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Abstract  

A central debate in countries with good environmental quality is the benefits of additional environmental 

regulations when further abatement is very costly. We provide the first causal estimates of the 

concentration-response function of PM2.5 exposure, leveraging wildfire smoke that produces ground-level 

air quality shocks of widely varying intensity. Linking this variation to Medicare administrative data for 

the entire U.S. elderly population, we find that small air pollution shocks have proportionally larger 

mortality effects than large air pollution shocks. This concave concentration-response relationship points 

to large benefits of additional air quality improvements in the U.S. despite pollution levels being already 

low.   
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1. Introduction  

  Decades of research have documented serious and widespread harms of air pollution on human 

health, leading many countries to regulate emissions and set air quality standards (Dockery et al., 1993; 

Schwartz, Laden and Zanobetti, 2002; Currie et al., 2014; Goldman and Dominici, 2019). Optimal policy 

involves reducing pollution as long as the marginal benefits of abatement exceed the marginal costs. 

Assessments of the optimal pollution level therefore depend greatly on the presumed shape of the 

concentration-response (C-R) function, which describes the marginal benefits of a reduction in air pollution 

concentration from a given level. Figure 1, adapted from Pope III et al. (2015), illustrates why the curvature 

of the C-R function matters for optimal pollution regulation: the socially optimal level of pollution is much 

lower if the marginal benefit of pollution abatement is considered to be a concave relationship rather than 

a convex one. Knowledge of the C-R relationship is particularly important for countries where pollution 

levels are already low – such as the U.S. – and further abatement is very costly. 

  Prevailing academic research and policy practices send conflicting messages regarding the 

(perceived) shape of the C-R function. Epidemiology models on the mortality impact of pollution exposure 

often adopt a log-linear regression specification that implicitly assumes a convex relationship (e.g., 

Krewski et al., 2009). Many air quality regulations, including the U.S. Clean Air Act, put disproportionate 

if not exclusive focus on areas with high levels of pollution, which also implies a belief of a convex C-R 

relationship. On the other hand, an emerging body of evidence based on observational analyses, such as 

cross-country comparisons, suggest the C-R relationship might instead have a concave shape, with health 

damages rising sharply at initial pollution levels, and flattening out at higher levels (e.g., Pope III et al., 

2011; Crouse et al., 2012; Pope III et al., 2015). A growing literature in economics uses causal inference 

tools to identify average treatment effects of pollution exposure (Currie and Neidell, 2005; Currie, Neidell 

and Schmieder, 2009; Currie, 2013; Schlenker and Walker, 2016; Deryugina et al., 2019). However, these 

causal methods have not been applied to study the shape of the C-R relationship, in part due to the challenge 

of identifying quasi-experimental variation in pollution shocks of varying magnitudes.  

  We propose a quasi-experimental approach to estimate causal C-R relationships between air 

pollution and health, exploiting variation in ambient air pollution coming from wildfire smoke exposure. 

Wildfires are a major pollution source, with total emissions accounting for 20% of particulate matter 

pollution in the U.S. Using satellite-based measures of daily smoke plume coverage for the entire U.S. 

from 2007 to 2017, we find that drifting wildfire smoke generates frequent and significant variation in 

ground-level PM2.5 in places far from the wildfires. We link this variation to administrative data on 100% 

of Medicare beneficiaries to provide among the first nationwide evaluations of the mortality cost of wildfire 

smoke exposure among the U.S. elderly. We find that wildfire smoke exposure significantly increases 
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mortality for the elderly. Our average treatment effect estimate suggests a 1 ug/m3 increase in daily PM2.5 

increases elderly mortality by 0.62 deaths per million people over the next three-day period.   

  The primary contribution of this paper is to improve upon the average treatment effect estimation 

by exploiting variation in the magnitude of pollution shocks due to two unique features of the smoke quasi-

experiment. First, changes in fire emissions and the winds create a gradient of air quality as a function of 

county’s distance to nearby smoke plumes. For example, compared to a “clean” day when a county is over 

1,000 km away from any smoke plumes, having plumes within a 500-750 km (100-250 km) radius raises 

ground- level PM2.5 by 1 µg/m3 (3 µg/m3) on average. Second, smoke plumes differ in thickness which, 

due to differential optical characteristics, the satellite measurements can categorize into light, medium, or 

thick smoke. When a county is covered by a medium-thickness smoke plume, the ground-level PM2.5 

increases on average by 7 µg/m3, while a thick smoke plume increases PM2.5 by nearly 17 µg/m3. Based 

on an average PM2.5 level of 9.6 µg/m3 during the study period, the smoke quasi-experiment allows us to 

examine differential mortality effects of pollution shocks ranging in magnitude from about 2% to 177% of 

the mean concentration. 

