
Impacts of Electricity Quality Improvements:
Experimental Evidence on Infrastructure Investments*

Robyn C. Meeks† Arstan Omuraliev‡

Ruslan Isaev§ Zhenxuan Wang¶

March 11, 2022

Abstract

Hundreds of millions of households depend on electricity grid connections pro-
viding low quality and unreliable services, which is a barrier to development. We
investigate the impacts of and residential consumer response to electricity quality
improvements in Kyrgyzstan through the randomized installation of smart meters,
which utilities can install to improve service quality. Voltage fluctuations were nearly
eliminated among the treated households. Billed electricity consumption increased
during peak months post-intervention. Consistent with this, treated households, par-
ticularly renters, significantly increased electric heating. Treated households made
significantly more energy efficiency investments, potentially mitigating their electric-
ity increases post-intervention. Consumer welfare gains were approximately 8 USD
per household per year.
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1 Introduction

Although the number of people with electricity access has increased during the 21st

century, poor electricity service quality remains a persistent problem in many develop-

ing countries (Trimble et al., 2016; Zhang, 2018). Hundreds of millions of households

depend on grid connections that provide low-quality and unreliable electricity services

(Day, 2020). This is problematic for development, as low-quality and irregular electricity

services may limit consumption of electricity services and attenuate the economic ben-

efits from grid connections (Pargal and Ghosh Banerjee, 2014; Samad and Zhang, 2016;

Timilsina et al., 2018; Zhang, 2018). With this in mind, international and development

organizations increasingly emphasize improving electricity service quality.1

Understanding residential consumers’ responses to changes in electricity quality is

important. Pro-poor growth in developing countries is expected to result in greater house-

hold appliance ownership and increased residential electricity demand (Wolfram et al.,

2012); however, appliance ownership and use – and therefore the demand for electric-

ity services – are also correlated with electricity quality (McRae, 2010; Jacome et al., 2019).

Recent evidence suggests a substantial willingness-to-pay for improved electricity service

quality (Alberini et al., 2020; Deutschmann et al., 2021; Meles et al., 2021). If improve-

ments in electricity quality result in greater consumption of electricity services, then there

are implications not only for household welfare, but for the environment and climate

change as well (Jayachandran, 2021).

This paper reports results from a randomized experiment that was implemented in

the Kyrgyz Republic and designed to provide causal evidence on the benefits from – and

consumer response to – electricity quality improvements. The setting is a lower-middle-

income country in Central Asia that suffers from electricity quality issues common to

many developing countries. The randomized treatment was an infrastructure upgrade

1For example, Sustainable Development Goal 7.1 of the United Nations calls for “affordable, reliable and
modern energy services” (United Nations, 2020).
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within the local electricity distribution system: smart meters installed at residential loca-

tions.

Utilities increasingly install smart meters to address a number of electricity sector

challenges and in an effort to transition to a smart grid.2 Sector experts (Sprinz, 2018),

electricity utilities (see, e.g., Duke Energy Progress, 2020; BC Hydro, 2016), governments

(U.S. Department of Energy, 2014), and multi-lateral development banks (ESMAP, 2019)

argue that such investments can improve reliability as well as power quality.

Smart meters, through high-frequency energy readings (i.e., readings occur often)

and alarms indicating the location and timing of outages and poor service quality events

(i.e., voltage fluctuations), can facilitate service quality improvements, eradicating ”dis-

ruptions in voltage or frequency” (Joskow, 2012). How the smart technology is used and

its potential to improve service quality will depend on the context. A survey of employ-

ees across 3 electricity utilities in the Kyrgyz Republic – all with smart meters installed

within a portion of their distribution network – revealed that the majority of respondents

believed smart meters mitigate appliance breakage due to voltage problems and reduce

consumer complaints (Isaev et al., 2022).3

In this paper, we first document an electricity service quality improvement following

smart meter installation and then estimate consumers’ responses to these electricity qual-

ity improvements in terms of their billed electricity consumption, household appliance

ownership, and energy efficiency investments. Given we expect that renters may not in-

cur the full cost of changes in electricity bills (if, for example, they pay a fixed monthly

sum to their landlords that covers utility bills), we test for heterogeneous impacts by

home ownership status. We conclude by estimating the consumer welfare gains from the

electricity quality improvements.

2China leads smart meter installations, with 469 million units installed as of 2017 (Largue, 2018). The
86 million smart meters installed in the United States covered roughly half of the country’s electricity cus-
tomers in 2018 (U.S. Energy Information Administration, 2019b). More recently, additional countries have
announced smart meter plans; for example, India plans to install 250 million meters (Singh, 2020).

3In contrast, the roll-out of smart meters in Texas significantly reduced duration of outages within the
state (Meeks et al., 2022).
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The randomized experiment was designed to overcome endogenous electricity qual-

ity that is often mutually determined by local neighborhood characteristics. In collabo-

ration with an electricity utility, 20 neighborhoods were selected within one city. Each

neighborhood receives electricity services via a transformer.4 These transformers, and

the approximately 1,600 households that they serve, were randomly assigned to treat-

ment or control status. At the end of summer 2018, smart meters were installed at all 798

houses in the treatment group. These replaced the houses’ old meters, which did not pro-

vide two-way communication with the utility, send alerts of poor service quality events,

or automatically shutdown household connections when voltage fluctuates. The control

houses, 846 in total, retained their old meters. Electricity prices remained the same across

both groups during the study period.

A unique combination of datasets permit us to overcome typical challenges in re-

searching electricity service quality. Limited data and utilities’ lack of incentive to report

on electricity quality measures makes measuring changes in outages and voltage fluc-

tuations difficult. As a result, most prior economics research on electricity quality has

either employed data on self-reported electricity quality or used electricity shortages as

a proxy for service quality. Here, we measure electricity service quality using data ob-

tained at frequent intervals from additional smart meters installed at all transformers in

the study area. These data provide objective outcome measures for both the treatment

and control groups that are separate and distinct from the house-level intervention. In

addition, baseline and follow-up surveys provide self-reported measures of households’

electricity service quality, as well as data on household appliances and energy efficiency

investments. These datasets are complemented by utility data on monthly household

billed electricity consumption.

After confirming that the smart meters led to service quality improvements – in the

form of fewer voltage fluctuations – we estimate the household response with respect to

4Transformers are a crucial component of the electrical grid, converting high-voltage electricity to us-
able, low-voltage electricity for household consumption (Glover et al., 2011).
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consumption of electricity services. We find that treated households’ monthly billed elec-

tricity consumption significantly increased, by 50.6 kWh per month during peak demand

months (November to March), when many households use electric heaters. In compar-

ison to the baseline control group mean of 806.2 kWh per month, this increase is tech-

nically and statistically significant. Billed electricity consumption did not significantly

change during the off-peak months (April to October). The increase in billed electricity

consumption of treated renters is almost 5 times that of treated homeowners.

These increases in peak months are consistent with unmet demand prior to the in-

tervention, followed by improved electricity service quality and greater consumption

thereafter. Prior to the intervention, electricity service quality was most problematic dur-

ing these peak demand months, when voltage fluctuations occurred frequently. As a

result, these months are the time when there is more room for quality improvements.

Post-intervention during peak demand months, households consume a greater quantity

of electricity services due to electricity being available for more hours per day within

the standard voltage range. The extent to which improved electricity quality results in

changed residential consumption of those services depends on additional factors, such as

the appliances owned and used, as well as the house’s energy efficiency.

We investigate potential explanations for these effects on billed electricity consump-

tion, including the heterogeneous response of renters and homeowners. The increase

during peak months could result from greater use of existing appliances (due to the ad-

ditional hours of quality services sufficient to power those appliances) or investments in

new appliances (i.e., more appliances purchased and used). We find evidence of the lat-

ter.5 Treated households’ ownership of electric heaters significantly increased after the

electricity quality improvement and, consistent with the billed electricity consumption

results, that increase in electric heaters was 2.4 times greater among home renters than

it was among homeowners. Further, we find treated households were also more likely

5Without appliances individually monitored, we cannot rule out the former explanation.
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than control households to have made an energy efficiency improvement – window re-

placements, which can increase a building’s retention of heat in the winter. This home

weatherization, in conjunction with the common residential use of electric heating, im-

plies that the increase in peak season billed electricity consumption would have been

even larger in the absence of increased energy efficiency.

To conclude, we estimate consumers’ welfare gains from electricity quality improve-

ments. During the five peak months of the first year, the gains from electricity quality im-

provements among treated households is 7.64 USD. We provide further support for these

results by ruling out alternative channels for billed electricity consumption increases.

This focus on a metering intervention to improve electricity quality differs from

prior economics research. In developed countries, researchers have investigated smart

meters as a vehicle for other interventions, such as facilitating time-varying electricity

prices or providing households with real-time information on their electricity consump-

tion through in-home displays (see, e.g., Wolak, 2011; Jessoe and Rapson, 2014; Ito et al.,

2018). In developing countries, research has addressed the impacts of technological in-

terventions in local electricity distribution systems, such as metering (McRae, 2015a; Jack

and Smith, 2020) and aerial bundled cables (Ahmad et al., 2022), on utility finances and

consumer bill payment. In our study setting, there are no changes in pricing or in-home

displays to provide additional consumer information as in the former studies, nor is this

a new transition from unmetered to metered consumption or a shift in the timing of bill

payment (from post- to pre-payment) like the latter studies. Further, the utility did not

integrate the smart meters into the billing system, so meter readers continued to both read

and deliver bills throughout the study. As a result, the primary impacts of this interven-

tion ex ante were expected to be via electricity quality improvements.

Broadly, this paper contributes to experimental research on the impacts of improving

both delivery of public services (Duflo et al., 2012; Dhaliwal and Hanna, 2017; Das et al.,

2016; Callen et al., 2016; Banerjee et al., 2018; Muralidharan et al., 2018) and infrastructure
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(Gonzalez-Navarro and Quintana-Domeque, 2016). More specifically, this research adds

to our understanding of the role of service quality in electrification and development. By

focusing on residential consumers, this paper complements existing research estimating

the economic impacts of electricity shortages (Fisher-Vanden et al., 2015; Allcott et al.,

2016; Cole et al., 2018; Hardy and Mccasland, 2019) and reliability (Mahadevan, 2021)

on firms. Although firms can adapt to low service quality through investments in self-

generation (Steinbuks and Foster, 2010), households’ responses likely differ from firms

given the high cost of self-generation.

