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Abstract

We measure how much learning has reduced costs in the wind turbine industry. As
in many industrial settings, we do not observe costs, so we infer them using standard
demand system data. To measure wind farm developer preferences, we embed a simple
but physically realistic model of how wind turbine characteristics, like rotor size, relate
to power production, into a standard discrete choice demand system. Next, we use a
standard oligopoly model to invert these preferences and recover manufacturing costs,
and their dependence on cumulative manufacturing experience. Because current sales
increase future experience, manufacturers have dynamic incentives when setting prices.
We account for these dynamic markdowns using methods developed in Berry and Pakes
(2000), which allow us to control for dynamics without computing the equilibrium
of a dynamic game. We find that a doubling of manufacturing experience reduces
manufacturing costs by 14 to 29 percent. Only 1 to 2 percent of experience spills over to
other turbine models produced by the same firm, and spillovers to turbines produced by
other firms are on the order 0.1 to 0.6 percent. Though inter-firm spillovers are small, in
aggregate, they are responsible for significant cost reductions over time. These results
are consistent with policymaker motivation for generously subsidizing the industry.
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1 Introduction

Researchers have been trying to measure the relationship between production costs and

production experience, commonly referred to as “learning by doing” (LBD), for nearly a

century (Wright, 1936). The primary challenge in this endeavor is the fact that although

experience is usually easy to quantify, manufacturing costs are generally not recorded in

research datasets. In lieu of this, recent empirical literature has made progress by studying

special settings where detailed data on production inputs is available.1 While analyses like

this can, in principal, measure the true underlying relationship between manufacturing costs

and experience, this kind of detailed data is rarely available. Moreover, given the rarity of

such data, it is uncommon for it to be available for two or more firms in the same industry,

making it impossible to measure spillovers. Given the importance of LBD for growth (Arrow,

1962), industrial and trade policy (Dasgupta and Stiglitz, 1988), and environmental policy

(Jaffe et al., 2005), we need tools to estimate LBD, even when unit level costs or inputs are

not available, as is frequently the case.

This paper presents a new method for measuring learning by doing using information

that is typically available for econometric analysis of static demand models. Like much

of the existing industrial organization literature that estimates such models, our approach

assumes that manufacturers set prices to maximize some notion of present and future profits,

and inverts this relationship to infer costs. However, unlike most existing applications, we

propose a method which explicitly accounts for the dynamic incentives firms have to learn

faster through their pricing choices (Besanko et al., 2014; Benkard, 2004). Although our

method directly accounts for these dynamic incentives, it does not require their explicit

computation, in contrast to existing full solution methods for dynamic games. Because our

method does not require data beyond standard demand estimation datasets, it can also easily

accomodate specifications that allow for spillovers across firms.

We use this method to measure the effect of manufacturing experience on costs in the

global wind turbine industry over the past two decades. While the wind industry is now

large, covering more than ten percent of global power generation capacity, at the start of

our sample it was less than one percent. Much of this growth was fueled by generous

government subsidies for wind farm project developers, with the explicit goal of instigating

future cost declines in the wind turbine manufacturing sector through learning and knowledge

spillovers. Existing research has quantified the static benefits of these policies, in the form

1Benkard (2000) estimates learning and forgetting in the commercial aircraft industry, where he observes
the labor inputs into each aircraft produced at a manufacturer that decided to exit the market. Thornton
and Thompson (2001) observe labor inputs for World War II boat building, and Levitt et al. (2013) observe
manhours and output by shift at a major automobile assembly plant.
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of reduced CO2 local pollutant emissions from new power plant construction, and concluded

that they are smaller than their associated costs (Van Benthem et al., 2008; Abrell et al.,

2019; Greenstone and Nath, 2020). Thus, the extent to which renewable energy policy to date

was welfare enahcing may depend on whether or not renewable energy device manufacturing

exhibits significant learning economies. This paper provides direct evidence of these learning

economies in the wind turbine industry.

We measure the evolution of manufacturing costs using data on the global wind turbine

industry which covers the near-universe of wind turbine manufacturers and wind plants

constructed using their turbines, between 2000-2019. Our data provides information about

the choice set each plant faced — engineering estimates of the output each available turbine

model would generate at each plant location — as well as the specific turbine models each

plant chose to install. Unlike other discrete choice settings, where there is a published average

price or MSRP, wind turbines are heavy industrial goods, and are acquired through informal

procurement processes that do not generate public transaction records, so we have no prices.

In light of this, we model each wind plant’s turbine selection problem as a procurement

scoring auction, and show how data on turbine characteristics, site wind speeds, and turbine

choices, as well as standard discrete choice modelling tools, identify the otherwise latent

“bids” that turbine manufacturers submit in this process.

Having characterized a notion of turbine prices as well as wind farm preferences over

turbine characteristics, we specify and estimate a model of optimal turbine pricing in the

presence of the dynamic incentives implied by learning-by-doing. Our model assumes that

firms maximize the sum of current period profits from selling turbines and a continuation

value which may depend on the sales of the firm’s own turbines and the sales of other

firm’s turbines. Normally, models like this in the structural industrial organization literature

assume that the continuation value satisfies the Bellman equation for an equilibrium of a

dynamic game, and papers that use these models either fully solve the Bellman equation in a

nested estimation procedure (e.g., Rust (1987)) or rely on a stationarity assumption to apply

conditional choice probability approaches (Bajari et al., 2007). Neither approach is feasible

in our setting, as the number of firms and turbines are large, implying a computationally

large state space, the controls (prices) are set in a continuous, not discrete fashion, and a

learning environment is, by definition, nonstationary, ruling out CCP estimators.

Instead, we adopt a procedure suggested in Berry and Pakes (2000) which character-

izes a first-order condition for dynamic oligopoly problems with continuous controls in the

spirit of the rational expectations and Euler equations frameworks. The Berry and Pakes

(2000) insight is that when firms have optimally set a continuous control, like a bid in a

procurement auction, the dynamic component of their decision problem can be expressed by
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a rational expectations term plus a shock. The rational expectations term is a function of

the state transition probability distribution and subsequent realized observable terms. These

objects are much easier to compute than the full equilibrium structure of a dynamic game,

and scale easily with large numbers of firms, products and other state variables. We use

this method to separately characterize the static manufacturing costs and dynamic pricing

incentives that drive bids in the procurement auction. In implementing this idea, we also

propose a new approach to handling endogeneity problems in rational expectations models

by employing higher-order moment methods from the classical measurement error literature

(Lewbel, 1997).

Using this framework, we document considerable learning by doing in wind turbine man-

ufacturing and broad support for experience spillovers within and across firms. A doubling of

manufacturing experience reduces manufacturing costs by 25 to 33 percent, an effect which

is similar to the results on aircraft manufacturing in Benkard (2000). Additionally, spillovers

appear to be important, though small on the margin. Approximately 1 to 2 percent of ex-

perience spills over to other turbine models produced by the same firm, and spillovers from

turbines produced by other firms are on the order 0.1 to 0.2 percent. Though the marginal

effects of spillovers are small, aggregate experience within a firm is often 2 orders of magni-

tude or more larger than turbine-specific experience, and aggregate experience outside the

firm is another order of magnitude larger. Thus, spillovers have generated significant cost

reductions over time. As an example, we show that when the Chinese wind industry began

in the late 2000’s, Chinese manufacturers’ entered at a cost structure much more commensu-

rate with established western firms than their limited own manufacturing experience would

suggest.

The small scale of within- and across-firm spillovers that we estimate imply that for

mature turbines, most experience capital is turbine specific report some numbers here.

As a result, older turbines tend to have significant cost advantages over newer turbines. For

a example, our estimates suggest that a brand new 100 meter turbine has costs that are

almost 6 times larger than a “mature” 90 meter turbine in its tenth year of production. The

theoretical maximum performace of the larger turbine is only 24% higher than the smaller

turbine, so it is unlikely that the firm could initially sell the larger turbine at a price high

enough to offset the additional costs. However, a firm that manages to sell enough of the

larger turbine eventually can make it at costs that are substantially lower. In the example

above, after 6 years of sales, the 100 meter turbine has costs that are only 11% larger than

contemporaneous costs of the smaller turbine. Thus, our results support the idea that new

turbine introductions require a meaningful “experience investment” before they can generate

positive operating profits.
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In addition to measuring learning in an economically large and increasingly policy relevant

industry, this paper also provides a novel and generic tool for measuring the effects of learning

by doing, as well as any other dynamic component of a first-order optimality condition,

in settings where only demand side data are available. The paper closest to ours in this

dimension, and indeed a key inspiration for our functional form assumptions, is Irwin and

Klenow (1994), which studied learning by doing and spillovers in the global semiconductor

industry in the 1970s-1980s. Like this paper, Irwin and Klenow (1994) was only able to

observe standard demand estimation data, like prices and quantities. However, to handle the

dynamic incentives that semiconductor manufacturers may have faced, Irwin and Klenow

(1994) assumed that Cournot quantity choices were first-order optimal with respect to a

standard Euler condition, an approach that is not necessarily consistent with most modern

models of dynamic oligopoly behavior. Our method of using the Berry and Pakes (2000)

approach to a learning setting thus complements the original idea in Irwin and Klenow

(1994), bringing its insights to the modern structural IO research paradigm.

Our paper also contributes to the broader learning-by-doing and innovation literatures

with a specific focus on energy and environmental economics (Acemoglu et al., 2019). Newell

et al. (1999) demonstrate that energy price shocks cause manufacturers to adopt more energy

saving technology, consistent with an “induced innovation” hypothesis. Using data similar

to ours, Knittel (2011) estimates considerable improvements in the production capabilities

of car manufacturers, despite being seemingly constrained by fuel economy standards.

2 Background

In this section, we provide additional background on some key physical concepts and industry

features that we leverage in estimation. To summarize, wind turbine production is quadratic

in the size of the device, while the costs manufacturing a turbine are cubic in size. The

industry is highly concentrated, and, while all the major players are active globally, “home”

region preferences generate even more concentration at the market level. All manufacturers

produce multiple turbine sizes at the same point in time, a fact we will later leverage in our

estimation strategy.