  Our analysis produces an estimate of the causal C-R relationship: changes in the elderly mortality 

rate as a consequence of changes in ambient PM2.5 of differing magnitudes. We find that this relationship 

is monotonically increasing but concave in shape: small air pollution shocks have proportionally larger 

marginal mortality damages than larger air pollution shocks. We show that this concave graphical pattern 

can be econometrically represented by two-stage least squares (2SLS) regressions with smoke instruments 

that shock PM2.5 in different ranges: using large shocks as excluded instruments gives rise to smaller 

average treatment effect estimates than using small shocks. While prior discussions of differences between 

instrumental variables and observational estimates of pollution impacts have focused largely on 

identification concerns, our finding of a non-linear C-R relationship suggests another important reason why 

there may be so much variation among published estimates of the health effect of pollution: different 

estimates could arise if they exploit pollution variation at different points along the C-R curve. Estimates 

using large pollution shocks are likely to produce smaller marginal effects than studies using smaller 

shocks.    

  Our paper also contributes to an emerging literature on the impact of wildfire emissions (and the 

fires per se) on various aspects of human life and the general economy such as public expenditures, health, 

labor market, human capital, among other behavioral changes (e.g., Borgschulte, Molitor, and Zou, 2018; 

Baylis and Boomhower, 2019; Burkhardt et al., 2019; O’Dell et al., 2019; Graff Zivin et al., 2020; 

Plantinga, Walsh, and Wibbenmeyer, 2020; Burke et al., 2021a, 2021b; Heft-Neal et al., 2022). To the best 

of our knowledge, our paper is the first to quantify the nationwide effect of wildfire pollution using 
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administrative data on the near-universe of the elderly population in the U.S. We demonstrate that fires 

impose far-reaching damages, where a fire event can cause measurable pollution and mortality rate spikes 

in areas hundreds if not thousands of miles downwind. Together, this new body of research demonstrates 

that wildfires are one of the largest sources of cross-boundary externalities that are subject to little if any 

environmental regulations.    

  Section 2 continues with data description and summary statistics. Section 3 evaluates the quasi-

experimental nature of the wildfire smoke shocks and presents average treatment effect estimates. Section 

4 presents the concentration-response function estimation.  Section 5 concludes. 

     

2. Data  

2.1 Data Description   

   We build a daily panel dataset of county-level wildfires smoke shocks, ambient air pollution, and 

elderly mortality rate. These data come from three sources.  

   Smoke Data. We use wildfire smoke plumes data from the National Oceanic and Atmospheric 

Administration’s Hazard Mapping System (HMS) from 2007 to 2017 (Brey et al., 2018). HMS incorporates 

imagery from nine satellites to detect wildfire smoke exposure across the United States.1 Areas of smoke 

coverage (“smoke plumes”) are manually outlined by smoke analysts based on visible channel imagery, 

with infrared occasionally employed to screen out cloud confounds.  Each smoke plume constitutes up to 

three density contours – light, medium, and thick smoke – corresponding roughly to average densities of 

roughly 5, 16, and 27 micro grams of particles per cubic meter of air. The contour estimation is based on 

the affected area’s aerosol optical depth, which is a satellite measure of sunlight extinction that reflects the 

concentration of particulate pollution in the atmosphere.  

   Air Pollution Data. We draw ambient air pollution data from the U.S. Environmental Protection 

Agency’s Air Quality System (AQS). The AQS contains hourly readings of PM2.5 from in situ air 

monitoring stations across the country. Because the primary purpose of the AQS is to detect violation of 

national clean air standards, the monitoring network tend to mostly cover urban areas. To maximize spatial 

coverage, we adopt inverse distance weighting, a common spatial interpolation technique used in 

atmospheric science and environmental economics, where a county’s pollution concentration is calculated 

 
1 These satellites include the GOES-East/West, Terra, Aqua, NOAA-15/18/19, and METOP-A/B. Together, these 

satellites provide comprehensive spatial coverage, with over 200 looks per day in areas of overlap. 
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as the inverse-distance-weighted average of readings from all monitoring sites within 20 miles of the 

county’s geographic centroid. About 27% county-days in the sample have available PM2.5 values.  

   Mortality Data. Our county-by-daily level mortality variable is constructed from the Medicare’s 

Master Beneficiary Summary File (MBSF). MBSF is an annual directory of all beneficiaries enrolled in 

the Medicare program. We observe each beneficiary’s residential county and, for decedents who died that 

year, the date of death. There are two advantages of measuring elderly mortality rate using the MBSF. 

First, Medicare is a mandatory government insurance program for the elderly in the U.S. Over our study 

period, the MBSF covers over 97% of the US population aged 65 and older, giving us a comprehensive 

measure of elderly mortality. Second, Medicare’s date of death field is cross-verified with records kept by 

the Social Security Administration.  This feature allows us to measure mortality rate accurately at the daily 

level, which is critical for our research design that leverages high-frequency pollution shocks. 

