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Abstract

We provide the first revealed-preference estimates of the benefits of routine weather

forecasts. The benefits come from how people use the information to reduce mortality

from heat or cold. We show that more accurate forecasts reduce mortality if and only

if mortality risk is convex in forecast errors, which in turn depends on how people use

forecasts. Using data on the universe of mortality events and weather forecasts for

a twelve-year period in the U.S., we show that making forecasts 50% more accurate

would save 1,700 lives per year, for gross annual benefits of $16 billion. The effects of

forecast errors indicate that adaptation becomes less effective if temperatures are either

higher or lower than expected. Forecast-driven adaptation is especially important in

extreme heat, which suggests that short-run weather forecasts could be an important

tool for managing the effects of climate change. (JEL:D83,I12,Q51)
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1 Introduction

Routine weather forecasts are the product of sophisticated scientific and policy efforts

that require global cooperation. Data from around the world are continuously gathered and

processed to produce forecasts that are disseminated multiple times per day, largely for free,

to the public. Despite the ubiquity of weather forecasts, the number of people who rely on

them, and the effort involved in their production, surprisingly little is known about their

economic value. Valuing improvements to forecasting systems has long been of policy interest

(e.g., Chapman (1992), WMO et al. (2015)). To date, valuations have relied on simulation

models, stated preference surveys, or other heuristics rather than on real-world behavior.1

Our study provides the first revealed preference estimates of the benefits of weather forecasts.

We focus on the value of forecasts for reducing temperature-related mortality. While

forecasts have many uses, enabling preparation for extreme weather is among the most

prominent, and extreme temperatures cause more loss of life in the U.S. than any other

form of extreme weather (Pielke and Carbone, 2002). A large literature across economics,

epidemiology, and other fields has investigated the effects of realized temperature extremes

on mortality, corroborating the finding that extreme temperatures are a major source of

mortality.2 To date, this literature has not investigated the role of weather forecasts in

helping individuals avoid mortality.

We formally demonstrate that whether more accurate forecasts reduce mortality depends

on whether mortality risk is convex in forecast errors. We show that two plausible models

of forecast-driven, “ex-ante” adaptation to temperature risk can have opposite implications

for the value of more accurate forecasts.3 If adaptation is “protective”, then forecasts that

are too extreme call forth additional adaptation that further reduces mortality risks whereas

forecasts that are too mild increase mortality risk by suppressing adaptation. With this

type of adaptation, more accurate forecasts can either increase or decrease mortality, as they

reduce excess deaths from insufficiently extreme forecasts but also reduce lives saved from

overly extreme forecasts. In contrast, if adaptation is “appropriate”, then any forecast errors

reduce the effectiveness of adaptation by worsening the match between the chosen adaptation

1In justifying its budget, the U.S. National Weather Service relies either on decade-old, stated-preference
surveys of willingness to pay for forecasts or on a measure of the total amount of economic activity that is
“sensitive to weather,” without any estimate of the degree to which forecasts could be useful for reducing
that sensitivity (NOAA, 2021). Many have emphasized the need for good estimates of the economic value
of forecasts (e.g., Freebairn and Zillman, 2002, Pielke and Carbone, 2002, National Research Council, 2010,
Katz and Lazo, 2011).

2See, for instance, Anderson and Bell (2009), Deschênes and Moretti (2009), Gasparrini et al. (2015),
Barreca et al. (2016), Carleton et al. (2020).

3We remain agnostic about whether adaptation is an individual choice or is a public investment, such as
cooling shelters. Our estimates encompass the net effect of all ex-ante adaptation. “Ex-post” adaptation
responds to temperature realizations and is absorbed by our controls for realized weather
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and realized temperature. With this type of adaptation, more accurate forecasts unambigu-

ously reduce mortality by improving the match between adaptation and temperature. It is

ultimately an empirical question whether more accurate forecasts reduce mortality or not.

To estimate the effect of weather forecasts on mortality, we combine the universe of deaths

reported by the Centers for Disease Control and Prevention (CDC) with daily temperature

realizations and forecasts issued by the National Weather Service (NWS). We study the conti-

nental U.S. from 2005 through 2017. We focus on day-ahead forecasts of temperature, which

households say are among the most important forecast products (Stratus Consulting Inc.,

2002). Our regression framework accounts for potential location-specific and time-varying

confounders as well as for the potential direct effect of temperature and other weather on

mortality. Across the full sample, we find that mortality risk is indeed convex in forecast

errors and its shape is consistent with appropriate adaptation but not with protective adap-

tation. As a result, reducing the standard deviation of forecast errors by 50% would save

1,700 lives per year, creating $16 billion in value annually. This value is comparable to the

entire value for current forecasts previously estimated via survey methods.4

We assess whether it is more important to improve forecasts’ accuracy on cold, hot,

or moderate days. One might expect extreme weather to drive forecasts’ value, but we

show that much of the value from improved forecasts comes from days with more moderate

weather because they are so frequent: extreme heat and cold represent only around 10%

of the sampled days.5 Nonetheless, halving the standard deviation of forecast errors either

only on extremely hot days or only on extremely cold days would still generate around $2

billion in value. The source of this value differs between extreme cold and extreme heat.

For extreme cold, this value arises because forecasts are currently especially noisy on these

days and because these days are nearly five times more common than extremely hot days.

For extreme heat, this value arises because mortality risk is especially convex in forecast

errors, suggesting that ex-ante adaptation is especially responsive to forecasts in extreme

heat and/or especially consequential for mortality in extreme heat.

We estimate gross benefits that are much larger than the direct costs associated with

producing and disseminating weather forecasts. The National Oceanic and Atmospheric

Administration (NOAA) had a total budget of $5.5 billion in fiscal year 2021, with $1.2 billion

allocated to the National Weather Service (NOAA, 2021). In 1999, the U.S. government

reported spending $2.2 billion on producing and disseminating forecasts and $0.5 billion on

research to improve them, with the private sector spending another $1 billion broadcasting

4Stratus Consulting Inc. (2002) estimate that the total annual value for forecasts is $11.4 billion in 2001
dollars, which is around $16 billion in 2020 dollars.

5Our primary results define extreme cold as a day with an average temperature below 0◦C and define
extreme heat as a day with an average temperature above 30◦C. The exact share of value attributed to
moderate days is sensitive to how one defines “moderate”. Our estimates suggest that these days contribute
$12 billion to the value of more accurate forecasts.

3



the forecasts (Hooke and Pielke Jr., 2000).

Many decisions about future investment in forecasts will require information about how

valuable forecasts are in their current state and how that value might change if the forecasts

were to become more accurate. Short-run weather forecasts have steadily improved since

1980 (Bauer et al., 2015). Decade-on-decade, forecast skill has risen so that, currently,

7-day-ahead forecasts are typically as skillful as 3-day-ahead forecasts were in the 1980s.

Forecast skill will likely continue to increase in the near future as weather forecasting groups

continue to improve data assimilation, modeling, and computing power (Toth and Buizza,

2019).

Our results are the first revealed preference estimates of the benefits of routine weather

forecasts.6 Recent theoretical work emphasizes that short-run forecasts such as those studied

here can be especially valuable for planning purposes (Millner and Heyen, 2021). Previous

valuations of routine weather forecasts either tally up the value of sectors judged to be sensi-

tive to weather (National Research Council, 1998) or use stated preference methods based on

surveys of 381 individuals (Stratus Consulting Inc., 2002). Many authors in the forecasting

literature have recognized that it would be ideal to find a market in which people reveal

their value for forecasts with real bets but lament that such markets do not exist for pub-

licly provided forecasts (e.g., Freebairn and Zillman, 2002, Letson et al., 2007, Morss et al.,

2008, Katz and Lazo, 2011). For instance, Katz and Lazo (2011, 5740) observe, “Perhaps

because of the scarcity of links to market transactions that would permit revealed preference

applications, there has been virtually no work to date using revealed preference methods

for assessing values for weather forecasts.” We here infer that agents act on forecasts by

exploring how forecasts affect observed mortality, and we value forecasts from the reduction

in mortality they enable.7

In the existing literature on the effects of realized temperature on mortality, both hot and

cold temperatures are typically associated with excess mortality. Cold events are associated

with little acute (i.e., same-day) mortality but exhibit elevated mortality in days following the

event. Heat exhibits the reverse pattern, with elevated mortality only on the day of the event

6Seasonal weather forecasts have been subject to more substantial study. Meza et al. (2008) summarize
33 papers studying the effect of seasonal forecasts on agricultural outcomes. Some more recent work has also
estimated the value of seasonal forecasts for climate-exposed production (e.g., Rosenzweig and Udry, 2019,
Shrader, 2021). We focus on routine, shorter-run forecasts that predict a particular day’s weather only a
few days in advance. Short-run forecasts are much more accurate, widely produced, and widely used than
seasonal forecasts. Other work studies the effects of extreme weather warnings (e.g., Craft, 1998, Bakkensen,
2016, Miller, 2018, Weinberger et al., 2018, Kruttli et al., 2019), but even there some lament the dearth of
rigorous work (Sutter and Ewing, 2016). We study the effects of the forecasts that underpin excessive heat
warnings and wind chill warnings. The consequences of warnings are included in our estimated effect of
forecasts.

7We do not observe the costs of acting on forecasts (except insofar as those actions themselves affect
mortality), so our estimates should be taken as a gross measure of benefits. However, we also do not observe
all the other ways that forecasts provide value, which will tend to lead us to underestimate forecasts’ value.
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and in the immediate aftermath. The dominant methodology uses fixed effects to account

for the average weather in a time and place. To gain exogenous variation, this methodology

needs to isolate the consequences of weather shocks, but shocks relative to average weather

(that the fixed effects models identify) may not be shocks relative to expectations.8 When

people act on their information about coming weather, accurately forecasted shocks can

have very different implications from inaccurately forecasted shocks. It is important to

disentangle these effects when assessing policy responses to extreme temperatures and also

when extrapolating to the effects of climate change.9

Section 2 theoretically analyzes how more accurate forecasts can reduce expected mor-

tality. Section 3 describes the data used for the empirical analysis. Section 4 describes the

empirical strategy. Section 5 reports results. Section 7 concludes.

2 Formal Analysis

We first analyze the mortality value of more accurate weather forecasts. We then show

how responses to forecast errors can identify the interaction between adaptation and tem-

perature. We conclude by showing that certain types of interaction can be responsible for

forecasts’ value.

2.1 The Mortality Value of Forecasts

To value forecasts, we extend the workhorse single-period model of the value of a sta-

tistical life (VSL), the marginal rate of substitution between money and the risk of sudden

mortality.10 This model originates with Drèze (1962) and Jones-Lee (1974) and has been

extensively applied in the literature (see Viscusi, 1993, Andersson and Treich, 2011).

An individual’s indirect utility over wealth w is u(w) when alive and v(w) when dead.

As is conventional, assume that u(·) > v(·), u′(·) > v′(·) ≥ 0, u′′(·) ≤ 0, and v′′(·) ≤ 0. The

individual’s hazard of death following temperature T and forecast f is h(T, f). Forecasts

can affect the risk of death only through the actions people take in response to them, but

to start, we subsume any changes in actions within the forecast argument. The frequency

8In fact, we show in Section 3 that forecasts substantially outperform average weather at predicting
coming weather.

9In cross-sectional regressions, Fishback et al. (2011) show that controlling for access to information (mea-
sured as rates of literacy and radio ownership) changes the effect of a year’s average daily high temperature
on mortality from positive to negative in the U.S. during the Great Depression. The relevant information
may include information about coming weather and public health information helpful for managing hot
weather.

10Simon et al. (2019) review the use of VSL in economics and policy and provide standard definitions.
They propose that “value of reduced mortality risk” would more accurately denote the concept and avoid
the common misinterpretation of VSL as indicating the value of a life.
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of each type of temperature over a year is p(·). On average, each temperature is correctly

forecasted: E[f |T ] = T . The error from forecast f is e = f − T , with E[f |T ] = T implying

that E[e|T ] = 0.