Providing evidence of consumer gains and responses – with respect to increased elec-

tricity consumption, appliance investments, and energy efficiency upgrades – following

electricity service quality improvements, our study underscores two important sources

of heterogeneity in understanding the role of electricity services in development: hetero-

geneous electricity service quality and differential responses to these services by home

ownership.6 These sources of heterogeneous impacts and responses to electricity services

are important given the low returns to electrification previously found in some settings

(Lee et al., 2020; Burlig and Preonas, 2016), but not others (Dinkelman, 2011; Lipscomb et

al., 2013; Rud, 2012; Van de Walle et al., 2013; Usmani and Fetter, 2019; Lee et al., 2020;

Burlig and Preonas, 2016; Kassem, 2021; Meeks et al., 2021). Further, by investigating

energy efficiency as a channel for household response, we complement research on the

impacts of residential energy efficiency (see, e.g., Davis et al., 2014, 2020; Carranza and

Meeks, 2021) and contribute to research on the drivers of energy efficiency investments

in developing countries (Fowlie and Meeks, 2021; Beattie et al., 2021).

The paper proceeds as follows. Section 2 explains electricity quality and demand for

electricity services, as well as the role of smart meters. Section 3 details the study set-

ting and the experimental design. Section 4 describes data sources and presents baseline

checks. Section 5 presents the estimated impacts of smart meters on electricity service

6A homeowner-renter gap in electric appliance ownership and energy efficiency investments has been
well-documented in developed countries (see, e.g., Davis, 2012, 2021).
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quality and the consumer response. Section 6 presents estimates of the consumer welfare

gains from the electricity service quality improvements and discusses generalizing results

to other settings. Section 7 concludes.

2 Conceptual Framework: Electricity Quality and Demand

In this section, we provide a conceptual framework, which is informed by existing litera-

ture (see, e.g., Klytchnikova and Lokshin, 2009; McRae, 2010, 2015b), as to how electricity

quality changes affect demand for electricity services. A household’s demand for elec-

tricity services is determined by the demand for services from each of the household’s

electrical devices; however, changes in electricity service quality impact the demand for

services from those individual electrical devices. Both outages and voltage fluctuations

can affect the appliances owned, the extent to which the appliances are used, and the

quantity of electricity services consumed. This relationship between electricity service

quality and demand for electricity services is particularly problematic for development,

given service quality is typically worst during times of peak demand, when electricity

generation and distribution systems are insufficient to meet the quantity of electricity ser-

vices demanded. We describe these relationships in further detail here.

We consider two main types of poor electricity service: unreliable service due to

outages and low service quality due to voltage fluctuations. Rationing, which typically

occurs when generation is insufficient to meet demand and commonly referred to as “load

shedding,” did not occur during our study period and therefore is not further discussed

in this section.

2.1 Unreliable Service Due to Outages

An outage is a complete stoppage within the electricity distribution system that prevents

end users’ consumption of electricity services. Outages can be planned or unplanned.
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Planned outages are either for regular repairs and maintenance, which are typically of

limited duration and scheduled for off-peak months, or for electricity rationing. Un-

planned outages are typically due to infrastructure breakage, malfunction, and over-

loaded distribution systems.7 These unplanned outages can be lengthy in duration, last-

ing until replacement parts are purchased and repairs are completed. Absent back-up

generation (i.e., via diesel generators) or battery storage, electrical appliances cannot be

powered during a grid outage.

Beyond the stoppage itself, consumers may respond to outages in ways that further

suppress the quantity of electricity services consumed. They may avoid purchasing cer-

tain appliances (e.g., an electric cooker), if they believe that they cannot often use them

due to frequent outages. Alternatively, consumers may unplug appliances that they own

(e.g., refrigerators) due to concerns that the appliance may be damaged. If service quality

improves, then consumption of electricity services can increase due to greater consump-

tion of the services provided by these household electrical devices.

Consumers may respond behaviorally to changes in electricity quality. First, if con-

sumers respond to the electricity quality improvements by purchasing additional electri-

cal devices, then billed electricity consumption can increase. Alternatively, if consumers

experience a higher electricity bill (i.e., greater than expected or than previously experi-

enced), then they may respond by replacing devices with more efficient models, investing

in other forms of energy efficiency such as weatherization, or changing use behaviors. In

such scenarios, and depending on the magnitude of the energy-saving behaviors relative

to the electricity service consumption increases due to quality improvements, electricity

bills may increase or decrease.

7For example, transformers can overload. Each transformer can transfer a certain maximum electricity
load at any given time, and exceeding that load may cause breakage (Glover et al., 2011).
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2.2 Low Service Quality Due to Voltage Fluctuations

Voltage fluctuations – a spike above or a drop below the standard acceptable voltage

range – can result from faulty and old distribution infrastructure, insufficient mainte-

nance and repairs, or demand that exceeds the infrastructure’s capacity.

Voltage fluctuations can affect the quantity of electricity services demanded via mul-

tiple channels, some of which operate through the same mechanisms as outages. First,

low voltage means that power is insufficient to run certain appliances, in which case

the services provided by that appliance cannot be consumed. Second, voltage spikes may

damage appliances, rendering them unusable. Consumers may be particularly concerned

about potential damage to expensive appliances (e.g., a refrigerator), and hence fewer ap-

pliances may be used or purchased within a household. For example, a household may

not purchase a refrigerator if they think voltage fluctuations will likely damage it or ren-

der it unusable.8 Finally, as with outages, if electricity service quality impacts households’

ability to consume an appliance’s services, then it will also impact their purchase deci-

sions and the portfolio of appliances owned. These channels all result in a lower quantity

of electricity services consumed than under a standard voltage scenario.

There is at least one mechanism through which voltage fluctuations may impact elec-

tricity service consumption differently than in the outage scenario. Some appliances may

function at lower voltages, while providing lower service quality (while using less elec-

tricity). For example, a light bulb may provide lighting services when voltage is low, but

the lighting is less bright than it would be with standard voltage. When certain appli-

ances run at low voltage, they consume fewer kWh per minute of use. If smart meters

result in fewer voltage fluctuations, then we may observe an increase in the quantity of

electricity services consumed.

8A household could purchase equipment, such as a stabilizer, to protect the appliance should voltage
fluctuate; however, we do not see much evidence of this occurring in our data, as discussed later.
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3 Randomized Experiment with Smart Meters

With a history of poor quality electricity services and recent efforts to improve services

with smart meter installations, the Kyrgyz Republic provides a suitable setting for a ran-

domized experiment to test the consumer response to electricity quality improvements.

In this section, we provide background on the country’s electricity sector and then explain

the randomized experiment.

3.1 Electricity Sector in the Kyrgyz Republic

Nearly 100% of Kyrgyzstan’s population is connected to the electrical grid, the result

of large-scale infrastructure construction during the former Soviet Union. Much of the

existing electricity infrastructure dates back to that time (Zozulinsky, 2007).

After 1992, the country’s electricity sector was restructured. Kyrgyzenergo, the state-

owned power company, was incorporated as a joint stock company, with the Kyrgyz gov-

ernment owning approximately 95% of the shares. By 2000 the sector was unbundled by

functionality – generation, transmission, and distribution – resulting in one national gen-

eration company, one national transmission company, and four distribution companies

(World Bank, 2017a). The distribution companies cover distinct territories, purchasing

electricity from the national transmission company and delivering it to residential, com-

mercial, and industrial consumers.

Government regulations dictate the relationship between the distribution companies

and the electricity customers. Per the government’s Decree 576 (”Regulations on the Use

of Electric Energy”), when a new customer connects to the electrical grid, the consumer

and the distribution company (“the supplier”) sign a contract with requirements regard-

ing service quality and payment. The supplier commits to deliver reliable electricity ser-

vice at a consistent voltage (220/280 volts). The supplier installs and retains ownership

of a meter at the customer’s location to track consumption. Consumers can record de-
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viations from the electricity quality standards and any resulting material damages. By

reporting to the government oversight body, the consumer may recover from the supplier

damages that result from a service interruption or voltage fluctuation; however, these his-

torically were difficult to prove. The consumer commits to pay for the electricity services

consumed – as calculated based on monthly meter readings – by a specified date. If pay-

ment is not made, the supplier can charge a daily penalty and eventually disconnect the

consumer from the power supply.

In recent decades, unreliable and low-quality electricity services have been perva-

sive, caused by the poor condition of the energy sector assets, intensive electricity use,

and large seasonal variations in demand. Between 2009 and 2012, distribution companies

reported an average of two outages per hour within their coverage areas (World Bank,

2017b). When electricity is delivered, voltage fluctuations are frequent. In a 2013 sur-

vey, more than 50% of respondents reported voltage problems, and approximately one-

fifth reported damage to electrical appliances from poor electricity quality (World Bank,

2017a).

Electricity consumption has changed since the country’s independence in 1991. The

percentage of total electricity consumption comprised by the residential sector steadily in-

creased, reaching 63% by 2012 (Obozov et al., 2013). These changes are consistent with in-

creasing appliance ownership. Low electricity prices have also contributed to the growth

in residential electricity consumption.9 Currently, consumption in the winter is approxi-

mately three to four times that of summer. This seasonality in consumption is indicative

of the use of electric heating in the winter and the absence of air conditioning in the sum-

mer. As a result of peak demand occurring during the winter, electricity service quality is

typically worst during those months.

9Residential consumers face a two-tiered increasing block price with a non-linearity in the price at 700
kWh per month. Below the cutoff, consumers pay 0.77 Kyrgyz soms (KGS) per kWh. Above the cutoff,
consumers pay 2.16 KGS per kWh. The exchange rate was 69 KGS = 1 USD as of September 1, 2018.
Residential consumers rarely exceed the threshold of the first tier during the summer months.
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3.2 Randomized Experiment

The experiment was implemented in one city, in collaboration with the electricity dis-

tribution company serving it. In this city, the mean temperature during the winter is

between negative 10 and 15 degrees Celsius. Prior to the experiment, a substantial num-

ber of smart meters had been installed in other cities within the country, but not in this

particular city.

The randomized design focused on the last two steps in the electricity distribution

system: neighborhood transformers and residential electricity consumers (illustrated in

Appendix Figure A1).10 Twenty transformers, which each serve a neighborhood of house-

holds, were selected for the project. A map of the 20 transformers shows that they are

all located within a two-square-mile area (Appendix Figure A2). As shown in Figure 1,

transformers were randomly assigned to treatment or control status, with 10 neighbor-

hood transformers in each group. As randomization is at the transformer level, standard

errors are clustered by transformer throughout our analyses. Additionally, due to the lim-

ited number of transformers, we use wild-bootstrapping and randomization inference to

compute alternative p-values for coefficients in our main results.

The treatment occurred at the household level. Houses served by the transformers in

the treatment group (798 houses) received smart meters, and houses served by the control

transformers (846 houses) retained their old meters. The utility replaced the old meters

with smart meters during July and August 2018. Pictures show old meters in comparison

to smart meters (Appendix Figure A3) and a meter installed on the outside of a home

(Appendix Figure A4). Smart meters were affixed where the old meters were previously

installed.

Prices and consumption salience were unaffected by the treatment. Electricity prices

remained constant across groups. The smart meters did not come with any additional

in-home display that could increase consumption information or price salience.

