Nh → ∞, this will imply immediately that the global sensitivity of tN is either increasing

to infinity with the sample size or is infinite. This means that the variance of the independent noise

added in the differentially private algorithm will increasingly dominate the asymptotically constant

variance of tN . Instead of using the standard normal distribution critical values, one would take the

critical values from the distribution that suitably combines the standard normal distribution and

the distribution of noise. However, as N increases, the testing essentially becomes inference about

the mechanism noise, leading to a decreasing power of the test, which asymptotically diminishes to

the trivial power. 11

10There are also approaches to hypotheses testing in the differential privacy literature that are based on adding

noise to the inputs – see e.g. [27]. They. may, however, be considered less reliable than the approaches based on the

output perturbation.
11In contrast, in a simpler case of the estimation of mean, as in Example 1, the global sensitivity of t-ratio would

be finite and bounded away from zero as N increases. Upon the correction of the critical values, in this situation the
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A second type of tests are for the manipulation of the forcing variable. We will illustrate issues

associated with (ε, δ)-differentially private versions of these tests by considering the test of the

continuity of the density at cutoff by [41]. The test is based on the ratio θ̂
σ̂θ

, where

θ̂ = ln f̂+ − ln f̂−, σ̂θ =

√
1

Nh

24

5

(
1

f̂+
+

1

f̂−

)
,

where h is the bandwidth and

f̂+ =
∑
Xi>c

K

(
Xi − c
h

)
S+
N,2 − S

+
N,1(Xi − c)

S+
N,2S

+
N,0 −

(
S+
N,1

)2Yi =
∑
Xi>c

K
(
Xi−c
h

)
M+
N

S+
N,2

M+
N

− S+
N,1

M+
N

(Xi − c)

S+
N,2

M+
N

S+
N,0

M+
N

−
(
S+
N,1

M+
N

)2Yi, (4.13)

f̂− =
∑
Xi<c

K

(
Xi − c
h

)
S−N,2 − S

−
N,1(Xi − c)

S−N,2S
−
N,0 −

(
S−N,1

)2Yi =
∑
Xi<c

K
(
Xi−c
h

)
M−N

S−N,2

M−N
− S−N,1

M−N
(Xi − c)

S−N,2

M−N

S−N,0

M−N
−
(
S−N,1

M−N

)2Yi, (4.14)

where M+
N =

∑
Xi>c

K
(
Xi−c
h

)
, S+

N,k =
∑
Xi>c

K ((Xi − c)/h) (Xi−c)2 and analogous definition for

the objects with the minus superscript. In the rewritten expression for f̂+ and f̂− on the right-hand

side of (4.13) and (4.14), we can see that these definitions are weighted averages with the weights
K((Xi−c)/h)

M+
N

and K((Xi−c)/h)

M−N
, respectively. This brings us to the situations analogous to the ones

in Propositions 2-4 and, thus, allows us to analyze the behavior of the global sensitivities of θ̂ and

the ratio θ̂
σ̂θ

using similar tools. Even if only one observation in a sample changes, these weights

may vary from 0 to 1 for continuous kernels with abounded support (like in Proposition 2) and for

kernels with an unbounded support (like in Proposition 4), and they may vary within a range that is

bounded away from 0 for kernels with a bounded support and K described in Proposition 3. These

are exactly the features that would allow us to establish that the global sensitivity of θ̂ is bounded

away from zero (may even be infinite in some situations) as N →∞ and the global sensitivity of θ̂
σ̂θ

goes to∞ (or may even be infinite for a finite N) as N →∞. This implies that for smooth estimators

the independent mechanism noise combined with the test statistic θ̂
σ̂θ

to make such a ratio (εN , δN )-

differentially private, will dominate the asymptotic behavior of the differentially private ratio. Even

if the critical values are corrected by taking into account the distribution of the mechanism noise,

the conclusions of this test are not credible and the power of the test is very low (in the limit, the

power of this test is trivial).

4.5 Graphical analyses

Graphical analyses have become an essential part of regression discontinuity design applications as

they give a powerful way to visualize the identification strategy of the RD design. [25], among

others, summarizes three type of analyses particularly useful.

significance testing would still have non-trivial power even though the power of the test would be lower.
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The first one is the histogram-type estimate of the average value of the outcome for different values

of the forcing variable. Usually, the support of the forcing variable is split into a number of equal-

sized bins, with first bins being defined at the cut-point and then taken further to the right and to

the left. It is essential that no bin mounts over the cut-off point, as this graph is meant to provide a

visual guidance about whether there is in fact a discontinuity at the cut-off. In addition, it allows to

analyze whether there is evidence of jumps at points other than the cut-off, thus helping to analyze

whether or not the jump at the cut-off can be solely attributed to the treatment of interest (see the

discussion in [35]). In an nutshell, in this analysis one would want to plot the average bin values

Yk =

∑N
i=1 Yi · 1 (bk < Xi ≤ bk+1)∑N
i=1 1 (bk < Xi ≤ bk+1)

against the average points bk+bk+1

2 of bins [bk, bk+1].

The differentially private literature has developed a variety of methods for outputting differentially

private histograms (for a review see e.g. [43]). Starting with first papers on differentially private

histograms (such as [39]), it has been recognized that the partitioning can leak information about

the data and for that reason usually the data are split into bins using a privacy-preserving clustering

algorithm that is compatible with differential privacy, such as the k-means algorithm or similar.

This means that usually the bins would be chosen by an algorithm rather than a data curator or

a researcher. in such a situation in general the cut-off point will not be the separator of two of

the bins, and when it is not, then the main purpose of this visual analysis is defeated. In case a

researcher wants to impose restrictions that the cut-off is a separator of the two bins, then the issues

encountered under these restrictions will be similar to the ones in the nonparametric regression at

the boundary estimation with the uniform kernel (see Proposition 3). In particular, this means

that generally the global sensitivity of means in the bins next to the threshold does not converge to

zero with the sample size, implying that in any (εN , δN )-differentially private histogram-like output

for conditional means of the outcome the impact of the mechanism noise will be persistent for any

sample size, leading to the lack of credibility of such an analysis.

The second type of analyses is similar to the first one but plots average bin values of other covariates

against the average points of bin values. These types of graphs are useful in detecting potential spec-

ification problems. The issues with delivering differentially private graphs are completely analogous

to those described in the first type of analyses above.

Finally, the third type of analyses plots the histogram of the distribution of the forcing variable as

this helps to inspect whether there is a discontinuity in the distribution of the forcing variable at the

cut-off and, thus, to analyze whether there is any manipulation of the forcing variable. As argued

in [35], it is preferable to use histograms rather than smoothed density estimates as histograms can

provide a sense in which any jump at the threshold is unusual. Once again, the issues with making

these type of histograms differentially private are the same as before: a) usually the bins would

be chosen by a mechanisms adaptively and therefore generally one the bins will contain the cut-off

point as an interior point thus defeating the purpose of this visualization; b) if a researcher asks for
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separate histograms to the right and to the left of the cut-off, this will result in either having global

sensitivity that is large and does not diminish to 0 with the sample size (similar to the issues we

had with the nonparametric regression at the boundary estimator) or in the bins that are too wide.