Consider adding a small daily mortality risk ε. The individual maximizes expected indi-

rect utility

V =

∫
Ef |T

[
[1− h(T, f)− ε]u(w) + [h(T, f) + ε] v(w)

]
p(T ) dT,

where Ef |T indicates expectations over forecasts given temperature. Second-order approxi-

mating V around f = T , we find

V ≈
∫ {

[1−h(T, T )−ε]u(w)+[h(T, T )+ε] v(w)−1

2
hff (T, T ) [u(w)−v(w)]V ar[f |T ]

}
p(T ) dT,

where subscripts on h indicate partial derivatives. (Observe that V ar[f |T ] = V ar[e|T ].)

Totally differentiating while holding V constant, willingness to accept the small risk is

V SL ,
dw

dε

∣∣∣∣
ε=0

=
u(w)− v(w)∫

{(1− h(T, T ))u′(w) + h(T, T )v′(w)− 1
2
hff (T, T ) [u′(w)− v′(w)]V ar[f |T ]} p(T ) dT

.

This willingness to accept is the VSL.11

Willingness to accept an increase in the variance of errors around some particular tem-

perature T̂ is12

dw

dV ar[f |T = T̂ ]

∣∣∣∣∣
ε=0

=
1

2
V SL hff (T̂ , T̂ ) p(T̂ ).

The right-hand side is positive if and only if the risk of death is convex in the forecast within

the neighborhood of the correct forecast. To better match the empirical specifications below,

we can also write the risk of death as h̃(T, e) , h(T, T + e), in which case

dw

dV ar[f |T = T̂ ]

∣∣∣∣∣
ε=0

=
1

2
V SL h̃ee(T̂ , 0) p(T̂ ). (1)

11We assume throughout that the variance of forecasts errors is small enough to ensure that V SL > 0. In
the empirical application, the variance of forecast errors is in fact reasonably small.

12One might consider instead fixing the distribution of forecasts over the year, assuming that forecasts are
unbiased on average, and analyzing a reduction in the variance of each forecast’s error. The problem with
that approach is that the comparative static implicitly alters the distribution of realized temperature, which
can create value even if agents never act on forecasts.
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When the risk of death is convex in forecast errors, expected mortality increases in the

variance of forecast errors. The value of more accurate forecasts follows from this reduction in

expected mortality. It is most valuable to improve the accuracy of forecasts for temperatures

around which the risk of death is especially convex in forecast error (with large h̃ee(T̂ , 0))

and for temperatures that are especially frequent (with large p(T̂ )).

Note that hf 6= 0 (equivalently, h̃e 6= 0) only if agents act on forecasts, as forecasts are

irrelevant to mortality if agents do not use them. Such actions are adaptations to weather

risk. Consequently, adaptation actions also must be responsible for making hff 6= 0 (or

h̃ee 6= 0). The mortality value of forecasts derives not merely from how agents act on

forecasts (hf ) but from how those actions interact with mortality risk when forecasts are

mistaken (hff ).

2.2 How Forecast Errors Identify the Form of Ex-Ante Adaptation

Before considering the sources of convexity in mortality risk, consider what we learn from

the effects of forecast errors. In the foregoing analysis, h(T, f) subsumed any adaptation as an

effect of f , but we now make adaptation explicit. Let A indicate ex-ante adaptation, chosen

based on forecasts but without knowing realized temperature, and express the probability

of death as H(T,A(f)).13 The function A(f) may result from agents trading off the costs

and benefits of adaptation in response to forecasts, but we here avoid writing down an

explicit optimization problem and take A(f) to be a reduced-form representation of agents’

adaptation decisions, for whatever situations they face.

Consider an extreme high temperature, for which HT > 0 locally. And measure ex-

ante adaptation such that the chosen actions A(f) are monotonically increasing in forecasts

around this temperature (A′(f) > 0). The actions could represent the chosen magnitude of

some adaptation option to implement or could represent the chosen set of adaptation options

to undertake. There are two plausible models for how ex-ante adaptation may affect the risk

of death.

The first model is one of protective adaptation. Here additional adaptation always reduces

mortality risk over the relevant domain (HA < 0), as when H(T,A) ∝ T−A. If an individual

happens to receive a too-high forecast, then A is larger than would have been optimal

based on perfect knowledge of temperature. When adaptation is protective, mistakenly

undertaking too much adaptation reduces mortality risk compared to a case in which the

realized temperature had been forecasted accurately. Conversely, mistakenly undertaking

too little adaptation because of a too-mild forecast increases mortality risk.

The second model is one of appropriate adaptation. Here adaptation is targeted to par-

13This representation still subsumes any ex-post adaptation (i.e., adaptation chosen based on knowledge
of realized temperature) into the effect of temperature.
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ticular temperatures and is less effective if temperatures are either higher or lower than

the target: HA > 0 for high temperatures and HA < 0 for low temperatures, as when

H(T,A) ∝ [T − A]2.14 When adaptation is protective, the chosen ex-ante adaptation may

minimize mortality risk at temperatures near the forecast but will be less effective at higher

or lower temperatures.15

In the empirical setting, we will estimate mortality risk as a function of forecast errors.

Continue considering a case of extremely high temperatures. A positive error means that the

forecast was too warm. If adaptation is protective, then positive errors would actually reduce

mortality risk, but if adaptation is appropriate, then positive errors would increase mortality

risk relative to a case with the same temperature but no forecast error. In contrast, negative

errors (i.e., a too-cold forecast) would increase mortality risk in either model. Therefore we

can divide the possible empirical outcomes into three cases:

1. Mortality risk decreases in forecast errors. This case is consistent with the protective

adaptation model.

2. Mortality risk has a U-shape in forecast errors. This case is consistent with the appro-

priate adaptation model.

3. Mortality risk has some other shape. This case is inconsistent with either adaptation

model on its own, although it potentially reflects a combination of the two.

Analogous cases hold for extreme cold, with the first case modified to have mortality risk

increasing in forecast errors.

2.3 How Ex-Ante Adaptation Can Make Forecasts Valuable

Finally, consider the conditions under which hff > 0, as was required for forecasts to

reduce expected mortality. Recalling that h(T, f) = H(T,A(f)), hff > 0 if and only if

HAA[A′]2 +HAA
′′ > 0.

Again measure ex-ante adaptation so that A′(f) > 0 and consider dangerously high temper-

atures. If ex-ante adaptation is protective (HA < 0), then forecasts are valuable only if either

ex-ante adaptation tails off as forecasts increase (A′′ < 0) or the protective effect increases

14HA > 0 could reflect interactions between ex-ante adaptation and the physical effects of temperature or
between ex-ante adaptation and ex-post adaptation based on realized temperature.

15In the presence of adaptation costs, optimal ex-ante adaptation will not minimize mortality risk exactly
at the forecasted temperature, but we may in general expect the mortality-minimizing temperature to be in
the general neighborhood of the forecast. Intertemporal considerations such as adjustment costs or resource
depletion would further complicate the dynamics of ex-ante adaptation (Lemoine, 2021).
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Figure 1: Illustrating how the form of adaptation is critical to the mortality value of forecasts.

(a) Adaptation vs Temperature
Forecast

(b) Mortality Risk vs Adapta-
tion

(c) Mortality Risk vs Forecast
Errors

as ex-ante adaptation increases (HAA > 0). If only one of these conditions holds, then im-

proving forecast accuracy may not reduce expected mortality when ex-ante adaptation is

protective.16 In contrast, if ex-ante adaptation is appropriate with a mortality-minimizing

forecast near T (HA < 0 for T < f and HA > 0 for T > f), then HAA > 0 around T = f

and HA ≈ 0 around T = f , so forecasts generically reduce expected mortality. Improved

accuracy increases social value by enabling agents to better target ex-ante adaptation to

realized temperatures.

Figure 1 illustrates this analysis. The left panel depicts ex-ante adaptation as a linear

function of forecasted temperature. It assumes, as above, that adaptation increases in the

temperature forecast, based on whatever costs, benefits, and constraints agents face when

choosing actions. The middle panel plots two plausible relationships between adaptation

and mortality risk, conditional on a realized temperature. In the protective adaptation case

(dashed), mortality risk declines linearly in adaptation, but in the appropriate adaptation

case (dotted), mortality risk is minimized when adaptation is most suited to the given

temperature and increases as adaptation moves away from that level in either direction. The

right panel plugs the adaptation from the left panel into the mortality relationship in the right

panel, thereby depicting mortality risk as a function of forecast errors. It also plots example

densities for more and less accurate forecasts, again conditional on realized temperature. In

this example, reducing the variance of forecast errors does not reduce expected mortality

in the protective adaptation case because mortality risk is linear in forecast errors (because

A′′ = 0 in the left panel and HAA = 0 in the middle panel): the extra mortality from too-

mild forecasts is offset by the reduction in mortality from too-extreme forecasts. However,

as is apparent either by visual inspection or by Jensen’s inequality, reducing the variance

of forecast errors does reduce expected mortality in the appropriate adaptation case. These

16Of course, improved accuracy may nonetheless provide social value by avoiding the costs of accidentally
excessive adaptation.
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benefits arise from the smaller probability of errors that push risk up either end of the

U-shape.

The mortality value of forecasts therefore depends on how forecasts affect adaptation

choices and on how adaptation choices affect mortality risk when forecasts turn out to miss

the mark. It is not a priori obvious which type of adaptation predominates in the real world

or, following the example from Figure 1, whether forecasts would have much value at all. It

is ultimately an empirical question whether more accurate forecasts in fact reduce mortality.

3 Data

To estimate the effect of forecasts on mortality risk, we combine data on mortality events,

realized temperature, and temperature forecasts.

3.1 Weather and Weather Forecasts

Our two primary explanatory variables are daily average temperature and forecasted

temperature. The NWS issues weather forecasts at horizons between 1 and 7 days. We focus

on daily minimum and maximum temperature point forecasts, from which we calculate daily

average temperature by taking the simple average of the two measures. The NWS runs the

forecasting model multiple model times during the day, with the most important runs at

noon and midnight UTC. We use the noon UTC run because it is typically the one reported

in morning news broadcasts. These are also the forecasts that are available at any time of

the day on the public NWS website, weather.gov.

The forecasts are stored in the National Digital Forecast Database (NDFD) which was cre-

ated in the early 2000s to standardize the processing, storage, and dissemination of weather

forecasts in the U.S. (Glahn and Ruth, 2003). Meteorologists in different locations across the

country, known as Weather Forecasting Offices (WFOs), work in shifts to produce forecasts

for their local area, known as County Warning Areas or CWAs (see a map of these areas in

Figure A3). The NDFD stores the forecasts on a consistent spatial grid with resolution of

2.5km or 5km, depending on the time period.17

We use forecast data from April 13, 2005 onward, which is the universe of data available

in the NDFD containing both minimum and maximum temperature forecasts. Roughly 5%

of the county-day values are missing due to missing values in the underlying, raw NDFD

17The NDFD was created after the completion of a major modernization and restructuring of the NWS
that occurred between 1990 and 2000 (National Research Council, 2012). The modernization was based
around installation of the Next Generation Weather Radar (NEXRAD) stations. NEXRAD has a range
of roughly 200 km, and a grid of NEXRAD stations were constructed to provide continuous coverage of
weather systems across the U.S. WFOs were relocated or created near the NEXRAD stations. Our study
period occurs entirely after the restructuring was complete.
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data (owing, for example, to data corruption in the NWS archives or to a missed forecast

deadline).18 We aggregate the forecasts to the county level by taking the population-weighted

average, based on the 2010 population grids from CIESIN (2017).

For weather realizations, we use PRISM (Parameter-elevation Regressions on Indepen-

dent Slopes) Climate Group data (PRISM Climate Group, 2004). PRISM combines weather

station observations with an interpolation procedure that accounts for causes of weather

gradients such as elevation, weather inversions, rain shadows, and coastal proximity. The

output is daily measures of weather on a consistent 4km resolution grid across the country.