2.1 Wind Power Basics

A wind turbine consists of a rotor with three long blades connected to a gearbox and gen-

erator atop a large tower. As wind passes through the blades, the rotor spins a drive shaft

connected through a series of gears to a generator that converts this kinetic energy to elec-
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trical energy. The amount of energy such a device can capture is given by “Betz” law:

Power Q = Cp

[
1

2
πr2

] [
dv3
]

(1)

where Cp is the “power coefficient”, or the ratio of the power flowing through the device

that is captured, and d is the density of the air the turbine is exposed to. Betz (1926)

demonstrated that the theoretical limit on Cp is Cmax
p = 16

27
≈ 0.593.

In practice, commercial turbines produce less than this optimum for two reasons. First,

real world turbine blade designs never quite achieve the theoretical maximum at any speed

(although some are remarkably close for a wide range of v’s). Second, and more importantly,

generators, which convert captured power into electricity, have a maximum capacity which

typically chokes off the devices power at high wind speeds. This is partially to avoid extreme

stress on the device, but also largely for economic reasons: if generator costs are increasing

in size, and high wind speeds occur infrequently, then it doesn’t make sense to pay for

generating capacity that will be rarely used.

Figure 1 presents the Betz frontier and power curves for two different sized General Elec-

tric wind turbines. Power curves are functions, provided by the manufacturer to prospective

buyers, which map wind speeds into the device’s output. They are the empirical analogue

to Betz’ law. The figure also includes the probability density function of wind speed for a

typical location. Wind speeds are well approximated by a Weibull distribution, with means

between 6 and 8 meters per second (m/s). In this example, both turbines closely match the

Betz frontier, until they achieve their “rated power”, denoted in megawatts (MW).

One immediate implication of Betz law is that the wind turbine production function is

characterized by increasing returns to size. This means that, all else equal, better wind tur-

bines, are generally bigger wind turbines. This physical relationship has underpinned much

of the rapid growth the industry has experienced in recent years. Since 2000, wind turbine

rotors have more than doubled in size, while expected output per turbine has increased

nearly fourfold (Figure 2).

Given that the underlying technology demonstrates increasing returns to scale (rotor

size), it is natural to question why wind turbines weren’t initially larger, and why they

aren’t even bigger now. It turns out that the constraints on rotor size are also physical

in nature. Galileo’s “square-cube” law, adapted to this setting, states that the volume of

materials necessary to produce a rotor of radius r should be proportional to r3. Thus, while

large turbines produce more power than smaller turbines do, their costs of manufacturing

are more than proportionately larger (for the same material and design). To profitably make

bigger turbines, firms must either develop new turbine designs or they must employ newer
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Figure 1: Example Power Curves

manufacturing materials in existing designs (or both). Newer designs or materials allow

firms to increase rotor size r with a quadratic benefit in power generation at a less than

cubic increase in costs. Innovation in the wind turbine industry, as reflected in the arrival

of ever bigger turbines, is grounded in these engineering investments.

Beyond a simple physical observation, this cubic mass relationship has also been demon-

strated in real world turbines. In the 2000s, the DOE conducted a series of studies on the

limits to manufacturing large turbines. As part of this, they produced a software tool which

estimates the mass of materials necessary to produce a turbine given user-entered character-

istics. Figure 3 plots the log mass vs rotor size for all turbines in our sample, showing that

estimated turbine mass indeed grows faster than quadratically in rotor size.

2.2 Industry Economics

The wind turbine market is highly concentrated. Table 1 presents sales for the ten largest

firms. The four largest firms have over half of global turbine sales, and the top ten have

nearly 80 percent. Although the industry is global, in that the top firms supply every market,

sales are regionally concentrated. This is at least partially due to home market bias (Coşar

et al., 2015). Figure 4 presents the distribution of sales by region, for the top four firms

in each region, confirming that General Electric does most of its sales in the US market,

Enercon, Siemens Gamesa, and Vestas do most of their sales the European market, and the
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Figure 2: Global Turbine Size and Output Trends

Global average installed rotor size, rated power and predicted output (author’s calculations), relative to
their year 2000 values. Source: BNEF.

two major Chinese manufacturers, Goldwind and Guodian UP, sell primarily in Asia.

Table 1: Sales by Firm

Firm Country Models Capacity Projects Turbines

Vestas Germany 41 101045 4290 50246
General Electric United States 28 68336 1434 37111
Gamesa Spain 28 49022 1571 31260
Goldwind China 23 47858 912 29418
Enercon Germany 29 42983 3976 24098
Siemens Germany 18 28913 661 13680
Nordex Germany 21 22995 1217 9464
Guodian UP China 11 18728 378 11256
Senvion Germany 13 14702 1085 6919
Suzlon India 13 14679 1060 8476

This table presents the total number of turbines sold, total capacity and number of
wind farms for the ten largest firms (by turbine sales) in the BNEF data.

At any given point in time, manufacturers produce multiple turbines. As new turbine

models are introduced, old models are discontinued. Figure 5 plots the annual mix of tur-

bine sizes offered, scaled by sales in that year, for the six largest western manufacturers. For

all firms, the mix of rotor sizes increases over time, with the largest rotors in 2018 being

50%-100% bigger than the largest rotors in 2000, when our data begins. Additionally, Figure
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Figure 3: Turbine Mass vs Size (NREL)

5 also shows that when new, larger turbines are introduced, they do not immediately take

over all of the market share from existing smaller turbines, despite being more productive.

Instead, these larger turbines gradually gain market share over time, which provides sugges-

tive evidence that the relative cost difference must be declining over time, consistent with

learning.

3 Data

The primary data come from a proprietary list of global wind farms maintained by Bloomberg

New Energy Finance (BNEF). For almost all projects, this list includes the exact location

of the wind farm (geocoded), its capacity in turbines and output, the date proposed and the

date commissioned (if ever). Importantly, for most commissioned wind farms, BNEF also

records the exact turbine model installed. We match these turbines to a detailed database

of turbine characteristics from The Wind Power (TWP), an energy marketing consultancy.

TWP’s turbine database includes information about the rotor diameter and rated power of

each turbine, along with dozens of other technical specifications. TWP also maintains a

nearly comprehensive list of turbine power curves (as presented in Figure 1).

We supplement this database with project-specific information on wind speeds and power

prices. We purchased information on the distribution of wind speeds from Vaisala, a com-

mercial vendor widely used in the industry for siting purposes. For each project, we obtain
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Figure 4: Sales by Region

the parameters of a Weibull distribution of wind speeds. Integrating a turbine’s power curve

over the distribution of wind speeds allows us to estimate the expected output from any

given location-turbine combination, including those not selected in the data.

To estimate the value of this output at a given site, we employ data from several sources,

of varying degrees of specificity depending on the region and time period. For all non-

regulated US projects, EIA Form 860 provides average annual revenue from resale sales.

Many countries outside the US support wind farms with feed-in-tariffs, which we obtained by

year from the OECD and BNEF. In recent years, turbine contracts have become increasingly

awarded via auction. BNEF maintains a database of all wind farm auctions, as well as the

winning projects, their bids and the award price ($/MWh). Where none of these prices are

available, we use the average wholesale price in a country-year, or country-state-year. Figure

6 plots average wind-specific power prices over time for selected large markets.

For analysis, we make a number of sample restrictions. Starting with the full BNEF

database, which contains projects going back as far as the 1980s, and many not yet built,

we exclude projects built prior to 2000 or not yet commissioned. We exclude small projects,

of less than a megawatt. Of this sample, we exclude some projects where BNEF either does

not have turbine information or we were unable to locate the turbine specified in the TWP

database. Finally, we exclude offshore projects.
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Figure 5: Sales by Turbine Size, Top Western Firms

Table 2: Sample Construction

Group N mean

All Projects 22,186 1.00
Completed, Post 2000 21,316 0.96
Capacity 1 MW 20,514 0.92
Turbine match 20,025 0.90
Onshore 19,795 0.89

Source: BNEF Project Database
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Table 3: Sample Summary

Variable mean sd max median min

Capacity (MW) 27.57 40.56 644.40 12.50 1.00
# Turbines 15.47 23.19 460.00 7.00 1.00
Rated Power (MW) 2.01 0.86 12.00 2.00 0.06
Wind speed (m/s) 6.61 1.00 15.86 6.52 2.36
Rotor Radius (M) 43.87 12.33 110.00 43.50 7.50
Est. Turbine Output (kW/hour) 700.19 423.18 4,419.43 637.12 5.80

Figure 6: Average Wind Output Price by Country
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Table 4: Demand Estimation Observations by Country

Year AU-DK-PT CHINA DEU FRA ITA SPAIN SWE U.K. U.S.A. Excluded Share

2000 25 3 188 9 11 43 14 7 8 62 0.83
2001 12 0 311 3 19 43 11 7 37 77 0.85
2002 21 0 341 7 10 42 15 9 13 86 0.84
2003 37 6 282 9 31 59 30 7 39 116 0.81
2004 41 2 238 16 24 93 22 5 19 117 0.80
2005 71 16 202 40 17 62 15 16 29 162 0.74
2006 37 25 222 73 26 89 26 22 39 243 0.70
2007 31 48 189 78 34 96 43 27 58 226 0.73
2008 34 94 131 102 37 96 36 33 97 266 0.71
2009 39 190 214 97 56 86 47 35 107 289 0.75
2010 42 223 164 100 43 47 64 30 61 427 0.64
2011 20 311 185 79 31 35 48 33 87 544 0.60
2012 25 224 122 51 26 29 32 32 144 400 0.63
2013 39 206 138 49 14 11 19 67 12 214 0.72
2014 34 230 318 80 6 0 25 45 50 407 0.66
2015 35 343 344 65 11 2 18 31 61 452 0.67
2016 44 218 412 95 16 3 17 40 72 425 0.68
2017 25 170 511 123 11 2 8 58 62 368 0.72
2018 31 139 226 88 22 22 14 21 54 397 0.61
2019 9 117 107 95 18 71 15 14 40 298 0.62
2020 7 280 150 74 7 56 13 6 0 358 0.62

4 Recovering Turbine Bids

In the typical dataset used for estimating marginal costs of producing consumer products,

researchers have access to both aggregate quantities and posted (assumed common) prices.

For large capital goods like wind turbines, there are no posted prices. Turbines are procured

in a confidential, developer-specific process. Once completed, the terms agreed upon are

rarely disclosed. Thus, before estimating manufacturing costs using the inversion of a demand

system, we must recover the prices developers face when chosing which turbine to install. To

do this, we develop a model of turbine procurement auctions, and show how the parameters

of this model represent the bids manufacturers submit.