10Residential consumers were identified as those consumers being charged the residential tariff rate.
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The study’s residential electricity consumers reside in either multistory apartment

buildings or single-family dwellings. Eighty percent of these dwellings are owner occu-

pied. The average house in the sample has three rooms. Houses are typically individu-

ally metered. Sixty-five percent of households use electricity for winter heating. Houses

had only modest investments in energy efficiency at the outset, with 20% and 21% of

households using energy-efficient light bulbs and insulation, respectively. Households

did report electricity quality issues, with 47% reporting one or more outage per week and

71% reporting one or more voltage fluctuation per week during winter 2018 (prior to the

intervention). Twenty-one percent of households reported prior appliance damage due

to the poor electricity quality; however, almost no households had equipment to protect

against poor electricity quality, such as electricity generators or stabilizers.

4 Data and Baseline Checks

We employ data from several sources, including baseline and follow-up survey data, util-

ity transformer and billing records, and data from smart meters installed at transformers.

4.1 Primary and Secondary Data Sources

The analyses employ primary and secondary data, which vary in the timing of their cov-

erage relative to the smart meter intervention (as depicted by Appendix Figure A5).

4.1.1 Transformer Smart Meter Data

During summer 2018, approximately 2 to 3 months before the intervention, smart meters

were installed at all 20 project transformers, both treatment and control. These transformer-

level smart meters are independent and distinct from the intervention smart meters in-

stalled at houses. These meters were installed strictly for data collection purposes and

they provide high-frequency objective indicators of electricity theft and electricity qual-
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ity for both the treatment and control groups, regardless of individual household meter

status. These smart meters record “event alarms” indicating problematic events within

the neighborhood covered by the transformer. Alarms can be activated for a number of

reasons, including signs of electricity theft and indicators of poor service quality.11

We create transformer-level variables measuring the incidence of alarms indicating

certain types of problems (i.e., theft, poor quality, and outages). Our categorization of

alarm types is based on documentation provided by the meter manufacturer. We also

create a variable comprising “other” alarms to capture those events that are not indicative

of our main outcomes and that we do not anticipate to be impacted by the intervention.

The incidence of alarms in our data varies greatly by event type (Appendix Table A1).

Of the transformer alarms recorded after the intervention, approximately 60% indicated

electricity voltage problems, 22% indicated power outages, 6% indicated theft, and the

remaining 12% were in the “other” category. The high number of voltage-related alarm

events underscores the extent to which electricity quality is a problem.

4.1.2 Baseline and Follow-up Survey Data

Baseline and follow-up survey data were collected in July 2018 and May 2019, respec-

tively. In each survey round, we sought to survey all 1,644 households within the treat-

ment and control groups. Survey respondents totaled 1,143 for the baseline survey and

1,125 for the follow-up survey. When we include only the households that responded to

both survey rounds the panel dataset includes 880 households.

The baseline survey was brief, designed to limit interaction with households. The

follow-up survey was more extensive, resulting in greater breadth of variables available

for the period after the smart meter installation. Both surveys asked questions on char-

acteristics of the home, quality of electricity services, the set of home appliances owned,

11For example, alarms are activated if power is detected going from a distribution line to a consumer
without a formal connection (an indication that someone is bypassing the meter), if an over-voltage event
(a voltage spike above the standard range) is detected, or if a power failure (outage) is detected.
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and overall household expenditures, among others. Importantly, both survey rounds col-

lected data on perceived electricity quality during the previous January and February,

providing panel data on household perceptions of outages and voltage fluctuations dur-

ing the peak season.

4.1.3 Utility Data

The electricity utility provided several datasets. First, transformer-level data were pro-

vided. These include cross-sectional information on transformer characteristics (age of

transformer, capacity, etc.) and monthly panel data that start in January 2017 and con-

tinue for 33 months, including dates of overhaul maintenance, repairs, and replacements

for all project transformers. Second, the utility provided household-level monthly billed

electricity consumption data from January 2017 through March 2020. These billed con-

sumption data cover periods of approximately 18 months before and after the interven-

tion. The period of analysis ends in March 2020 due to various interruptions associated

with the COVID-19 pandemic.

4.2 Non-Compliance and Attrition

Non-compliance is not an issue in this study. Treatment assignment was at the trans-

former level, and all houses within the treatment group had smart meters installed by the

utility. By law, all electrical connections are required to be metered, the meters – whether

smart meters or the old meters – are legally owned by the electricity distribution com-

pany, and consumer consent is not required for meter changes.

We check the response rates for the treatment and control groups in the baseline

and follow-up surveys and find no differential attrition across groups. Attrition rates

between the baseline and follow-up surveys are 24.3% and 21.7% in the treatment and

control groups, respectively (Appendix Table A2). We also check for differences in the

baseline characteristics of the attritors (i.e., those households in the baseline survey but

15



not the follow-up survey) and non-attritors (i.e., those households in both the baseline

and the follow-up surveys) and find no significant differences (Appendix Table A3).

4.3 Baseline Balance Tests

We test for baseline balance between treatment and control groups using transformer-

level utility data, household monthly billed electricity consumption data, and baseline

survey data.

Table 1 compares the control and treatment groups on characteristics important to

electricity quality. Panel A compares treatment and control transformers across various

characteristics. The transformers are similar with respect to the average number of houses

served (84.6 versus 79.6 households), their average capacity (an average of 381 versus 406

kVA), and their age (33.4 versus 27.9 years). Differences between treatment and control

transformers are not statistically significant. The age of the transformers is reflective of

the country’s overall aging infrastructure. We complement the transformer-level com-

parisons displayed in Panel A with an even study analysis checking for differences in

pre-treatment transformer-level smart meter alarms using the three months of available

data (May, June and July of 2018). We find no pre-intervention differences between the

treatment and control transformers with respect to the monthly number of event alarms

(Appendix Figure A6).

Table 1 Panel B compares the treatment and control households at baseline. There are

no statistically significant differences in households’ reported electricity quality, house

size, use of insulation and energy-efficient light bulbs, heating fuel used, and the use of

technologies to protect against poor electricity quality (e.g., generators and stabilizers).

These comparisons are limited to the 880 households in the balanced panel; however,

similar comparisons for the full 1,143 households surveyed at baseline provide similar

results (Appendix Table A4).

Finally, we also test for balance across treatment and control houses using monthly
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household billed electricity consumption data. Figure 2 graphs pre-treatment billed elec-

tricity consumption. The top panel plots the month-by-month differences between aver-

age electricity bills in the treatment and control groups, without controlling for any other

variables. The graph shows no significant differences in monthly electricity bills before

the intervention. Treatment households have slightly lower average electricity bills in July

2018, which is likely the result of outages required to install the intervention smart me-

ters at these houses. The bottom panel plots the month-by-month average electricity bills

for the treatment and control households. Both groups have similar seasonal consump-

tion patterns; the average monthly electricity consumption in the winter is approximately

three times that in the summer, which is indicative of households using electric heating

during the winter, but not air conditioning in the summer.

5 Effects on Electricity Quality and Consumer Response

In this section, we first confirm that the smart meter installation had the intended effect of

improving electricity service quality. We then present estimates of the consumer response

to smart meters and the electricity quality improvements, including billed electricity con-

sumption, household expenditures, and energy efficiency investments.

5.1 The Effects on Electricity Quality

To estimate the intervention’s effect on indicators of electricity quality, we employ the

data on event alarms from the transformer-level smart meters during the post-intervention

period. The outcome measures are the number of transformer-level events per day indi-

cating either voltage fluctuations or power outages. We estimate the following equation:

Egt = αTreatg + δ′Xg + γt + εgt, (1)
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where Egt is the number of times per day either voltage fluctuations or outage events

are recorded by the transformer smart meter g in time period t. Treatg is an indicator

of transformer treatment status equaling 1 for those randomly assigned to the treatment

status. Xg is a vector of transformer characteristics that could affect electricity service

quality (i.e., the number of households served by the transformer and the transformer’s

technical capacity), and γt are month-by-year fixed effects. Standard errors are clustered

at the transformer level.

Results, presented in Table 2, show significant improvements in electricity service

quality. Column 1 presents results in which the number of voltage fluctuations per day

is the outcome variable. We find significantly fewer voltage fluctuations events per day

in the treatment group than in the control group after the intervention. Comparing the

coefficient on Treatg with the control group mean – our estimate of the counterfactual –

we see that these alarms are essentially eliminated within the treatment group. To put this

in perspective and understand the seasonality of the voltage fluctuations in the absence

of the treatment, we calculate the mean voltage events for the control group by season

and find that there are 2.8 and 2.0 voltage events per day in the heating and non-heating

seasons, respectively. This confirms our understanding that electricity service quality, in

the absence of the treatment, was worst in the peak season.

Column 2 displays results from regressions in which power outages are the outcome

variable. As indicated by the control group mean of 0.518 outages per day, outages were

less problematic than voltage events and therefore had less room to improve. We find no

impact on outages. This lack of a reduction in outages may be tied to the post-intervention

increase in billed electricity consumption, which we discuss in the section on consumer

responses.

To demonstrate that these results hold up to alternative inference methods, we present

p-values from randomization inference with 500 permutations of the treatment status and

wild-bootstrapped standard errors (Appendix Table A5).

18



To check that the voltage fluctuation and outage events – as measured by the transformer-

level smart meters – are indeed picking up variations in the electricity quality experienced

by the households, we perform two additional robustness checks. First, we test the corre-

lation between the transformer-level smart meter voltage fluctuation and outage events

and the household reported electricity quality measures, which were collected via the

follow-up survey implemented at approximately the same time. We find that transformer

smart meter events indicating electricity quality problems are indeed negatively and sig-

nificantly correlated with better household-reported electricity reliability (Appendix Ta-

ble A6), showing that households’ perceived electricity quality and the transformer-level

electricity quality measures are aligned. As expected, theft events are not correlated with

households’ reported electricity quality.

Our second robustness check tests the correlation between the transformer smart

meter events (our outcome measures in Table 2) and events captured by the household

smart meters. This can be done for only the treated households, where the intervention

smart meters are installed. These two measures should not be perfectly correlated, for

multiple reasons. First, household meters do not pick up exactly the same things as the

transformer smart meters. Second, heterogeneity in electricity quality across households

within a transformer’s service area is expected. For example, households located closer

to or farther from the transformer might experience voltage fluctuations differently: for

example, those close to the transformer may be more likely to experience voltage spikes,

whereas those far from the transformer may be more likely to experience voltage drops.

Alternatively, an outage may impact one house served by a transformer or all the houses

within that neighborhood. These two levels of smart meter alarms, however, should be

positively correlated, and they are (Appendix Table A7).

Due to the limited number of transformers included in the study, we can provide only

suggestive evidence on the mechanisms through which electricity quality improvements

occurred (Appendix A2). We note that the difference between the treatment and control

19



groups is that the households in the treatment transformers had smart meters installed.