The PRISM data provide more consistent geographic coverage than raw weather station

data.19

We aggregate the gridded measures to the county level using the same procedure as the

forecasts. Maps of the spatial variation in weather and comparisons of weather and forecast

values can be found in the Appendix Figure A4. The final weather dataset contains measures

of daily minimum and maximum temperature as well as control variables for total daily

rainfall and average dew point temperature for each continental U.S. county from April 13,

2005 to December 31, 2017. We calculate a day’s average realized temperature and average

forecasted temperature by averaging of the day’s minimum and maximum temperature.

3.2 Mortality

The primary outcome we study is mortality. The effect of forecasts on mortality is of

particular interest to the NWS. Both the NWS and the CDC point to statistics showing

that extreme heat is the number one source of weather-related fatalities, on average, in the

U.S., and one of the goals of the NWS when issuing forecasts and extreme weather alerts is

to minimize the loss of life.

Mortality data come from the CDC’s National Center for Health Statistics Multiple Cause

of Death (MCOD) file. It contains records of all vital events that occurred in the U.S. from

2004 to 2017. We use the restricted access version of the dataset, which records the day and

county of each mortality event. From the set of all mortality events, we calculate county

mortality rates per 100,000 people by dividing the total mortality each day by the county

population in that year. Population figures are from the NIH Surveillance, Epidemiology,

and End Results (SEER) Program (see Section 3.3). The race, sex, and cause of death for

the decedent are also recorded and are discussed further in the heterogeneity analysis results.

18The results we report below are robust to estimating with a sample that interpolates the missing values
based on the most recent available forecast.

19We use the original PRISM data rather than the version produced by Schlenker and Roberts (2006, 2009)
so that we can also measure dewpoint temperature for humidity robustness checks. One of the advantages
of the Schlenker-Roberts version of the data is greater temporal consistency. Over the relatively short time
series analyzed in this project, the difference between the original PRISM data and the Schlenker-Roberts
data is minimal.
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3.3 Additional Data

In the primary estimation sample, we include control variables for population shares

in four different age groups (less than 1, 1 to 44 years old, 45 to 64 years old, and 65 or

older). These population shares come from the same NIH SEER data from which we extract

annual, county population. Additional datasets are used for heterogeneity, robustness, and

mechanism analysis. These datasets are described in the sections where results using the

data are shown.

3.4 Data Structure and Summary Statistics

The primary estimation sample consists of all non-missing observations of all-cause mor-

tality, average temperature, total daily precipitation, average temperature forecasts, and

population shares for each county in the continental U.S. and each day from April 13, 2004

to December 31, 2017. The initial results focus on the 1-day-ahead temperature forecast,

and results investigating dynamics analyze longer-horizon forecasts. Summary statistics for

the sample are shown in Table 1.

Table 1: Summary Statistics

Variable Mean S.D. Observations

Daily all-cause mortality rate (per 100,000) 2.25 1.73 13,704,398
Average temperature (◦C) 14.6 10.1 13,704,398
1-day-ahead avg. temperature forecast (◦C) 14.5 9.96 13,704,398
1-day-ahead forecast error (◦C) -0.041 1.15 13,704,398

Notes: The table shows summary statistics for the primary variables in the
estimation sample, weighted by county population. The difference between
average realized temperature and average forecasted temperature does not
necessarily equal the average forecast error due to rounding.

In the estimation sample, the average number of deaths reported for all causes per day

across the U.S. is 2.3 per 100,000 people. The average county population in our sample

is 97,356, so the average death rate is also almost identical to the number of deaths, on

average, per county per day. Multiplying the value in Table 1 by total population (per

100,000) indicates that there are about 7,000 mortality events per day in the Continental

U.S., which agrees with aggregate statistics from the CDC during our sample period.

Forecasts tend to be roughly correct on average. The standard deviation of forecast

errors is just over 1◦C. In the estimation sample, there is a slight cool bias to the forecasts of

about −0.04◦C. The median bias (weighted by population) is -0.08◦C. Both of these biases

12



Figure 2: Forecast Errors and Comparison With Alternatives
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(b) Accuracy over sample
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(c) NWS fcst. vs. alternatives

Notes: Panel (a) shows the errors from the 1-day-ahead NWS forecast. The distribution is truncated at the
0.025 and 99.75 percentiles. The x-axis tick marks are at standard deviations relative to 0. The distribution
is weighted by annual, county-level population. Panel (b) shows the trend in 1-day-ahead forecast root mean
squared error (RMSE) over the sample period. The line is a local linear regression fit to the daily, national
average RMSE. Panel (c) shows the RMSE for the 1-day-ahead and 6-day-ahead NWS forecasts compared to
four alternatives: an AR(1) forecast using yesterday’s observation, a persistence forecast based on yesterday’s
observation, the average value for that location and day, and last year’s value for that location.

are small relative to the standard deviation of forecast errors.20

The county population-weighted distribution of 1-day-ahead forecast errors is shown in

Figure 2a. The figure shows all errors between the 0.025 and 99.75 percentile, and the x-axis

tick marks indicate standard deviations relative to 0, based on the value reported in Table 1.

The errors, in addition to being nearly unbiased, are also largely symmetric around zero and

exhibit a bell-curve shape. Direct comparison with a normal density shows that the forecast

error distribution exhibits slightly thicker tails and excess mass close to 0.

Figure 2b shows how 1-day-ahead forecast accuracy has evolved over our sample period.

The line in the figure is a local linear regression fit to the daily average forecast RMSE across

the U.S. Over the 12 years of the sample, forecast RMSE has fallen from about 1.35◦C to

about 1.05◦C, an improvement of almost 1/3.

The forecast error for our sample is compared to error from other forecasting methods

in Figure 2c. The figure shows the root mean squared error (RMSE) for the forecasts we

use in our baseline analysis (the 1-day-ahead forecasts issued by the NWS) as well as five

additional forecasts: the 6-day-ahead NWS forecast, an AR(1) forecast using yesterday’s

value (calculated within sample, so likely overstating more general accuracy), a persistence

forecast based on yesterday’s observation, a climatological forecast based on the average

20See Myrick and Horel (2006) for an early analysis of forecast error and discussion of the creation of a
routine verification system that can now be found at https://sats.nws.noaa.gov/~verification/ndfd/.
Myrick and Horel (2006) emphasize the role that terrain features like rapid changes in elevation can have
on forecast error. In our estimation sample, we adjust for location fixed effects to mitigate bias from these
types of differences.
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Figure 3: Raw Data Relationship Between 1-Day Ahead Forecast Error and Mortality
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Notes: The figure shows the relationship between forecast error from the 1-day ahead forecast and the
daily mortality rate, estimated using the raw data for counties with populations greater than 10,000 people.
The forecast error is Winsorized at the 1% level. The fitted line is a local polynomial regression with an
Epanechnikov kernel and a bandwidth of 0.34 (based on the Stata default, plugin bandwidth). The shaded
area is the 95% confidence interval but should be interpreted with caution because they treat all observations
as i.i.d. Clustered inference is presented in Section 5.

weather for that location and day, and the observation from one year ago.

The 1-day-ahead forecast substantially outperforms even the best-performing non-NWS

competitor, the within-sample AR(1) forecast. The RMSE of the official forecast is less

than half that of the AR(1) forecast. The RMSE for the climatological forecast is almost

4 times higher. The climatological forecast comparison is notable because conventional

weather-mortality regression specifications implicitly account for this forecast via location

fixed effects. The results in Figure 2c show that these controls do not capture all of the

information available to an agent one (or even six) days ahead of a weather realization.

3.5 Motivating Evidence

For initial motivation, Figure 3 plots local polynomial regressions fit to the raw data.

The y-axis is the daily mortality rate. The x-axis is the forecast error in degrees C (fore-

cast temperature minus realized temperature). The figure shows the relationship between

mortality and forecasts when the forecasts are too hot relative to the realized temperature

(values greater than 0 on the x-axis) and too cold relative to the truth (values less than 0

on the x-axis). The forecast error is Winsorized at the 1% level for legibility, and to avoid

outliers the plot shows only counties with populations larger than 10,000 people. Otherwise,

the relationship is unconditional.
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The figure shows that the relationship between mortality and forecast error is convex

and U-shaped: accurate forecasts are associated with the lowest mortality whereas forecast

errors in either direction are associated with substantially higher mortality. In the raw data,

a one standard deviation forecast error (about 1.15◦C) is associated with about 0.05 more

deaths per 100,000 people per day, which increases average deaths (of 2.2–2.3) by around

2%. The marginal effect of a greater forecast error is roughly the same for all negative and

positive forecast errors outside of a narrow range around 0. In the context of Section 2, these

results strongly favor a model of appropriate adaptation.

4 Empirical Strategy

We study the relationship between temperature forecast accuracy and mortality via the

following estimating equation:

yct =
L∑
`=0

[
h`(ec,t−`) + f1,`(Tc,t−`) + f2,`(precc,t−`)

]
+Xctγ + αcm + ρt + εct. (2)

Some analyses (described in Section 5) extend this equation to allow for heterogeneous effects.

The dependent variable yct is the daily mortality rate in county c on day t. The primary

right-hand side variable is forecast error ect, defined as ect , T̂ct − Tct where T̂ct denotes the

forecast of temperature and Tct denotes the realized temperature. This definition matches

that in Section 2.21 In the main results presented below, we study the effect of forecasts

issued one day ahead.

To allow for different effects at extreme versus moderate temperatures and at positive

versus negative forecast errors, we estimate flexible relationships between both of these

variables and mortality. The shape of the relationship between mortality and forecast errors

is important for determining whether forecast improvements are beneficial. From Section 2.1,

if we find that h(e) is convex, then a reduction in the variance of forecast error will lead to

a reduction in average mortality. And from Section 2.2, h(e) needs to be flexible enough to

capture a potentially non-monotonic relationship between mortality and forecast errors.

In the baseline results, we report estimates using a global quadratic specification, h` =

β1,`ec,t−` + β2,`e
2
c,t−`. Convexity is the second derivative of h with respect to e, so with

a quadratic specification convexity is 2β2. A larger, positive convexity term indicates a

more valuable forecast. In sensitivity analysis, we also use a one-knot linear spline and a

series of specifications using quantile bins. The quadratic provides a useful balance between

parsimony and flexibility, and we focus on those results for heterogeneity and mechanism

analyses.

21To reduce the influence of potential outliers, we Winsorize forecast errors at the 1% level.
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For temperature realizations, we estimate f1(T ) semi-parametrically by discretizing tem-

perature into bins.22 In the baseline results, we use 4 bins: one for temperatures below 0◦C,

another for temperatures between 0 and 15◦C, another for temperatures between 15 and 30◦,

and a final one for temperatures above 30◦. Prior work has shown that this number of bins

is sufficient to roughly capture the shape of the realized temperature-mortality relationship

in a parsimonious manner (Barreca et al., 2016).23 Flexibly controlling for temperature re-

alizations also ensures that our forecast error estimates can be interpreted as the effect of

varying expectations around a given realization (Shrader, 2021).

We estimate distributed lag models to account for lagged effects or temporal displacement

of mortality. Effects that occur on day t (with ` = 0) are the “acute” effects of temperature

and forecast errors. We also include up to L lags of temperature and forecast errors to

account for dynamic effects. For models with small L (≤ 14 days), we use a standard

distributed lag estimator.