4.1 A model of turbine procurement

We begin by describing a procurement model with purely static incentives (i.e., no learning-

by-doing incentives, yet). At time t, each firm f in the set of manufacturers F has a portfolio
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of turbines j ∈ Kft. During t, each project i in a set of wind farm projects Wt requests

bids for each turbine offered by each firm. If project i selects turbine j, i earns discounted

expected revenues Rijt + εijt, where ε is an iid shock to developer profits, known only by the

developer.

The revenues that turbine j generates at site i are determined by the known wind speed

distribution Fi(v) for site i, the known power curve Pj(v) which maps wind speeds v into

megawatts of output for turbine j, and poutput
i , the output price site i receives for its pro-

duction. We assume that each turbine will generate revenues according to these terms for

20 years, so that the discounted expected revenues Rijt are:

Rij = 8760︸︷︷︸
hours in a year

× poutput
i︸ ︷︷ ︸

price per megawatt hour

×
∫
Pj(v)dFi(v)dv︸ ︷︷ ︸

expected megawatt hours generated

×
20∑
t=1

δt−1

︸ ︷︷ ︸
discounted value for 20 years

Project i will buy ni turbines, regardless of which turbine j it selects.2 However, because

Rijt varies with j, i’s revenues depend on what turbine model it selects.

We assume that i conducts a second price procurement auction to determine which

turbine it buys, and what price it pays. In this mechanism, each turbine manufacturer

submits a (potentially) project-specific bid bijt for each turbine j in its portfolio. Project i

selects the turbine that delivers the highest net surplus, which we define as Rijt − bijt + εijt.

If turbine j from firm f wins the auction, the payment b̃ijkt from i to f is designed to make

i indifferent between choosing j and paying this price, and choosing the next highest net

surplus turbine, k, and paying the actual bid offered by k’s manufacturer. That is, b̃ijkt

satisfies

Rijt − b̃ijkt + εijt = Rikt − bikt + εikt

so that the payment is

b̃ijkt = bikt︸︷︷︸
bid of second best

turbine proposal

+ (Rijt + εijt)︸ ︷︷ ︸
revenues from best

turbine proposal

− (Rikt + εikt)︸ ︷︷ ︸
revenues from second

best turbine proposal

Thus, though the probability that a firm wins a sale does depend on its bid, its payment,

conditional on winning, does not, as a result of these second-price rules.

Asker and Cantillon (2008) show that the unique dominant strategy equilibrium for this

game is for each firm to bid exactly its opportunity cost of delivering each turbine, and,

2This means we are ruling out situations where a developer is choosing between three 1 MW turbines or
two 1.5 MW turbines, and plans to keep output fixed.
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as a result, site developers pick the turbine which maximizes social surplus, the sum of

developer and manufacturer profits. This implies that, conditional on the opportunity cost

of supply, bids will not be project-specific in equilibrium. Based on this result, we assume

that manufacturing costs are constant within a given year, so that if two projects i and i′

are built in the same year, bijt = bi′jt.
3 In a slight abuse of notation, we define the (common)

bid for turbine j in year t as bjt.

For tractability, we make three additional assumptions. First, we assume that the project-

by-turbine revenue shocks are distributed as type-1 extreme value. Second, we assume that

every project which solicits bids from manufacturers chooses a turbine (e.g., there is no

outside option). Finally, we assume that developer’s consider bids on all turbines offered by

all active manufacturers at a given point in time (e.g., that choice sets are common). These

additional assumptions imply that the probability firm f wins the site i auction with turbine

j at time t is:

sijt =
exp(Rijt − bjt)∑

f ′∈F
∑

l∈Jf ′
exp(Rilt − blt)

With this notation, we can define the static expected profits for firm f at time t. Let cjt

be the marginal, not opportunity, cost of delivering turbine j at time t.4 Given our previous

definition for f ’s revenues when it sells turbine j, its static profits from a successful sale to

site i are:

πijt = Rijt − bjt + εijt − max
k∈

∏
φ 6=f Kφ,t

(Rikt − bkt + εikt) + (bjt − cjt)

Because developers always choose the turbine which generates the highest net surplus, we

can write f ’s total realized static profits from offering its turbines to site i as:

πift = max
j∈

∏
φKφ,t

(Rijt − bjt + εijt)− max
k∈

∏
φ 6=f Kφ,t

(Rikt − bkt + εikt)+
∑
j∈Kft

I [i chooses j] (bjt−cjt)

Note that this expression includes the possibility that firm f does not make a sale: when

i chooses a turbine outside of Kft, the first expression above is identical to the second, so

the entire expression is zero. Thanks to the type-1 extreme value assumption on the ε’s, the

3When we introduce dynamic pricing incentives in Section 5, we’ll discuss what additional assumptions
we require in order to maintain this assumption that bids do not vary across projects.

4When we later introduce dynamic pricing incentives, marginal and opportunity costs will differ.
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firm’s expected profits at site i are:

Eπift = log
∑

j∈
∏
φKφ,t

exp (Rijt − bjt)︸ ︷︷ ︸
Sit

− log
∑

k∈
∏
φ 6=f Kφ,t

exp (Rikt − bkt)︸ ︷︷ ︸
S−fit

+
∑
j∈Kft

sijt(bjt − cjt)

In words, this is the logit inclusive value of the wind developer’s net surplus among all

turbines (Sit), minus the logit inclusive value of the wind developer’s net surplus among all

turbines excluding those from firm f (which we call S−fit ), plus firm f ’s expected markup

over its marginal costs.

4.1.1 Empirical implementation

We use this structure to recover the unobserved procurement auction bids by modeling

the developer’s discrete choice problem, allowing for a slightly richer notion of developer

preferences. Project developer i in period t chooses a utility-maximizing turbine j given

overall revenues Rijt, revenues that come specifically from high wind speeds RH
ijt, bids bjt,

and an additional set of characteristics Xijt which capture other costs and benefits of a given

turbine-site combination:

uijt = α0Rijt + αHR
H
ijt +

∑
c

αcI[c(i) = c]Rijt +Xijtβ
D − bjt + εij (2)

The variable Rijt represents all wind revenues, while the variable RH
ijt represents the

subset of those revenues which accrue at high wind speeds.5 We allow developers in different

countries c to have different preferences over the revenues generated, to account for differences

in discount rates, revenue volatility or uncertainty, and curtailment policies. The parameter

α0 represents the (common) marginal utility project developers get from turbines which

produce more revenue, and αH represents the differential marginal value of output at high

wind speeds. The vector of parameters {αc} represents the country-specific marginal utility

for revenues.

5We define “high” wind speeds as those greater than 7.5 m/s. We allow developers to have distinct
preferences over wind production revenues that accrue at high wind speeds for several reasons. First, episodes
of high wind speeds often coincide with electricity grid transmission constraints, meaning that the high
production associated with high wind speeds might either be priced at (lower) congested prices, or may
require curtailment Aldy et al. (2019). Second, high wind speeds often occur in short bursts of time, and
because wind turbines have lots of physical inertia, they do not immediately spin faster when the wind is
blowing faster. This means that power production which accrues from high wind speeds may be lower than
what we calculate using a wind speed distribution and a power curve. Third, our estimates of the distribution
of wind speeds are necessarily less precise at high wind speeds, since they are observed less frequently than
moderate speeds.
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The vector Xijt captures two sources of preference heterogeneity across projects. First,

although we assume that all turbines are available to all projects, in practice there are

physical constraints which limit the suitability of larger turbines at especially windy sites.

Because there are no documented hard and fast rules which indicate which turbines are

allowed at which sites, we instead include dummy variables that indicate whether a site’s

measured wind speed distribution lies outside of the turbine’s recommended range, and

interact these variables with the turbine’s rated power capacity to account for scale differences

in revenues across different capacity turbines. We also control for well-documented home-

market bias in the wind turbine industry (Coşar et al., 2015). To do this, we include dummy

variables which are equal to 1 if the project’s country is the same as the country where the

turbine manufacturer’s headquarters lie, and also interact these variables with rated power

capacity. Finally, we included a dummy for whether a firm has a manufacturing facility in

the country.

Our assumption that manufacturer turbine bids are constant within each year means

that we can estimate those bids as turbine-year fixed effects. Because our demand system

does not have an outside option, what our estimates recover is actually the difference in

bids between turbine j and the bid for a reference turbine, b̂jt = bjt − b0t. We define the

reference turbine as the best selling turbine manufactured by Vestas in each year. With data

on site-by-turbine expected revenues, other turbine characteristics, and each site’s turbine

choice, we estimate the b’s, the α’s and the vector βD using maximum likelihood.

4.2 Bid estimation results

Table 5 presents the estimated preferences from four separate demand specifications. We

select Germany as the base country, since it has the most projects and very rich output price

variation. The first row indicates that German developers value a discounted expected dollar

of revenue at 92 cents, and we cannot reject one. The second row indicates that revenues

during high wind hours are much less valuable than low wind, consistent with congestion and

curtailment being a factor. The next section of coefficients indicates significant heterogeneity

in estimated revenue sensitivity across countries. This suggests heterogeneity in capital costs

(via discount rates), policy and price uncertainty, as well as likely measurement error in our

estimated output price measures and currency conversions.
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Table 5: Wind Plant Turbine Preferences

Model 1 Model 2 Model 3 Model 4

Parameter Point Est. Std. Err. Point Est. Std. Err. Point Est. Std. Err. Point Est. Std. Err.