In either case this leads to a significant amount of information about the distribution of the forcing

variable.

4.6 Monte Carlo illustrations

In this section, we want to illustrate our findings of the generally poor performance of the smooth

differentially private RDD estimators. We consider the sharp design and illustrate paths of the

differentially private local linear estimator with a triangular kernel for increasing sample sizes with

different degrees of the privacy protection. These paths are constructed for increasing samples from

the size of 300 till the size of 4000. For visual simplicity, we give paths for 20 independent realizations

of datasets.

Scenario 1.

The forcing variable X has a uniform distribution on [−1, 1]. The regression function is a fifth-order

polynomial, with separate coefficients for Xi < 0 and Xi > 0:

m(x) =

{
0.35 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5, if x < 0,

0.65 + 0.84x− 3x2 + 7.99x3 − 9.01x4 + 3.56x5, if x ≥ 0,

and the error u having a symmetric uniform distribution on [−0.12952 ·
√

3, 0.12952 ·
√

3]. The

bandwidth in the local linear estimation is chosen using the approach in [24].

Differentially private estimators are obtained by using the Laplace mechanism, which, as discussed

above, draws a mechanism nose from the Laplace distribution with mean zero and variance depending

on the global sensitivity of the local linear estimator a noise to the estimator.

In Panel 1 in Figure 1 we show the paths of the estimator in the absence of the mechanism noise when

the mechanism noise variance equal to 0.002 for any sample size (for a conservative lower bound of

4 · 0.12952 ·
√

3 on the global sensitivity of the estimator12, this would correspond to εN being 10

times of this δN = 0). Panel 2 in Figure 1 depicts the paths of the estimator when the mechanism

noise variance equal to 0.002 for any sample size (for a conservative lower bound of 4 · 0.12952 ·
√

3

on the global sensitivity of the estimator, this would correspond to εN being equal to 10 times of

this and δN = 0). Panel 3 in Figure 1 shows the paths of the estimator when the mechanism noise

variance equal to 2 for any sample size (for a conservative lower bound of 4 · 0.12952 ·
√

3 on the

global sensitivity of the estimator, this would correspond to εN being equal to this and δN = 0).

Finally, Panel 4 in Figure 1 illustrates the paths of the estimator when the mechanism noise variance

equal to 200 for any sample size (for a conservative lower bound of 4 · 0.12952 ·
√

3 on the global

12See our discussion in the proof of Proposition 5 in the Appendix.
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Setting Var(mech noise =0) Var(mech noise =0.002) Var(mech noise =2) Var(mech noise =200)

5% 1% 5% 1% 5% 1% 5% 1%

N = 500 1 1 0.6846 0.3706 0.0666 0.0286 0.056 0.023

N = 2000 1 1 0.7252 0.3880 0.0664 0.0290 0.0666 0.0272

N = 5000 1 1 0.7260 0.3844 0.0694 0.0284 0.0594 0.0250

Table 1: Rejection rates in 5000 simulations of the false null hypothesis H0 : τ = 0 in Scenario 1. N denotes

the number of observations.

sensitivity of the estimator, this would correspond to εN being equal to the one-tenth of this and

δN = 0). Note the different range of the values on the vertical axis in these panels.

In Table 1 we focus on the rejection of the null H0 : τ = 0 against H1 : τ 6= 0 when a researcher

uses differentially private estimates and their standard errors (note that this is different from our

discussion of the differentially private release of t-tests in Section 4.4).

Scenario 2. The only difference here from Scenario 1 is that u is normally distributed with mean zero

and variance 0.12952. The support of the outcome variable is unbounded and the global sensitivity

is clearly infinite (see the proof of Proposition 5 in the Appendix) which means that regardless of

εN , εN ≤ ε̄, in the Laplace differentially private mechanism the noise has to be drawn from the

distribution with an infinite variance. Figure 2 shows that paths of differentially private local linear

estimators for when the variance is equal to 106.

Here we could have conducted similar power analysis based on a large number of simulations, like

in Scenario 1, and we would have obtained that power of the test H0 : τ = 0 vs H1 : τ 6= 0 based on

differentially private estimates is very low.

5 Conclusion

Differential privacy is a powerful data security concept that precludes a potential adversary from

linking sensitive data with outside information, inferring data attributes or determining if particular

individual is included in the dataset. The implementation of the differentially private data analysis is

based on consideration of randomized estimator where independent randomness is the key instrument

that provides the differential privacy guarantee.

In this paper we focused on identification of Econometric models under differential privacy. We

concluded that even with relatively simple models identification in this context requires the concepts

and methods from the random set theory. We consider identification from the perspective of the
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limit of statistical experiments where differentially private implementation of the estimator is applied

to the datasets of an increasing size. Identification in this case is the property of the set of weak

limits of such estimators. Under our mild regularity conditions this limiting set is a convex compact

random set and, thus, it needs to be characterized in probabilistic terms, for instance, using the

containment functional.

We apply our theory to the analysos of the regression discontinuity design (RDD) where we consider

both sharp and fuzzy design. We show that for both models the random set of weak limits of

differentially private estimators contains non-degenerate random elements which precludes point

identification of the parameters of interest. We illustrate this finding in a series of Monte Carlo

simulations.

Our result, in part, is driven by the structure of the estimators which have to rely on local properties

of the underlying distribution. This may indicate that under differential privacy a similar behavior

is to be expected for other Econometric models that rely on nuisance parameters.
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6 Appendix

6.1 Proofs of theorems and propositions in section 2

Proof of Lemma 1. Let ων be the element of the σ-algebra Fν associated with random element

νN and ωS be the element of the σ-algebra of the subsets of Zn. Since TN is the closure of the set of

measurable selections that form a closed and bounded space, then for almost all elements (ωN , ωS)

the set of values θ(PN (·;ωS), νN (ων)) is closed and bounded and, therefore, compact. Thus, random

set TN is compact.