The results in Appendix A2 suggest that the information provided by the household-level

smart meters direct the utility’s attention to the locations with the worst quality (i.e., with

the greatest need for improvements). To the extent that the transformer-level smart meters

– which were installed on both the treatment and the control transformers for data col-

lection purposes – are also providing information to the utility and directing their efforts,

this would likely downward bias our estimated electricity quality improvements.

We address potential SUTVA concerns. Some might worry that the intervention in

the treatment transformers could direct all utility effort away from the control transform-

ers to the treatment transformers. There were only 10 treated transformers. We argue

that, since this specific utility covers a territory with 7,633 transformers, of which approx-

imately 700 are in this one city, any additional attention provided to the 10 treatment

transformers are not likely to impact the untreated transformers (essentially the remain-

ing 690 transformers) in that city.

5.2 Consumer Responses to Electricity Quality Changes

As detailed in Section 2, the smart meters and the resulting electricity quality improve-

ments could impact billed electricity consumption in multiple ways. These effects play a

role in determining the extent to which consumers benefit from smart meter installation.

5.2.1 Billed Electricity Consumption

Building upon the electricity quality results, we estimate the impact of smart meters on

household billed electricity consumption as follows:

Billigt+1 = β1Treatg × Postt + λi + δt + εigt, (2)
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where Billigt+1 is the monthly billed electricity consumption by household i in transformer

g in month t+ 1, because the bill in t+ 1 reflects the electricity consumption in t. Treatg is

the indicator of transformer treatment status, equaling 1 if the household is treated with

a smart meter and 0 otherwise. The binary variable, Postt, is an indicator equaling 1 for

months after the intervention. Standard errors are clustered at the transformer level.

We run the regressions separately for the heating (November to March) and non-

heating (April to October) seasons, given the heterogeneity in both consumption and

service quality across seasons. November to March is the period of peak electricity con-

sumption and also the time when electricity quality problems are worst.

We then build upon this analysis to assess whether the treatment has differential im-

pacts depending on home ownership status. We modify the equation above to include

the interaction of Treatg times Postt with Owneri, which is a binary indicator variable that

equals 1 if the respondent’s family owns the home and 0 otherwise (i.e., if the respon-

dent’s family rents the house).

The results are presented in Table 3. We find that household billed consumption

significantly increased during the heating season (Column 1). The increase is consistent

with better service quality (i.e., fewer voltage fluctuations), as we found in Section 5.1.

There is no significant impact on billed electricity consumption in the non-heating season

(Column 2). This is consistent with pre-intervention peak season electricity quality being

quite poor, but less room for improvement off-peak. We also use wild-bootstrapping and

randomization inference to compute p-values for the coefficients (Appendix Table A8).

Further, an event study analysis (Appendix Figure A7) also illustrates the impacts on

monthly billed electricity consumption across seasons and over time and shows a statisti-

cally significantly higher billed electricity consumption in treatment households, relative

to control households, during the post-intervention peak months.

These findings support the claim that the increase in billed consumption is due to im-

provements in service quality. To exclude the possibility that the smart meters were just
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making consumers more attentive to their electricity bills and thereby affecting consump-

tion, we check for differential bunching around the tariff discontinuity at 700kWh. When

the increasing block price was introduced in Kyrgyzstan several years before our inter-

vention, the regulator implemented information campaigns to inform residential con-

sumers how their various appliances contributed to their bills and reaching the 700 kWh

cutoff (see example in Appendix Figure A8) and prior research has shown that house-

holds were well aware of the tariff discontinuity (McRae and Meeks, 2016). If the smart

meters were inducing consumers to more closely watch their consumption, then we could

expect to see greater bunching among the treated households just below the 700kWh cut-

off; however, we find no evidence of this behavior (Appendix Figure A9).

We address one potential concern with this estimation: that households with differ-

ent consumption patterns pre-intervention (e.g., during the heating or non-heating sea-

son) will respond differently to the installation of smart meters. As a robustness check to

address this concern, we re-run the regressions controlling for monthly billed electricity

consumption in 2017 (well before the smart meter installation). The corresponding results

are robust to including these controls (Appendix Table A9).

Households can adapt to the improved service quality either behaviorally (e.g., re-

ducing their use of appliances or increasing the amount of electricity stolen) or technolog-

ically (e.g., increasing the efficiency of their appliances or homes). We investigate these

household adaptations further in the following subsection.

5.2.2 Electrical Appliances

Thus far, we have shown that electricity quality improves after the intervention and that

household billed electricity consumption data indicates that households are impacted by

the electricity quality improvements.

To better understand households’ responses to the improvements in electricity qual-

ity, in terms of technological adaptations and expenditures, we utilize household survey
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data,12 which asked about electrical appliance ownership and purchase timing, provid-

ing a panel dataset of these variables. The survey timing is important for understanding

household changes; these follow-up data were collected after the households experienced

the first post-installation peak (winter heating) season, but before the second.

We estimate the impact of treatment on household appliance ownership as follows:

Applianceigt = β1Treatg × Postt + β2Postt + λi + εigt, (3)

where Applianceigt is household ownership of items such as refrigerators, water heaters,

and electric heaters. The indicator variables, Treatg and Postt, as well as household fixed

effects, are defined as before. Standard errors are clustered at the transformer level. We

also run these regressions with the interaction of treatment and home ownership, as we

did with the previous analysis.

Table 4 presents the corresponding results, with Westfall-Young step-down adjusted

p-values for multiple hypothesis testing reported. Additional checks with randomization

inference and wild-bootstrap p-values are in Appendix Table A10. In Panel A, we see

a statistically significant increase in treated household electric heater ownership. This

is consistent with households investing in more electrical appliances in response to the

electricity quality improvements, specifically an appliance that is solely used in the peak

consumption season, when the electricity quality improvements occur. None of the other

appliance categories change significantly between baseline and follow-up.

Panel B, which presents the interaction effects, shows that the increase in the electric

heater ownership is significantly larger among the treated renters than the treated home

owners. This is consistent with the billed electricity consumption results, in which we

found greater increases in the heating season billed electricity consumption among the

renters than the homeowners.
12Without devices monitoring consumption by each individual appliance, we are unable to test specific

behavioral adaptations.
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5.2.3 Energy Efficiency Investments

After witnessing their electricity bills increase during the first heating season, treated

households could increase the efficiency of their homes. With this possibility in mind, we

asked follow-up survey respondents if they made any energy efficiency improvements to

their house since the end of 2018 (i.e., the time of the meter installation).

Using the same estimation equation as we did with appliances, we estimate the im-

pacts of the smart meter intervention on households’ investments in energy efficiency.

Results are presented in Table 5, including Westfall-Young step-down adjusted p-values

for multiple hypothesis testing. We also use wild-bootstrapping and randomization infer-

ence to compute p-values for the coefficients (Appendix Table A11). Treated households

were more likely to report making energy efficiency improvements since the intervention.

Specifically, treated households are significantly more likely to report having replaced the

windows on their homes.

Although thermal improvements may not lead to great gains in some contexts (Davis

et al., 2020), they are in demand in cold weather settings such as ours. Given much of

the housing stock was constructed during the former Soviet Union, original windows

are often a substantial source of heat leakage. Households will at a minimum respond by

placing cellophane (thin plastic sheets) over the windows during the winter (for example,

see photo in Appendix Figure A4). Studies done prior to ours indicated that heating

comfort was a substantial concern (Bergström and Johannessen, 2014) and the dominant

planned home upgrades in the Kyrgyz Republic were replacement of heating systems

and windows, in an effort to increase comfort and save money during the cold weather

months (Bakteeva and van der Straeten, 2015).

We also test as to whether the treated households made smaller-scale improvements

to increase their energy efficiency, specifically energy-efficient light bulbs; however, due

to our limited panel dataset, these analyses are likely under-powered. The coefficient is

positive but is not statistically significant (Appendix Table A12). Ownership of electricity-
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related protective devices and back-up generation is also not affected, although it was also

low within the control group (Appendix Table A14).

6 Consumer Welfare and Electricity Quality Improvements

In this section, we estimate the consumer welfare gains from the electricity service quality

improvements. We then discuss the broader implications of our findings and how they

generalize to other contexts.

6.1 Welfare Estimates

To perform these estimates, we isolate the changes in billed electricity consumption re-

sulting from the voltage fluctuation improvements induced by the household smart meter

installation and the transformer repairs that followed.

This analysis requires the creation of several additional variables not employed in

the earlier analyses. We create an aggregate electricity quality measure using data on

transformer-level alarms and match it with the corresponding households served by each

transformer. As a final outcome measure, we focus on the value of the household billed

electricity consumption during the peak season (i.e., from November to March), as that

was the period of greatest electricity demand and worst service quality pre-intervention.

We calculate the total or monthly average billed electricity consumption during this pe-

riod after the intervention for each household.

Using this post-period data on both electricity quality and electricity bill value, we

estimate the gains from the smart meter installation and the resulting electricity quality

improvements employing an instrumental variable approach. In the first stage, we esti-

mate the effect of the smart meter intervention on electricity service quality as follows:

Qualityig = αTreatg +Xi + εigt, (4)
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where Qualityig is the monthly average number of voltage fluctuation events dur-

ing the heating season experienced by household i served by transformer g. Treatg is

an indicator of transformer treatment status. Xi is a vector of control variables, includ-

ing household characteristics (e.g., number of rooms, home ownership indicator), trans-

former characteristics (e.g., number of household served by the transformer, capacity),

and baseline billed electricity consumption and service quality measures.

In the second stage, we use the predicted change in electricity quality from the first

stage to estimate the impact of improvement in electricity service quality on the house-

hold electricity bill value. We do so as follows:

qig = βQ̂ualityig +Xi + εigt, (5)

where qig is the total or average monetized billed electricity consumption during the heat-

ing season from November 2018 to March 2019 (kWh) for household i in transformer g.

Q̂ualityig is the estimated outcome from the first-stage regression. Xi is the same vector

of control variables as above.

Results are in Table 6. Column 1 contains the results from the first-stage regression:

the impact of transformer treatment assignment on electricity quality. Column 2 provides

the second-stage results: the impact of estimated electricity quality on billed electricity

consumption. The coefficients can be interpreted as the marginal increase in monetized

electricity consumption with respect to the decrease in the monthly average outage or

voltage fluctuation. Based on the regressions in Columns 1 and 2, we estimate that for

the treated households, their returns to electricity quality improvements are 523.4 KGS

(13.085 × 40) over the 5 months period, which is approximately 7.64 USD per household.

Columns 3 and 4 of the table provide a slightly different estimation, resulting in estimated

returns to electricity quality improvements of approximately 9.23 USD per household

over the five month period. We also use wild-bootstrapping to compute p-values for the
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coefficients (Appendix Table A13).

