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Abstract

The adoption of healthcare technology is central to improving productivity in this sec-
tor. To provide new evidence on how technology affects healthcare markets, we focus on
one area where adoption has been particularly rapid: surgery for prostate cancer. Over
just six years, robotic surgery grew to become the dominant intensive prostate cancer
treatment method. Using a difference-in-differences design, we show that adopting a
robot drives prostate cancer patients to the hospital. To test whether this result reflects
market expansion or business stealing, we also consider market-level effects of adoption
and find they are significant but smaller, suggesting that adoption expands the market
while also reallocating some patients across hospitals. Marginal patients are relatively
young and healthy, inconsistent with the concern that adoption broadens the criteria
for intervention to patients who would gain little from it. We conclude by discussing
implications for the social value of technology diffusion in healthcare markets.
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1 Introduction

The healthcare sector accounts for almost one-fifth of the U.S. economy, a share that has

grown dramatically in the last quarter-century (CMS, 2020b). Technology adoption in health

care is a key determinant of productivity in this sector, and technology is widely considered

the central driver of long-term productivity gains in the broader economy (Jorgenson, 2011).

However, unique features of the healthcare sector, like information frictions and insurance,

can distort the quality and quantity of technology adoption. If patients or their agents (such

as referring physicians) have a preference for technology or use it as a proxy for quality,

the introduction of a new technology will increase demand and prompt adoption by care

providers. New technology has the potential to promote a wave of adoption as hospitals

compete over the same set of patients, resulting in service duplication and increased cost. In

this way, adoption could theoretically go beyond the socially optimal level, a phenomenon

known in health care as the “medical arms race.”

In this study, we ask how technology adoption impacts utilization of hospital care to

better understand its role in the performance of the healthcare sector. We use the diffusion

of robotic surgery for the treatment of prostate cancer to investigate how patients or their

agents respond. Adoption of surgical robotics proceeded exceptionally rapidly: from its in-

troduction in 2001 through 2015, more than half of hospitals in the U.S. that treat cancer

patients adopted a robot (Figure 1). Focusing on surgical removal of the prostate, termed

prostatectomy, allows us to assess how patient volume changes in response to a new tech-

nology from inception along its trajectory to becoming the predominant method of intensive

intervention for these patients. Additionally, surgical robots are a frequent focus of hospital

advertising, pointing toward their potential use by patients as a signal of quality (Schwartz

and Woloshin, 2019; Sheetz et al., 2020).

Our differences-in-differences research design exploits variation in the timing of adop-

tion across hospitals in the U.S. to estimate the effect of robotic surgery on patient volume
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and characteristics. We show that adoption leads to a statistically significant and economi-

cally meaningful rise in hospital volume: prostate cancer admissions (the risk set for robotic

surgical intervention) increase by 59 log points and prostatectomies (in which the robot can

be used) increase by 69 log points. In event study plots, we show that these estimates average

over effects that increase over time. These results suggest that patients – or their agents –

have a preference for robotic surgery or view it as as signal of quality.

Increases in patient admissions would arise if robotic device adoption expands the

market for robotic surgery. On the other hand, our estimates are also consistent with business

stealing in which hospitals adopt surgical robots to compete over the same patients. To

distinguish between market expansion and business stealing, we also implement our research

design at the healthcare market level. We show that as hospitals in a market adopt surgical

robots, the volume of prostate cancer patients and prostatectomies in the entire market rises

in response. Surgical robot adoption thus leads to meaningful expansions in the market

for intensive intervention. These effects are statistically and economically significant, but

are just under half the magnitude of the hospital-level results. Using event study plots

to illustrate dynamics of the effects, we find that they grow over time but on a shallower

trajectory than their hospital-level counterparts. Taking these findings together, we conclude

that some of the hospital-level effects also reflect business stealing in which adoption leads

to a re-shuffling of patients.

Our results raise the question of who receives treatment at the margin when a hospital

adopts a surgical robot and patient volume expands. We apply our main estimation strategy

to study two key characteristics of patients, age and pre-existing burden of illness. We

find that adoption of surgical robots brings relatively younger and healthier patients to the

hospital for treatment. A key concern is that prostatectomy induced by robot adoption could

provide little value to patients and society because the recipients may have short remaining

life expectancy (they would likely die of another competing health risk) or have severe existing
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health conditions (they are at a high risk of adverse surgical outcomes) (Lepor, 2000). Our

findings reject the idea that surgical robotics is expanding treatment among this group. Thus

we find no sign that adoption broadens eligibility criteria for surgical intervention in a way

that would attract patients who, at least on observable characteristics, are likely to benefit

little from treatment.1

Robotic surgery is well-suited to the study of healthcare technology and its diffusion

for several reasons. First, barriers to entry are relatively low for surgical robots. The

initial capital investment of approximately $2 million is significantly less than other intensive

technologies like cardiac catheterization laboratories which have been the focus of much prior

research (Barbash and Glied, 2010; Cutler et al., 2010). Accordingly, the cost of a surgical

robot does not trigger certificate of need (CON) laws in most states (Jacobs et al., 2013).