To prove convexity, it is enough to consider θ(PN , νN ) and θ′(PN , νN ) that are realizations of two

regular (εN , δN )-differential private and (ε′N , δ
′
N )-differential private estimators, respectively, where

sequences of (εN , δN ) and (ε′N , δ
′
N ) are in E . Then by union bound their convex combination satisfies

(2.2) with the right-hand side bound of at most 2R̄(n, κ). Also, any convex combination τθ(SN , νN )+

(1−τ)θ′(SN , νN ) is a realization of the estimator τθ(·, ·)+(1−τ)θ′(·, ·). This estimator is differentially

private for the sequence of (max{εN , ε′N},max{δN , δ′N}) which belongs to E by our assumption of

E being a join-semilattice. Finally not that the estimator τθ(·, ·) + (1 − τ)θ′(·, ·) has a weak limit

from the continuous mapping theorem as it is straightforward to show that (θ, θ′)T (·, ·) has a joint

weak limit (of course, we would use the fact that θ, θ′ do not depend on N). Thus, set TN is convex

random set. �

Proof of Lemma 2: Assume, contrary to the statement of the Lemma that ∆N = θ(SN , νN )−τ p−→
0. Then θ(SN , νN ) = τ + ∆N , and because τ is not constant, then conditional on SN and SN+1,

estimator θ(SN , νN ) and θ(SN+1, νN+1) cannot be independent. This, in its turn, will contradict the

independence of elements νN and νN+1, which is a fundamental requirement for differential privacy.

�

Proof of Theorem 1. Provided that θ(·, ·) belong to a compact subset of a separable space in

L1, for each χ there exists K such that for a finite set of elements {θ(1)(·, ·), . . . , θ(K)(·, ·)}, their

convex hull ΘK
N is within χ-Hausdorf distance from set TN,E . Since each θ(k)(·, ·) is a function of

the same elements (ωN , ωS), weak convergence of θ(k)(PN , νN ) implies joint weak convergence of the

set {θ(1)(·, ·), . . . , θ(K)(·, ·)} and, therefore, weak convergence of their convex hull. We then choose

sequence χN , which induces sequence KN such that sup
A

∣∣∣CΘKKN
(A)− CTN,E (A)

∣∣∣ is a decreasing

function of N. Then by Theorem 6.26 in [44] sequence of random sets TN,E converges weakly. �

Proof of Theorem 3. a) Suppose that for any sequence of (εN , δN ) from E it holds that

any regular (εN , δN )-differentially private estimator θ(PN , νN ) is such that θ(PN , νN )
p→ θ0. Then

TE = {θ0} (degenerate distribution at θ0). Then, clearly, for any convex polytope K 3 θ0 we have

CTE (K) = 1 ≥ 1− α for any α ∈ (0, 1).

b) Suppose for any α ∈ (0, 1) and any convex polytope K 3 θ0

CTE (K) ≥ 1− α.
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Since α can be taken to be arbitrarily close to 0, this means that CTE (K) = 1. Since convex polytope

K 3 θ0 can be taken to have arbitrarily small volume, this means that TE = {θ0} (degenerate

distribution at θ0). Indeed, take a decreasing sequence Km 3 θ0 of convex polytopes such that

∩∞m=1Km = {θ0}. By the continuity theorem for monotone sequences of events CTE (∩∞m=1Km) =

limm→∞ CTE (Km) = 1, which immediately implies that TE = {θ0} meaning that every θ(SN , ηN )

converges weakly to θ0, and thus, θ(SN , ηN )
p→ θ0. �

6.1.1 On the selection expectation of the set of regular differentially private estimators

for θ0 in Section ??

Here we briefly discuss the properties of the selection expectation of the limiting random set TE of

regular differentially private estimators for θ0 in the context of the example in Section ??.

Let ΘN,E denote the selection expectation of the random set TN,E of all regular (εN , δN )-differentially

private estimators for θ0 with sequences (εN , δN ) from E . The Hausdorff limit of ΘN,E as N → ∞
is denoted as Θ∞,E .

Θ∞,E , loosely speaking, contains all limits of expectations of regular differentially private estimators.

Ideally, if differentially private estimators are compatible with consistency, for a broad range of

sequences εN and δN converging to zero the set Θ∞,E should be a singleton {θ0}.

Theorem 1.45 in [44] links Θ∞,E to the selection expectation of the limit random set TE . Indeed,

that theorem immediately implies that under conditions of Theorem 1, ETN,E converges to ETE in

the Hausdorff metric and the Lebesgue measure of ETN,E converges to the Lebesgue measure of ETE

as N →∞. In other words, weak convergence of a sequence of random sets implies the convergence

of the selection expectation.

Going back to the discussion of our example in Section ??, we note that even though in that example

differential privacy-inducing mechanisms perturb the estimator with random noise symmetric at zero,

there is no guarantee that the limiting Θ∞,E is a singleton at θ0. In If we collect differentially private

estimators across all three regimes in that example, we find that the corresponding limiting set of

selection expectations will include

EU ({Argminθ∈Θ θ,Argmaxθ∈Θ θ}) , {EΛ(c), c ∈ [0,+∞)}, 0, E[X].

We note that in this case the target expectation E[X] belongs to Θ∞,E . At the same time, the set

Θ∞,E itself is clearly large.

We also note that if we exclude the elements of the selection expectation that result from Regime

3 where the scale of double exponential noise asymptotically increases, the selection expectation of

our considered family of estimator will be a linear segment in Θ that connects points 0 and E[X]

since the set {EΛ(c), c ∈ [0,+∞)} is a line in Θ that connects 0 and E[X].
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6.2 Proofs of theorems and propositions in section 4

Proof of Proposition 1. Treat G(N) as ∆N in AC2 and choose respective σ2
N and [aN , bN ] as

in condition AC2. Take the definition of the differentially private estimator and note that for two

estimators ψ(SN ) and ψ(S′N ) based on two datasets that differ in one observation only, we have

PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B) = PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B|νN ∈ [aN , bN ]) +

+ PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B|νN /∈ [aN , bN ]) ≤ PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B|νN ∈ [aN , bN ])

+ PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B|νN /∈ [aN , bN ])

≤ eD(G(N),σ2
N ,aN ,bN )PνN∼fN;σ2

N

(νN + ψ(S′N ) ∈ B|νN ∈ [aN , bN ])

+ PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B|νN /∈ [aN , bN ]) ,

where B is any subset of R. Thus, if εN is greater os equal eD(G(N),σ2
N ,aN ,bN ) (which also gives

acceptable rates of convergence for εN to 0) and PνN∼fN;σ2
N

(νN + ψ(SN ) ∈ B|νN /∈ [aN , bN ]) δN

(which also gives acceptable rates of convergence for δN to 0), then (εN , δN )-differential privacy

criterion is satisfied.

At the same time, because both the mean and the variance of ξN converge to 0, then ξN converges

in probability to 0 and, therefore, in light of (4.5) the estimator θ̂ in (4.4) is consistent. �

Proof of Theorem 6.

As we will show, the inconsistency of the estimator θ̂ in (4.4) stems from the fact that the variance

of the mechanism noise ξN does not go to 0 with the sample size, which in its turn is explained by

the fact that the global sensitivity of ψ(SN ) does not go to 0 with the sample size.

Indeed, suppose that G(N) is bounded away from zero as N →∞ and is also bounded from above.