 

2.2 Defining Smoke Shocks  

  Figure 2a shows a day-snapshot of the smoke data files on August 22, 2013. The large, light-

colored contour represents smoke plumes observed across the contiguous U.S. on that day. The largest 

plume can be seen originating from the Rim Fire of the state of California.2 The medium- and dark-colored 

contours represent locations of thicker smoke plumes. 

  This snapshot exemplifies two general features of wildfire smoke exposure. First, smoke plumes 

are far reaching. Smoke emitted from a fire event in the western United States can well reach the midwest 

in several days. Movements of smoke plumes create abundant spatial and temporal variation in counties’ 

exposure. Second, fires frequently emit dense smoke plumes. Such intensive exposure events do not only 

occur in the immediate vicinity of the fire itself. Figure 2a shows big swaths of Oregon and Nevada are 

covered by medium and thick smoke plumes from the Rim Fire. 

  The key independent variables of our paper is a series of indicators for “smoke shocks”, defined 

as a function of a county’s distance to the nearest wildfire smoke plume and, if the county is covered by a 

smoke plume, the density of the plume. Consider one of the smoke shock variables we call the “0-100 km” 

shock. This is an indicator variable that equals 1 if the county-day is within 100 km to the nearest smoke 

plume.3 Similar indicators are defined for five other distance bins: 100-250 km, 250-500 km, …, >1,000 

 
2 See "Rim Fire," Wikipedia, The Free Encyclopedia, 

https://en.wikipedia.org/w/index.php?title=Rim_Fire&oldid=1049401222 (accessed October 14, 2021).  
3 In practice, we develop a geo-computation routine that flags the county as “within 100 km” to a plume if at least 

20% of the county’s land area is covered by a 100-km buffer polygon around the original smoke plume shapefile. 

https://en.wikipedia.org/w/index.php?title=Rim_Fire&oldid=1049401222
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km. We have three additional indicators for if the county is covered by light, medium, and thick smoke 

plumes. In total, this gives us nine smoke shock indicators. Note that any county-day in our data will fall 

into one of these nine categories. In regression analysis, we will use “>1,000 km” as the reference group, 

and estimate how smoke changes air pollution and mortality rate relative to these “clean” days. 

  Figure 2b summarizes the frequency distribution of different smoke shocks. Note the three bars to 

the right of the vertical dashed line show that U.S. counties are covered by smoke plumes 10.5% of the 

days during out study period. This means the average county is covered by wildfire smoke plumes by about 

38 days per year. Figure 2c maps out the geographic distribution of smoke coverage. A distinct pattern is 

that smoke coverage is the most common in the midwest states such as Minnesota, North Dakota, and Iowa. 

Although these states do not have many wildfire incidents, they experience downwind emissions from 

wildfires in the west and from Canada. Several southern states such as Louisiana and Florida experience 

frequent smoke shocks from both local fire events and transported wildfire pollution from Mexico and the 

South Americas. 

  Our final sample is a balanced daily panel of counties in the contiguous US from 2007 to 2017, 

with a total of about 13 million observations. About 73% of county-days are missing PM2.5 observations 

due to sparsity of the monitoring network. In our analysis below, we estimate the “reduced form” mortality-

smoke relationship using the full sample. Instrumental variable estimation uses the restricted sample where 

PM2.5 observations are available. 

 

3. Wildfire Smoke, Air Pollution, and Elderly Mortality   

 Before going into the concentration-response estimation in Section 4, we first present event study 

evidence on the average effect of wildfire smoke on local air quality and elderly mortality. To do so, we 

collapse smoke shocks of various magnitudes (Section 2.2) into a single smoke event index, and estimate 

how air pollution and elderly mortality rate respond to these smoke events. 

 

3.1 Estimation Equation 

   Our goal is to model and estimate how ground-level air pollution and mortality rate change as a 

function of time since smoke hits an area. Using observations for each county c and date t, we estimate the 

following event study specification: 

 

Yct = ∑ βd ⋅ SmokeIndexc,t−d
20
d=−20 + αcounty×day−of−year + αstate×year−by−month + εct      (1) 
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The key independent variable is SmokeIndexc,t−d, defined as a sum of scaled smoke shocks in county c on 

date t. The scalars are chosen to approximate the same-day effect of each type of shock on ground-level 

PM2.5, so that by construction, a 1-unit increase in the SmokeIndex will correspond to an increase of 

approximately 1 µg/m3 in ground-level PM2.5 on the day of the event.4 This scaling facilitates interpreting 

the effects of a smoke index event over time and across outcomes.  

   The key event study parameters of interest in equation (1) are the βd’s, each representing the effect 

of smoke observed on date t − d on date t’s outcome. The βd’s therefore represent changes in the outcome 

variable from 20 days before to 20 days after the smoke-event day. Outcomes Yct are ground-level PM2.5 

(µg/m3) and mortality (deaths per million). Observations are weighted by the Medicare population in county 

c on date t, and standard errors are clustered at both the county and date levels. 