Revenue 0.929 0.179 1.417 0.349 1.290 0.182 1.906 0.379
Revenue x High -0.583 0.179 -0.835 0.311 -0.770 0.181 -1.107 0.319

Revenue x Country
AUSTRIA 0.263 0.057 0.449 0.106 0.175 0.057 0.331 0.097
CHINA -0.122 0.058 -0.179 0.099 -0.367 0.063 -0.513 0.118
DENMARK 0.446 0.071 0.699 0.146 0.425 0.071 0.661 0.138
FRANCE -0.300 0.029 -0.498 0.085 -0.393 0.030 -0.605 0.093
ITALY -0.544 0.037 -0.900 0.136 -0.712 0.040 -1.108 0.156
PORTUGAL 0.165 0.062 0.276 0.103 0.097 0.062 0.173 0.098
SPAIN -0.374 0.042 -0.621 0.104 -0.543 0.044 -0.860 0.128
SWEDEN -0.125 0.057 -0.262 0.097 -0.103 0.056 -0.200 0.092
UNITED KINGDOM -0.450 0.035 -0.738 0.115 -0.587 0.037 -0.900 0.130
UNITED STATES -0.289 0.047 -0.529 0.104 -0.514 0.050 -0.807 0.130

Site/Turbine Class Compatibility
(Site: 1, IEC: II) x MW -0.362 0.038 -0.583 0.101 -0.363 0.038 -0.566 0.096
(Site: 1, IEC: III) x MW -0.772 0.066 -1.293 0.208 -0.782 0.066 -1.259 0.197
(Site: 2, IEC: III) x MW -0.267 0.032 -0.475 0.085 -0.260 0.032 -0.448 0.080

Home Bias/Manufacturing
ChinaForeign x MW -2.378 0.115 -4.052 0.596 -2.425 0.120 -3.957 0.566
Factory x MW 0.334 0.019 0.546 0.080 0.231 0.033 0.360 0.069
Factory x MW x log(N) 0.046 0.014 0.080 0.024
Home x MW 0.655 0.025 0.966 0.132 0.644 0.025 0.952 0.127
Rotor x log(N) 0.009 0.001 0.012 0.002

Heteroskedasticity Over Time
2001 0.242 0.174 0.131 0.169
2002 0.093 0.171 -0.010 0.168
2003 0.015 0.161 0.047 0.156
2004 -0.095 0.161 -0.156 0.160
2005 -0.456 0.166 -0.414 0.161
2006 -0.494 0.163 -0.454 0.159
2007 -0.468 0.160 -0.448 0.155
2008 -0.644 0.161 -0.620 0.156
2009 -0.434 0.150 -0.426 0.145
2010 -0.394 0.155 -0.344 0.150
2011 -0.406 0.154 -0.366 0.149
2012 -0.571 0.155 -0.576 0.150
2013 -0.523 0.157 -0.467 0.153
2014 -0.457 0.151 -0.413 0.147
2015 -0.481 0.150 -0.467 0.145
2016 -0.600 0.149 -0.555 0.145
2017 -0.539 0.147 -0.492 0.143
2018 -0.614 0.157 -0.579 0.152
2019 -0.652 0.159 -0.648 0.156

The next panel in the table documents the importance of turbine-site compatibility. High

wind sites (class 1) appear to strongly dislike turbines designed for low wind sites (classes II

and III), and class 2 sites dislike class III turbines. Next we also find considerable hetero-

geneity in firm preferences across countries. Turbines are large, heavy pieces of equipment,

and having a production facility inside the country makes developers significantly more likely

to select a firm’s turbine. Even conditional on that though, we find that developers have

a large willingness to pay for home market turbines, consistent with (Coşar et al., 2015).

Finally, in looking at the raw data, it is clear that Chinese developer preferences along these
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dimensions appear different from the rest of the sample. We rationalize this with the inclu-

sion of a foreign producer dummy for the country, and estimate this effect to be twice as

large as the other home bias effects combined.

Figure 7 plots the estimated turbine bids against turbine size for three years in our

sample. Looking across these three years, two patterns stand out. First, many turbine

sizes are supplied over a long horizon. There are plenty of turbines in the 80m range that

are sold in all three years (spanning nearly two decades), and there are also many turbines

in the 100m range that are sold in both of the later years we plot. Moreover, across all

sizes, the price of a turbine at a given size comes down considerably. Second, although the

price of a turbine increases in turbine size, consistent with the discussion in section 2, the

price gradient with respect to size flattens out dramatically over time. This change in cost

structure is what underlies the remarkable shift towards bigger, therefore more productive,

turbines over the past twenty years.

Figure 7: Estimated bids vs rotor size over time

Estimated bids are recovered relative to a reference turbine, which we pick to be the most common Vestas turbine sold that
year. To plot levels, we impute the implied cost of this turbine from Vestas financials.

An alternative way to vizualize the estimated bids is to look at the evolution of prices over

time within the same device. Figure 8 plots estimated bids for the most popular turbines sold

by the two largest European manufacturers, Enercon and Vestas. Although the estimates

are inherently a bit noisy, it appears that bids come down on average over time. However,

it is important to remember that the direction of prices over time in an oligopolistic market

with learning is theoretically ambiguous (Besanko et al., 2010, 2014). On the other hand,

some of the increases in prices that occur leading up to 2010 are potentially driven by raw
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materials prices, including steel, which increased nearly 50% between 2005 and 2009.

Figure 8: Estimated bids for popular turbines at Enercon and Vestas

Estimated bids are recovered relative to a reference turbine, which we pick to be the most common Vestas turbine sold that
year. To plot levels, we impute the implied cost of this turbine from Vestas financials.

5 Isolating costs from bids

Although it is optimal for firms to bid their true opportunity costs in the turbine procure-

ment mechanism we assume, the dynamic incentives implied by learning by doing mean that

manufacturing costs and opportunity costs are not identical in this setting. As noted by

Irwin and Klenow (1994) and Benkard (2004), the fact that sales today may generate cost

reductions tomorrow means that rational and forward-looking manufacturers have an incen-

tive to underprice recently introduced turbines. Thus, opportunity costs are the sum of true

manufacturing costs, which may reflect past production experience, and anticipated learning

benefits, or future cost reductions from marginal sales today (“dynamic markdowns”). To

learn about the effects of past experience on manufacturing costs, we need to separately

control for these dynamic markdowns.

Previous theoretical and applied research on dynamic markdowns explicitly computes

them using dynamic programming techniques (Besanko et al., 2014; Benkard, 2004). While

this approach is feasible for markets with mature production technologies and a small number

of firms and products, it is not helpful in our setting. The wind turbine manufacturing

industry has always had several active firms, and in any given year, 30 or more distinct

wind turbine models are available for sale. It is not currently computationally possible to

compute the equilibria of a dynamic game with this many firms and/or products, especially
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in a non-stationary setting like this.

Instead of attempting to solve such a complicated dynamic game in order to exactly char-

acterize the dynamic markdown, we use a rational expectations method developed in Berry

and Pakes (2000). The primary advantage of this approach is that rational expectations

techniques provide a way to construct a noisy measure of the dynamic markdown without

explicitly solving for the equilibrium of the underlying game firms may be playing.

In this section, we derive the static component of opportunity costs, using the properties

of our procurement auction assumptions (Section 5.1). Next, we derive the dynamic mark-

down term and show how to use the Berry-Pakes method to construct a noisy measure of

it (Section 5.2). We then derive the state transition process for this industry, a necessary

ingredient to the Berry-Pakes method, in Section 5.3. In Section 5.4 we describe two ways of

implementing the rational expectations cash flows needed for the Berry-Pakes method. Fi-

nally, we derive our estimating equations (Section 5.5) and discuss our identification strategy

(Section 5.6).

5.1 Optimal bidding behavior and static opportunity costs

To relate our observed bids to costs, we will assume that firms choose bids that are dynam-

ically first-order optimal, in a sense we will formalize below. The dynamic component of

this problem arises from the fact that past manufacturing experience is a key determinant of

today’s manufacturing costs, so sales today, which increase manufacturing experience, affect

costs tomorrow. To allow for this, we define a state variable x as the cumulative vector of

sales experience for all turbines: xjt is the count of all sales of turbine j before period t.

This state variable is common to all firms in the industry, which will allow us to account for

spillovers in experience across firms, to the extent that they are empirically relevant.6

During period t, the industry at state xt supplies turbines to a set of wind farm projects

i ∈ Wt, using the procurement auction mechanism described in the previous section. The

aggregate sales from this process are a vector qt, which, for each j ∈ ∪fKft, is defined by:

qjt =
∑
i∈Wt

niI[i chooses j in t]

These sales in turn update the cumulative sales vector for the next period, xt+1 = xt + qt.

The probability distribution over qt, which depends on the set of available projects Wt and

the bids firms set bt, is dF (qt | Wt, bt), which we derive in Section 5.3.

We assume that firms choose turbine-specific bids at the start of the year, before any sales

6Section 6.1 describes the specific functional relationship assumed between manufacturing costs and x.
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occur, and submit these fixed bids to each individual procurement auction. In a world with

no dynamic incentives, this assumption is innocuous, due the Asker and Cantillon (2008)

efficiency result: bids should always equal costs, and so they are common across projects

by definition. However, if dynamic pricing incentives are indeed important, then as a firm

accumulates experience over the course of a time period, its costs change. Moreover, the

learning benefits from selling heterogeneous projects need not be homogenous. For example,

bigger projects induce larger changes in experience than smaller projects do. Thus, our

assumption that firms set bids once at the start of a period, and submit the same vector of

bids to every project’s procurement auction is not without loss of generality.

However, we impose this assumption out of necessity. Because we do not directly observe

bids, we must infer them from the demand system, in the form of turbine-by-time fixed

effects, and there are limits to how aggressibely we can divide the data up in order to

generate finer turbine-time fixed effects. Accordingly, in our derivation of optimal bidding

that follows, we will assume that firms receive all bidding-relevant information before they

set bids. In this sense, our assumption that bids are constant over a time period is similar

to a timing assumption in the productivity literature.

Firms choose bids in order to maximize the sum of expected profits from selling to avail-

able projects that period (the set i ∈ Wt), and the expected value of a firm-time specific

continuation value function of xt+1, where expectations are taken with respect to the distri-

bution dF (qt | Wt, bt). Firm f ’s objective is:

max
bft

∑
i∈Wt

niEπift(bt, xt) +

∫
Vft(xt + qt)dF (qt | Wt, bt)

Here, we are making explicit the idea that expected profits depend on the entire vector of

bids (bt). We also allow the expected profit function to depend on x because a firm’s present

manufacturing costs may depend on its past manufacturing experiences, as well as other

firm’s manufacturing experiences if spillovers are present.