Then for a fixed large enough interval [aN , bN ], the value of D(G(N), σ2
N , aN , bN ) has to be bounded

from above by εN . Since G(N) is bounded away from 0, from AC1 we have that

D(G(N), σ2
N , a, b)→ +∞

if σ2
N → 0 for a fixed interval [a, b]. The definition of D() as a supremum implies that the same

property will hold if instead of the fixed interval [a, b] we take [aN , bN ] converging to R. This

implies, of course, that σ2
N has to be bounded away from zero. This, in turn, implies that ξN does

not converge in probability to zero even if the mean of ξN converges to 0. Hence, θ̂ dose not converge

in probability to the true parameter value.

If G(N) = +∞, then to guarantee (εN , δN )-differential privacy, one would have to take σ2
N = +∞,

clearly leading to the inconsistency of θ̂.

Note that this inconsistency result applies even to (εN , δN ) not changing with N . It will also be

true under stronger requirements of differential privacy when both parameters converge to 0. �
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Lemmas 6 and 7 will help to establish results in Propositions 2-5.

LEMMA 6. Consider two weighted averages

q1 =

T∑
i=1

wiai + wT+1aT+1, where wi =
bi∑T+1
i=1 bi

, i = 1, . . . , T + 1,

q2 =

T∑
i=1

w̃iai + w̃T ãT , where w̃i =
bi∑T

i=1 bi + b̃T+1

, i = 1, . . . , T, w̃T+1 =
b̃T+1∑T

i=1 bi + b̃T+1

,

and

0 ≤ c1 ≤ ( or <) bi, b̃i ≤ c2, (6.1)

d1 ≤ ai ≤ d2, i = 1, . . . , T + 1, and d1 < d2. (6.2)

Then

(a) if c1 = 0 and |d1|, |d2| <∞, then

max
a1,...,aT ,aT+1,ãT+1,b1,...,bT ,bT+1,b̃T+1 s.t. (6.1),(6.2)

|q1 − q2| = d2 − d1.

(b) if c1 > 0 and |d1|, |d2| <∞, then

max
a1,...,aT ,aT+1,ãT+1,b1,...,bT ,bT+1,b̃T+1 s.t. (6.1),(6.2)

|q1 − q2| =
c2(d2 − d1)

T · c1 + c2
.

(c) if d1 = −∞ or d2 = +∞, then

max
a1,...,aT ,aT+1,ãT+1,b1,...,bT ,bT+1,b̃T+1 s.t. (6.1),(6.2)

|q1 − q2| = +∞.

In cases (a)-(c), max |q1 − q2| can be attained by a positive change as well as by a negative change

– that is, there are values of at’s, bt’s and ãT+1, b̃T+1 such that q1 − q2 = max |q1 − q2|, and there

are values of at’s, bt’s and ãT+1, b̃T+1 such as q1 − q2 = −max |q1 − q2|.

Proof of Lemma 6.

(a) In this case, we can take

• b1 = . . . = bT ≈ 0; bT+1 = b̃T+1 = c2;

• a1, . . . , aT can be arbitrary values that satisfy (6.2); aT+1 = d1, ãT+1 = d2.

This gives us q2 − q1 = d2 − d1. Therefore, we should have max |q2 − q1| ≥ d2 − d1. At the same

time each weighted average q1 and q2 has to belong to [d1, d2], which is the range for ai’s. Therefore,
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necessarily max |q2− q1| ≤ d2− d1. This implies that max |q2− q1| = d2− d1. Note that if above we

take aT+1 = d2, ãT+1 = d1, then q2 − q1 = d1 − d2 = −|d2 − d1|.

(b) In this case, to evaluate the largest change in the weighted average we have to consider extreme

situations. The first extreme situation is when q1 = d1 and the (T +1)-th component in this average

has the largest weight and changes to the the other extreme d2 in the new average q2.

This situation can be described as

• b1 = . . . = bT = c1; bT+1 = b̃T+1 = c2;

• a1, . . . , aT = d1; aT+1 = d1, ãT+1 = d2.

This will give us q2 − q1 = c2(d2−d1)
T ·c1+c2

> 0.

In the second extreme scenario where bt’s and b̃T+1 are the same as above but q1 = d2 and the

(T + 1)-th component in this average has the largest weight and changes to the the other extreme

d1 in the new average q2, we obtain that q2 − q1 = − c2(d2−d1)
T ·c1+c2

< 0. These two extreme scenarios

give us exactly the same |q2 − q1|.

Thus, max |q2 − q1| = c2(d2−d1)
T ·c1+c2

.

(c) In this case, consider the case when bi, i = 1, . . . , T+1, and b̃T+1 are any values that satisfy (6.1).

Suppose d2 = +∞. Let ai, i = 1, . . . , T + 1, take any finite values while ãT+1 is very (arbitrarily)

large. This gives q1−q2 = −∞ and, thus, |q1−q2| = +∞. Therefore, in this case max |q1−q2| = +∞.

If, of course, ãT+1 is taking a finite value while aT is very (arbitrarily) large, then q1 − q2 = +∞.

The case of when d2 is finite but d1 = −∞ is analyzed analogously.

�

LEMMA 7. Consider two weighted averages

q1 =

T∑
i=1

wiai + wT+1aT+1, where wi =
bi∑T+1
j=1 bj

, i = 1, . . . , T + 1,

q2 =

T∑
i=1

w̃iai, where w̃i =
bi∑T
j=1 bj

, i = 1, . . . , T,

where bi and ai satisfy conditions (6.1) and (6.2), respectively. Then

(a) if c1 = 0 and |d1|, |d2| <∞, then

max
a1,...,aT ,aT+1,ãT+1,b1,...,bT ,bT+1 s.t. (6.1),(6.2)

|q1 − q2| = d2 − d1.

(b) if c1 > 0 and |d1|, |d2| <∞, then

max
a1,...,aT ,aT+1,ãT+1,b1,...,bT ,bT+1 s.t. (6.1),(6.2)

|q1 − q2| =
c2(d2 − d1)

T · c1 + c2
.
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(c) if d1 = −∞ or d2 = +∞, then

max
a1,...,aT ,aT+1,ãT+1,b1,...,bT ,bT+1 s.t. (6.1),(6.2)

|q1 − q2| = +∞.

In cases (a)-(c), max |q1 − q2| can be attained by a positive change as well as by a negative change

– that is, there are values of at’s, bt’s such that q1− q2 = max |q1 − q2|, and there are values of at’s,

bt’s such that q1 − q2 = −max |q1 − q2|.

Proof of Lemma 7.

(a) In this case, we can take

• b1 = . . . = bT ≈ 0 (arbitrarily close values to 0); bT+1 = c2;

• a1 = . . . = aT = d1; aT+1 = d2.

This will give q1 ≈ d1, q2 ≈ d2 and, thus, q2 − q1 ≈ d2 − d1 > 0.

Therefore, we should have max |q2 − q1| ≥ d2 − d1. At the same time each weighted average q1 and

q2 has to belong to [d1, d2], which is the range for ai’s. Therefore, necessarily max |q2−q1| ≤ d2−d1.