   The regression equation includes two main sets of fixed effects. The county-by-day-of-year fixed 

effects (αcounty×day−of−year) control flexibly for county-specific seasonal correlations between smoke, 

pollution, and mortality. These fixed effects essentially ensure that we compare the same county on the 

same day of the year, but across years with different smoke exposure. The state-by-year-by-month fixed 

effects (αstate×year−by−month) control for state-specific time-varying shocks such as changes in local 

environmental or health policies. Our identifying assumption is that, conditional on the fixed effects, the 

remaining variation in SmokeIndex is as good as random. The event study specification allows us to assess 

the validity of the identifying assumption by inspecting a zero (flat) pre-trend of estimated βd’s.   

   The primary driver of smoke plumes movements is the wind. Winds can transport air pollutants 

other than those generated by the wildfire, such as those from industrial sources. This raises the question 

whether our pollution and mortality estimates capture the pure effects of wildfire smoke. We note that, from 

a purely instrumental variable perspective, it does not matter whether winds carry non-wildfire pollution to 

the county: all it requires is that winds generate significant changes in local air pollution and would not 

influence mortality rates otherwise. However, our concentration-response analysis does rely on the 

assumption that it is wildfire smoke, rather than pollution from other sources, that leads to changes in local 

air quality, for otherwise there is no reason to think thicker smoke plumes would generate larger pollution 

shocks. 

   We address this concern by estimating an augmented version of equation (1) that includes a set of 

60-arc-degree bins of local daily wind directions, each interacted with county indicators, à la Deryugina et 

 
4 We regress PM2.5 on indicators for the smoke shock categories. The index weight for each category is simply its 

corresponding OLS regression coefficient. Appendix Figure A.1 reports these weights.  
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al. (2019). These wind direction covariates capture transported pollution from fixed point sources, e.g., an 

industrial cluster to the north of a county that increases a county’s pollution whenever winds are blowing 

from the north.  In Appendix Figure A.2, we show that controlling for local wind direction variation has a 

limited impact on the event study estimation of pollution responses. This evidence suggests that the smoke 

data does a good job discerning wildfire pollution from other pollution sources. 

     

3.2 Event Study Results  

  Figure 3a summarizes the event study coefficients βd’s from equation (1) when ground-level 

PM2.5 concentration is the outcome variable. PM2.5 increased mildly on the day before the smoke shock, 

peaked on the smoke day (day 0 of the horizontal axis), and quickly returned to the level prior to the smoke 

shock. Note the magnitude of the smoke day PM2.5 increase is 1 µg/m3 by construction of the SmokeIndex 

variable (Section 3.1). The jump in pollution around day 0 suggests that ground-level changes in air 

pollution lines up well with the timing when smoke is detected by the satellite in the same area. Figure 3a 

also shows that, except for the jump, pollution pattern is otherwise flat and stable within the 41-day time 

window, supporting the zero pre-trend assumption that pollution would have followed a stable path in the 

absence of the smoke shock. 

  We now repeat the same analysis but use Medicare mortality rate as the outcome variable. Figure 

3b echoes the pattern in Figure 3a, with a significant increase in mortality rate in the three days following 

a smoke shock. The magnitude of the increase is 0.2 deaths per million Medicare beneficiaries on the 

smoke day, and a total increase of about 0.6 deaths per million beneficiaries over the next 3-day period. 

The graphical pattern suggests the zero pre-trend assumption also holds in the mortality context, with most 

of the βd’s coefficients move around zero except for the significant jump following the smoke day. 

  Two other data patterns bear highlighting. First, the initial increase in mortality around the smoke 

day is not compensated by subsequent mortality reductions within the 20-day post window we examine. 

This suggests that smoke’s damage on mortality does not occur through “displacement,” where the smoke 

shock would expedite deaths of already-sick individuals by a short period of time, therefore having limited 

welfare implications from a medium- or long- run perspective. Second, smoke shocks raise both pollution 

and mortality for some three days. To capture such dynamic effects, in all subsequent analysis we define 

pollution and mortality variables over a three-day time window. Hence, we would examine how a smoke 

shock on day t changes the average pollution level across days t, t + 1, and t + 2, as well as the total 

mortality within that three-day window. 
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  The key takeaway from the event study figures is that wildfire smoke events provide clean shocks 

to ground-level air quality, with prompt impacts on elderly mortality. We are now ready to decompose the 

SmokeIndex variable and examine heterogeneous mortality impacts of large versus small pollution shocks. 

 

4.  Concentration-Response Estimates 

    In this section, we first estimate how ground-level air pollution and elderly mortality respond to 

wildfire smoke shocks of different magnitudes. Combining the pollution and mortality estimates allows for 

a graphical representation of the concentration-response function (Section 4.1). We then estimate the 

concentration-response function curvature using an instrumental variable approach (Section 4.2) by 

leveraging smaller versus larger smoke shocks. 