The additional covariates include L lags of indicators for daily precipitation below the

25th or above the 75th percentile for that county, denoted precc,t−`, to account for potentially

correlated effects of rainfall. Date fixed effects (denoted ρt) remove any national, time-based

confounders including day-of-week effects, holidays, overall patterns in economic activity,

changes in national policy, and large-scale weather patterns. County-by-month fixed effects

(αcm) are included to remove local seasonal patterns. These fixed effects also adjust for any

time-invariant differences across locations, including long-run climatic differences, differences

in average medical care availability or economic conditions, and information provision and

acquisition. Xct denotes county-month fixed effects interacted with quadratic time trends

to account for any overall trends in county- or season-specific weather or mortality, and we

include month fixed effects interacted with continuous measures of the share of the population

in four age categories (less than 1 year old, 1 to 44, 45 to 65, and 65 or older) to address

the age-profile of mortality and associated potential confounders. Finally, the regressions

are weighted by annual population in the county to better estimate nationally representative

values and to increase precision.

Standard errors are clustered at the CWA level. As discussed in Section 3, CWAs are

collections of counties that receive weather forecasts from the same NWS forecast office

(mapped in Figure A2). The counties are grouped based on technological considerations

related to weather observation equipment and so that meteorologists can specialize in fore-

casting weather for particular areas of the country. The CWA is a natural level for clustering

because its counties have similar weather and because its counties all receive forecasts from

22This is a widely used method for estimating temperature-mortality relationships (e.g., Barreca et al.,
2016).

23In robustness checks, we also use a denser set of 5◦C bins and show that the baseline results are, if
anything, conservative.
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the same group of meteorologists. Econometrically, CWAs also have some further appealing

features, particularly when compared to state-level clustering. First, there are 116 CWAs in

the Continental U.S., above the typical rule-of-thumb for the minimum number of clusters

(Cameron and Miller, 2015).24 Second, state borders are not set based on meteorological

considerations while CWA borders are, making it more plausible that meteorological data is

approximately i.i.d. across CWAs than across states.

For identification, we assume sequential exogeneity or that forecast errors are as-good-as-

randomly assigned within counties over time, conditional on our other covariates (formally,

that the expectation of εct, conditional on all contemporaneous and past values of our co-

variates, is zero). This assumption is more plausible when studying forecast errors than for

a generic variable. Assuming that forecasting systems strive for accuracy, historical atmo-

spheric conditions will not confound forecast errors because the meteorologist takes them

into account when formulating the forecast. In other words, forecast errors are surprises

relative to the information available to the forecaster, so they cannot be confounded by any-

thing inside that information set. A remaining potential threat would be unobserved aspects

of realized contemporaneous weather that affect mortality directly and also affect forecast

quality. To address the concern, we conduct robustness checks (described further below)

that include additional controls for contemporaneous weather and atmospheric conditions,

including humidity, wind, and pollution. We find that effects are largely unchanged when

these additional covariates are added. Finally, potential selection effects are minimized by

our use of high-frequency variation for identification.

5 Results

5.1 The Effect of Forecast Errors on Mortality

Estimating Equation 2, we find that forecasts consistently have a convex relationship

with mortality. Based on the model presented above, that means forecast improvements will

be valuable in terms of reduced mortality, and section 5.3 calculates that value under alter-

native counterfactuals. In this section, we assess the strength of the convex relationship and

whether the effect is U-shaped (consistent with appropriate adaptation) or not (consistent

with protective adaptation).

Table 2 presents estimates of Equation (2) (Column 1) as well as a version of the equation

that interacts the forecast error function with realized temperature bins (Column 2). These

latter results will be discussed further below.

24Some counties fall into more than one CWA, and for those locations, we assign the county an identifier
that is the combination of all CWAs to it belongs. This results in 130 CWA ids in our sample. See Section
3.3 for details.
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Figure 4: Effect of Forecast Accuracy on Mortality
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(b) 8-day cumulative effect

Notes: The top panel of each figure shows estimates of the effect of forecast error on the mortality rate.
The bottom panels show the distribution of forecast errors (the x-axis). The top panels show cumulative
effects every 4 days. Panel (a) shows the acute effect (day t) and Panel (b) shows the effect through 1 week
(t through t + 7). The blue, solid lines and shaded 95% confidence intervals come from a single regression
estimated using Equation 2 fit to the baseline data, with a quadratic forecast error function. The red, dashed
lines show estimates from a single regression using a linear spline with a knot at 0 for the error function,
with confidence intervals suppressed for legibility. Standard errors are clustered at the CWA level.

The estimates in Column 1 show that mortality has a convex relationship with forecast

errors. The linear term (“Forecast error”) is small, while the squared term (“Forecast error2”)

is much larger and significant. The estimates imply that the marginal effect of forecast error

around -1 is -0.0034 while around an error of 1, the marginal effect is 0.0026. In other words,

a marginal increase in forecast error raises mortality by roughly 0.003 deaths per 100,000

people. This value is also equal to the convexity of the function.

Figure 4 presents estimates graphically, allowing for a visual test of the type of behavior

driving the results. The y-axis variable is the excess daily mortality rate (deaths per 100,000

people) in a county predicted by the estimates from Table 2. For comparison, there are just

over 2 deaths per 100,000 people per day in the average county. The forecast error, given

on the x-axis, is the forecasted average temperature for a day minus the realized average

temperature. Negative values indicate that the forecast was colder than the weather turned

out to be and positive values indicate that the forecast was too hot relative to the realized

weather. The x-axis tick marks are spaced according to standard deviations of forecast error,

and the empirical distribution of forecast errors is shown below each figure.

The panels give an indication of the dynamics of the estimated effects. The left panel

shows the same-day (“acute”) effect, and the right panel shows the cumulative effect through
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Table 2: Estimates of Forecast Effect on Mortality

(1) (2)
Mortality rate Mortality rate

Forecast error -0.0004
(0.0012)

Forecast error2 0.0015∗∗

(0.0006)
Error2×Temperature≤ 0◦ 0.0012

(0.0013)
Error2×Temperature 0 to 15◦ 0.0006

(0.0008)
Error2×Temperature 15 to 30◦ 0.0026∗∗

(0.0012)
Error2×Temperature≥ 30◦ 0.0263∗∗

0.0124

Baseline controls Yes Yes
Error×Temp. bins No Yes

Dependent var. mean 2.25 2.25
N 13,529,776 13,529,776
N Clusters 130 130

Notes The table shows 1-week (day t through day t+7) cumulative
effects from estimation of Equation (2) (Column 1) and Equation
(3) (Column 2) on the baseline sample, both with a quadratic fore-
cast error function. The dependent variable is the daily mortality
rate per 100,000 people. For legibility in Column (2), the interac-
tions between temperature bins and the level of forecast error are
not shown. Table A2 presents the full set of estimated coefficients.
The excluded category in Column (2) is the indicator for realized
temperature from 15 to 30◦. All models include covariates for lags
of bins of realized temperature and precipitation, date fixed effects,
county-by-month fixed effects interacted with quadratic time trends,
and month fixed effects interacted with four population age indica-
tors. Regression is weighted by county population. Standard errors,
clustered at the CWA-level, are below each estimate. Significance:
p < .10, ** p < .05, *** p < .01.
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the end of 1 week. One can see that the relationship between mortality and forecast errors

is convex at both horizons, although the convexity gets much stronger over time, with the

acute effect appearing nearly linear. Even in that case, however, the marginal effects of a

negative and positive forecast error are different. For example, the slopes of the left and

right portions of the linear spline (shown by the red, dashed lines) are significantly different

from each other (difference of -0.0032, standard error of 0.0015). A 1◦C too-cold forecast

increases the mortality rate by 0.004, or about 0.2%. In contrast, a 1◦C too-warm forecast

reduces the mortality rate by 0.001, or about 0.05%.

The effect is substantially more symmetric around 0 error over time. By 8 days, mortality

risk is nearly perfectly symmetric in forecast errors. This is consistent with initial action

being protective then becoming increasingly appropriate over longer, cumulative shocks.

The overall effect of forecasts is also stronger, with the marginal effect of either a positive or

negative forecast error of more than 0.004 deaths per 100,000 people. More formal tests of

U-shaped patterns can be done by fitting separate lines to the left and right of a break-point

and testing that the slopes are of opposite signs. When such a test is conducted on the 8-day

cumulative effect, the slopes to the left and right of 0 indeed have opposite signs and the

difference in magnitude across the two slopes is significant at the 1% level.25

5.2 Effects Across the Realized Temperature Distribution

The foregoing results show that forecasts affect mortality on average across all temper-

atures. We now explore whether forecast errors matter differently on days with different

realized temperatures. To do so we estimate a version of equation (2) modified to interact

the temperature and forecast error functions

yct =
L∑
`=0

[
h2,`(Tc,t−`, ec,t−`) + f1,`(Tc,t−`)) + f2,`(precc,t−`)

]
+Xctγ + αcm + ρt + ε2,ct. (3)

Temperature-specific effects are estimating using a function h2 that interacts bins of realized

temperature (the same 4 bins used in the baseline specification) with quadratic functions of

forecast error.

Table 2 shows the 1-week cumulative effects from estimating the equation, and Figure

5 shows the predicted effect of forecast errors on mortality. Panel (a) shows acute effects

and Panel (b) shows cumulative effects over 1 week. For comparison, note that the overall

estimates presented in Figure 4 have a magnitude of around 0.02 for forecast errors of 3.4

degrees.

25Table A3 shows all cumulative effect estimates from the quadratic forecast error specification as well as
tests of U-shapedness.
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Figure 5: Effect of Forecast Accuracy on Mortality by Realized Temperature
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(b) 8-day cumulative effect

Notes: The figure shows predicted effects of forecast error on the daily mortality rate based on estimating
Equation 3. Panel (a) shows the acute effect (day t), and Panel (b) shows the effect through 1 week (t
through t + 7). The blue line is the effect for cold realized temperatures (< 0◦C), dark green is for 0–15◦,
light green is 15–30◦, and red is hot temperatures (> 30◦).

The immediate effect is convex and U-shaped for all realized temperatures aside from the

moderate bin between 15 and 30◦. On average, the effect is roughly the same as the overall

estimate for the two colder bins. Mortality on hot days (above 30◦ or the hottest 2% of days

in the U.S.), in contrast, have not only a symmetric effect around 0 error but also show an

extremely strong response to forecasts. The effect of a 1 degree forecast error on a hot day

is as strong as the effect of a 3 degree error on a more mild day.

The point estimate is six times larger on days that are hotter than 30◦C. Figure 5 suggests

that forecast accuracy on a single hot day has substantially more of an impact on the

mortality rate than forecast accuracy on other days. Across the year, however, colder days

are much more common. In our sample, days above 30◦C currently occur only about seven

days per year in the average county (which also explains why the estimated effects are so

noisy on hot days). As the climate warms, however, hotter days will become more common,

potentially raising the importance and value of weather forecasts.

5.3 Expected Lives Saved and Economic Value

We have seen that forecast errors are convexly related to mortality. Therefore, from the

formal analysis in Section 2.1, increasing the accuracy of forecasts will save lives. Here,

we quantify this effect for two counterfactual changes in forecast accuracy. Table 3 shows

the important elements of the calculation. All estimates are annual values based on two

assumptions: (i) that the estimated changes in mortality are persistent, and (ii) that the

estimated response to forecasts is invariant to the postulated changes in forecast accuracy.
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Table 3: Annual Lives Saved and Economic Value From Forecast Accuracy Improvements

(1) (2) (3) (4) (5) (6) (7)
Marginal effect 50% reduction

of error s.d. of error s.d.
Convexity Days/year Lives Value Current Lives Value

hee p(T̂ ) saved ($ billions) error s.d. saved ($ billions)

All temps 0.0031 365.25 3915 37.2 1.15 1661 15.8
(1258) (12.0) (534) (5.1)

By realized temperature

≤ 0◦C 0.0017 34.03 245 2.3 1.39 122 1.2
(232) (2.2) (116) (1.1)

0–15◦C 0.0020 137.02 1048 10.0 1.25 482 4.6
(708) (6.7) (326) (3.1)

15–30◦C 0.0038 187.40 2212 21.0 1.02 833 7.9
(911) (8.7) (343) (3.3)

≥ 30◦C 0.0340 6.80 592 5.6 0.89 183 1.7
(293) (2.8) (91) (0.9)

Notes: The table shows the degree of forecast error function convexity and the associated lives
saved and economic value from reductions in the standard deviation (s.d.) of forecast errors.
The first column indicates the sample over which the values are estimated and calculated.
“Convexity” is the second derivative of the quadratic forecast error function based on the esti-
mates reported in Section 5.1. It measures the mortality rate increase from a marginal change
in mean absolute forecast error. Column (2) gives the days per year that each temperature
bin is observed, on average. “Lives saved” is the expected number of lives saved across the
Continental U.S. from the indicated forecast error improvement. It is the convexity translated
into the marginal effect of forecast error standard deviation times frequency times days per
year times population, divided by 100,000. “Value” is the expected lives saved times the EPA
VSL in billions of 2020 dollars. Terms in parentheses are standard errors clustered at the
CWA level.