This implies that max |q2 − q1| = d2 − d1.

(b) In this case, to evaluate the largest change in the weighted average we have to consider extreme

situations. An extreme situation is when in q1 the (T + 1)-th component (which is later dropped in

when defining q2) has the largest weight and the value that is maximally different from the values

of the first T components.

The first extreme situation can be described as

• b1 = . . . = bT = c1; bT+1 = c2;

• a1, . . . , aT = d1; aT+1 = d2.

This gives us |q2 − q1| = c2(d2−d1)
T ·c1+c2

.

The second extreme situation, where bt’s are the same as above but a1, . . . , aT = d2 and aT+1 = d1,

gives us the exactly same value of |q2 − q1|. Thus, max |q2 − q1| = c2(d2−d1)
T ·c1+c2

.

(c) In this case, consider the case when bi, i = 1, . . . , T + 1, and b̃T+1 are any values that satisfy

(6.1). Also, let ai, i = 1, . . . , T + 1, take any finite values while ãT+1 is very large (arbitrarily large)

in the absolute value. This gives |q1 − q2| = +∞. therefore, in this case max |q1 − q2| = +∞. �

Proof of Proposition 2.

(a) The global sensitivity of the estimator is calculated by comparing the results of the estimation

for two datasets that differ only in on data point. In order to calculate the global sensitivity, we

need to keep in mind the following things:
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(i) the new data point can enter a K-h-neighborhood of c (thus, the old data point was outside

of both K-h-neighborhoods of c)

(ii) the new data point can fall outside of both K-h-neighborhoods of c (thus, the old data point

was inside one of K-h-neighborhoods of c)

(iii) the new data point remains in the same neighborhood

(iv) the new data point can switch neighborhoods

In order to find global sensitivity, it is enough for us to find maximum absolute changes in the

estimate in these four situations and then takes their maximum. Let us consider these four different

situation listed above. In this proof we use Lemmas 6 and 7 with c2 = K̄, where K̄ denotes the

maximum value the kernel K(·), and c1 = 0 since K(·) is continuous and, therefore, K = 0.

(i) Suppose the new data point enters the K-h-neighborhood to the left of c while the old data point

was outside of both K-h-neighborhoods of c. Then by part (a) of Lemma 7, the maximum absolute

change G0L in the estimate in this case is G0L = Y
l − Y l. Analogously we can consider the case

when a new data point enters the K-h-neighborhood to the right of c. Then the maximum absolute

change G0R in the estimate in this case is G0R = Y
r − Y r.

(ii) In this case we have two situations – in one situation the old data point was in the left K-

h-neighborhood and in the other situation the old data point was in the right K-h-neighborhood.

In both situations the new data point falls outside of both neighborhoods. In the former case the

maximum absolute change in the estimate coincides with G0L, and in the latter case the maximum

absolute change in the estimate coincides with G0R.

(iii) When the observation remains in the left K-h-neighborhood, we apply part (a) of Lemma 6 to

obtain that the maximum absolute change GLL in the estimate in this case is GLL = Y
l − Y l.

When the observation remains in the right K-h-neighborhood, we consider the maximum absolute

change GRR in estimate and analogously to above show that GRR = Y
r − Y r.

(iv) Suppose an observation moves from the leftK-h-neighborhood to the the rightK-h-neighborhood.

Our estimator of interest is the difference between the weighted means in the right and the left K-h

neighborhoods of c. Therefore, the move of the observation from one neighborhood to the other

affects both parts of the estimator.

As we know from part (a) of Lemma 6, the maximum absolute change in the weighted average for

the right-hand side is G0R = Y
r − Y r and that this degree of change can be attained as a positive

change (increase). Similarly, the maximum absolute change in the weighted average for the left-hand

side is GLO = Y
l−Y l and that this degree of change can be attained as a negative change (decrease).

In order to obtain the maximum absolute changes for the difference in weighted means we have to

look at the cases when these two weighted means change in opposite directions, which leads to the

maximum change being GLR = Y
r − Y r + Y

l − Y l.
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Analogously, we can consider an observation moves from the right K-h-neighborhood to the the left

K-h-neighborhood and show that in this case the maximum absolute change is GRL = Y
r − Y r +

Y
l − Y l.

To sum up the results of part (a), the global sensitivity is

G(N) = max{GL0, GR0, G0L, G0R, GLR, GRL, GLL, GRR} = Y
r − Y r + Y

l − Y l.

(b) Suppose for instance that the support Yr is unbounded. Then part (c) of Lemmas 6 and 7 will

immediately give us that for GR0, G0R, GRL, GRR defined above,

GR0 = G0R = GRL = GRR = +∞,

which implies this part of the proposition. Other cases in this part of the proposition lead the same

conclusion.

�

Proof of Proposition 3.

Just like in Proposition 2, the global sensitivity is

G(N) = max{GL0, GR0, G0L, G0R, GLR, GRL, GLL, GRR},

where GL0, GR0, G0L, G0R, GLL, GRR, GLR, GRL are defined as in the proof of Proposition 2.

Once again, we will rely on the results in Lemmas 6 and 7 but this time in part (b) in both lemmas

as we will take c1 = K and c2 = K, where K is the maximum value of kernel K.

(a) Applying results of part (b) of Lemma 7 and noting that the minimum number of observations

in the left and the right K-h-neighborhoods of c is ml(N) and mr(N) respectively, we obtain that

GL0 = G0L =
K(Y

l − Y l)
ml(N) ·K +K

,

GR0 = G0R =
K(Y

r − Y r)
mr(N) ·K +K

.

Applying results of part (b) of Lemma 6, we have

GLL =
K(Y

l − Y l)
(ml(N)− 1) ·K +K

, GRR =
K(Y

r − Y r)
(mr(N)− 1) ·K +K

.

We next consider GLR which quantifies the case when an observation from the left K-h neighborhood

of c moved in to the right-hand side neighborhood. Suppose we started with T + 1 observations

in the left K-h-neighborhood, where ml(N) ≤ T ≤ N −mr(N). We need to evaluate the biggest
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change that happened in the left-hand side neighborhood, the biggest change in the right-hand

side neighborhood and evaluate their directions (whether these changes are acting in the same or

opposite directions). Relying on the results of part (b) of Lemma 7 we can establish that given T the

largest absolute change in the weighted mean in the left K-h neighborhood of c is K(Y
l−Y l)

T ·K+K
, and the

largest absolute change in the weighted mean from acquiring an extra point in that neighborhood

is K(Y
r−Y r)

(N−T−1)·K+K
.

As shown in Lemma 7, these changes can be either positive or negative. Since our estimator of

interest is the difference between the weighted means in the right and the left K-h neighborhoods

of c, to get maximum absolute changes for a given T we have to look at the cases when these two

weighted means change in opposite directions. For a given T this gives us the maximum absolute

change

K · (Y l − Y l)
T ·K +K

+
K · (Y r − Y r)

(N − T − 1) ·K +K
.