Optimal bidding for turbine l will satisfy a first-order condition:

0 =
∑
i∈Wt

ni
∂

∂blt
Eπift(bt, xt)︸ ︷︷ ︸

∇π=marginal static profits

+
∂

∂blt

∫
Vft(xt + qt)dF (qt | Wt, bt)︸ ︷︷ ︸

∇V=marginal dynamic benefits

The first component of this expression shows how marginal pricing changes affect the firm’s

marginal static profits. In particular, a marginal change in the bid for turbine l induces a
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change in static profits (∇π)lt:

(∇π)lt =
∑
i∈Wt

ni
∂

∂blt
Eπift(bt, xt)

=
∑
i∈Wt

ni
∂

∂blt

log
∑

j∈
∏
φKφ,t

exp (Rijt − bjt)− log
∑

k∈
∏
φ 6=f Kφ,t

exp (Rikt − bkt) +
∑
j∈Kft

sijt(bjt − cjt)


=
∑
i∈Wt

ni

−silt − 0 +
∑
j∈Kft

∂sijt
∂blt

(bjt − cjt) + silt


=
∑
i∈Wt

ni
∑
j∈Kft

∂sijt
∂blt

(bjt − cjt)

The first equality comes from our assumption that firms set the same turbine bids for all

projects in the same time period. The second equality is a result of our procurement acution

assumptions: expected (per-turbine) profits on plant i are a “net surplus” term, insensitive

to which turbine is actually chosen, plus a share-weighted average bid-cost markup term.

The third equality comes from differentiating the expected profit expression with respect to

the bid on turbine l. Thanks to the logit errors, the derivative of the net surplus term is

simply the negative of the probability that plant i picks turbine l. Similarly, the derivative

of the bid-cost markup term is the “standard” two terms common in all discrete choice

demand models: the elasticity-weighted sum of changes in margins, plus the gains from

infra-marginal buyers. The final expression above includes the first of these standard terms,

but not the second, because second price payment rules mean that the firm does not capture

infra-marginal benefits from higher prices. As a result, marginal static expected profits are

equal to the elasticity weighted average bid-cost markup, summed over all plants in the

market.

5.2 Dynamic opportunity costs

To characterize the marginal effect of higher prices on future benefits, which we call the

dynamic markdown, first note that since we have assumed our continuation values are func-

tions of the present state xt and the realized aggregate sales vector qt, turbine price changes

only affect the probability distribution of qt, not the function Vft(·) itself. Thus, our first

simplification is:

∂

∂blt

∫
Vft(xt + qt)dF (qt | Wt,bt) =

∫
Vft(xt + qt)

∂

∂blt
dF (qt | Wt,bt)
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Next, note that for any realizable value of qt, dF (qt | Wt, bt) > 0, so we can re-arrange terms

to get:

∫
Vft(xt + qt)

∂

∂blt
dF (qt | Wt, bt) =

∫
Vft(xt + qt)

∂
∂blt

dF (qt | Wt, bt)

dF (qt | Wt, bt)
dF (qt | Wt, bt)

= E

[
Vft(xt + qt)

∂
∂blt

dF (qt | Wt, bt)

dF (qt | Wt, bt)
| Wt, bt

]

This re-arrangement makes clear that the dynamic markdown, which is the gradient of

expected future benefits with respect to the price of turbine l, can be expressed as the

expectation of the product of future benefits at a given realization of q and the relative

change in the probability that this value of q is realized resulting from the price change.

This is the first insight highlighted in Berry and Pakes (2000).

We also employ the second key idea from Berry and Pakes (2000), and assume that firms

have rational expectations about this object, conditional on equilibrium bids. We’ll assume

that:

E

[
Vft(xt + qt)

∂
∂blt

dF (qt | Wt, bt)

dF (qt | Wt, bt)
| Wt, bt

]
= Vft(xt + q∗t )︸ ︷︷ ︸

Realized Discounted Cashflows

×
∂
∂blt

dF (q∗t | Wt, bt)

dF (q∗t | Wt, bt)︸ ︷︷ ︸
Berry-Pakes factor

+νlt

where q∗t is the realized turbine sales vector, Vft(xt + q∗t ) is the realized discounted cashflows

for firm f following time t, and E [νlt | xt, bt] = 0 is a rational expectations error. This

assumption is useful because it allows us to decompose the otherwise-infeasible dynamic

markdown term into the sum of a product of two feasible expressions, and a rational expec-

tations error. The term
∂
∂blt

dF (q∗t |Wt,bt)

dF (q∗t |Wt,bt)
is feasible because it can be computed from knowledge

of the realized sales vector q∗t , the set of projects Wt, and the demand system parameters.

We explore two feasible approaches to handling Vft(xt + q∗t ) in section 5.4.

5.3 State transitions and their sensitivity to bids

To finish our derivation of the firm’s pricing FOC, we define dF (qt | Wt, bt) and compute its

gradient with respect to the price of turbine l. There are many allocations of turbines to

projects that can generate a given value of q, so the probability that q is realized is the sum

of the probabilities of many “feasible” allocations. For example, if there are three projects,

A with a demand for 3 turbines, B with a demand for 2 turbines, and C with a demand for

1 turbine, and 2 turbine models, 1 and 2, there are two ways to attain q1 = 3 and q2 = 3.

First, turbine 1 could sell to project A, and turbine 2 could sell to projects B and C. The
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reverse could also happen: 1 sells to B and C while 2 sells to A. This idea generalizes to

more than two projects and/or turbines. Recognizing this, let M(q,W ) represent the set

of allocations of turbines to the sites in W which generate an aggregate sales vector q. An

allocation m ∈M(q,W ) is a vector of turbine choices, so that mi = l for the chosen turbine

l. Let pm be the unconditional probability of allocation m:

pm =
∏
i∈W

si,mi

Then the probability of outcome q with plants W and bids b, denoted by dF (q | W, b), is∑
m∈M(q,W ) pm. Because dF (q | W, b) depends on individual choice probabilities, which, in

turn, depend on the vector of turbine bids, the gradient of dF (q | W, b) with respect to a

given bid is nonzero:

∂

∂bl
dF (q | W, b) =

∂

∂bl

∑
m∈M(q,W )

∏
i∈W

si,mi

=
∑

m∈M(q,W )

∂

∂bl

∏
i∈W

si,mi

=
∑

m∈M(q,W )

(∏
i∈W

si,mi

)∑
i∈W

∂

∂bl
log si,mi

=
∑

m∈M(q,W )

(∏
i∈W

si,mi

)∑
i∈W

(sil − I[mi = l])

= dF (q | W, b)
∑
i∈W

sil −
∑

m∈M(q,W )

pm
∑
i∈W

I[mi = l]

= dF (q | W, b)

(∑
i∈W

sil −
∑

m∈M(q,W ) pm
∑

i∈W I[mi = l]

dF (q | W, b)

)

= dF (q | W, b)

(∑
i∈W

sil − E [# of projects pick l | q,W, b]

)

A marginal change in bid bl proportionally increases dF (q | W, b) by the difference between

the unconditional expected number of projects which pick turbine l and the same expectation,

conditional on the sales vector q. Note that in the special case where ni = n for all i

(homogenous project sizes), in any feasible allocation, the number of projects that pick

turbine l is, by definition, equal to ql. When this happens, E [# of projects pick l | q,W, b] =

ql. For notational brevity, we define Nl(q,W,B) = E [# of projects pick l | q,W, b].
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With this derivation, we can now write the Berry-Pakes factor as:

∂
∂blt

dF (q∗t | Wt, bt)

dF (q∗t | Wt, bt)
=
∑
i∈Wt

silt −Nl(qt,Wt, bt)

5.4 Discounted Cash Flows

The Berry-Pakes approach requires a measure of realized discounted future cashflows for each

firm and time period, Vft(xt + q∗t ). In our analyses below, we construct two different types

of discounted cash flow measures: those that are implied by our demand and cost models,

as suggested in Berry and Pakes (2000), and those derived from public company accounting

data, which is available for a subset of our firms and time periods.

In the Berry-Pakes “model” approach, we combine data on realized future turbine choice

probabilities and project characteristics with our model for turbine costs. Specifically, we’ll

compute:

V M
ft (xt + q∗t | θ) =

T−t∑
τ=1

β(τ)
∑

i∈Wt+τ

ni

Ri,f,τ+t −
∑

j∈Kf,t+τ

sijc(Ef,t+τ,j, θ)


where β(t) is a discounting factor, Ri,f,τ+t is the expected revenue per turbine for firm f

at project i during a procurement auction in period τ + t, and c(Ẽf,t+τ,j, θ) is the cost to

firm f of manufacturing a turbine with manufacturing “experience” Ef,t+τ,j, which we define

in Section 6.1. For all but the final year T , we’ll write β(t) = βt. However, to capture

future cash flows that have yet to be realized but which may affect firm’s perceptions of the

dynamic markdown, we’ll annuitize the final year’s cashflows and write β(T ) = βT

1−β . We

assume β = 0.9.

In this “modeled” approach, future discounted revenues come from our demand system

estimates and future discounted costs come from the shares implied by our demand system

estimates, realized experience levels, and the functional form and parameters which relate

experience to manufacturing costs. Because discounted cash flows are a function of the cost

parameters, this future realized cash flow construction may directly affect our estimates of

the cost function.

In the Berry-Pakes “accounting” approach, we instead rely on public financial reporting

which is available for a subset of the industry. Vestas, Nordex and Gamesa, as well as some

of the larger Chinese manufacturers, are publicly traded companies that are either wind

turbine “pure plays” or have detailed wind segment reporting. These firms directly report

the revenues earned and costs incurred selling wind turbines, and we can use this information
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to directly construct discounted cash flows, again annuitizing the final year to capture future

cash flows which have yet to be realized:

V A
ft (xt + q∗t ) =

T−t∑
τ=1

β(τ)
(
RAccounting
fτ − CAccounting

fτ

)
5.5 Estimating Equations

To recap, the firm’s first order condition for dynamically optimal bidding is:

0 =
∑
i∈Wt

ni
∑
j∈Kft

∂sijt
∂blt

(bjt − cjt) + Vft(xt + q∗t )

(∑
i∈Wt

silt −Nl(qt,Wt, bt)

)
+ νlt (3)

We can collect these terms to describe a practical estimating equation. Let bft and cft

represent vectors of the bids and marginal cost functions for firm f ’s turbines in period

t. Let the matrix of project-size weighted demand elasticities among firm f ’s turbines be

∆ft =
∑

i∈Wt
ni
∑

j∈Kft∇sift, where sift is the vector of firm f ’s choice probabilities at

project i. Similarly, let Nft(qt,Wt, bt) be the vector of the expected number of projects that

pick f ’s turbine’s in market realization qt for projects Wt with the full vector of bids bt.