We assess these assumptions in Section 5.5.

The row labelled “All temps” shows the average value of improved forecasts across the

full temperature distribution (i.e., in the pooled sample). Column 1 gives the convexity

of mortality risk in forecast errors, which Section 2.1 shows is the marginal effect of the

variance of forecast errors on the mortality rate. The estimate comes from the same baseline

regression results reported in Section 5.1. As seen there, mortality risk is convex in forecast

errors. Column 2 shows the frequency of the observed temperature, which is trivially 1 in

this case of the unconditional effect.

Column 3 is the marginal effect of the standard deviation of forecast errors on annual,

nationwide mortality.26 From equation (1), it is the convexity multiplied by the frequency,

26Details on the counterfactual calculations can be found in Section B.
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the population of the U.S. in hundred thousands, and the number of days per year.27 Equa-

tion (1) gives the marginal effect of variance, which we convert to the marginal effect of

standard deviation by multiplying by two times the standard deviation. More accurate fore-

casts save lives: marginally reducing the standard deviation of forecasts errors would save

4,000 lives per year. Notably, this effect is just from day-ahead temperature forecasts, omit-

ting potential benefits from other types of temperature forecasts and from forecasts of other

dimensions of weather.

Column 4 translates the number of lives saved into economic value by multiplying by

the U.S. Environmental Protection Agency’s value of a statistical life (VSL), which is $9.5

million in 2020 dollars (EPA, 2021). The marginal value of forecast accuracy is $37 billion.

As discussed in the introduction, the U.S. federal government and the private sector spend

roughly $5 billion per year on production and dissemination of forecasts. If NWS forecasts

are 1◦C more accurate than alternatives, then their value-added via avoided mortality is

almost 8 times their total cost.

The final three columns present an alternative counterfactual, which estimates the lives

saved and economic value from halving the standard deviation of forecast errors.28 Currently,

temperature forecast errors have a standard deviation of 1.15◦ (population-weighted), so this

counterfactual is close to half the size of the estimates reported in columns 3 and 4. This

second counterfactual is more interesting in the lower panel, where we explore the value of

improvements at different levels of realized temperature.

That lower panel of Table 3 report the value of improving the accuracy of particular types

of forecasts. To motivate these experiments, Figure 6a depicts partial densities of forecast

errors. The densities are conditional on realized temperature in four temperature bins. The

different error distributions have notably different features. Forecasts of hot temperatures

have the lowest standard deviation but the largest average bias.29 In contrast, the errors

during periods with the coldest temperatures have less average bias but a larger spread. The

differences in the spread of errors is likely due to underlying meteorology: warm air masses

are more stable and easier to forecast than colder, more volatile air masses. The average

bias could be due to hedging by the meteorologists themselves. In interviews we conducted

with professional meteorologists, they stated that they were historically reluctant to forecast

record temperatures for a given location. This behavior would tend to produce negative bias

at high temperatures and positive bias at low temperature, exactly the pattern we find in

Figure 6a.

27We use 310 million for our sample period population and a mean solar year as our year.
28These calculations linearly extrapolate the marginal effect from equation (1). The 50% reduction in the

standard deviation corresponds to a 75% reduction in the variance. See Section B for further details.
29As we will see, there are many fewer hot days than other types of days. Some of this larger bias could

therefore be due to sampling.
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Figure 6: Forecast Accuracy Conditional on Temperature
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Notes: Panel (a) shows the empirical density of errors from the 1-day-ahead NWS forecast conditional
on realized temperature, broken down into 4 bins. The distribution is truncated at the 0.025 and 99.75
percentiles. The x-axis tick marks are at standard deviations relative to 0 for the unconditional distribution.
Each density is weighted by annual, county-level population. Panel (b) shows the trend in 1-day-ahead
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lines are local linear regressions fit to the daily, national average RMSE.

The lower panel of Table 3 reports that a large portion of the total value of forecast

accuracy improvements comes from days with moderate temperatures: improving accuracy

on days with an average temperature of 15–30◦C provides almost half the value of improving

accuracy on all days. This high value is despite mortality risk not being especially convex

on these days and despite forecasts already being relatively accurate for these temperatures.

The high value arises from the frequency of moderate days, which constitute more than half

the sample. The value per day may be small, but there are many such days.30

Although most value may be concentrated in moderate days, we do see substantial value

from the relatively infrequent days with extreme weather. The marginal value of accuracy is

slightly larger for extremely hot days than for extremely cold days, but the value of halving

the standard deviation is larger for extremely cold days. From Column 1, mortality risk is

eight times more convex in forecast errors on hot days, which is why marginal improvements

in accuracy are more valuable on those days. However, extremely cold days are five times

more common and currently have a 50% larger standard deviation in their forecast errors.

These effects are enough to offset the smaller convexity of mortality risk on extremely cold

days when we consider the policy experiment of halving the standard deviation of forecast

errors. Figure 6 shows that over the sample period, forecasts improved across the temper-

30One may heuristically think that forecast accuracy is most valuable on days where mortality tends to be
high. However, the theoretical analysis in Section 2 shows that the value of forecast accuracy derives from
how the effectiveness of ex-ante adaptation at reducing mortality risk varies with forecast errors, not from
typical mortality on that day or even from the typical effect of ex-ante adaptation at reducing mortality.
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ature distribution, but the largest improvements occurred for hotter temperatures. RMSE

fell by 46% for forecasts on days that turned out to be hotter than 30◦, while RMSE fell by

only 19% on days less than 0◦.

To further contextualize these values, one can also ask by how much forecasts would

need to improve in order to justify the cost of NOAA expenditures. NOAA is currently

installing a supercomputer that will become operational in 2022, at a cost of $505 million

over 8 years. How much better would temperature forecasts need to be to justify $63 million

of expenditure per year? First imagine that the new facility improves the standard deviation

of all forecasts. Based on the values from the top panel of Table 3, the current standard

deviation of forecast errors would need to fall by less than 0.1% to justify such an expense.

Next, imagine that the new facility improves the standard deviation of forecasts only on

either extremely hot or extremely cold days (but not on both types of days). Based on

the values from the bottom panel of Table 3, the current standard deviation of forecast

errors would need to fall by about 2% to justify such an expense. As Figure 2b showed, the

standard deviation of forecast errors fell by almost 1/3 over the the sample period, making

improvements of these magnitudes plausible given recent experience.

5.4 Climate Change Counterfactuals

Table 4 shows the projected change in forecast value from one source—the changing

distribution of temperatures in the U.S. over the coming century. As previous results showed,

forecasts are both more accurate and more valuable on a day that turns out to be hotter.

As the climate in the U.S. warms, hotter days will become more frequent, as the “days per

year” columns in Table 4 show. Given that forecasts are more valuable, on average, on hot

days, this will both raise the total value of forecasts (indicated on the bottom row) and

increase the percentage of total forecast value coming from the hottest days. By 2100, under

the SSP5-8.5 continued high emissions scenario, so much warming is projected to have taken

place in the U.S. that the plurality of forecast value would come from days above 30◦.

These projections are only along one dimension. In practice, forecast quality might

improve, degrade, or stay the same as the climate changes. The value of forecasts on different

days could also change as adaptation techonology and behaviors change.

5.5 Testing Assumptions Underlying Forecast Value Estimate

The previous results show the value of forecasts based on the 4-day cumulative effect of

forecasts on mortality. One assumption underlying those results is that the effect of forecasts

on mortality is persistent (so that VSL is appropriate). Previous research on the effect of

realized temperature on mortality has shown that there can be dynamic effects over a few
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Table 4: Projected Temperature and Forecast Value

Sample period 2050 2100
Days per Mar. % of Days per Mar. % of Days per Mar. % of

Temperature year value total year value total year value total

≤ 0◦C 34.0 2.3 6 27.6 1.9 4 13.5 0.9 2
0–15◦C 137.0 10.0 26 131.1 9.5 22 121.1 8.8 16
15–30◦C 187.4 21.0 54 201.1 22.5 53 199.7 22.4 40
≥ 30◦C 6.8 5.6 14 10.9 9.0 21 29.5 24.3 43

total 38.9 42.9 56.4

Notes: The table projections of forecast value based on changes in realized temperature ac-
cording to CMIP6 SSP5-8.5 climate scenarios. Three points in time are shown: 2015 (the end
of the study sample), 2050, and 2100. The left column in each time period shows the projected
or observed days per year in each temperature range. The middle column shows the marginal
value of forecast improvements (corresponding to Column 4 from Table 3), and the third column
shows the percentage of the total value of a marginal forecast improvement coming from days
in the given temperature range. Total value is the sum of values in each temperature range.
The estimates are from a separate regression from the pooled estimator used to generate the
total value in Table 3, so the two values can differ.

days or weeks after the actual temperature realization. Here, we explore the cumulative

effect of forecasts over similar time periods.

Figure 7 shows the value, in billions of dollars, of a marginal reduction in the standard

deviation of forecast errors (the same counterfactual reported in Column 4 of Table 3) using

a two-week distributed lag model.31 The results show that on the day the forecast arrives,

the annual value of a marginal change in forecast standard deviation is roughly $15 billion.

This rises to above $30 billion after just one additional day, and the value stays about the

same after that point. The value is significantly positive over all but one horizon less than ten

days. After ten days, the point estimate remains constant, but the 95% confidence interval

begins to include zero.

The estimates help us assess the plausibility of the assumption that the death reduc-

tions from more accurate forecasts are persistent. Prior analyses of mortality from extreme

temperatures has shown important dynamics and intertemporal displacement of mortality

over a few days after the initial temperature event. Deschênes and Moretti (2009) examine

daily mortality responses to hot and cold temperatures, finding that cold temperature effects

have significant daily effects up to 10 days after the initial cold day. Hot temperatures have

significant effects over 3 to 4 subsequent days. Recently, Heutel et al. (2021) showed stable

31Examining longer ranges of cumulative effects is computationally infeasible using a standard distributed
lag model given the high dimensionality of the estimating equation.
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Figure 7: Cumulative Effect of Forecasts on Mortality
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Notes: The figure shows estimates of the cumulative value of a marginal
improvement in the standard deviation of forecast error. Each line is based
on a single regression estimated using Equation 2 fit to the baseline data.
The estimates correspond to Column 4 of Table 3. The red line estimates a
quadratic relationship between mortality and forecast error while the blue
line uses a linear spline with a knot at 0. The areas show 95% confidence
intervals based on standard errors clustered at the CWA level.

cumulative effects of temperature on mortality after less than one week. The range of our

estimates should capture the most substantial dynamic effects if the temporal response of

mortality to forecast errors follows that of realized temperature.

The second main assumption underlying Table A1 is that the estimated forecast-mortality

relationship still holds under the counterfactual forecast. We can generate descriptive ev-

idence on this assumption by looking at how the effect varies by average forecast quality

(measured by RMSE) in the sample. These estimates are non-causal—they simply rely on

cross-sectional variation in forecast accuracy. Estimating a version of Equation (2) that

interacts the forecast error function, h, with the average RMSE in a county, we find a

small, negative interaction term between RMSE and convexity of -0.0013 (standard error

of 0.005). Interpreting the point estimate, this implies that mortality responds about 0.5%

more strongly in areas with 1% lower RMSE. If anything, this result suggests that our coun-

terfactual estimates are lower bounds because stronger responses are associated with more

accurate forecasts.