Now we just need to find the maximum of this over T such that ml(N) ≤ T ≤ N − mr(N). If

Y
r − Y r > Y

l − Y l, then the maximum is attained at T = N −mr(N), otherwise it is attained at

T = ml(N). To summarize,

GLR = max

{
K · (Y

l − Y l)

ml(N) ·K +K
+

K · (Y
r − Y r)

(N −ml(N) − 1) ·K +K
,

K · (Y
l − Y l)

(N −mr(N)) ·K +K
+

K · (Y
r − Y r)

(mr(N) − 1) ·K +K

}
.

The case of GRL which quantifies the case when an observation from the right K-h neighborhood

of c moved in to the left-hand side neighborhood is considered analogously. In this case,

GRL = max

{
K · (Y

l − Y l)

(N −mr(N) − 1) ·K +K
+

K · (Y
r − Y r)

mr(N) ·K +K
,

K · (Y
l − Y l)

(ml(N) − 1) ·K +K
+

K · (Y
r − Y r)

(N −ml(N)) ·K +K

}
.

This gives the result that G(N) is of the rate 1
min{ml(N),mr(N)} .

(b) Suppose e.g. that the support Yr is unbounded. Then part (c) of Lemmas 6 and 7 give us that

G0R = GR0 = GRR = +∞,

which implies that G(N) = +∞.

�

Proof of Proposition 4. The proof in this case is analogous to the proof of Proposition 2. Since

the kernel has an unbounded support, there are no longer case of observations falling outside of

either neighborhood or entering a neighborhood. Therefore, the global sensitivity is

G(N) = max{GLR, GRL, GLL, GRR},
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where GLL, GRR, GLR, GRL are defined as in the proof of Proposition 2. Throughout the proof we

apply Lemmas 6 and 7 with the strict inequality version (0 = c1 < bi) in (6.1).

(a) When the observation remains to the left of c, we apply part (a) of Lemma 6 to obtain that the

maximum absolute change GLL in the estimate in this case is GLL = Y
l

all − Y
l
all.

When the observation remains to the right of c, we consider the maximum absolute change GRR in

estimate and analogously to above show that GRR = Y
r

all − Y
r
all.

Suppose an observation moves from the left of c to the right of c, or from the right of c to the left

of c. Analogously to the proof of of Proposition 2, we can establish that

GLR = GRL = Y
r

all − Y
r
all + Y

l

all − Y
l
all.

(b) Analogous to the proof in Proposition 2.

�

Proof of Proposition 5.

Just like in Propositions 2 and 3, we want to find

G(N) = max{GL0, GR0, G0L, G0R, GLR, GRL, GLL, GRR}

where GL0 and GR0 are sensitivities in situations of a new observation leaving the left or the right

h-neighborhood, respectively; and G0L and G0R are sensitivities in situations of a new observation

entering the left or the right h-neighborhood, respectively; GLR and GRL are sensitivities in cases

of an observation switching the neighborhoods; GLL and GRR are sensitivities in cases when an

observation changes within the same neighborhood.

Since the local linear estimator effectively considers observations whose running variable values are in

a small neighborhood around c, we employ (4.11) as approximations of the support for the outcome

in one-sided neighborhoods of c.

As we know,

α̂R = yR − (xR − c)
∑N
i=1(qixi − xR)qiyi · 1(c ≤ xi)∑N
i=1(xiqi − xR)2 · 1(c ≤ xi)

α̂L = yL − (xL − c)
∑N
i=1(xiqi − xL)yiqi · 1(xi < c)∑N
i=1(xiqi − xR)2 · 1(xi < c)

,

where qi = K
(
xi−c
hN

)
, yR =

∑N
i=1 qiyi1(c≤xi)∑N
i=1 qi1(c≤xi)

, xR =
∑N
i=1 qixi1(c≤xi)∑N
i=1 qi1(c≤xi)

, yL =
∑N
i=1 qiyi1(xi<c)∑N
i=1 qi1(xi<c)

, xL =∑N
i=1 qixi1(xi<c)∑N
i=1 qi1(xi<c)

.

If at least one of Y
l
, Y l, Y

r
or Y r is unbounded, then it is obvious that the global sensitivity

is infinite as in this case we can consider a change in the value of the outcome variable for one
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observation and we can imagine that it changes from some finite number to the one arbitrary large

one in the absolute value.

However, we want to show that G(N) = ∞ even if the support of the outcome is bounded. Let

us show that GRR = ∞. Consider a situation when the first T ≤ N observations in our data are

in the right-hand side neighborhood. Consider, for example, realizations of the datasets when only

T -th observation in the right-hand side neighborhood changes its value xT . Suppose we have the

following realized data in the right-hand side neighborhood:

xi = c+ ∆N , i = 1, . . . ,mr(N)− 1 (6.3)

xT = c+ u0hN −∆N , x′T = c+ ∆N −∆Nδ, (6.4)

for some 0 < ∆N << u0hN and 0 < δ < 1. For a kernel K(·) with a bounded support u0 > 0 is the

value such that (−u0, u0) is the support of this kernel. If K(·) has an unbounded support, then we

can take u0 to be a very large positive number. Whatever the situation is, we can take

qi ≈ K(0), i = 1, . . . ,mr(N)− 1

qT ≈ K, q′T = K(0),

where K = infu∈(−u0,u0)K(u). Suppose that yT = y′T . Then

α̂R ≈ yR −
(

(c+ ∆N )(T − 1)K(0)

(T − 1)K(0) +K
− c
)
×

×
K(0)((c+ ∆N )K(0)− (c+∆N )(T−1)K(0)

(T−1)K(0)+K )
∑T−1
i=1 yi +KyT

(
(c+ u0hN −∆N )K − (c+∆N )(T−1)K(0)

(T−1)K(0)+K

)
((c+ ∆N )K(0)− (c+∆N )(T−1)K(0)

(T−1)K(0)+K )2 +
(

(c+ u0hN −∆N )K − (c+∆N )(T−1)K(0)
(T−1)K(0)+K

)2

α̂R ≈ yR −∆N

(
1− δ

T

)
×
−∆Nδ

T

∑T−1
i=1 yi − yT T−1

T ∆Nδ
(T−1)∆2

Nδ
2

T 2 + (T−1
T ∆Nδ)2

For fixed T , hN , ∆N , it is possible to have δ ↓ 0, in which case we have that

|α̂′R − α̂R| → ∞.

Since there are no changes in α̂L, we conclude that GRR =∞, and thus, G =∞.