Finally, let sft =
∑

i∈Wt
sif . Then our FOC in vector form is:

0 = ∆ft(bft − cft) + Vft(xt + q∗t ) (sft −Nft(qt,Wt, bt)) + νft

We can re-arrange this to express the vector of firm f ’s bids in terms of its costs, its dynamic

incentives, and a rational expectations shock in period t:

bft = cft − Vft(xt + q∗t )(∆ft)
−1 (sft −Nft(qt,Wt, b+ t))− (∆ft)

−1νft (4)

To specify this for a single turbine j, let ξjt be the j-th entry of the vector (∆ft)
−1
(
sft − N̂ft(qt,Wt, b+ t)

)
,

and let the j-th entry of (∆ft)
−1νft be ν̃jt. Then our estimating equation becomes:

bjt = cjt − Vft(xt + q∗t )ξjt − ν̃jt

To the extent that our discounted cash flow calculations do not capture all of the firm’s

dynamic bidding incentives, bids and Vft(xt+q
∗
t )ξjt will not necessary covary one-to-one. This

could happen because our discount factor is wrong (we are assuming a nominal discount rate

of 10% per year), because we do not account for future fixed cost expenditures, or because

the price of turbine j may only affect a portion of future discounted cash flows. To allow for

this, we’ll estimate a coefficient µ on the dynamic markdown terms, so that our estimating
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equation becomes:

bjt = cjt + µVft(xt + q∗t )ξjt − ν̃jt

If our model were perfectly specified, we would expect to find µ = −1.

Finally, recall that we do not actually observe or estimate the leve of bid bjt, as our

discrete choice model does not have an outside option. Instead, our discrete choice model

estimates deliver b̂jt = bjt − b0t for a pre-specified base turbine 0. Accounting for this, our

estimating equation becomes:

b̂jt = cjt + µVft(xt + q∗t )ξjt − b0t − ν̃jt (5)

We capture the effects of the base turbine bid b0t using year fixed effects.

5.6 Identification

We estimate the above model using control-function nonlinear least squares techniques and

generalized method of moments estimators. In order for either approach to deliver consistent

estimates of the cost function, we must make assumptions about how the unobservable terms

are correlated with observables or other variables we may use as instruments. We envision

two sources of identification challenges in this setting.

First, any specification that includes a version of our rational expectations dynamic

markdown term will depend on q∗t and other variables which are not known by firms when

they set bids. As a result, these variables cannot serve as valid instruments, as they will be

mechanically correlated with the rational expectations shock. If we had a fully-specified data

generating process for the set of projects that come to the market in each year, the power

prices they face, and evolution of the market for wind turbine materials, then functions of

the current value of those state variables would be valid instruments. This is the approach in

Berry and Pakes (2000) and other rational expectations settings. However, we have left these

details unspecified, focusing only on various components of world/firm/turbine experience

as state variables in the firms’ dynamic problems. Thus, we need other variables which

correlate with Vft(xt + q∗t )
(∑

i∈Wt
silt −Nl(qt,Wt, bt)

)
but which are uncorrelated with the

rational expectations shock.

We obtain these variables by recognizing that the endogenous term we have constructed,

Vft(xt+q
∗
t )
(∑

i∈Wt
silt −Nl(qt,Wt, bt)

)
, is a noisy measure of the ideal term we’d like to con-

struct: E
[

∂
∂blt

Vft(xt + qt) | Wt, bt

]
. In fact, the relationship between the observed quantity

and the ideal quantity in this setting exactly satisfies the standard classical measurement

error assumption, that the difference between the true and observed quantity is independent
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of the truth. This means that we can construct instruments using tools from the classical

measurement error literature.

We follow the results from Lewbel (1997) and create instrumental variables from (cen-

tered) higher order moments of bids, Berry-Pakes factors, and components of the discounted

cash flow terms. Lewbel (1997) shows that these variables are excludable (uncorrelated

with ν) and relevant (correlated with Vft(xt + q∗t )
(∑

i∈Wt
silt −Nl(qt,Wt, bt)

)
) whenever

E
[

∂
∂blt

Vft(xt + qt) | Wt, bt

]
has nonzero skew.

Second, although our exposition of the above model envisions the unobservable term in

our estimating equation as a purely expectational shock, it is possible that there are other

unobservable determinants of bids which may be correlated with observable determinants

of costs, like firm- or turbine-specific experience. This would be the case if, for example,

firms had serially correlated productivity shocks. If this were true, high productivity firms in

previous years would have lots of experience and also lower than average costs in the present

year. To deal with this potential source of endogeneity, we construct predictions of turbine

sales that are driven exclusively by home-market bias and changes to country level demands.

We then use these predictions to construct predictions of the experience firms accumulate

from these forces alone, which we use as instrumental variables for our observed experience

measures.7 The validity of this “Bartik” style instrument relies on the assumption that year-

to-year changes in total demand for wind turbines across countries are uncorrelated with

unobservable determinants of manufacturer costs.

6 Results

6.1 Cost parameterization

Our goal is to measure the extent to which manufacturing costs correlate with various notions

of manufacturing experience, at the turbine, firm, and industry-level. To do this, we need to

impose more structure on the cost term cjt in equation 5. We assume turbine manufacturing

costs factor into two terms: resources and experience. By “resources,” we mean that bigger

turbines require more material inputs to produce, conditional on firm experience. As we

discussed in section 2, material inputs for manufacturing a wind turbine grow approximately

cubically in rotor size r. However, firms with more experience may be able to economize on

unobservable inputs, like labor, wasted materials, etc. We assume that this learning reduces

7Specifically, we compute choice probabilities for each turbine-project pair using a demand system that
includes turbine-project revenues and country-by-firm dummies. These choice probabilities reflect changes
in each country’s overall demand and the share of demand in a country that each turbine would typically
expect to receive, but do not depend on year-to-year changes in turbine pricing.
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firms’ cost per unit turbine volume, such that the marginal cost of manufacturing turbine j

at time t is

cjt = ωjtr
3
j = ω0

(
Ẽjt

)α
r3
j (6)

where ω0 reflects the baseline cost of volume in the industry. The actual cost faced by turbine

j at time t declines with “effective” experience Ẽjt. Following Irwin and Klenow (1994), we

parameterize this as

Ẽjt = βJEjt + (Eft − Ejt) + βW (Et − Ef(j),t) (7)

Effective experience is a linear combination of a firm’s experience manufacturing a specific

turbine (Ejt), the firm’s experience manufacturing other turbines in its portfolio (Ef(j),t −
Ejt), and the experience that all other firms in the industry have thus far accumulated

(Et − Ef(j),t).
8 We measure experience as the total cumulate volume that firm f(j) has

previously shipped, so these experience terms can be constructed from the state vector xt.
9

The parameter βJ thus measures the extent to which experience manufacturing turbine j

is more or less useful than the firm’s experience producing other turbines. Similarly, the

parameter βW measures the extent to which other firms’ aggregate experience is as useful as

a firm’s own experience making other turbines. That is, a unit of turbine-specific experience

is βJ times as valuable as firm experience, and a unit of industry experience is βW times as

valuable as firm experience. Finally, the parameter α represents learning economies. Holding

everything else equal, a 1% increase in effective experience increases costs by α%. When

α < 0, the learning-by-doing literature often reports 1−2α, the so-called “Spence coefficient”

which measures the proportional effect of doubling of effective experience on costs.

Our fully parameterized estimating equation is now :

b̂jt = ω0

(
βJEjt + (Eft − Ejt) + βW (Et − Ef(j),t)

)α
r3
j + µVft(xt + q∗t )ξjt − b0t − ν̃jt (8)

6.2 Static results

We first estimate equation 8 under the assumption that pricing choices are purely static,

ignoring the dynamic learning benefit term, Vftξjt. Table 6 presents these results. We

restrict the estimating sample to include turbines sold by one of the top nine firms globally

(Table 1), with at least two sales in the demand estimation sample in year t, and estimate

8Formally, firm experience Ef(j),t =
∑

l∈Kf(j),t
Elt, and industry experience Et =

∑
f Eft.

9This state vector also admits construction of experience in terms of megawatts, turbine shipments, etc.
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its parameters using nonlinear least squares.10 To handle the endogeneity of the experience

variables, we use the control function approach of Newey et al. (1999).11

In column 1, we assume that the cost of volume from equation 7 only depends on firm

experience. The estimated “initial” cost per unit volume, when effective experience is nor-

malized to one, is 11.2.12 To put this number in perspective, at this cost, a 90 meter turbine

made by an industry with this initial level of experience would cost about $1 million. How-

ever, costs are negatively correlated with experience, to the point that a 1% increase in

effective experience decreases marginal costs by about 0.2% (α in equation 8). In column 2

we allow a turbine’s effective experience to include the experience of other firms. The esti-

mates in the row labelled “IndustryExpc,” which represents βW in equation 7, imply that

a one unit increase in global experience at other firms generates 12 percent of the learning

benefits as a unit increase on own-firm experience. In column 3, we allow effective experience

to evolve differently across turbines within the same firm. The row labelled “TurbineExpc,”

which represents βJ in equation 7, implies that a one unit increase in experience for tur-

bine j provides more than one hundred times the learning benefits generated by the firm’s

other turbines. In this model, where turbine j’s experience has been separated out, global

experience is now worth 22 percent of firm experience selling other turbines.

10The tenth largest firm, Suzlon, sells nearly all of it’s turbines in India. India was excluded from the
demand estimation sample because we could not reliably measure the output price each developer faced.

11To construct these control functions, we first regress our observed experience covariates onto polynomial
functions of the full vector of the instruments described above, as well as all the exogenous terms in equation 8.
We then include a polynomial function of these first stage residuals in the nonlinear least squares procedure.