Figure 8 shows this difference in response graphically by breaking down forecasts’ effects
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Figure 8: Heterogeneity by Average Forecast Accuracy: Assessing Credibility
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Notes: The figure shows the 4-day cumulative percent re-
duction in the mortality rate from a 1◦C reduction in fore-
cast absolute error (marginal effect) based on a models fit
using Equation (4) on the baseline data. The forecast error
function is a quadratic. The dimension of heterogeneity is
the average RMSE in each county over our full sample. The
circles are the point estimates and the lines are 95% con-
fidence intervals based on standard errors clustered at the
CWA level.

by the average RMSE of forecasts in the county across the full sample. The estimates are

generated by fitting Equation (4) which interacts quintiles of average RMSE in the county

with a quadratic forecast error function. The horizontal axis tick marks indicate the quintiles

of RMSE. The value of a 1◦ reduction in absolute forecast error is about 6 times greater in

counties in the lowest quintile of RMSE compared to counties in the highest quintile, although

the difference is not significant. This evidence suggests that long-run forecast quality and

the effectiveness of forecasts are complementary. There are two possibilities for this effect:

people in more accurate locations may learn to trust and act on forecasts or those locations

may differ from ones with poorer forecasts in unobserved ways (although linear cross sectional

confounding is ruled out by our county fixed effects).

5.5.1 Robustness and Sensitivity

In addition to testing the assumptions underlying our counterfactuals, we can also assess

sensitivity and robustness of the results to variations in the control set and specification.

The linear spline estimates shown in Figure 4 give one indication that the results are not

driven specifically by the quadratic functional form for forecast errors. In Figure A8, the

functional form is further relaxed through the use of quantile bins for forecast error. Binned

specifications create a greater computational burden as the number of bins increases, but

the figure shows that as the density of the bins grows, the estimated value converges to the
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Figure 9: Robustness and Sensitivity Checks
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Notes: The figure shows robustness and sensitivity checks on the main results reported in Section 5.1. The
points are the four-day cumulative estimates of the marginal effect of a increase in forecast mean absolute
error (“convexity”), estimated using Equation 2 and a quadratic specification for the forecast error function.
The lines are 95% confidence intervals based on standard errors clustered at the CWA level. For comparison,
“Baseline” reproduces the baseline estimate, with controls described in Section 4. “No trend” removes all
year trends, “Linear trend” removes the quadratic trend, “Cubic trend” adds a cubic trend, “DoY FEs”
replaces month fixed effects with day-of-year, “No age int.” removes the age interaction, and “No pop
weight” removes population weighting. The right panel adds realized weather controls. In all cases, the
weather is controlled for non-parametrically using quantile bins, and 4 lags of the bins are included (to
match the lag length of the forecast error). The labels indicate the added variable. Note that wind is only
available for a subset of the observations, so the sample changes. “All weather” simultaneously includes
functions of all additional weather variables listed in the figure.

value we estimate when using either the quadratic or linear spline specifications.

In Figure 9, the leftmost point and whiskers reproduce the baseline estimate with a

quadratic specification for the forecast error function. The figure shows 4-day cumulative

convexity estimate (the effect on mortality of a 1◦ increase in the mean absolute forecast

error). We focus on the 4-day effect purely for computational reasons—longer horizons

become exponentially slower to estimates and are infeasible as more controls are added. To

maintain comparability, the baseline estimates in the figure are also generated by estimating

Equation (2) using only 4 lags.32

The left panel of Figure 9 varies the controls and other aspects of the baseline specifica-

tion. The second through fourth points remove or add additional terms to the time trend

control. In all cases, the point estimate is essentially unchanged. Including at least linear

trends is helpful for improving precision.

The fifth point removes age interactions. In the baseline specification, age was interacted

with the month fixed effects, following previous literature on the temperature-mortality

32As Figure 7 shows, the effect is roughly constant after a few days, so these estimates are indicative of
robustness across the range of cumulative effects we consider.
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relationship. Here the age controls have little effect. Similarly, making the seasonal controls

more granular by replacing month fixed effects with day-of-year fixed effects (in the sixth

point) does not change the point estimate but does reduce precision.

The rightmost point in the left panel removes county population weighting. The baseline

results weight by population in order to better represent the forecast effects for a represen-

tative individual in the U.S. and also to improve precision. The robustness check suggests

that this last motivation is especially well-founded.

The right panel considers the effect of adding additional weather controls. For all weather

controls, we include the level and three lags of nonparametric functions of the listed variables

variables (in addition to the temperature and precipitation variables included in all regres-

sions). The specifics of the functions for each variable are described below. The number of

lags matches the lag length of the forecast error variables.

The first test (“5 deg. bins”) controls more flexibly for temperature by including indica-

tors for realized temperature every 5◦ between -10 and 30◦C. The convexity of the effect is,

if anything, larger.

The next two robustness checks address the possibility that unobserved variation in wind

may correlate with forecast errors. We here include wind data from NOAA’s North American

Regional Reanalysis (NARR) dataset. Like PRISM, the NARR dataset combines individual

weather observations with a model (in this case, the NCEP Eta weather model) to produce

weather measures on a consistent grid across the U.S (Mesinger et al., 2006). The grid has

a spatial dimension of roughly 32km, and we take a spatial average of the values in each

county to match our estimation sample.33 Because the wind data grid is coarser than the

PRISM grid, we lose some county observations when we include wind. Therefore, the “Wind

sample” point in the second panel re-estimates our baseline effect on the sample for which

we observe wind information. The effect is slightly, but not significantly, smaller than the

overall baseline estimate.

The “Wind” point adds nonparametric functions of wind speed and direction. For wind

speed, we include the level and lags of 4 indicators for the quartiles of speed. For wind

direction, we include 8 indicators, again divided by quantiles. Comparing the second estimate

to the first, one can see that the point estimate and inference are unchanged by the inclusion

of these wind controls.

The “PM2.5+Ozone” estimate returns to the baseline sample and adds eight quantile-

based indicators for both daily average PM2.5 and ozone. Pollution has a direct effect

on mortality, and weather conditions affect both the creation and the dispersal of some

pollutants. Including these controls increases the point estimate, but the difference from the

baseline estimate is minor.

33Further details on the steps we follow to process the wind data can be found in Missirian (2020).
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Similarly, the “Humidity” estimate shows that the estiamted effect is slightly larger when

including 4 bins of heat index to account for humidity.

The baseline controls include functions of realized temperature and rain. The second-to-

last estimate interacts these two functions. This addition has no impact on the estimated

forecast error effect.

The final point adds all of the previously mentioned weather controls simultaneously.

Because this set of controls also includes wind, the estimate is based on the smaller wind

sample. We again find similar results to the baseline case.

5.6 Longer-horizon Forecasts

The NWS issues point forecasts with horizons of up to 1 week. Table 5 shows 2-day

cumulative effects when including both the 1-day-ahead forecast and longer-horizon forecasts

in the estimation simultaneously. We focus on 2-day effects to simplify the interpretation

when including multiple forecast horizons—looking only over 2 days means that the 1-day

ahead forecast is always the most recent, available information included in the regression. If

there are adjustment costs that prevent individuals from acting on shorter-horizon forecasts,

then longer-horizon forecasts can provide more adaptation benefits. This will show up as a

convex relationship between mortality and the longer-horizon forecast, even conditional on

the shorter-horizon forecast.

The results in Table 5 are consistent with longer-horizon forecasts providing additional

value over-and-above the day-ahead forecasts. For both the 3 and 6-day forecasts, forecast

errors have a significant, convex relationship with mortality. Notably, in Columns (2) or

(3), the sum of the effects of the 1-day-ahead forecast and the 3 or 6-day ahead forecast

are approximately equal to the effects of the 1-day-ahead forecast in Column (1), where the

longer-horizon forecasts are not included. Forecasts at all horizons are strongly, positively

correlated, so the 1-day-ahead forecast effect in Column (1) (and in our other results) cap-

tures the benefits of all horizons of forecasts issued by the NWS via the correlation between

different horizons. The high degree of correlation between the different forecast horizons

also means that the hypothesis tests in the table should likely be viewed with caution due

to potential variance inflation.

6 Heterogeneity and Mechanisms

Who is benefiting from forecasts, what policies are associated with more beneficial fore-

casts, and what actions are people taking in response to information? We turn to these

questions now.
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Table 5: Effects by Forecast Horizon

(1) (2) (3)
Mortality rate Mortality rate Mortality rate

1-day ahead error -0.0044∗∗∗ 0.0054∗∗∗ 0.0036∗∗∗

(0.0007) (0.0010) (0.0009)
1-day ahead error2 0.0015∗∗∗ 0.0011∗∗ 0.0011∗∗∗

(0.0003) (0.0003) (0.0004)
3-day ahead error -0.0098∗∗∗

(0.0008)
3-day ahead error2 0.0004∗∗

(0.0002)
6-day ahead error -0.0085∗∗∗

(0.0005)
6-day ahead error2 0.0004∗∗∗

(0.0001)

Dependent var. mean 2.25 2.24 2.24
N 13,529,776 13,408,395 11,078,870
N Clusters 130 130 130

Notes The table shows 2-day cumulative effects from estimation of versions
of Equation (2) that also include longer-horizon forecasts. The dependent
variable is the daily mortality rate per 100,000 people. All models include
covariates for lags of bins of realized temperature and precipitation, date
fixed effects, county-by-month fixed effects interacted with quadratic time
trends, and month fixed effects interacted with four population age indi-
cators. Regression is weighted by county population. Standard errors,
clustered at the CWA-level, are below each estimate. Significance: p < .10,
** p < .05, *** p < .01.
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To analyze heterogeneity and mechanisms, we use two variations of the baseline esti-

mating equation. One type of analysis varies the dependent variable—replacing it with

mortality for specific subpopulations or time spent on different activities, for example. For

these analyses, the estimating equation is identical to Equation (2).

The second set of estimating equations interacts temperature, forecast error, or both

with a heterogeneity measure observed at the county or regional level. These estimating

equations take the form

yct =
L∑
`=0

[g`(ec,t−`)+h`(ec,t−`)Zct + f1,`(Tc,t−`)) + f2,`(precc,t−`)] (4)

+Xctγ + αcm + ρt + ε3,ct

where all variables are the same as in equation (2) except for the addition of a heterogeneity

measure Zct that is included in Xct and the interaction between the heterogeneity measure

and the forecast error function. For example, we interact forecast error with indicators for

mortality in different NOAA climate regions to understand spatial heterogeneity in forecast

value. The association between the heterogeneity term and forecasts can be assessed by

comparing the g and h estimates. For example, if a given term attenuates the effect of

forecast errors, the marginal effect of g would be larger than the marginal effect of g and h

combined. Given that multiple variables could change across space in a way that is correlated

with these heterogeneity measure, we stress that the estimates are not causal.

6.1 Demographic and Cause of Death Heterogeneity

The CDC mortality records provide three dimensions of demographic information about

the deceased individuals. They also list the cause of death. Figure 10 shows heterogeneity

results along these different dimensions, based on estimates of Equation 2 where the left-

hand side variable has been replaced with mortality for the demographic or cause of death

group listed on the x-axis of the figure. In all panels, the y-axis shows the convexity of the

mortality-forecast error relationship divided by the average number of daily deaths in that

group. The numbers can be interpreted as the percent change in mortality for the group for

a 1 degree increase in mean absolute forecast error. Higher, positive values indicate a more

valuable forecast, following the logic presented in Section 2.