The estimation requires that the exclusion restriction holds, which means that the

intervention impacts electricity bill value only through the electricity quality improve-

ments. We argue that this assumption is reasonable. We discuss three potential concerns

regarding the exclusion and provide supporting evidence as to why the exclusion restric-

tion holds. First, we might be concerned that the smart meters are able to “read” elec-

tricity consumed at the low voltage and therefore can impact the electricity consumption

through a channel other than changes in reliability. However, these meters automatically

shutdown if voltage drops or spikes outside of preset voltage bounds set on the meter.

This feature of the smart meters therefore minimizes the potential for this channel to af-

fect electricity bills. Second, it is possible that households value these voltage bounds set

on the smart meters and the protection (i.e., protecting appliances from damage) that the

automatic shutdown function provides. This expectation of protection against voltage

spikes and drops may encourage households to invest in new appliances. If this were the

case, then we would expect that either households ex ante would have invested in equip-

ment that protects appliances or we should see that treated households invest less in such

protective equipment than control households post-intervention. We saw no evidence of

the former in our baseline summary statistics (i.e., Table 1 showed almost no baseline use

of stabilizers, one of the primary available forms of appliance protection). We tested for

the latter (Appendix Table A14) and found that adoption of such equipment is low in

both groups, and the difference between the two is not statistically significant. Third, the

increase in billed electricity consumption could be mechanical, due to a reduction in elec-

tricity theft within the treatment group rather than an improvement in electricity quality.

If households steal less electricity as a result of the smart meters, then their electricity bill

could increase. We use data from the transformer-level smart meters, which also alert

the utility of suspected theft events to check whether the treated and control groups had

differences in the frequency of theft events post-intervention. We find no evidence that
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the intervention impacted theft-related measures (Appendix Table A15).

6.2 Discussion of Estimates and Generalizability

To put the estimated consumer welfare gains from electricity quality service improve-

ments into context, we discuss the experiment setting and compare the gains to the costs

of infrastructure improvements. Lastly, we consider how the results may generalize to

other settings.

First, we aggregate the consumer welfare gains at the transformer level to put these

results in context. Assuming 79.6 households per transformer (based on the treatment

transformer baseline statistics), we calculate the aggregate consumer welfare gains to be

between 608 to 735 USD per transformer in the first year post-intervention. Comparing

these gains to the cost of substantial transformer maintenance (approximately 2,190 USD)

or a complete transformer overhaul (approximately 4,670 USD), provides some context

for these gains. However, we are careful in this comparison, given this paper is not at-

tempting a utility-perspective cost-benefit analysis of smart meters.

These gains are based solely on the additional electricity consumed and therefore

do not account for the potentially larger benefits acquired from the additional electricity

services consumed. For example, there is increasing evidence on the association between

temperature and mortality. Exposures to both extreme hot and cold temperatures are

linked with premature death; a recent study of the global mortality burden attributed

to non-optimal temperatures estimated 9.43% of all deaths to be cold-related (Zhao et

al., 2021). In our setting, the improved electricity service quality led to increased electric

heating. If these heating changes translate into avoided cold-related deaths, then our esti-

mates based on electricity consumption gains alone provide an underestimate of the true

consumer welfare gains. This link between electricity service quality and avoided cold-

related deaths is relevant beyond the Kyrgyz Republic. Of all the individuals inhabiting

locations with a mean winter temperature below 8°C – the threshold at which negative
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health effects of cold temperatures start to occur (Bone et al., 2014) – we estimate that

more than 200 million people live in low or lower-middle income countries.13

The link between electricity service quality, appliance use, and avoided temperature

related deaths is relevant in warm climates as well. Estimated heat-related premature

deaths increased substantially between 2000 and 2019, with greater future increases ex-

pected due to climate change (Zhao et al., 2021). As average temperatures increase, adop-

tion of air conditioning also increases (Biardeau et al., 2020). Electricity service quality

is often worst during a location’s season of peak consumption (i.e., winter in colder cli-

mates and summer in hotter climates) due to the excess demand for electricity services.

Together, these points suggest that reliability and electricity quality will also play a role in

a population’s ability to adapt to rising temperatures via consumption of cooling services.

Further, a complete welfare analysis should also consider the costs (e.g., environmen-

tal costs due to releasing harmful pollutants such as SO2, NOx, and particulate matter)

from the additional electricity generation required to meet the increased consumption of

electricity services. In the Kyrgyz Republic, these costs are minimal because the heating

increases occur via electric heating and the country’s electricity generation is predomi-

nantly (90%) via hydropower. Other countries, in which the generation is predominately

fossil fuel based, could experience marked pollution increases (and therefore implications

for the environment and climate change) should electricity service consumption increase.

7 Conclusions

We provide evidence on the effects of and returns to electricity quality improvements.

We find that consumers experienced improved electricity service quality in the form of

more stable voltage (i.e., fewer voltage fluctuations) following the smart meter installa-

13This figure was calculated based on a spatial analysis of population distribution (Gridded Population
Data of the World, http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse) and gridded
WorldClim mean monthly temperatures. Winter temperature was defined as the mean of the three coldest
months in the year at each location. The country income classification is from the World Bank.
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tion. Billed electricity consumption increased during the peak season, which is when

electricity quality was worst pre-intervention. Better electricity service quality permit-

ted greater electricity service consumption, and with those improvements, households

invested more in electrical appliances, specifically those providing heating.

These findings have important implications for international development and en-

ergy policy. Although development organizations and national governments have long

focused on electrification as a key ingredient to promote development, academic research

on the returns to electrification remains mixed. Our findings lend credence to the claim

that in order to maximize the benefits from electrification, attention must be paid to the

quality of electricity services, not merely access to electrical connections. Additionally,

our evidence on the heterogeneous treatment impacts across household types is surpris-

ingly consistent with documented gaps between renters and homeowners in developed

countries such as the United States. We find that renters’ ownership of electric heating

devices in the treated group increased significantly more than the homeowners, which

explains the greater increase in winter billed electricity consumption among this same

group.

To conclude, we note several areas for potential future research. First, due to the

onset of the COVID-19 pandemic, our data collection period ends in March 2020. With

our post-intervention period limited to 1.5 years (September 2018 to March 2020), there

is room for future work on the long-term effects of and responses to electricity quality.

Second, this paper is silent on the electricity utility’s benefits from the smart meter instal-

lation. With lower cost methods of detecting electricity quality anomalies under devel-

opment (see, e.g., Klugman et al., 2019), understanding the relative cost effectiveness of

different service quality monitoring systems remain an area for future studies. Third, fur-

ther research integrating smart meter systems with utility billing systems would negate

the need for meter readers, thereby potentially reducing non-technical losses. Under-

standing the potential impacts of smart meters on non-technical electricity losses would
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be beneficial for the sector. Lastly, in settings in which electricity generation is dominated

by fossil fuels, the additional consumption of electricity services could result in greater

costs in the form of environmental damages (i.e., increased pollution). Understanding the

relationship between electricity quality and pollution generation in developing countries

is an important area for future study.
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Figures and Tables

Figure 1: Randomized Design

Notes: Randomization occurred at the transformer level, with 20 transformers randomly assigned to ei-
ther treatment or control status. Households in the treatment transformer group (798) had smart meters
installed. Households in the control transformer group (846) retained their old meters.
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Table 1: Balance Test: Household Characteristics

Control Treatment Difference

Panel A: Transformer Characteristics
Number of Households 84.600 79.600 −5.000

(44.560) (54.726) (22.317)
Capacity (kVA) 381.000 406.000 25.000

(263.963) (181.365) (101.277)
Age (Years) 33.400 27.900 −5.500

(17.475) (20.328) (8.477)

Panel B: Household Characteristics
Number of Rooms in the House 2.996 2.919 0.077

(1.284) (1.130) (0.222)
Homes Owned 0.831 0.781 0.050

(0.375) (0.414) (0.044)
Homes with Insulation 0.160 0.267 −0.107

(0.367) (0.443) (0.075)
Houses Using Energy-Efficient Light Bulbs 0.193 0.200 −0.007

(0.395) (0.401) (0.056)
Houses Using Central Heating 0.038 0.084 −0.046

(0.191) (0.277) (0.053)
Houses Using Electric Heating 0.616 0.700 −0.084

(0.487) (0.459) (0.064)
Reporting 1+ Outages Per Week (Jan.–Feb. 2018) 0.445 0.450 −0.005

(0.498) (0.498) (0.118)
Reporting 1+ Voltage Fluctuations Per Week 0.703 0.702 0.001

(0.457) (0.458) (0.109)
Houses with Electric Generators 0.002 0.007 −0.005

(0.047) (0.083) (0.003)
Houses with Stabilizers 0.004 0.005 −0.000

(0.067) (0.068) (0.004)
Houses with Appliance Damage 0.187 0.252 −0.066

(0.390) (0.435) (0.100)

Household Observations 450 430 880
Transformers 10 10 20

Notes: We report the mean values of transformer and household characteristic variables. Transformer
data in Panel A are provided by the electricity utility. Household data in Panel B are from the baseline
household survey conducted in spring 2018. Robust standard errors are clustered at the transformer level.
These results are for the households represented in the balanced panel (i.e., they are surveyed in both the
baseline and follow-up surveys). Robustness checks using the unbalanced sample are in the Appendix.
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Figure 2: Billed Electricity Consumption before Smart Meter Installation

Notes: Billing data are provided by the electricity utility. The vertical axis is the average electricity billing
measured in KGS. The analysis here is a simple comparison between treatment and control households.
The standard errors are clustered at the transformer level.
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Table 2: Transformer-Level Smart Meter Events: Electricity Quality

(1) (2)
Alarms (in one day) indicating: Voltage Outage

events events

Treat -2.283** 0.035
(0.988) (0.029)

Mean of Control Group 2.324 0.525
Observations 8,355 8,355
R-squared 0.104 0.052
Transformer Characteristics X X
Month-by-Year FE X X

Notes: Event data are provided by the electricity utility covering the
period from September 2018 to March 2020. The outcome variables
are the number of these events recorded by the transformer smart
meter per day. Regressions control for transformer characteristics in-
cluding the number of households served by the transformer and its
capacity. Standard errors are clustered at the transformer level and
included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01). We
calculate wild-bootstrap and randomization inference p-values and
present them in supporting tables within the Appendix.
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Table 3: Billed Electricity Consumption by Season (Heating vs. Non-heating)

(1) (2) (3) (4)
Monthly electricity bill in: Heating Season Non-heating Season Heating Season Non-heating Season

Treat × Post 50.698*** −15.077 145.316*** -22.783
(15.518) (13.132) (48.847) (18.353)

Treat × Post × Owner -114.524* 10.061
(59.951) (19.247)