  

4.1 How Pollution and Mortality Scale with Smoke Intensity   

   We estimate the relationship between air pollution from wildfire smoke and mortality, allowing 

for the possibility that the relationship may be nonlinear in the size of the pollution shock. We estimate the 

following specification to capture arbitrary nonlinearity in the effects of larger versus smaller smoke 

shocks: 

Yct = ∑ βs
Y ⋅ 1(SmokeShockct = s)s∈S + Fd∈{1,2}. SmokeShockc,t+d + Ld∈{1,2}. SmokeShockc,t−d +

αcounty×day−of−year + αstate×year−by−month + εct   (2) 

Outcomes Yct are 3-day measures of either ground-level PM2.5 (µg/m3) or mortality (deaths per million).   

The fixed effects are the same as equation (1). The focal independent variables are the indicators 

1(SmokeShockct = s), which measure whether county c was exposed to a smoke shock of intensity s as 

listed in Figure 2b. We control for two leads ( Fd∈{1,2}. SmokeShockc,t+d ) and two lags 

(Ld∈{1,2}. SmokeShockc,t−d) of these smoke shocks to isolate the impact of the shock on date t. The omitted 

smoke shock category is being greater than 1,000 km from a smoke plume. Thus, the coefficients βs
Y 

describe the effect on outcome Y of being exposed to a smoke shock of intensity s, relative to having been 

at least 1,000 km in distance from a smoke plume. Observations are weighted by the Medicare population 

in county c on date t, and standard errors are clustered at both the county and date levels. 

   Effects of smoke shocks on ground-level PM2.5 (“first stage”).  We first estimate equation (2) 

using pollution monitor readings as the outcome to yield the impact of each smoke shock on ground-level 
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air quality. Figure 4a plots these results: 3-day ground-level PM2.5 rises with smoke plume proximity, with 

the largest increases for dense plume coverage. These results also demonstrate the usefulness of smoke 

exposure for studying a range of pollution shocks, from increasing PM2.5 by 0.2 µg/m3 to over 16 µg/m3 

– over twice the mean on a reference day. 

   As a side note, the PM2.5 effects reported in Figure 4a can be combined with the frequency of 

each type of smoke shock to calculate the contribution of wildfire smoke to ambient PM2.5 over the sample 

period. Specifically, we calculate 

∑ β̂s
PM2.5 ⋅ Pr(SmokeShockct = s)s∈S   

where β̂s
PM2.5  is the estimated PM2.5 effect from smoke shock s, and Pr(SmokeShockct = s)  is the 

average fraction of days on which this type of smoke shock occurs, as reported in Figure 2b. This sum 

equals 2.2 µg/m3 (95% CI, 1.8–2.7 µg/m3). Compared to the average daily PM2.5 of 9.6 µg/m3, these 

results imply that smoke accounts for 23% of ambient daily PM2.5 in the U.S. in our sample. These findings 

complement EPA National Emissions Inventory estimates that wildfires produced 18% of PM2.5 emissions 

in 2007–2017.5  

   Effects of smoke shocks on mortality (“reduced form”). Next, we estimate equation (2) using 

3-day mortality as the outcome. Figure 4b plots these results: 3-day mortality rises with smoke plume 

proximity and the density of smoke plume coverage. As we did with the pollution effects, we combine the 

mortality effects of each smoke plume shock with the frequency of each shock to calculate that the average 

daily effect of smoke on mortality is 0.98 elderly deaths per million, or 358 deaths per million per year. 

Compared to an average annual mortality rate of 44,200 per million elderly, wildfire smoke accounts for 1 

out of every 125 (0.8%) elderly deaths. Scaled by the Medicare population of 48 million in 2017, this 

corresponds to 17,300 premature elderly deaths per year. 

   A standard way to assess the annual mortality cost of wildfire smoke is to multiply the number of 

excess deaths by a value of a statistical life (VSL). The EPA recommends using a VSL of $9.8 million 

($2021), which yields an estimated mortality cost of wildfire smoke of about $170 billion per year. A 

potential weakness of the EPA approach is that it does not adjust for the fact that decedents may have 

shorter than average remaining life expectancy. As an alternative approach, we assume that those dying 

prematurely from wildfire smoke would have lived an additional 3.5 years, based on the estimated life 

 
5 See https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data  

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
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years lost from those dying of acute PM2.5 exposure (Deryugina et al., 2019). Using a value of $100,000 

per life year lost yields an estimated mortality cost of wildfire smoke of just over $6 billion annually. 

   By comparison, wildfires account for $617 million in annual damages to structures and cost an 

additional $3.5 billion in federal and state suppression and protection efforts (National Institute of 

Standards and Technology, 2017). While these losses and costs are large, they are smaller than the 

estimated $6–$170 billion in the annual mortality cost of the drifting smoke. 