The top left panel shows forecast value for different age groups. The most precise, strong

effects come from individuals older than 65. Point estimates are positive for young people

less than 19 and middle-aged individuals between 35 and 64, but the confidence intervals

are consistent with zero or even negative effects. In unreported results, there is substantial

heterogeneity in the effect within the 0 to 19 age group, with the largest point estimates for
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Figure 10: Heterogeneity by Demographics of the Deceased and Cause of Death
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Notes: The figure shows the 4-day cumulative percent reduction in
the mortality rate from a marginal reduction in forecast absolute error
based on 19 separate models fit using Equation (4) on the baseline
data. The forecast error function is a quadratic. The dimension of
heterogeneity is indicated below each figure. The circles are the point
estimates and the lines are 95% confidence intervals based on standard
errors clustered at the CWA level.

children between 1 and 5 years old, and a slightly negative point estimate for infants less

than 1. In all cases, however, the confidence intervals for these groups are wide.

The top middle panel compares forecast value by the race of the deceased. The effect

of forecasts on mortality is substantially greater for white individuals than for all other in-

dividuals. Notably, the point estimates indicate that forecasts have close to zero effect on

mortality for Black individuals and have a slightly negative value for individuals of all other

races. These results suggest that different groups either are differentially aware of forecasts,

differentially trust forecasts, differentially value mortality reductions, or differentially have

scope to act on forecasts. The first two possibilities suggest benefits from improved commu-

nication and outreach, whereas the fourth suggests benefits from loosening constraints on

adaptation.

The top right panel decomposes forecasts’ effect by the sex of the deceased individual.

Across both men and women, the effect of forecasts is nearly indistinguishable.

Finally, the bottom panel shows estiamtes by cause of death. In terms of point estimates,
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the three causes that are most strongly associated with forecasts are acute respiratory failure,

accidents, and cardiovascular disease. The strong associations with respiratory and cardio-

vascular deaths is consistent with the findings on leading causes of death from temperature

exposure (Deschênes and Moretti, 2009). The higher association with accidents could be due

to avoidance behavior engaged in by individuals to try to reduce their exposure to extreme

weather. The other causes of death have more modest associations.

6.2 Location Characteristics

Figure 11 shows heterogeneous effects of forecasts across NOAA climate regions.34 Fore-

casts have the largest effects on mortality in the West, Northwest, West North Central, and

Northeast regions, with the effects in the West and Northeast being particularly precise.

Point estimates in the Central, Southeast, Upper Midwest, and South regions are close to

zero. Although not significantly different from zero, the Southwest is notable for a substantial

negative forecast effect. Taken literally, the point estimate would indicate that reductions in

forecast absolute error would lead to worse mortality outcomes in the region.

Figure 11: Spatial Heterogeneity in Forecast Effect
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Notes: The figure shows the 4-day cumulative percent reduction in the
mortality rate from a 1◦C reduction in forecast absolute error based
on Equation (4) estimated across NOAA climate regions. The forecast
error function is a quadratic. Darker purple colors indicate stronger ben-
efits from forecast improvements, while lighter, orange colors indicate
lower benefits. The value in parentheses is the standard error, calcu-
lated using the delta method. Confidence intervals for the estimates can
be found in Figure A9

Figure A10 shows estimates of heterogeneity by location characteristics including the

number of doctors and libraries per capita, county median income, population density, an

34The information is also presented in the same format as Figure 10 in Figure A9.
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indicator for the second half of the sample (post 2011), and mortality that occurred on

weekends versus weekdays. The point estimates indicate greater availability of doctors,

a larger number of libraries (which act as cooling and warming shelters), higher income

per capita, and it being the weekend are all associate with higher forecast value, but the

differences are not significant.

6.3 Actions and Behaviors

Coming soon!

7 Conclusion

Routine weather forecasts are a widely used, highly sophisticated prediction product

that most people interact with on a daily basis. Despite the ubiquity of weather forecasts,

the number of people who rely on them, and the global effort involved in their production,

surprisingly little is known about their economic value. Existing estimates are based on out-

of-date stated-preference surveys or modeling exercises that might not capture real-world

behavior. This paper provides the first revealed preference estimates of the value of daily

weather forecasts.

We show that whether improving forecasts’ accuracy reduces mortality is theoretically

ambiguous, depending on the convexity of mortality risk in forecast errors and thereby on the

form of adaptation undertaken. Using the universe of mortality events and weather forecasts

for a twelve-year period in the U.S., we show that forecasts are effective at helping people

avoid mortality. Across the full temperature distribution, halving the standard deviation of

day-ahead forecasts’ errors would provide benefits of $16 billion per year in avoided mortality.

This value stands out when we consider the $1.1 billion annual budget of the U.S. National

Weather Service and even the $5 billion annual budget of its parent agency, the National

Oceanic and Atmospheric Administration.

The majority of the value from improving forecasts’ accuracy comes from days with rela-

tively mild weather because these days are especially frequent. However, days with extreme

cold and heat also provide substantial value, despite extremely cold days representing only

9% of days and extremely hot days representing only 2% of days. The value of improve-

ments on extremely cold days derives from their current forecasts being especially noisy, and

the value of improvements on extremely hot days derives from mortality being especially

convex in forecast errors. This convexity suggests that adaptation is particularly important

on extremely hot days. As global warming increases temperatures in the U.S., high-quality

weather forecasts will be even more important for avoiding excess mortality. However, the

scope for improvements is limited by the high quality of existing forecasts. Future work
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should analyze the benefits of improving accuracy at longer horizons. It should also investi-

gate the value of forecast-based adaptation facilitated by the public sector.

Our analysis identifies the value of more accurate forecasts through the effects of idiosyn-

cratic forecast errors on mortality. When we value improved accuracy, we implicitly hold

agents’ responses to forecasts fixed. This approach may be sensible for marginal changes

in forecast quality, but nonmarginal changes should eventually change the way people use

forecasts. Our analysis suggests that people do in fact act on forecasts more in counties

where forecasts tend to be of higher quality. Our estimates may therefore represent a lower

bound on the mortality value of increased accuracy. Future work should use variation in

forecast quality to identify how people would respond to improved forecasts.
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Drèze, J. (1962). L’utilité sociale d’une vie humaine. Revue Fran�caise de Recherche

Opérationnelle 23, 93.

38

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4


EPA (2021). Mortality risk valuation. https://www.epa.gov/environmental-economics/

mortality-risk-valuation. Accessed: 2021-12-10.

Fishback, P. V., W. Troesken, T. Kollmann, M. Haines, P. W. Rhode, and M. Thomasson

(2011, May). Information and the impact of climate and weather on mortality rates

during the Great Depression. In G. D. Libecap and R. H. Steckel (Eds.), The Economics

of Climate Change: Adaptations Past and Present, pp. 131–167.

Freebairn, J. W. and J. W. Zillman (2002). Economic benefits of meteorological services.

Meteorological Applications: A journal of forecasting, practical applications, training tech-

niques and modelling 9 (1), 33–44.

Gasparrini, A., Y. Guo, M. Hashizume, E. Lavigne, A. Zanobetti, J. Schwartz, A. Tobias,
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A Data Processing Details

The raw mortality data from the CDC NCHS MCOD files report the day and county

of each vital event. All events in a county on a day are added together to generate the

county-level number of daily deaths. The deaths are translated into a death rate by dividing

by annual county population, as described in Section 3.2.

The day-county structure of the mortality data motivates our processing choices for

the PRISM weather data and NDFD forecast data. Both datasets originally provide daily

observations on a consistent, high-resolution spatial grid across the U.S. For the forecast

data, there are multiple potential observations per day. Forecast models are run and results

are reported multiple times per day. For the minimum and maximum temperature forecasts

we focus on, the major model runs occur at 12UTC and 00UTC. Based on feedback from

National Weather Service meteorologists, we examine the 12UTC forecast which are available

in the early morning for locations in the U.S. and typically form the basis of the morning

forecast on local news. We aggregate the spatial grid to the county level using the following

procedure:

First, for each county, we find the spatial points that fall inside the geographic boundary

of the county, using 2010 county TIGER/Line shapefile from the Census. Given the high

resolution of the underlying datasets, all counties in our sample contain multiple grid points.

Second, we assign a weight to each grid point based on 2010 population grids from CIESIN

(2017). The CIESIN grids are at a roughly 1km resolution, which is higher than either the

weather or forecast grid resolutions. Therefore, we use bilinear resampling to reproject the

the population grid to match that of the weather or forecast grids.

Figure A1: Comparison of Example Raw Gridded Forecast Data and County-level Data

(a) Gridded Raw Data (b) County Area Average (c) Population-weighted

Notes: The maps show the raw, gridded forecast data in panel (a) and the corresponding county-level area
and population-weighted average forecasts in panels (b) and (c) respectively. The maps are for one day
and forecast horizon: the 1-day-ahead forecast for September 9, 2006. The forecast shown in the figure is
the 00UTC forecast of hourly temperature. In practice, we focus on the 12UTC forecast of minimum and
maximum temperature.
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Third, we calculate population-weighted average values for each weather or forecast ob-

servation within the county. The end result is a daily, population-weighted spatial average

of the maximum temperature, minimum temperature, total precipitation, dewpoint temper-

ature, maximum temperature forecast for 1 to 6 days ahead, and the minimum temperature

forecast for 1 to 6 days ahead (the NWS issues forecasts out to 7 days, but given our choice

of the 12UTC forecast, the 7-day-ahead minimum temperature forecast is not available).

Comparison of an example gridded forecast data and the corresponding county-level data is

shown in Figure A1.

Fourth, we correct errors in the forecast data. The NDFD data undergo minimal error

checking (such checks are the responsibility of local Weather Forecast Offices). In particular,

from one forecast horizon to the next, there are a small number of observations that have

a change in forecast value of exactly -17.4999 degrees. These changes occur only at one

forecast horizon, so we use adjacent forecast horizons to interpolate the erroneous value. We

do the same for positive forecast errors that occur for just a single forecast horizon and are

greater than 25 degrees in absolute value (in the primary results, we Windsorize the forecast

errors, so this data cleaning step does not affect the estimates).

Fourth, we match the timing conventions in the forecast and weather data. The NWS

typically uses a noon to noon UTC convention for daily temperature forecasts. Minimum

temperatures are forecasted for the nighttime (midnight UTC day to noon UTC day t or 7

p.m day t− 1 to 7 a.m. day t EST). Maximum temperatures are forecasted for the daytime

(noon UTC to midnight UTC). PRISM also typically follows this timing convention, but not

as strictly. To match the timing conventions between the two datasets, for maximum and

minimum temperatures separately, we regress realized temperature on the day t 1-day-ahead

forecast and the day t−1 1-day-ahead forecast. For maximum temperature, we find that the

day t forecast is sufficient (the day t− 1 forecast does not predict the realization conditional

on the day t forecast). For minimum temperature, we find that both days’ forecasts are

predictive, with the day t forecast being about twice as predictive as the day t− 1 forecast.

We therefore construct a time-corrected day t minimum temperature forecast that is the

weighted average of the original day t and day t− 1 forecasts with weight 2/3 on the day t

forecast and 1/3 on the day t− 1 forecast. The time-corrected forecast does exhibit forecast

sufficiency.