Mean of Control Group 806.223 415.017 806.223 415.017
Observations 13,021 17,245 13,021 17,245
Number of Households 871 871 871 871
Adjusted R-squared 0.091 0.271 0.091 0.271
Household Fixed Effects X X X X
Month-by-Year Fixed Effects X X X X

Notes: Billing data are provided by the electricity utility covering the period between January 2017 and March 2020. Control group
means are for the baseline (pre-intervention) period. The outcome variable is the monthly billed electricity consumption (kWh/month)
for a household forward by one month (t+1), which accounts for delay between consumption and bill. Standard errors are clustered at
the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01). We calculate wild-bootstrap and randomization
inference p-values and present them in supporting tables within the Appendix.
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Table 4: Electrical Appliance Ownership

(1) (2) (3) (4) (5) (6)
Clothes
Washer

Color TV Computer/
Laptop

Water
Heater

Cell Phone
Charger

Electric
Heater

Panel A: Overall effect
Treat × Post 0.010 0.007 -0.026 0.001 0.109 0.094*

(0.033) (0.027) (0.022) (0.017) (0.102) (0.050)
[0.942] [0.942] [0.270] [0.942] [0.270] [0.036]

Panel B: Heterogeneous effect
Treat × Post 0.018 0.023 -0.031 -0.018 0.184 0.171**

(0.055) (0.034) (0.028) (0.033) (0.115) (0.064)
[0.916] [0.894] [0.670] [0.916] [0.240] [0.018]

Treat × Post × Owner -0.011 -0.019 0.007 0.024 -0.094 -0.099**
(0.046) (0.036) (0.036) (0.034) (0.097) (0.043)
[0.924] [0.916] [0.924] [0.886] [0.770] [0.084]

Mean of Control Group 0.836 0.862 0.184 0.433 0.702 0.722

Observations 1,760 1,760 1,760 1,760 1,760 1,760
R-squared 0.861 0.843 0.946 0.971 0.734 0.883
Control Household FE X X X X X X

Notes: Data collected through household survey. The outcome variables are dummy variables indicating whether the household
owned certain electric appliances. Standard errors in parentheses are clustered at the transformer level. Westfall-Young stepdown
adjusted p-values for multiple hypothesis testing are reported in brackets. We calculate wild-bootstrap and randomization inference
p-values and present them in supporting tables within the Appendix. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Changes in Home Energy Efficiency

Energy efficiency changes: made any changes installed insulation replaced windows

(1) (2) (3) (4) (5) (6)

Treat × Post 0.063 0.007 -0.011 -0.041 0.090*** 0.021
(0.049) (0.065) (0.054) (0.047) (0.031) (0.044)
[0.060] [0.898] [0.664] [0.672] [0.001] [0.756]

Treat × Post × Owner 0.073 0.039 0.084
(0.087) (0.060) (0.069)
[0.672] [0.756] [0.460]

Mean of Control Group 0.205 0.109 0.080

Observations 1,760 1,760 1,760 1,760 1,760 1,760
R-squared 0.572 0.574 0.529 0.530 0.541 0.542
Control Household FE X X X X X X

Notes: Data collected through the household survey. The outcome variables are binary variables created us-
ing survey responses indicating whether the household made certain changes to the house “since last sum-
mer” (when the smart meters were installed) and equaling 1 if the household made the corresponding change.
Standard errors are clustered at the transformer level and included in parentheses. Westfall-Young stepdown
adjusted p-values for multiple hypothesis testing are reported in brackets. We calculate wild-bootstrap and
randomization inference p-values and present them in supporting tables within the Appendix. ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Returns to Electricity Service Quality Improvements

(1) (2) (3) (4)
Quality
alarms

Bill sum: all
heating months

Quality
alarms

Bill mean: per
heating month

Treat -40.284*** -40.284***
(11.331) (11.337)

Quality alarms -13.085** -3.140**
(5.678) (1.305)

Observations 871 871 871 864
R-squared 0.445 0.711 0.445 0.713
Baseline Controls X X X X
Estimate IV Stage 1 IV Stage 2 IV Stage 1 IV Stage 2
K-P F-statistics 12.64 12.66

Notes: Regressions are restricted to the households for which we have a balanced panel. The ”Quality alarms”
variable is the transformer-level monthly average alarms indicating problems during the heating season. “Bill
sum” is the total monetized electricity consumption for all fiver winter heating months from November to March.
“Bill mean” is the average monthly monetized electricity bill per month during the winter heating season. All
regressions control for both households (number of rooms, whether the home is owned or rented) and trans-
former characteristics (number of households served by the transformer and the transformer capacity (kW)). Ad-
ditionally, regressions control for the baseline electricity quality, using household self-reported reliability from
the baseline survey conducted in May 2018. Columns 1 and 2 control for the baseline bill sum. Columns 3 and 4
control for baseline bill mean. Standard errors are clustered at the transformer level and included in parentheses
(∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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APPENDIX: FOR ONLINE PUBLICATION

A1 Additional Figures and Tables

Figure A1: Intervention within the distribution system

Notes: Figure from U.S. Energy Information Administration’s website (U.S. Energy Information Adminis-
tration, 2019a) explaining electricity delivery. Our project operated and collected data at these last stages
of the distribution system: the neighborhood transformer and the houses. The intervention in this study
consists of smart meters installed at households in the treatment group but not in the control group. In
addition to the intervention, smart meters are installed at all 20 neighborhood transformers for measuring
outcomes.
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Figure A2: Transformer Locations

Notes: This map shows the study transformer locations, which are located within one city in the Kyrgyz
Republic. The transformers are all located within an approximately two-square-mile area. Each transformer
serves a neighborhood of electricity consumers. We hide the identifying information.
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Figure A3: Photo Examples of Old Meters and Newly-installed Smart Meters

Notes: Photos show examples of the old meters (left) and the smart meters (right) that replaced them.
Meters installed for single-family homes are attached to the house outside (top row). The meters for homes
in apartment buildings are installed in a shared stairway within the building (bottom row).
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Figure A4: Example Showing Smart Meters Installed on Outside of House

Notes: Photo provides an example of a smart meter installed for a single-family home, attached to the
outside of the house. Photo also shows the plastic film commonly affixed outside windows to reduce heat
loss in the winter.
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Figure A5: Timeline of Meter Installation and Data Collection

Notes: Monthly billed electricity consumption data are provided by the electricity utility. The transformer
smart meters were installed just before the intervention to ensure outcome measures were collected by
the time of the intervention. The installation of the household smart meters was the intervention. Once
the transformer and household smart meters were installed, the technology sends the data directly to the
utility. We receive those data from the utility’s server.
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Table A1: Categorization of events: transformer smart meters

Event Category Event Type Count Percentage

Voltage Quality
Over voltage L1 start 13,484 27.71%
Over voltage L2 start 9,096 18.69%
Over voltage L3 start 6,592 13.55%

Power Outage

Disconnect relay 53 0.11%
Limiter threshold exceeded 4,683 9.62%
Manual connection 45 0.09%
Power down (long power failure) 2,300 4.73%
Power down (short power failure) 552 1.13%
Power up (long power failure) 2,365 4.86%
Power up (short power failure) 555 1.14%

Other

Association authentication failure 58 0.12%
Clock adjusted (new date/time) 1 0.00%
Clock adjusted (old date/time) 1 0.00%
Current reverse generation in any phase 3,305 6.79%
Module power down 2,490 5.12%

Total 48,664 100.0%

Notes: Event data are provided by the smart meters installed at the transformers. Categorization is
based on the technical manual from the manufacturer of the smart meters. “Other” events are all
those that do not fit into the first categories (voltage quality, and power outages).
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Table A2: Check for Differential Attrition

(1) (2) (3)
Group Baseline Responses Follow-Up Responses Response Change

Control 575 450 78.6%
Treatment 568 430 75.5%

Notes: This table reports the number of responses by treatment group in the baseline and
follow-up surveys. Column 3 reports the number of responses in the follow-up survey (Col-
umn 2) divided by the number of responses in the baseline survey (Column 1).
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Table A3: Balancing Test for Attrition

VARIABLES (1) (2) (3)
Attritors Non-Attritors Diff.

Number of Rooms in the House 3.000 2.958 -0.042
(1.409) (1.211) (0.097)

Homes Owned 0.787 0.807 0.020
(0.410) (0.395) (0.024)

Homes with Insulation 0.213 0.213 -0.000
(0.410) (0.409) (0.023)

Houses Using Energy-Efficient Light Bulbs 0.209 0.197 -0.012
(0.407) (0.398) (0.027)

Houses Using Central Heating 0.046 0.060 0.015
(0.209) (0.238) (0.013)

Houses Using Electric Heating 0.631 0.657 0.026
(0.483) (0.475) (0.026)

Reporting 1+ Outages Per Week 0.531 0.448 -0.084
(0.500) (0.498) (0.050)

Reporting 1+ Voltage Fluctuations Per Week 0.717 0.702 -0.015
(0.451) (0.458) (0.032)

Houses with Electric Generators 0.004 0.005 0.001
(0.062) (0.067) (0.004)

Houses with Stabilizers 0.008 0.005 -0.003
(0.087) (0.067) (0.006)

Houses with Appliance Damage 0.183 0.219 0.036
(0.387) (0.414) (0.037)

Observations 263 880 1,143

Notes: Column 1 presents baseline means for the attritors (i.e., those households in the baseline sur-
vey but not the follow-up survey). Column 2 presents means for the non-attritors (i.e., those house-
holds in both the baseline and the follow-up surveys). Standard errors in parenthesis are clustered
at the transformer level. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01)
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Figure A6: Difference in Total Number of Transformer Alarms before the Intervention

Notes: This figure plots the difference in total number of transformer alarms prior to the installation of
household smart meters. The outcome variable is the total number of transformer alarms within a day.
We estimate the difference by month using an event study framework, where we control for month-by-
year fixed effects, the number of households served by each transformer, and the transformer’s technical
capacity. Standard errors are clustered at the transformer level. The data for transformer-level alarms are
only available pre-intervention for these three months.