   Concentration-response relationship between mortality and PM2.5 (“2SLS”). We now 

combine the PM2.5 dose effect of each wildfire smoke shock with its corresponding mortality effect to 

trace out a concentration-response relationship between mortality and PM2.5. The results are shown in 

Figure 4c. Each point on this curve corresponds to one of the 9 smoke shocks included in equation (2). The 

horizontal position of the point for smoke shock s is given by the “dose” effect β̂s
PM2.5 of the shock, while 

the vertical position is given by the mortality effect β̂s
Mortality

.  

   Three characteristics of the concentration-response relationship emerge. First, it is increasing and 

monotonic, meaning that larger pollution shocks lead to larger mortality increases. Second, the curve is 

concave, implying that large air pollution shocks have proportionally smaller mortality effects than smaller 

air pollution shocks. Third – and an implication of this concavity – is that small pollution shocks are 

detrimental to health, suggesting that incremental improvements in air quality are large. In fact, these 

findings suggest that the benefits from additional air quality improvements may grow as the air becomes 

cleaner. 

 

4.2 Instrumental Variable Estimation 

    In the previous section, we estimated the first-stage dose effects of smoke shocks of varying 

intensity, along with the reduced form effects of these same shocks on mortality outcomes. The slope of 

the resulting concentration-response curve (Figure 4) can be interpreted as an instrumental-variables (IV) 

estimate of the effect of PM2.5 on mortality. We can directly estimate the slope over a given portion of the 

curve using two-stage least squares (2SLS) regression by using smoke shocks as instruments, and only 

excluding the smoke instruments that lead to PM2.5 effects in the desired range. Specifically, we estimate 

 

3-day Mortalityct = βIV ⋅ 3-day PM2.5ct + SmokeShockct ∉ Sexcluded + Fd∈{1,2}. SmokeShockc,t+d +

Ld∈{1,2}. SmokeShockc,t−d + αcounty×day-of-year + αstate×year-by-month + εct   (3) 
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via 2SLS, instrumenting for 3-day PM2.5 using a selection of smoke shocks in Sexcluded. We estimate 

equation (3) using three different sets of excluded instruments: large shocks (light, medium, or thick smoke 

coverage), small shocks (not covered by smoke, but within 1,000 km of a plume), and all shocks. 

Observations are weighted by the Medicare population in county c on date t, and standard errors are 

clustered at both the county and date levels. 

   The results of estimating equation (3) are shown in Table 1a. Column (1) reports that, for large 

pollution shocks, one additional unit (µg/m3) of 3-day PM2.5 corresponds to an additional 0.18 deaths per 

million over a 3-day window. This value aligns with average slope of the upper end of the concentration-

response curve in Figure 4. Column (2) reports that, for smaller pollution shocks, each additional unit of 

PM2.5 corresponds to an additional 0.64 deaths per million. Column (3) reports that when averaging across 

both large and small pollution shocks by using all smoke shocks as instruments, each unit of PM2.5 

corresponds to an additional 0.37 deaths per million, on average. 

   We make three observations about the IV estimates. First, the differences in the estimated effect 

of an additional unit of PM2.5 varies substantially based on whether it comes from smaller versus larger 

pollution shocks. The effect of an additional unit of pollution from a small shock is over 3.5 times as large 

as that of an additional unit of pollution from a large shock. Moreover, these differences are statistically 

significant: the 95% confidence intervals of estimates in columns (1)–(3) of Table 1a are non-overlapping. 

   Second, we consider how the effects of pollution from wildfire smoke compare to prior estimates 

of the effects of PM2.5 pollution. To do so, we compare our IV estimates to those from Deryugina et al. 

(2019), who use daily variation in wind direction to estimate the effects of PM2.5.  Because Deryugina et 

al. (2019) relate 3-day mortality to 1-day PM2.5, we estimate a version of equation (3) using 1-day PM2.5 

in lieu of 3-day PM2.5 to make the interpretation of our estimates comparable. We report the results in 

Table 1b. Columns (1) through (3) show that relating our mortality effects to 1-day PM2.5 results in 

estimates that are about twice as large as when relating them to 3-day PM2.5. This is as expected, since 

about half of the 3-day PM2.5 effect occurs on the first day. Column (4) reports the wind IV results from 

Table 2 of Deryugina et al. (2019). That estimate is nearly identical to the estimate in column (3), based on 

using all smoke shocks, suggesting that the mortality effects of smoke are similar on average to the 

mortality effects of PM2.5 from other sources. 

   A third observation about the IV estimates using smoke shocks is how they compare to an 

observational estimate of the relationship between PM2.5 and 3-day mortality. We estimate equation (3) 

via OLS, modified to exclude the SmokeShockct controls and instead controlling for 2 leads and lags of 

observed PM2.5. The results are reported in column (4) of Table 1a: each additional unit of PM2.5 
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corresponds to an additional 0.16 deaths per million over 3 days. Interestingly, the OLS result is very 

similar to the IV result based on large pollution shocks. Because OLS can be thought of a weighted average, 

with larger weights where there is more variation in treatment exposure, these findings indicate that one 

reason OLS estimates of pollution exposure may be smaller than IV estimates is because they place more 

weight on large pollution shocks. 