After creating the daily, county-level dataset, we merge counties with identifiers for their

NOAA County Warning Area (CWA). CWAs are collections of counties, and the local NWS

Weather Forecasting Office (WFO) is responsible for generating forecasts for the CWA. The

map of counties and CWAs is shown in Figure A2.
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Figure A2: Map of NOAA County Warning Areas (CWAs)

Notes: The map shows (in colored areas with black outlines) the geographic boundaries of County Warning
Areas (CWAs), the collection of counties for which a given NWS Weather Forecasting Office is responsible
for creating forecasts. State borders are shown in gray, thinner lines. CWAs are typically composed of one
or more counties and can cross state borders. There are 116 CWAs in the continental U.S. Some counties
are part of multiple CWAs, and in those cases, we assign the county a CWA ID composed of each CWA that
it is in. The end result is 1 to 1 mapping of all continental U.S. counties to 130 CWAs or CWA groups.
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B Counterfactual Approximation Quality

In Section 2.1, we derive marginal conditions for forecast value. These conditions are

second-order approximations to the value of a change in forecast error distribution. For a

marginal change in forecast error standard deviation and a quadratic forecast error specifi-

cation (h̃ = β0 + β1e+ β2e
2) this is, following Equation (1),

E[V approx
marg ] =

dw

dσf |T=T̂

∣∣∣∣∣
ε=0

(5)

=
1

2
VSL h̃ee(T̂ , 0) 2σe p(T̂ )

=
1

2
VSL 2β2 2σe p(T̂ )

= 2 VSL β2 σe p(T̂ )

where σ is the standard deviation of forecast (and forecast errors). Note that to convert the

marginal effect of variance presented in Equation (1) into the marginal effect of standard

deviation, we need to multiply by 2σe because ∂σ2
e/∂σe = 2σe. The approximate value of an

X × 100 percent reduction in forecast error standard deviation is

E[V approx
pct ] =

1

2
VSL h̃ee(T̂ , 0) (1− (1−X)2)σ2

e p(T̂ ) (6)

= VSL β2 (1− (1−X)2)σ2
e p(T̂ )

where again the final term converts between changes in variance and standard deviation.

For a discrete change in the forecast error distribution, the value is given by the difference

in expected value under the counterfactual and actual distributions.

E[V ] = VSL p(T̂ )

(∫
h̃(T̂ , e)pc(e) de−

∫
h̃(T̂ , e)p(e) de

)
(7)

where h is the mortality hazard as a function of temperature and forecast error, p(e) is the

probability density of forecast errors, and pc(e) is a counterfactual density. For instance, pc(e)

would be the density with a 50% smaller standard deviation in the “50% s.d. reduction”

counterfactual.

The approximation will be accurate if the distribution of errors is close to normal or if

the mortality hazard function is approximately quadratic in forecast errors. The approxima-

tion is practically useful because it is faster to compute. Table A1 compares the estimated

counterfactual across all realized temperatures using both the approximation and a non-

parametric estimate based on numerically evaluating the two integrals in Equation (7). One
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can see that the approximation accurately reproduces the results from the nonparametric

estimator in this setting.

Note that this comparison is done by estimating versions of Equation (2) with only 4

total lags of forecast error, temperature, and precipitation to speed up computation. The

estimated values are four-day cumulative effects. They differ from equivalent lag cumulative

effects presented in the body of the paper because those estimates are based on longer lag

models. The results in Table A1 are solely for illustration of the accuracy of the counterfac-

tual approximation.

Table A1: Comparison of Counterfactual Approximation and Nonparametric Calculation

(1) (2)
Method Marginal change in s.d. % reduction in s.d.

Nonparametric 41.379 17.554
Approximation 41.412 17.561

Notes: The table compares estimates of the counterfactual value
of forecast error changes calculated using a second-order approx-
imation described in Section 2 and given in Equations (5) and
(6) (Column 1) and a nonparametric estimate based on moment
condition given in Equation (7) (Column 2). The counterfactual
values differ from the results shown in the body of the paper (first
row of Table 3) because they are based on estimating only a 4-day
lag model to speed computation.
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C Additional Figures and Tables

Figure A3: Unconditional Variation in Temperature and Day-ahead Forecast

(a) St. dev. of average temperature (b) St. dev. of 1-day-ahead forecast

Notes: The maps show the standard deviation of the unconditional average temperature (left panel) or the
1-day-ahead forecast of average temperature (right panel). For an indication of the identifying variation
conditional on controls, compare these maps to the maps in Figure A4.

Figure A4: Residual Variation in Temperature and Day-ahead Forecast

(a) St. dev. of residual average temperature (b) St. dev. of residual 1-day-ahead forecast

Notes: The maps show the standard deviation of the residuals from a regression of average temperature (left
panel) or the 1-day-ahead forecast of average temperature (right panel) on all of the controls in the baseline
regression specification (see Equation 2).
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Table A2: Estimates of Forecast Effect on Mortality: All Estimates

(1) (2)
Mortality rate Mortality rate

Forecast error -0.0004
(0.0012)

Forecast error2 0.0015∗∗

(0.0006)
Error×Temperature≤ 0◦ 0.0039

(0.0038)
Error2×Temperature≤ 0◦ 0.0012

(0.0013)
Error×Temperature 0 to 15◦ -0.0024

(0.0016)
Error2×Temperature 0 to 15◦ 0.0006

(0.0008)
Error×Temperature 15 to 30◦ 0.0002

(0.0019)
Error2×Temperature 15 to 30◦ 0.0026∗∗

(0.0012)
Error×Temperature≥ 30◦ 0.0062

(0.0196)
Error2×Temperature≥ 30◦ 0.0263∗∗

0.0124

Dependent var. mean 2.25 2.25
N 13,529,776 13,529,776
N Clusters 130 130

Notes The table shows the same estimation results as Table 2, but
it presents all estimated coefficients. The table shows 1-week (day t
through day t+7) cumulative effects from estimation of Equation (2)
(Column 1) and Equation (3) (Column 2) on the baseline sample,
both with a quadratic forecast error function. The dependent vari-
able is the daily mortality rate per 100,000 people. In Column (2),
the excluded category is the indicator for realized temperature from
15 to 30◦. All models include covariates for lags of bins of realized
temperature and precipitation, date fixed effects, county-by-month
fixed effects interacted with quadratic time trends, and month fixed
effects interacted with four population age indicators. Regression
is weighted by county population. Standard errors, clustered at
the CWA-level, are below each estimate. Significance: p < .10, **
p < .05, *** p < .01.
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Table A3: Cumulative Estimates of Forecast Effect on Mortality Over 2 Weeks

(1) (2) (3) (4) (5)
Cumulative Linear Quadratic Marginal Marginal Test (3) vs (4)
lag length coef. coef. eff. at -1 eff. at 1 =2×convexity

1 -0.0026 0.0005 -0.0037 -0.0016 0.0021
(0.000500) (0.000300) (0.000900) (0.000500) (0.001100)

2 -0.0044 0.0015 -0.0073 -0.0014 0.0059
(0.000700) (0.000300) (0.001200) (0.000800) (0.001400)

3 -0.0031 0.0016 -0.0063 0.0001 0.0064
(0.000800) (0.000400) (0.001400) (0.001000) (0.001700)

4 -0.0027 0.0015 -0.0058 0.0003 0.0061
(0.000900) (0.000500) (0.001400) (0.001200) (0.002000)

5 -0.0022 0.0012 -0.0046 0.0003 0.005
(0.001000) (0.000600) (0.001600) (0.001300) (0.002300)

6 -0.0014 0.0013 -0.0039 0.0012 0.0051
(0.001000) (0.000600) (0.001700) (0.001400) (0.002400)

7 -0.001 0.0009 -0.0028 0.0009 0.0038
(0.001200) (0.000600) (0.001800) (0.001500) (0.002500)

8 -0.0004 0.0015 -0.0034 0.0025 0.0059
(0.001200) (0.000600) (0.001800) (0.001600) (0.002600)

9 -0.0005 0.0017 -0.0039 0.003 0.0069
(0.001200) (0.000700) (0.001800) (0.001700) (0.002600)

10 0.0006 0.0014 -0.0022 0.0035 0.0057
(0.001200) (0.000700) (0.002000) (0.001800) (0.002700)

11 0.0009 0.0015 -0.002 0.0038 0.0058
(0.001400) (0.000700) (0.002200) (0.002000) (0.003000)

12 0.0021 0.0012 -0.0003 0.0046 0.0049
(0.001400) (0.000800) (0.002100) (0.001900) (0.003100)

13 0.0026 0.0014 -0.0003 0.0054 0.0056
(0.001400) (0.000800) (0.002300) (0.002100) (0.003200)

14 0.0036 0.0015 0.0005 0.0066 0.0061
(0.001500) (0.000800) (0.002400) (0.002300) (0.003400)

15 0.0043 0.0011 0.0021 0.0066 0.0044
(0.001600) (0.000900) (0.002500) (0.002400) (0.003500)

Notes The table shows the cumulative effect estimates from a single estimation of
Equation 2 with a quadratic forecast error specification. The dependent variable
is the daily mortality rate per 100,000 people. Column (1) shows the linear terms
and Column (2) the quadratic terms. Columns (3) and (4) show marginal effects at
error of -1 and 1. Opposite signs on those term indicates U-shaped response, and
Column (5) tests for the significance of the U-shape by comparing -1 times Column
(3) to 1 times Column (4). This value is also 2 times the convexity. Standard errors,
clustered at the CWA-level and calculated using the delta method, are below each
estimate.
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Figure A5: Spatial Variation in Forecast RMSE (Conditional on Baseline Controls)

Notes: The map shows the root mean squared error of the 1-day-ahead
forecast for each county in the continental U.S. over the sample period.
Redder values indicate higher average RMSE and yellower values indicate
lower values. The values are all conditional on the baseline fixed effects and
other control variables.
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Figure A6: Raw Data Relationship Between 1-Day Ahead Forecast Error and Mortality for
Days with Hot and Cold Realized Temperatures
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(a) Realized temperature ≤ 5◦C
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(b) Realized temperature ≥ 30◦C

Notes: The figures show estimates of the raw-data relationship between forecast error from
the 1-day ahead forecast and the daily mortality rate. The fitted lines are based on local
polynomial regressions with an Epanechnikov kernel and the default, plugin bandwidth. The
shaded areas are 95% confidence intervals but should be interpreted with caution because
they treat all observations as i.i.d. Clustered inference is presented in Section 5.2. Panel (a)
shows the relationship when the actual temperature turns out to be cold (≤ 5◦C), and Panel
(b) shows the relationship when the actual temperature turns out to be hot (≥ 30◦C).
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Figure A7: Comparing Value Estimates: Binned Forecast Error Specifications
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Notes: The figure shows estimates of the cumulative value of a 1◦C reduction
in mean absolute forecast error. Each line is based on a single regression
estimated using Equation 2 fit to the baseline data. The estimates are
translated into economic value by calculating the counterfactual value of a
1◦ reduction in forecast absolute error multiplied by the VSL, population,
and days per year. The red line estimates a quadratic relationship between
mortality and forecast error, the blue line uses a linear spline with a knot
at 0, and the green lines use progressively more granular quantile bins. To
help assess the significance of the diffrences between the methods, the blue
area shows the 95% confidence interval for the linear spline specification,
calculated using the delta method, based on standard errors clustered at
the CWA level.
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Figure A8: Comparing Value Estimates: Binned Forecast Error Specifications
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Notes: The figure shows the estimated relationship between mortality and
forecast errors based on Equation 2 with a quadratic forecast error specifi-
cation and controlling for 5◦ bins of realized temperature. Each line shows
the cumulative effect through a given number of days.

Figure A9: Effect of Forecast Error Increase on Mortality: Regional Heterogeneity
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Notes: The figure shows the 4-day cumulative percent increase in the mor-
tality rate from a 1◦C increase in forecast mean absolute error based on a
model fit using Equation (4) on the baseline data. The forecast error func-
tion is a quadratic. The dimension of heterogeneity is indicators for each
NOAA climate region in the Continental U.S. The circles are the point es-
timates and the lines are 95% confidence intervals based on standard errors
clustered at the CWA level. A map showing these effects spatial can be
found in Figure 11.
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Figure A10: Effect of Forecast Error Increase on Mortality: Location Characteristic Hetero-
geneity
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Notes: The figure shows the 4-day cumulative percent increase in the mor-
tality rate from a 1◦C increase in forecast mean absolute error based on a
model fit using Equation (4) on the baseline data. The forecast error func-
tion is a quadratic. The dimension of heterogeneity is indicated along the
bottom of the figure. The circles are the point estimates and the lines are
95% confidence intervals based on standard errors clustered at the CWA
level. Blue points and lines are the effect when the interaction term is at its
mean, and red points and lines are the effect with a 1-standard deviation
larger value of the heterogeneity dimension.
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