54



Table A4: Balance Test on Household Characteristics Based on All Households

VARIABLES Control Treatment Difference

Number of Rooms in the House 2.977 2.958 0.020
(1.268) (1.251) (0.231)

Homes Owned 0.826 0.778 0.048
(0.379) (0.416) (0.043)

Homes with Insulation 0.162 0.264 −0.102
(0.369) (0.441) (0.071)

Houses Using Energy-Efficient Light Bulbs 0.191 0.208 −0.017
(0.394) (0.406) (0.052)

Houses Using Central Heating 0.035 0.079 −0.044
(0.183) (0.270) (0.050)

Houses Using Electric Heating 0.614 0.688 −0.074
(0.487) (0.464) (0.070)

Reporting 1+ Outages Per Week (Jan.–Feb. 2018) 0.482 0.452 0.030
(0.500) (0.498) (0.114)

Reporting 1+ Voltage Fluctuations Per Week 0.717 0.695 0.022
(0.451) (0.461) (0.104)

Houses with Electric Generators 0.003 0.005 −0.002
(0.059) (0.073) (0.003)

Houses with Stabilizers 0.005 0.005 −0.000
(0.072) (0.073) (0.004)

Houses with Appliance Damage 0.183 0.239 −0.056
(0.387) (0.427) (0.092)

Observations 575 568 1,143

Notes: We report the mean values of household characteristic variables. Household data were collected
via the baseline household survey, conducted in spring 2018. Robust standard errors are clustered at
the transformer level.
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Table A5: Transformer-Level Smart Meter Events: Electricity Quality (Supplemental
p-values)

(1) (2)
Alarms (in one day) indicating: Voltage Outage

events events

Treat -2.283** 0.035
(0.004) (0.324)
[0.004] [0.258]

Mean of Control Group 2.324 0.525
Observations 8,355 8,355
R-squared 0.104 0.052
Transformer Characteristics X X
Month-by-Year FE X X

Notes: We use wild bootstrapping and randomization inference ap-
proach to compute the p-values for the coefficient estimates. We first
replicate the baseline estimates using standard errors clustered at the
transformer level. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01). P-values cal-
culated from randomization inference with 500 permutations of the
treatment status are reported in parentheses. Wild-bootstrap p-values
are reported in brackets.
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Table A6: Correlation between Reported Electricity Quality and Events Recorded by
Smart Meters

VARIABLES Reliability Reported by Household

(1) (2) (3)

Quality Events −0.200***
(0.069)

Power Events −0.181*
(0.095)

Theft Events −0.712
(0.835)

Observations 871 871 871

Notes: Event data are from the household smart meters. The household self-reported reliability
data are from the follow-up survey, conducted in May 2019. Reliability is measured as the nega-
tive of the total number of outage and voltage fluctuation events within a week, self-reported by
the households during the previous winter. Standard errors are clustered at the transformer level
and displayed in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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Table A7: Correlation between Events Measured by Transformer and Household Smart
Meters

VARIABLES Household Events: Voltage Household Events: Outage

(1) (2) (3) (4)

Transformer Events: Voltage 0.038*** 0.039***
(0.003) (0.004)

Transformer Events: Outage 0.098*** 0.099***
(0.017) (0.017)

Observations 70,497 70,497 70,497 70,497
R-squared 0.016 0.016 0.023 0.025
Transformer Fixed Effects X X

Notes: Event data are from either the transformer smart meters (the independent variable) or the household
smart meters (the dependent variable). Robust standard errors are clustered at the transformer level and
displayed in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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Table A8: Billed Electricity Consumption by Season (Heating vs. Non-heating) (Supplemental p-values)

(1) (2) (3) (4)
Monthly electricity bill (kWh): Heating Season Non-heating Season Heating Season Non-heating Season

Treat × Post 50.698*** −15.077 145.316*** -22.783
(0.008) (0.348) (0.024) (0.256)
[0.006] [0.304] [0.017] [0.225]

Treat × Post × Owner -114.524* 10.061
(0.122) (0.664)
[0.106] [0.622]

Mean of Control Group 806.223 415.017 806.223 415.017
Observations 13,021 17,245 13,021 17,245
Number of Households 871 871 871 871
Adjusted R-squared 0.091 0.271 0.091 0.271
Household Fixed Effects X X X X
Month-by-Year Fixed Effects X X X X

Notes: We use wild bootstrapping and randomization inference approach to compute the p-values for the coefficient estimates. We first
replicate the baseline estimates using standard errors clustered at the transformer level. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01). P-values
calculated from randomization inference with 500 permutations of the treatment status are reported in parentheses. Wild-bootstrap p-
values are reported in brackets.
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Figure A7: Billed Electricity Consumption (kWh/month) after Smart Meter Installation

Notes: Billing data are provided by the electricity utility. The analysis here is a basic comparison, and no
other control variables are included. Addresses that have businesses at the location are dropped. The
standard errors are clustered at the transformer level.
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Figure A8: Information Campaign to Inform Residents as to How Appliances
Contribute to Electricity Bills

Notes: Graphic (in Russian) was created by the regulator and circulated in the newspaper “Evening
Bishkek” during winter 2014. The increasing block tariff was introduced on December 11, 2014. Below
700kWh the tariff for 1kWh was 0.70 KGS. Billed consumption over 700 kWh in a month was charged at
2.05 KGS per kWh. The goal of this graphic was to inform consumers how their appliances could contribute
to a monthly electricity bill of 700kWh, which is the quantity at which the price increased to the higher price
tier. The graphic is titled “Guaranteed monthly consumption (to 700 kWh) is.” We have added the red ar-
row to point to the information about cooling and heating, which states “AC, electric range, or other energy
intensive appliances - 60 kWh during summer months, 360 kWh during winter time.”
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Figure A9: Distribution of Billed Electricity Consumption During the Heating Season

Notes: Monthly billed electricity consumption data are provided by the electricity utility. This figure plots
the distribution of monthly billed electricity consumption (in kW) by the treated households and for pre-
and post- intervention period. The vertical red line marks 700 kW, which is the threshold of the higher
tariff.
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Table A9: Robustness Check: Billed Electricity Consumption by Season (Heating vs. Non-heating)

(1) (2) (3) (4)
Monthly electricity bill (kWh): Heating Season Non-heating Season Heating Season Non-heating Season

Treat × Post 49.574** 10.598 161.337*** -0.572
(22.279) (17.360) (46.658) (17.766)

Treat × Post × Owner -133.175* 14.598
(62.027) (22.655)

Mean of Control Group 847.541 428.688 847.541 428.688
Observations 8,504 10,963 8,504 10,962
Number of Households 864 860 864 860
Adjusted R-squared 0.102 0.287 0.103 0.287
Household Fixed Effects X X X X
Month-by-Year Fixed Effects X X X X

Notes: In this analysis, we add household’s 2017 billed consumption as a control. Billing data are provided by the electricity utility cover-
ing the period between January 2017 and March 2020. Control group means are for the baseline (pre-intervention) period. The outcome
variable is the monthly billed electricity consumption (kWh/month) for a household forward by one month. Standard errors are clus-
tered at the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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Table A10: Electrical Appliance Ownership (Supplemental p-values)

(1) (2) (3) (4) (5) (6)
Clothes
Washer

Color TV Computer/
Laptop

Water
Heater

Cell Phone
Charger

Electric
Heater

Panel A: Overall effect
Treat × Post 0.010 0.007 -0.026 0.001 0.109 0.094*

(0.764) (0.782) (0.308) (0.942) (0.340) (0.076)
[0.781] [0.808] [0.257] [0.942] [0.314] [0.125]

Panel B: Heterogeneous effect
Treat × Post 0.018 0.023 -0.031 -0.018 0.184 0.171**

(0.762) (0.594) (0.268) (0.608) (0.148) (0.064)
[0.787] [0.587] [0.358] [0.662] [0.140] [0.062]

Treat × Post × Owner -0.011 -0.019 0.007 0.024 -0.094 -0.099**
(0.858) (0.692) (0.812) (0.552) (0.366) (0.200)
[0.833] [0.64] [0.899] [0.505] [0.378] [0.061]

Mean of Control Group 0.836 0.862 0.184 0.433 0.702 0.722

Observations 1,760 1,760 1,760 1,760 1,760 1,760
R-squared 0.861 0.843 0.946 0.971 0.734 0.883
Control Household FE X X X X X X

Notes: We use wild bootstrapping and randomization inference approach to compute the p-values for the coefficient estimates. We
first replicate the baseline estimates using standard errors clustered at the transformer level. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
P-values calculated from randomization inference with 500 permutations of the treatment status are reported in parentheses. Wild-
bootstrap p-values are reported in brackets.
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Table A11: Changes in Home Energy Efficiency (Supplemental p-values)

Energy efficiency changes: made any changes installed insulation replaced windows

(1) (2) (3) (4) (5) (6)

Treat × Post 0.063 0.007 -0.011 -0.041 0.090*** 0.021
(0.204) (0.932) (0.850) (0.394) (0.010) (0.752)
[0.191] [0.918] [0.843] [0.411] [0.006] [0.698]

Treat × Post × Owner 0.073 0.039 0.084
(0.370) (0.514) (0.218)
[0.470] [0.573] [0.300]

Mean of Control Group 0.205 0.109 0.080

Observations 1,760 1,760 1,760 1,760 1,760 1,760
R-squared 0.572 0.574 0.529 0.530 0.541 0.542
Control Household FE X X X X X X

Notes: We use wild bootstrapping and randomization inference approach to compute the p-values for the co-
efficient estimates. We first replicate the baseline estimates using standard errors clustered at the transformer
level. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01). P-values calculated from randomization inference with 500 permu-
tations of the treatment status are reported in parentheses. Wild-bootstrap p-values are reported in brackets.

65



Table A12: Use of Energy-Efficient Light Bulbs

(1) (2)
EE lighting EE lighting

Treat × Post 0.056 0.014
(0.099) (0.134)

Treat × Post × Owner 0.054
(0.090)

Mean of Control Group 0.193 0.193
Observations 1,758 1,758
R-squared 0.594 0.595
Control Household FE X X

Notes: Data collected through baseline and follow-up surveys.
EElight is a binary variable that equals 1 if the household uses
energy-efficient light bulbs in the home. We use a balanced
panel restricted to households in both the baseline and follow-
up surveys. Robust standard errors are clustered either at the
transformer level and included in parentheses (∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01).
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Table A13: Returns to Electricity Service Quality Improvements (with
wild-bootstrapped p-values)

(1) (2) (3) (4)
Quality
alarms

Bill sum: all
heating months

Quality
alarms

Bill mean: per
heating month

Treat -40.284*** -40.284***
[0.008] [0.008]

Quality alarms -13.085** -3.140**
[0.065] [0.055]

Observations 871 871 871 864
R-squared 0.445 0.711 0.445 0.713
Baseline Controls X X X X
Estimate IV Stage 1 IV Stage 2 IV Stage 1 IV Stage 2
K-P F-statistics 12.64 12.66

Notes: Regressions are restricted to the households for which we have a balanced panel. The ”Quality alarms”
variable is the transformer-level monthly average alarms indicating problems during the heating season. “Bill
sum” is the total monetized electricity consumption for all fiver winter heating months from November to March.
“Bill mean” is the average monthly monetized electricity bill per month during the winter heating season. All
regressions control for both households (number of rooms, whether the home is owned or rented) and trans-
former characteristics (number of households served by the transformer and the transformer capacity (kW)). Ad-
ditionally, regressions control for the baseline electricity quality, using household self-reported reliability from
the baseline survey conducted in May 2018. Columns 1 and 2 control for the baseline bill sum. Columns 3 and 4
control for baseline bill mean. Standard errors are clustered at the transformer level and included in parentheses
(∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01). Wild-bootstrap p-values are reported in brackets.
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Table A14: Electricity-Related Device Ownership