   As a final exploration of IV versus OLS estimates, we estimate an observational version of the 

concentration-response curve. To do so, we estimate the same observational equation as before (used to 

generate the result in column (4) of Table 1a), but we replace the continuous measure of PM2.5 with bins.   

The results, reported in Appendix Figure A.3, reveal a concentration-response function that has similar 

curvature to the response function estimated using variation in pollution from smoke shocks. 

  

5. Conclusion  

   Our analysis estimates, for the first time, a causal concentration-response relationship between air 

pollution and health using quasi-experimental exposures to wildfire smoke shocks of varying size. Our 

analysis employs a 100% sample of elderly Medicare beneficiaries, making it geographically and 

demographically representative of the US elderly. We find strong evidence that the concentration-response 

relationship is concave, with the marginal impact of large shocks being smaller than the marginal impact 

of small ones. The implied shape of the concentration-response relationship is similar whether it is 

estimated using our preferred IV specification or an OLS approach. 

   The concave relationship between pollution exposure and health that our analysis high- lights is 

important for air pollution policy, which tends to focus on the largest pollution events and the most polluted 

areas. Furthermore, air quality regulations in the United States frequently assume a threshold level of 

exposure below which there are no adverse health effects (McGartland et al., 2017; Castle and Revesz, 

2018; National Research Council, 2009). Concavity of the concentration-response relationship calls into 

question the justification for these views. Our analysis indicates that smaller shocks in less polluted areas 

should not be ignored. The marginal benefit of preventing such exposure events may, in fact, be larger than 

that of policies aimed at larger shocks. To the extent that these small shocks may be more frequent than 

larger ones, this makes the consideration of smaller exposure/cleaner areas even more important. In 

addition, our approach enables us to directly address the question of whether a threshold level of exposure 

exists, and our finding of the largest marginal harm at the smallest levels of pollution suggests that the 

existence of a safe threshold for air pollution exposure should be rejected. 
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   Our analysis also has implications for the question of whether wealthy countries such as the Unites 

States, which already have relatively clean air, should continue to work toward reducing air pollution even 

further, or whether funds invested in reducing pollution could be redirected to other uses where they would 

have a larger impact on health. The fact that smaller shocks and/or exposures in cleaner places have a larger 

marginal impact on health suggest that continuing to devote resources to pollution abatement in these places 

may be justified. In fact, the aggregate benefits to moving an area from “very clean” to “extremely clean” 

may be larger than a similar-sized reduction in average pollution levels in more polluted areas. From a 

global perspective, our results have important implications for thinking about environmental justice, since 

they suggest that poorer countries with more polluted air may have smaller marginal benefits from pollution 

reduction despite having larger potential benefits in the aggregate from reducing pollution to the levels 

found in richer nations (World Health Organization et al., 2016).  
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Figures and Tables 

Figure 1: Role of the concentration-response function for optimal pollution abatement 

 

(a) Increasing marginal cost of pollution         (b) Decreasing marginal cost of pollution 

Notes: Traditional conceptual framework for economic analysis of marginal cost versus marginal benefits of pollution 

abatement. Adapted from Pope III et al. (2015). 
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Figure 2: Wildfire smoke shocks 

  

       (a) Smoke plumes on 2013-8-22                                      (b) Distribution of smoke shocks, 2007-2017 

 

(c) Number of days per year with smoke plume coverage, 2007-2017 

Notes: Panel (a) shows satellite-based wildfire smoke plume contours of light, medium, and thick smoke as captured 

by the NOAA Hazard Mapping System on August 22, 2013. Much of this smoke is linked to the Rim Fire, which 

started on August 17, 2013, and stands as the 10th largest wildfire on record in California. Panel (b) shows the 

distribution of exposure to various smoke shocks among daily county observations in the sample. The distribution is 

weighted by county Medicare population. The smoke shock categories listed here are mutually exclusive. Panel (c) 

shows the geographic distribution of days of smoke plume coverage per year across counties during the sample period, 

2007–2017. The population-weighted average is 38 days. 
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Figure 3: Event study of wildfire smoke on pollution and mortality 

 

(a) PM2.5 

 

(b) Elderly mortality 

Notes: The figure reports event-study estimates from equation (1). Each estimate reflects the effect of a smoke index 

event in county c on date t on ground-level PM2.5 (panel a) and deaths per million (panel b) on the date of the event 

(day 0 on the graph) and up to 20 days before (negative day values) and after (positive day values) the event. 