12To improve numerical stability and readability, we divide all the experience terms in equation 7 by the
global experience level Et in the year 2000. Given this, ω0 can be interpreted as the cost state when effective
experience is equal to global experience at the start of the sample.
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Table 6: Static Learning Regressions

Model: (1) (2) (3) (4) (5) (6)

Base Cost (ω0) 10.1 27.0 44.5 11.3 40.8 62.6
(1.1) (3.9) (6.8) (1.6) (11.3) (12.3)

Learning Exponent (α) -0.20 -0.44 -0.50 -0.21 -0.42 -0.48
(0.04) (0.05) (0.03) (0.05) (0.04) (0.03)

IndustryExpc (βW ) 0.12 0.22 0.47 0.60
(0.03) (0.07) (0.31) (0.21)

Turbine Expc (βJ) 122.1 238.8
(37.8) (69.0)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
OEM Yes Yes Yes

Observations 983 983 983 983 983 983
Adjusted Pseudo R2 0.12 0.12 0.15 0.21 0.23 0.26

All models estimated with nonlinear least squares. To account for endo-
geneity in turbine and firm experience, all models include control function
using the approach of Newey et al. (1999). Robust standard errors presented
in parentheses.

Columns 4 through 6 repeat these models but include manufacturer (OEM) fixed effects,

to allow for other time invariant unobservable cost difference across firms that might be

correlated with sales. Comparing these estimates to the first set, the estimated initial cost

levels (ω0) are larger, and learning coefficients (α) are smaller. However, the confidence

intervals in columns 4-6 contain the point estimates from columns 1-3, so statistically these

estimates are similar. Looking within manufacturer, the effects of both global experience

and turbine experience are larger than they are in the cross section, although the estimates

are noisier. Across all six specifications, the Spence coefficients ranges from 14% to 29%.

6.3 Dynamic results

A potential concern with all of the models in the previous section is the possibility that the

dynamic markdowns we’ve ignored contain valuable information about learning economies

and/or spillovers. We address this in Table 7, which implements the strategies to control

for dynamic markdowns developed in section 5.4. Column 1 repeats the model with both

world and turbine experience (column 3) from table 6, but uses GMM-IV rather than NLS

with a control function. These estimates suggest greater learning economies and smaller
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spillovers than their counterparts in Table 6, though they are statistically similar. Column

2 includes firm-time fixed effects, in an attempt to “simply” control for unobserved dynamic

markdowns. In addition to subsuming b0t, the bid on the base turbine, this approach would

also control for any dynamic bidding incentives that were common across turbines sold by the

same firm at the same point in time. Though it does not exactly map to the incentives derived

above, it is considerably easier to construct than our other dynamic corrections. Compared

to model 1, model 2 shows somewhat smaller learning economies, and that turbine specific

experience and world spillovers are relatively more important, but the estimates are quite

noisy.

Table 7: Dynamic Markdown Controls

(1) (2) (3) (4) (5)

Base Cost (ω0) 57.44 73.81 94.49 66.84 64.58
(13.39) (23.60) (25.11) (20.59) (19.05)

Learning Exponent (α) −0.53 −0.48 −0.57 −0.67 −0.67
(0.05) (0.04) (0.04) (0.09) (0.09)

Industry Expc (βW ) 0.07 0.21 0.22 0.05 0.05
(0.04) (0.16) (0.11) (0.03) (0.03)

Turbine Expc (βJ) 74.56 362.06 161.76 44.20 35.76
(35.91) (216.46) (76.67) (26.67) (21.57)

µ× 104 −0.94 −1.43
(0.22) (0.46)

N 983 983 983 505 505
FE Year Firm x Year Year Year Year
Dynamics None None BP (Model) None BP (Accounting)
Sample All All All Accounting Accounting

ω0 is the “initial” cost of a turbine per unit of materials. α is the Irwin & Klenow
exponent. µ is the coefficient on the dynamic markdown term.

Column 3 implements the model-based Berry-Pakes control strategy. Compared to the

first two columns, the estimated initial cost state was larger. Relatedly, the implied Spence

coefficient increases to 0.32 from 0.3 in column 1. World experience and turbine experience

are twice as important, relative to firm experience, in this model compared to model 1. The

estimated coefficient on the dynamic markdown term, µ is statistically significant, and has

the correct sign, but is economically quite small. Though we can easily reject a hypothesis

test that µ = −1, the fact that turbine-specific experience and industry-spillovers are both

larger in a model that accounts for dynamic markdowns is consistent with the Benkard

(2004) argument that prices should respond less to experience accumulation that costs do.
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In columns 4 and 5 we implement the accounting based dynamic control term. A panel

of reliable financials was only available for five firms (Vestas, Gamesa, Nordex, Goldwind

and Guodian) whose turbines collectively cover about half of our overall sample. To have

a baseline, no-dynamics comparison, we first estimate the static model (column 1) on this

smaller sample. The learning coefficient in this sample is larger, and the world and turbine

experience terms are relatively smaller, compared to the model in column 1. In column 5,

we include the accounting-based dynamic control. As in column 3, the multiplier on that

term, µ is precisely estimated, and has the corect sign, but is economically small. Although

the estimates are quite noisy given the small sample, the point estimates are very similar

across the two models.

6.4 Alternative Learning Models

In table 8 we explore the extent to which our results are robust to alternative assumptions

about the nature of learning by doing in this industry, including different measures of expe-

rience and different functional forms relating experience and costs. For comparison, column

1 repeats our primary specification from table 6.

In the models above, we measure experience as the cumulative sum of turbine volume

sold as of time t, motivated by the fact that the key materials cost variable we use is also

volume. In columns 2 and 3 of Table 8, we instead use cumulative megawatts and cumulative

turbines sold as the measure of experience. Both of these alternative measures suggest larger

learning economies and spillovers, as well as a larger role for own-turbine experience.
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Table 8: Learning Function Alternatives

Model: (1) (2) (3) (4) (5)

ω0 44.5 42.9 58.1 32.7 20.5
(6.8) (8.4) (21.4) (4.8) (3.0)

TurbineExpc 122.1 144.9 471.4 122.5 108.4
(37.8) (48.3) (245.5) (48.7) (143.3)

IndustryExpc 0.22 0.27 0.62 0.25 0.26
(0.07) (0.10) (0.30) (0.11) (0.26)

α -0.50 -0.59 -0.77
(0.03) (0.04) (0.05)

ωT 0.34 2.0
(0.93) (0.88)

Expc Measure Volume MW Turbines Volume Volume
Learning Model Unbounded Unbounded Unbounded Accumulation Replacement

Fixed-effects
Year Yes Yes Yes Yes Yes

Observations 983 983 983 983 983
Adjusted Pseudo R2 0.15 0.15 0.15 0.15 0.15

All models estimated with nonlinear least squares. To account for endogeneity in turbine and
firm experience, all models include control function using the approach of Newey et al. (1999).
Robust standard errors presented in parentheses.

So far, we have used the same functional form relating costs to experience as most other

work in the learning by doing literature (Wright, 1936; Thornton and Thompson, 2001;

Benkard, 2000). However, this model is unbounded in the sense that costs approach zero

as firms accumulate infinite experience. As noted by Thompson (2007), there are other

tractable functional forms for LBD that admit more realistic long-term predictions about

cost, while still allowing for an additive structure governing effective experience. In columns

4 and 5, we implement two bounded learning models suggested in Thompson (2007). In these

models, ωT represents estimated terminal costs, after all learning opportunities have been

exhausted, so these estimates indicate that experience can eventually reduce costs by one

to two orders of magnitude.13 Moreover, the initial cost parameter ω0 and the weights on

turbine-specific experience and industry spillovers are similar to those in column 1. Taken

together, these results indicate that the learning economies and spillover magnitudes we

measure are robust to a variety of alternative ways of measuring experience and modelling

13In bounded learning models, there is no learning exponent α. Instead, there is a “step-size” parameter,
representing the fraction of the gap between inintial and terminal costs that each unit of effective experience
delivers which we calibrate to 0.05.
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costs.

7 Discussion

We consistently find that experience today generates large cost reductions tomorrow, with

a doubling of effective experience reducing costs by up to 29%. At the same time, while

spillovers do exist, the effect of a turbine’s own experience on its costs is two orders of

magnitude larger than the effect experience coming from the manufacturers other turbines.

Taken together, these two facts present a puzzle: if learning effects are large, and within-

turbine experience generates 100 times the experience benefits of other experience within

the firm, why do manufactures ever introduce new turbines? Note that turbine lifespans are

fairly short. For turbines introduced between 2000 and 2015, the median duration on the

market was six years, and most sales occur in three or fewer years.

One reason why firms may introduce new turbines, even when existing turbines have

learning-driven cost advantages, is that future gains to learning for mature turbines are

eventually small, due to the decreasing returns we estimate. While the level of a mature

turbine’s cost can be quite low after a few years of sales, the marginal gains to future sales are

also quite small, while new turbines have an entire learning curve ahead of them. Moreover,

the initial cost of a new turbine is declining over time due to spillovers within and across

firms. Thus, firms may introduce new turbines in spite of temporary cost disadvantages, as

a way of investing in new learning opportunities. Our cost function estimates support this

idea. Figure 9 presents the inital cost of size, by year, for four large firms. On average,

initial costs are falling by more than half a log point every four years. As the cost of size

declines, the value proposition of introducing a new, larger turbine, with valuable future

learning opportunities, becomes more attractive, even as costs of existing smaller turbines

remain relatively small.
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Figure 9: Example Estimated New Turbine Cost of Size

This figure presents the (log) estimated cost of size (ωft) for a newly introduced turbine (Ejt = 0), using
the results from column 3 of table 6. Point sizes are proportional to cumulative manufacturer (“OEM”)

experience at the start of the year.

Given that spillovers are relatively small, why are new turbine costs declining so much?

In figure 9, effective experience only depends on firm experience and global experience. And

while these are worth approximately one percent of turbine experience, they are applied of

a much larger set of turbines. So, while individual turbine spillovers are small, across all

sales, they create a meaningful reduction over time. Figure 10 demonstrates this for Vestas,

the largest manufacturer at the start of the sample, and Goldwind, the largest Chinese

manufacture, which not in the market until the mid 2000s. Despite having no experience

when it enters in 2008, it’s costs were much closer to Vesta’s initially due to spillovers. By

2015, Goldwind’s cost of size with world spillovers was already equivalent to Vestas’ without

it.
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Figure 10: New Turbine Cost of Size with and without Spillovers

This figure presents the (log) estimated cost of size (ωft) for a newly introduced turbine (Ejt = 0), using
the results from column 3 of table 6. In the series labeled “OEM”, spillovers from other firms’ experience

are turned off (βW = 0). In the models labeled “OEM + World”, the estimated of βW is taken from
column 3 of table 6.