Note that when the kernel either has an unbounded support or has a bounded support with K = 0,

then even without using δ ↓ 0, we can establish that the global sensitivity is bounded away from zero

for any N , using techniques similar to those in Propositions 2 and 4. The proof above is based on the

ability to have realizations of the data such that the minimum eigenvalue of the matrix 1
T X̃

T
r X̃r can

be arbitrarily close to zero, where X̃r is the T × 2 matrix of regressors (1, xi− c) for when xi ≥ c. If

in the implementation of a differentially private a data curator wants to establish a strictly positive

lower bound on the minimum eigenvalue of this matrix, then in the case of a kernel with a bounded

support and K > 0 (like the uniform kernel), the global sensitivity in this case can be shown to
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have the rate 1
min{mr(N),ml(N)} . However, an issue with this is given in discussion after Proposition

3 and is related to the fact that there is a always a strictly positive probability of the number of

observations being strictly less mr(N) in the K-h-neighborhood to the right or strictly less than

ml(N) in the K-h-neighborhood to the left.

It is obvious that when the support of Y |X in the neighborhood to the right of c or to the left of c

is unbounded, then G(N) = +∞, which can be shown by just changing one value of Yi only.

�

Proof of Proposition 6.

Just like in Proposition 5, we can formulate the problem as that of finding

G(N) = max{GL0, GR0, G0L, G0R, GLR, GRL, GLL, GRR},

where GL0 and GR0 are sensitivities in situations of a new observation leaving the left or the right

h-neighborhood, respectively; and G0L and G0R are sensitivities in situations of a new observation

entering the left or the right h-neighborhood, respectively; GLR and GRL are sensitivities in cases

of an observation switching the neighborhoods; GLL and GRR are sensitivities in cases when an

observation changes within the same neighborhood. When we say ”leaves a neighborhood” or ”enters

a neighborhood”, we mean that with respect the value of Xi.

If we follow the textbook definition of differential privacy and, thus, consider all possible realizations

with data no matter how small the probability of these realizations is as long as it is strictly positive,

then we can show that G(N) = +∞. Indeed, let us show e.g. that following the textbook definition

of differential privacy, we have that GRR =∞.

Consider a situation when the first T ≤ N observations in our data are in the right-hand side

neighborhood in the values of Xi. Consider, for example, realizations of the datasets when only

T -th observation in the right-hand side neighborhood changes its value xT while its values WT and

YT do not change. Then, of course,

α̂y,L = α̂′y,L, α̂w,L = α̂′w,L.

Now we will use the same realizations for X1, . . . , XT , X ′T as given in (6.3)-(6.4) in the proof of

Proposition 5. Also, we will take the realization of the dataset when Wi = 1, i = 1, . . . , T or Wi = 0,

i = 1, . . . , T (again, due to the fuzzy scenario, the probability of this scenario may be perceived

as low but it is strictly positive and, thus, has to be taken into account by a differentially private

mechanism). Then we can take, of course, that

α̂w,R = α̂′w,R

as the values of indicators 1(Xi ≥ c), i = 1, . . . , T , do not add any explanatory power in the local

linear regression of Wi on constant and 1(Xi ≥ c) in the right-hand side neighborhood (one can
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think of this situation as the situation of the perfect fit in the reduced form in the IV regression

even though technically α̂w,R and β̂w,R may not be separately estimated in a sample like the one we

suggested). Thus, changes in the value of τ̂F,LocLin in (4.3) happen only because of the changes in

the numerator. The changes in the numerator are, of course, the same as the changes in α̂R described

in the proof of Proposition 5 and, thus, manipulating δ, we can make this change arbitrarily large

in the absolute value, leading us to conclusion that GRR = +∞.

Even if one wanted to deviate from the textbook definition of differential privacy and restrict Wi,

i = 1, . . . , T , to have some variation in each neighborhood – e.g. by requiring a minimum number of

zero’s and one’s in each neighborhood or a fixed proportion – in this case, it would be straightforward

to show that the global sensitivity would be bounded away from zero as N →∞.

Indeed, in this case even using the same example with T realizations of X1, . . . , XT , X ′T in the

right-hand side neighborhood with the values given in (6.3)-(6.4) in the proof of Proposition 5, we

would obtain that manipulating δ approaching 0, change in both the numerator α̂y,R − α̂y,L and

the denominator α̂w,R− α̂w,L are arbitrarily large in the absolute value but they become arbitrarily

large with the same rate in δ, thus allowing us to conclude that the change is constant and show

that this constant change may not diminish to 0 with the sample size.

It is obvious that when the support of Y |X in the neighborhood to the right of c or to the left of c

is unbounded, then G(N) = +∞, which can be shown by just changing one value of Yi only.

Note that for simplicity we used the uniform kernel to define (4.3). In the case if one were using a

kernel with a bounded support but K > 0 or a kernel with an unbounded support, the proof of the

global sensitivity bounded away from zero would even be more straightforward.

�

Proof of Proposition 7 Since the support of Y is bounded by Assumption 3, the global sensitvity

is determined by variation of the empirical weight 1/P̂ (x) over X . Then

sup
x,x′∈X

∣∣∣1/P̂ (x)− 1/P̂ (x′)
∣∣∣ ≥ K̄/(hNK(diam(X )/hN )).

Note whenever diam(X ) is infinite, an infinte lower bound applies and (ii) immediately follows.

When diam(X ) is finite, global sensitivity of ψ(PN ) is bounded from below by K̄/(N hNK(diam(X )/hN )).

For hN = o(N−1/4), since lim
|z|→∞

|z|kK(|z|) = 0 for k ≤ d with d > 3, then N hNK(diam(X )/hN ) =

o(1) and, thus global sensitivity of ψ(PN ) does not decrease as N →∞.

�

Analysis of Example 2 without truncation
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Laplace mechanism: Let aN (νN ) ∼ Lap (0, 1/(C N)) for a given C. Output

θ(PN , νN ) = ξ̄ + aN (νN )

with ξ̄ = 1
N

∑N
i=1

xi
wi
.

Exponential mechanism: Take distribution density p(z;PN ) ∝ exp(− 1
2C

2N1−2γ
N∑
i=1

(z − ξi)2)

for a given C with ξi = xi/wi. Output

θ(PN , νN ) ∼ p(z;PN ).

For each of the mechanisms we consider likelihood ratio of the distribution of the output of each

of the two mechanisms with empirical distributions PN and P′N where in P′N observation (xi, wi) is

replaced with (x′i, w
′
i) while all other observations are identical to those in PN .

The log-likelihood ratio for the Laplace mechanism is

log

(
fθ(PN ,νN )(z)

fθ(P′N ,νN )(z)

)
= −C N

(
|z − ξ̄| −

∣∣∣∣z − ξ̄ − 1

N

(
x′i
w′i
− xi
wi

)∣∣∣∣) .
Denote ∆ =

x′i
w′i
− xi

wi
and, without loss of generality, let ∆ > 0. Then the likelihood ratio is a

decreasing function of z attaining its maximum C∆ for any z ≤ ξ̄ −∆/N and minimum −C∆ for

any z ≥ ξ̄. Then the likelihood ratio evaluated at the output of the Laplace mechanism θ(PN , νN )

is distributed as Lap(C ∆, 2) truncated at [−C ∆, C∆]. Thus

P

(
log

(
fθ(PN ,νN )(θ(PN , νN ))

fθ(P′N ,νN )(θ(PN , νN ))

)
≥ ε

)
= 1− exp(ε− C∆).