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Electricity

Generator
Stabilizer Battery

with
Inverter

Uninterruptible
Power Supply

Solar Panel Solar Water
Heater

Other Solar
Device

Treat 0.003 −0.002 0.000 −0.002 0.000 −0.002 0.000
(0.008) (0.005) (0.000) (0.002) (0.000) (0.002) (0.000)

Mean of Control Group 0.009 0.011 0.000 0.002 0.000 0.002 0.000
Observations 1,125 1,125 1,125 1,125 1,125 1,125 1,125
R-squared 0.005 0.002 0.000 0.001 0.000 0.001 0.000
Basic Characteristics X X X X X X X

Notes: Data collected through the household follow-up survey in May 2019. The outcome variables are dummy variables indicating whether the household
owned certain electricity-related devices. We control for household basic characteristics, including the number of rooms in a house and whether the house is
owner occupied. Robust standard errors are clustered at the transformer level. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).68



Table A15: Theft Alarms

(1)
Alarms in one day indicating: theft

Treat 0.787
(0.902)
[0.703]

Mean of Control Group 0.343
Observations 8,355
R-squared 0.037
Transformer Characteristics X
Year-Month FE X

Notes: Event data are provided by the electricity
utility covering the period from September 2018 to
March 2020. The outcome variables are the number
of these events recorded by the transformer smart
meter per day. Regressions control for transformer
characteristics including the number of households
served by the transformer and its capacity. Standard
errors are clustered at the transformer level and in-
cluded in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01). Wild-bootstrap p-values are reported in
brackets.
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A2 Potential Mechanisms for Electricity Quality Improvements

How did smart meters lead to electricity quality improvements? Due to the limited num-

ber of transformers included in the study, any analysis to this effect is limited in statistical

power. For this reason, we can provide only suggestive evidence here. We show that

the treated transformers were more likely to be overhauled or replaced (Appendix Table

A16) and the event alarms from the household smart meters directed utility’s attention

to the transformers in greatest need of repairs (Appendix Table A17). Those transformer

repairs result in improved electricity service quality, as measured by both event alarms

(Appendix Table A18) and consumers’ perceived quality improvements (Appendix Table

A19).

A2.1 Smart Meters and Electricity Service Quality Improvements

Smart meters can improve electricity service quality by providing additional informa-

tion to either consumers or the utility. First, smart meters can detect and directly alert

the utility to outages and voltage fluctuations, allowing it to respond quickly with re-

pairs, maintenance, and overhauls. If the utility analyzes this information on problematic

events, the smart meter data can help them understand which locations suffer from the

worst quality. Second, smart meters can detect voltage fluctuations and automatically

disconnect households from the distribution system, protecting appliances from damage.

If standard voltage resumes, the consumer must press a button on the smart meter to

restart electricity flow. This required step increases the salience of voltage fluctuations

for consumers and provides evidence of unsafe voltage fluctuations. If standard voltage

does not resume, the smart meter prevents electricity flow until the utility performs the

necessary repairs.

The smart meters are providing information – to both consumers and the utility –

that can be used to improve electricity service quality. With the information, consumers

may argue for better maintenance, upgrades, and repair. Without it, their complaints of
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voltage problems may remain unverified. The utility receives many complaints regarding

service quality and it may be difficult to know which places have the greatest need for

repairs. Thus, the meters help the utility target efforts to the neediest locations within the

distribution system, thereby improving electricity service quality.

Typically, the connection of a house (or business) to the electrical grid involves a

contract; the distribution company commits to providing reliable electricity services that

meet voltage standards, and the customer commits to paying for the electricity consumed.

Yet consumers lack data on the actual quality of electricity services delivered and utilities

lack information on the locations of poorest service quality. The information smart meters

provide could alleviate a contract failure between electricity utilities and their customers.

A2.2 Empirical Results

Smart meters provide information to the electricity utility via high frequency readings,

allowing the utility to more rapidly identify problematic locations within the distribution

network. We found support for these industry claims via discussions with consumers.14

We test whether the household smart meters induced transformer replacements and

maintenance overhauls, using electricity utility panel data for the 20 transformers over a

33-month period covering both before and after the intervention. We estimate the follow-

ing equation:

ygt = αTreatg × Postt + βPostt + λg + εgt, (A1)

in which the outcome variable is the number of times transformer g was replaced or over-

hauled within month t. Treatg is an indicator for the treated transformers, while Postt is

an indicator for the post-intervention period. We include transformer fixed effects λg to

control for transformer characteristics that are fixed over time.
14Prior to the smart meter installation, consumers reported of frequent complaints to the electricity utility

about voltage fluctuations, appliance damage, and the inability to power certain electrical appliances. These
consumers reported previously submitting requests to the utility for neighborhood transformer repairs that
went without replacement or extensive overhaul. Prior research has highlighted transformers as a critical
component in determining electricity service quality (Carranza and Meeks, 2021) .
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The results, presented in Appendix Table A16, are informative in several respects.

First, transformer replacements and overhauls are infrequent; the control group baseline

mean shows that the monthly probability of replacement or overhaul was low. Second,

the coefficient (Post) indicates a slight, albeit non-significant, increase in replacements

and overhauls for all study transformers after the intervention. Lastly, the coefficient on

the interaction term shows that treated transformers, serving the houses that received the

smart meters, were almost 5% more likely to be overhauled or replaced after the interven-

tion. This suggests that the household-level smart meters are drawing the utility to make

improvements.

Is the utility responding to information from the household smart meters or just to

knowledge of an ongoing study? To shed light on this question, we test whether greater

frequency of household-level smart meter alarms per day, which indicate more electricity

quality problems, are associated with a greater probability of a transformer being replaced

or overhauled.15 Indeed, treated transformers that were replaced did have significantly

more household-level alarms per day prior to the replacement (Appendix Table A17),

lending support to the suggestion that the household-level intervention directed utility

attention to the places in greatest need.

We conduct two additional sets of analyses to understand whether transformer re-

placements and overhauls actually result in better electricity service quality. First, if

alarms are indicative of electricity quality problems and the transformer replacements

and overhauls fix those problems, then we should see a decline in alarms following trans-

former replacement. Indeed, a decline in the number of household-level smart meter

alarms per day follows transformer replacement (Appendix Table A18). Second, we use

the household reported voltage, outage, and overall quality measures from the baseline

and follow-up surveys. We find that transformer replacement is a significant driver of

respondents’ perceived quality improvements (Appendix Table A19); however, we are

15We limit this analysis to the period before the first transformer was replaced.
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cautious not to interpret this as a causal relationship, given that replacements and repairs

are determined by electricity service quality.
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Table A16: Transformer-Level Replacement and
Overhauls

Transformer Replaced
or Overhauled

Treat × Post 0.048*
(0.028)
[0.116]

Post 0.026
(0.021)
[0.205]

Mean of Control Group 0.02
Observations 660
R-squared 0.026
Transformer Fixed Effects X

Notes: Transformer maintenance data are provided by the elec-
tricity utility covering the period from January 2017 to October
2019. The mean of the control group is calculated for the base-
line period. The outcome variable is the transformer-level num-
ber of planned overhauls and replacements in a month. Treat is
a binary variable that equals 1 if the transformer belongs to the
treatment group. Post is a binary variable that equals 1 for the
period after August 2018. We control for transformer fixed ef-
fects. Standard errors are clustered at the transformer level and
included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
Wild-bootstrap p-values are reported in brackets.
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Table A17: Comparing Household-Level Events across Transformer Groups

VARIABLES Alarms

(1) (2)

Replace 0.184** 0.220**
(0.064) (0.068)

Repair 0.113 0.088
(0.095) (0.059)

Observations 35,724 35,724
R-squared 0.006 0.008
Month-by-Year Fixed Effects X X
Feeder-Line Fixed Effects X

Notes: Event data are provided by the electricity utility. Here, we compare the number of
Events for the two replaced transformers, the three transformers with unplanned repairs, and
the other transformers in the treatment group. We focus our analysis before the date when
the first transformer replacement happened (February 4, 2019). The outcome variable is the
household-level number of events recorded by the smart meter in a day. Replace is a binary
variable that equals 1 if the transformer was replaced. Repair is a binary variable that equals
1 if the transformer had unplanned repairs due to breakage. Standard errors are clustered at
the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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Table A18: The Effect of Transformer Replacement on Household-Level Events

VARIABLES (1) (2) (3) (4) (5)
Total Quality Power Theft Other

Post Replace 0.023 -0.009 0.035 -0.001 -0.002
(0.042) (0.014) (0.032) (0.002) (0.001)

Replace × Post Replace -0.116** -0.036 -0.090** 0.010 0.000
(0.043) (0.020) (0.032) (0.011) (0.000)

Observations 128,011 128,011 128,011 128,011 128,011
R-squared 0.025 0.013 0.035 0.013 0.003
Household FE X X X X X
Month-by-Year FE X X X X X

Notes: Alarms data come from the household smart meters and cover the period from
September 2018 to March 2020. The outcome variable is the number of events in one day.
Replace is a binary variable that equals 1 if the transformer was replaced. Post Replace is an
indicator for the post-replacement period. Standard errors are clustered at the transformer
level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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Table A19: Intervention Impacts on Households’ Self-Reported Electricity Service
Quality

VARIABLES Voltage Outage Reliability

(1) (2) (3) (4) (5) (6)

Treat × Post −0.789 −0.627 −0.007 −0.007 −0.796 −0.634
(0.694) (0.686) (0.381) (0.377) (0.870) (0.862)

Treat × Replace × Post 2.229*** −0.007 2.222***
(0.663) (0.319) (0.632)

Post −0.747** −0.747** −0.244 −0.244 −0.991 −0.991
(0.323) (0.322) (0.346) (0.346) (0.599) (0.598)

Observations 1,742 1,742 1,742 1,742 1,742 1,742
R-squared 0.091 0.080 0.015 0.015 0.087 0.080
Number of Households 871 871 871 871 871 871
Household Fixed Effects X X X X X X

Notes: Regressions are restricted to the households for which we have a balanced panel. Reliability data
are collected from the household baseline and follow-up surveys conducted in July 2018 and May 2019,
respectively. Reliability is measured by the negative of the total number of outage and voltage fluctua-
tion events within a week, self-reported by the households. Voltage is measured by the negative of the
total number of voltage fluctuation events within a week, self-reported by the households. Outage is
measured by the negative of the total number of outage fluctuation events within a week, self-reported
by the households. Treat is a binary variable that equals 1 if the household belongs to the treatment
group. Post is a binary variable that equals 1 for the post-intervention period. Robust standard errors
are clustered at the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01).
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