The other reason why firms introduce new turbines is that they have to in order to stay

competitive. As noted in Stein (1997), firms who hope to move down the learning curve

for a newly introduced product are often disappointed when their rivals quickly respond

with a better product. At that point, the now-lagging firm faces a tradeoff: continue to

produce its existing, and now inferior product, at ever lower costs, or abandon those learning

opportunities and introduce its own newer product. Some combination of these two forces

is presumably what drives the ever increasing sizes observed in Figure 5.

8 Conclusion

We estimate the extent to which learning by doing and spillovers have reduced costs in the

wind turbine industry. Because neither costs nor inputs are recorded in public data, we

infer latent manufacturing costs from a structural model of turbine procurement which we

estimate using the universe of wind turbine models procured by the near-universe of wind

plants built in the last twenty years. To distinguish between manufacturing costs and the

dynamic benefits inherent in any environment where learning by doing is present, we leverage

insights from Berry and Pakes (2000) which allow us to control for dynamic pricing incentives
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without estimating or computing a dynamic game. We find that a doubling of manufacturing

experience reduces manufacturing costs by 14 to 29 percent. Only 1 to 2 percent of experience

spills over to other turbine models produced by the same firm, and spillovers to turbines

produced by other firms are on the order 0.1 to 0.6 percent. Though relatively small, we

show that, in aggregate, spillovers have generated significant cost reductions over time. These

results are consistent with policymaker motivation for generously subsidizing the industry.
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Appendix A Computational details

A.0.1 Computation of Nl

How do we compute Nl(q,W, b), the expected number of projects out of market W that
pick turbine l, when the bids are the vector b and the realized turbine sales vectoris q? As
indicated above, in the case of homogenously sized projects, this object is simply the vector
q. However, there is meaningful heterogeneity in size across projects which we must account
for. Recall that the formal definition of this object is:

Nl(Wt, qt, bt) = E [# of projects pick l | qt, bt,Wt]

=

∑
m∈M(qt,Wt)

(∏
i∈Wt

si,mi
)∑

i∈Wt
I[mi = l]∑

m∈M(qt,Wt)

∏
i∈Wt

si,mi

Exact computation of this requires a full enumeration of the set M(qt,Wt), which can be
defined as the set of integer solutions to an under-determined (I think??) system of linear
equations with integer coefficients. Let µij for i ∈ Wt and j ∈ ∪fKft be the entries of a
matrix representing an allocation of turbines to plants. When plant i receives turbine j,
µij = 1, and zero otherwise. In addition to the requirement that all entries of µij are binary,
feasible values of µij satisfy two constraints. First, each plant chooses exactly one turbine,
so for all i: ∑

j

µij = 1

Second, each turbine must sell in the quantities we ultimately observe in the aggregate sales
vector q, so for all j: ∑

i

niµij = qj

If the number of wind farms and turbines were sufficiently small, it would be possible to
exhaustively enumerate all feasible solutions µij, either using an integer linear programming
solver, or specialized software for finding the vertices of the polyhedron defined by these
equations.14 However, with hundreds of projects per year and as many as 50 turbines in
some years, complete enumeration is computationally impossible. Moreover, many feasi-
ble allocations may have vanishingly small probabilities of occurring, and as such may not
contribute much to the exact value of Nl(q,W, b).

In light of this, we approximate this object by using an integer linear programming solver
in the “solution pool” mode.15 We ask the solver to find the L = 200 “best” feasible solutions,
where solution quality is the log-likelihood of the observed allocation, or

∑
i

∑
j µij log sij.

16

Let M̂(q,W ) be our approximate set of solutions for realized sales q under market W . Then

14See, for example, http://cgm.cs.mcgill.ca/~avis/C/lrs.html
15Both CPLEX and Gurobi offer this option. We have used Gurobi here.
16This problem is NP-hard, and so instead of allowing the solver to run indefinitely, we collect the 200

best solutions available after 15 minutes of solution time per market.
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we approximate Nl(qt,Wt, bt) with:

N̂l(qt,Wt, bt) =

∑
m∈M̂(qt,Wt)

(∏
i∈Wt

si,mi
)∑

i∈Wt
I[mi = l]∑

m∈M̂(qt,Wt)

∏
i∈Wi

si,mi

for each l in ∪fKft.

Appendix B Additional Tables and Figures

Table A.1: Demand Estimation Observations by Country, Total Capacity

Year AU-DK-PT CHINA DEU FRA ITA SPAIN SWE U.K. U.S.A. Excluded Share

2000 120 42 1183 39 167 721 14 30 40 367 0.87
2001 51 0 2003 23 144 837 16 78 1425 650 0.88
2002 227 0 2204 43 53 931 20 79 643 628 0.87
2003 286 101 2092 56 493 1350 61 99 1562 1097 0.85
2004 480 46 1499 120 364 2649 42 110 376 1246 0.82
2005 768 359 1601 418 286 1591 15 372 2145 1782 0.81
2006 836 775 1808 790 474 2077 94 607 2534 3758 0.73
2007 551 2245 1287 843 798 2285 162 322 5278 3217 0.81
2008 659 4451 923 1234 767 2378 151 488 8275 4231 0.82
2009 762 10045 1696 1220 1227 2410 288 741 9596 6128 0.82
2010 632 13660 992 1374 1127 1053 516 560 4234 7060 0.77
2011 421 15846 1342 986 855 976 508 491 6397 9988 0.74
2012 408 10175 1354 700 775 824 645 1008 12712 8987 0.76
2013 722 10087 1603 649 393 331 578 1288 604 7457 0.69
2014 681 12074 3493 1031 135 0 950 820 4957 14183 0.63
2015 546 18731 3372 1084 193 14 723 550 8232 14415 0.70
2016 708 13785 4279 1378 320 13 491 748 8757 12761 0.70
2017 401 9817 4860 1782 250 47 160 2079 6008 12265 0.67
2018 502 7828 2491 1233 398 242 497 688 6785 11661 0.64
2019 191 6664 915 1320 490 1892 728 495 6148 13743 0.58
2020 193 17193 1296 1166 93 1568 1851 90 0 15586 0.60
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B.1 Additional Results: Static Estimation

Table A.2: Static Learning Regressions - Year Heterogeneity

Model: (1) (2) (3) (4) (5) (6)

ω0 15.8 41.3 64.2 18.2 57.3 84.9
(1.7) (5.4) (9.1) (2.5) (12.5) (14.4)

α -0.21 -0.45 -0.49 -0.23 -0.42 -0.47
(0.04) (0.04) (0.03) (0.05) (0.04) (0.03)

IndustryExpc 0.11 0.20 0.33 0.48
(0.03) (0.06) (0.18) (0.16)

TurbineExpc 126.2 220.7
(42.6) (67.7)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
OEM Yes Yes Yes

Observations 983 983 983 983 983 983
Adjusted Pseudo R2 0.10 0.11 0.13 0.19 0.20 0.23

All models estimated with nonlinear least squares. To account for endo-
geneity in turbine and firm experience, all models include control func-
tion using the approach of Newey et al. (1999). Robust standard errors
presented in parentheses.
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Table A.3: Static Learning Regressions - Size Heterogeneity

Model: (1) (2) (3) (4) (5) (6)

ω0 15.6 42.5 60.5 18.3 60.7 76.1
(1.2) (4.8) (8.0) (1.8) (12.9) (19.0)

α -0.15 -0.39 -0.44 -0.19 -0.37 -0.42
(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

IndustryExpc 0.17 0.28 0.55 0.60
(0.04) (0.08) (0.32) (0.37)

TurbineExpc 73.3 111.3
(21.4) (65.1)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
OEM Yes Yes Yes

Observations 983 983 983 983 983 983
Adjusted Pseudo R2 0.15 0.17 0.19 0.24 0.27 0.30

All models estimated with nonlinear least squares. To account for endo-
geneity in turbine and firm experience, all models include control func-
tion using the approach of Newey et al. (1999). Robust standard errors
presented in parentheses.
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B.2 Additional Results: Markdown Correction

Table A.4: Dynamic Markdown Controls - Year Heterogeneity

(1) (2) (3) (4) (5)

Base Cost (ω0) 87.24 115.45 134.63 99.33 93.11
(21.18) (40.25) (37.31) (31.54) (27.50)

Learning Exponent (α) −0.54 −0.48 −0.56 −0.67 −0.68
(0.06) (0.05) (0.04) (0.10) (0.10)

Industry Expc (βW ) 0.06 0.19 0.19 0.04 0.03
(0.04) (0.16) (0.11) (0.03) (0.02)

Turbine Expc (βJ) 82.50 490.69 198.14 45.41 31.43
(42.58) (320.97) (98.16) (29.24) (20.10)

µ× 104 −1.37 −3.08
(0.39) (0.77)

N 983 983 983 505 505
FE Year Firm x Year Year Year Year
Dynamics None None BP (Model) None BP (Accounting)
Sample All All All Accounting Accounting

ω0 is the “initial” cost of a turbine per unit of materials. α is the Irwin & Klenow
exponent. µ is the coefficient on the dynamic markdown term.

Table A.5: Dynamic Markdown Controls - Size Heterogeneity

(1) (2) (3) (4) (5)

Base Cost (ω0) 80.12 107.34 135.55 103.75 101.56
(12.00) (20.32) (24.21) (22.21) (21.16)

Learning Exponent (α) −0.41 −0.44 −0.47 −0.56 −0.56
(0.03) (0.03) (0.03) (0.06) (0.06)

Industry Expc (βW ) 0.12 0.26 0.35 0.10 0.09
(0.04) (0.13) (0.13) (0.04) (0.04)

Turbine Expc (βJ) 26.56 89.78 87.09 30.67 26.66
(8.98) (37.87) (30.28) (12.80) (10.98)

µ× 104 −1.64 −1.50
(0.33) (0.59)

N 983 983 983 505 505
FE Year Firm x Year Year Year Year
Dynamics None None BP (Model) None BP (Accounting)
Sample All All All Accounting Accounting

ω0 is the “initial” cost of a turbine per unit of materials. α is the Irwin & Klenow
exponent. µ is the coefficient on the dynamic markdown term.
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