When w′i approaches 0, then ∆ approaches +∞. This means that for any ε parameter of differential

privacy and any finite value of parameter C of the exponential mechanism, the log-likelihood ratio is

greater than ε with probability 1. As a result, the for any finite scale parameter C Laplace mechanism

cannot guarantee (ε, δ) -differential privacy for any ε and δ.

Similarly, we can express the log-likelihood ratio of the output of the exponential mechanism

log

(
fθ(PN ,νN )(z)

fθ(P′N ,νN )(z)

)
=

1

2
N−2γC2∆2 − C2N1−2γ ∆(z − ξ̄).

Therefore,

P

(
log

(
fθ(PN ,νN )(θ(PN , νN ))

fθ(P′N ,νN )(θ(PN , νN ))

)
≥ ε

)
= Φ

(
C∆

2Nγ
− ε

C∆
Nγ

)
.

Similarly to the Laplace mechanism, we note that when w′i approaches zero, then ∆ approaches

infinity. Given that function a z − b/z is strictly increasing, then for any finite value of parameter

C, the likelihood ratio exceeds ε with probability 1. As a result, any scaling parameter C of the

exponential mechanism cannot guarantee (ε, δ)-differential privacy for any ε and δ < 1.
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6.3 Additional applications

6.3.1 Average treatment effect

A central problem in evaluation studies is that potential outcomes that program participants would

have received in the absence of the program is not observed. Letting Di denote a binary variable

taking the value 1 if treatment was given to agent i, and 0 otherwise, and letting Y0i,Y1i denote

potential outcome variables, we refer to Y1i − Y0i as the treatment effect for the i’th individual. A

parameter of interest for identification and estimation is the average treatment effect, defined as:

θ = E[Y1i − Y0i] (6.5)

As in the previous section our notation will be to denote realizations of random variables by lower

case letters and the random variables themselves by capital letters. One identification strategy for

θ was proposed in [49], under the following assumption:

ASSUMPTION 2 (ATE under Conditional Independence). Let the following hold:

(i) There exists an observed variable Xi s.t.

Di ⊥ (Y0i, Y1i)|Xi

(ii) 0 < P (Di = 1|Xi) < 1 ∀Xi

See also [21], [23], [5]. The above assumption can be used to identify α as

θ = E[E[Y |D = 1, X]− E[Y |D = 0, X]]. (6.6)

The above parameter can be written as:

θ0 = E

[
Y (D − p(X))

p(X)(1− p(X))

]
, (6.7)

where p(X) = P (D = 1|X) is the propensity score. This parameter is a weighted moment condition

where the denominator gets small if the propensity score approaches 0 or 1. Also, identification is

lost when we remove any region in the support of X (so, fixed trimming will not identify θ above).

Consider the general setting of the treatment effect model under unconfoundeness with two potential

continuous outcomes Y1 and Y0 and treatment D along with the vector of (continuous and discrete)

covariates X. We assume that (Y1, Y0) ⊥ D |X. The observed outcome is

Y = Y1D + Y0(1−D).

In our setup the propensity score needs to be estimated as a function of X. In the further discussion

without loss of generality we assume that X is single-dimensional. Our theory will be based on the

following structure:
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ASSUMPTION 3. (i) X has a support X is a closed and continuous (but possible unbounded)

set.

(ii) (Y1, Y0) |X = x has an absolutely continuous density for each x ∈ X . Moreover the support

of Yk for k = 0, 1 is bounded.

(iii) The propensity score is strictly positive P (·) > 0 on its support.

We consider the following procedure to implement an estimator for θ0. First, a non-parametric

estimator is used to estimate the propensity score

P̂ (x) =

1
N

∑N
i=1DiK

(
x−Xi
hN

)
1
N

∑N
i=1K

(
x−Xi
hN

) , (6.8)

where K(·) is a symmetric kernel and hN is the bandwidth. Then the average treatment effect θ0 is

estimated as:

θ̂ = ψ(PN ) ≡ 1

N

N∑
i=1

(
YiDi

P̂ (Xi)
− Yi (1−Di)

1− P̂ (Xi)

)
. (6.9)

In our analysis we focus on the kernel-based estimator for the propensity score without the loss of

generality. One can use a different approach such as the series estimator where the number of terms

used to approximate the function would play the role of the tuning parameter equivalent to the

bandwidth parameter.

We consider the kernel functions K(·) with sub-polynomial tail behavior. In particular, we assume

that there exists natural number d > 3 such that for all k ≤ d, lim
|z|→∞

|z|kK(|z|) = 0. This ensures

existence of moments of kernel-weighted statistics over the distribution of X which is particularly

helpful when the support of X is unbounded. We note that all “standard” kernel functions such as

the bounded support uniform, quadratic and Epanechnikov kernel as well as the most commonly

used Gaussian kernel satisfy this condition.

The bandwidth is required to satisfy hN � log N
N (see [47]) to ensure uniform convergence of the

propensity score estimator and is typically chosen so that hN = o(N−1/4) to avoid the propagation

of the non-parametric bias to the estimator of the average treatment effect.

We now consider the impact of diffrential privacy on estimation of θ0. As in Section 4 we rely on our

smoothness assuption that allows us to focus on additive mechanisms to induce differential privacy.

Also, like in our previous analysis of the regression discontinuity design we start with the analyis of

the global sensitivity of ψ(PN ).

Proposition 7. Suppose that average treatment effect estimator (6.9) uses propensity score estima-

tor (6.8) and kernel function K(·) is such that |K(·)| ≤ K̄ and there exists natural number d > 3

such that for all k ≤ d, lim
|z|→∞

|z|kK(|z|) = 0. then
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(i) If the support X is bounded and hN = o(N−1/4) the global sensitivity of functional ψ(PN ) in

(6.9)) is bounded away from zero as N →∞.

(ii) If the support X is unbounded then the global sensitivity of functional ψ(PN ) in (6.9)) is +∞.

This result allows us to formulate the following theorem.

THEOREM 9. For estimation of average treatment effect any smooth (εN , δN )-differentially pri-

vate propensity score-weighted estimator is inconsistent for any bounded sequence {εN} and non-

negative {δN}. As a result, the limiting random set TE contains at least one non-degenerate element

different from {θ0}.
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Figure 2: Illustration to Scenario 2. Twenty independent paths of differentially private estimators

local linear estimators for increasing sample sizes when the Laplace mechanism noise has the variance

equal to 106.
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