Regressions are weighted by the Medicare population in county c on date t. Whisker lines reflect 95% confidence 

intervals based on standard errors are clustered at both the county and date levels. 
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Figure 4: Concentration-response function: elderly mortality vs. PM2.5 

 

  
(a) PM2.5 

 
(b) Elderly mortality 

 
(c) Concentration-response function 

Notes: The figure reports estimated effects of exposure to smoke shocks of varying intensity using equation (2). Panel (a) reports 

effects on ground-level PM2.5 (µg/m3), and panel (b) reports effects on 3-day mortality (deaths per million). Each estimate reflects 

the effect of being exposed to a smoke shock of intensity s, relative to having been at least 1,000 km in distance from a smoke 

plume. Regressions are weighted by the Medicare population in county c on date t. Shaded areas reflect 95% confidence intervals 

based on standard errors are clustered at both the county and date levels. Panel (c) shows the concentration-response relationship 

between PM2.5 and mortality caused by wildfire smoke shocks of varying intensity. Each point on this curve corresponds to one 

of the 9 smoke shocks included in equation 2. The horizontal position of the point for smoke shock is given by the “dose” effect 

of the shock (panel a), while the vertical position is given by the mortality effect (panel b). 
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Table 1: Instrumental Variable (IV) estimates 

 

 
(a) 3-day effects, compared with OLS 

 

 

 
(b) 1-day effects, compared with Deryugina et al. (2019) 

 
Notes: Panel A reports IV estimates of the relationship between 3-day PM2.5 (µg/m3) and 3-day mortality (deaths 

per million). Estimates reported in columns (1)-(3) come from equation (3), which includes controls for county-day 

and state-year-month fixed effects and 2 leads/lags of all smoke shocks. The OLS estimates in column (4) comes 

from replacing smoke shocks with PM2.5 in equation (3). Panel B reports IV estimates of the relationship between 

1-day PM2.5 (µg/m3) and 3-day mortality (deaths per million). Estimates reported in columns (1)-(3) come from 

equation (3), which includes controls for county-day and state-year-month fixed effects and 2 leads/lags of all smoke 

shocks. Wind IV results in column (4) comes from Table 2 of Deryugina et al. (2019). Standard errors are clustered 

at the county and date levels. 

 

 

 

 

 

IV design: Large shocks Small shocks All shocks OLS 

(1)  (2)  (3)  (4) 
 

Dependent variable: 3-day deaths per million 
 

3-day PM2.5 0.18*** 

(0.05) 

0.64*** 

(0.09) 

0.37*** 

(0.04) 

0.16*** 

(0.02) 

 [0.08, 0.28] [0.46, 0.82] [0.28, 0.45] [0.12, 0.20] 

Excl. smoke instruments Large Small All N/A 

Incl. smoke instruments None Large None N/A 

F -statistic 5880.1 2417.2 3726.7 N/A 

Dep. var. mean 354.7 354.7 354.7 354.7 

Obs. 2,445,503 2,445,503 2,445,503 2,445,503 

 

IV design: Large shocks 

(1) 

Small shocks 

(2) 

All shocks 

(3) 

Wind 

(4) 

Dependent variable: 3-day deaths per million 

1-day PM2.5 0.31*** 1.06*** 0.62*** 0.69*** 
 (0.09) (0.15) (0.08) (0.06) 

 [0.13, 0.49] [0.76, 1.36] [0.47, 0.78] [0.57, 0.80] 

Excl. smoke instruments Large Small All N/A 

Incl. smoke instruments None Large None N/A 

F -statistic 13783.5 5998.5 8962.5 298 

Dep. var. mean 357 3579 357 385 

Obs. 3,478,165 3,478,165 3,478,165 1,980,549 
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Appendix Figures and Tables 

 

 

Figure A.1: Weights for Smoke Index Construction 

 

 
Notes: The figure reports weights used to aggregate smoke shocks to the SmokeIndex variable in equation (1). We regress PM2.5 

on indicators for the smoke shock categories. The index weight for each category is the corresponding OLS regression coefficient. 

 

 

Figure A.2: Event study of wildfire smoke on pollution with Additional Wind Controls 

 

 
Notes: The figure reports event-study estimates from equation (1). Each estimate reflects the effect of a smoke index 

event in county c on date t on ground-level PM2.5 on the date of the event (day 0 on the graph) and up to 20 days 

before (negative day values) and after (positive day values) the event. “Wind controls” include a set of 60-arc-degree 

bins of local daily wind directions, each interacted with county indicators. Regressions are weighted by the Medicare 

population in county c on date t. Whisker lines reflect 95% confidence intervals based on standard errors are clustered 

at both the county and date levels. 
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Figure A.3: Comparison of OLS versus IV Concentration-Response Curves 

 

 
Notes: The “IV” curve repeats the one in Figure 4c. The “OLS” curve plots the average daily mortality rate within five (equal) bins 

of daily PM2.5 levels, using the same county-daily estimation sample underlying column 4 of Table 1a.  