Second, whether physicians use a robot for prostate surgery has no bearing on the Medicare

physician or hospital payment for the procedure, and evidence for clinical benefit of the

robot for prostate cancer treatment relative to non-robotic surgery is essentially nonexistent

(Sandoval Salinas et al., 2013; Yaxley et al., 2016; Ilic et al., 2017). The lack of direct

financial incentive and clinical benefit points to the potential adoption of surgical robots as

a pure signal to patients, rather than an attempt to improve outcomes or bill more for the

same cases. Third, Medicare patients are largely protected from the costs of intervention,

and so out-of-pocket costs should play little role in the decision to initiate surgery with or

without the robot. Finally, robots are sufficiently new that we observe hospital adoption

and the universe of Original Medicare prostate cancer patients starting from initial FDA

approval.

This study contributes to the literature in three key ways. First, we add to the evidence

on the efficiency of technology diffusion in the health care sector. The most relevant prior
1While these results show that adoption of surgical robots did not lead to the clearest socially wasteful

overuse for prostate cancer treatment, we cannot ascertain that the expansion of the intervention to the
younger, healthy group is necessarily cost-effective. Such analysis is beyond the scope of this study but an
important topic for future work.
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studies have focused on the potential for a socially wasteful medical arms race in which

hospitals compete for patients by providing care of questionable value and acquiring costly

high-tech equipment (Dranove et al., 1992; Kessler and McClellan, 2000). This research is

related to the concept that free entry can lead to social inefficiencies through business stealing

(Mankiw and Whinston, 1986). As we show, adoption of surgical robots leads to business

stealing as well as market expansion, which the literature would interpret as a signpost of an

arms race – though the presence of market expansion rules out that adoption was wholly the

result of such a phenomenon. Still, the welfare impacts of technology adoption depend on the

costs and benefits of the technology for patients who use it at the margin. Our finding that

the patients who are induced to get treatment due to the robot are younger and healthier

suggests that the worst fears for social inefficiencies were not realized. However, combining

our results with clinical literature finding minimal benefits of the robot for patient outcomes

calls into question whether this adoption was socially beneficial.

These results also relate to research on productivity variations in the health care sector.

Much of this work has focused on the adoption of evidence-based, low-cost technology like

beta blockers in the treatment of heart attacks (Skinner and Staiger, 2007; Chandra and

Staiger, 2007). Disparities in the use of these technologies are hypothesized to be a key

determinant of productivity variations across regions (Baicker and Chandra, 2004; Skinner

and Staiger, 2015). The benefits of adopting costly, high-tech equipment for the efficiency

of the sector are more equivocal as, for example, Cutler et al. (2010) shows in the case of

coronary bypass surgery for heart attacks. We add new evidence on the adoption of costly

technology with few de jure restrictions on adoption and even less evidence backing its use.

As we show, the surgical robot drove large volumes of patients to the hospital even as its

clinical value remained unsubstantiated.

Finally, our work connects research on demand responses to quality information with

the literature on hospital market responses to technology adoption. One piece of conven-
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tional wisdom suggests that unique characteristics of the health care market, such as the

lack of accurate quality information and the prevalence of insurance coverage, dampens

demand-side competition and gives providers little incentive to innovate (Cutler et al., 2010;

Skinner, 2011). More recent studies challenge this view and show evidence that the alloca-

tion of patient volume across hospitals does respond to quality information (Chandra et al.,

2016). Recent developments in health care markets like increased public reporting of patient

outcomes may make the demand response to quality, or perceived quality, even stronger.

The strong volume increases we see in response to innovation demonstrates that there can

be strong demand-side competition in health care. Our results suggest that patients and

their agents view hospitals that have adopted the robot as higher quality and thus more

preferable. This robust response to innovation has been found in technologies relating to

treatments for cardiovascular disease, but the magnitude is not as stark as what we have

found here (Hodgkin, 1996; Grossman and Banks, 1998).

The paper continues as follows: Section 2 provides background on robotic surgery

devices and prostate cancer. Section 3 presents the data used in the analysis. Section 4

describes the estimation methodologies. Section 5 details the results. Section 6 discusses the

findings and concludes.

2 Background

Robotic assisted surgical devices were first introduced to the general U.S. hospital setting

in 2000 when Intuitive Surgical, Inc. received FDA approval to bring its da Vinci device to

market. Due to patent protection, the da Vinci surgical robot remained the only surgical

robot available in the U.S. through our analysis period.2 This device augments laparoscopic

surgery, assisting physicians in procedures conducted through small incisions (Mack, 2001).
2Intuitive Surgical faced one major competitor, Computer Motion, Inc., whose ZEUS surgical-robotic

system received FDA approval in 2001. After patent battles, the firms merged in 2003 and ZEUS was
removed from the market (SEC, 2003).
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Robotics aim to expand a surgeon’s capabilities by increasing their dexterity, flexibility and

visual field. During a robot-assisted procedure the surgeon sits at a console and controls

robotic arms with specially-designed instruments. In contrast, in traditional laparoscopic

surgery the physician would manipulate instruments directly.

Purchasing a robotic surgical system requires an initial capital investment of approxi-

mately $2 million, and robotic procedures cost hospitals an average of 13 percent more than

traditional laparoscopic surgery (Barbash and Glied, 2010). However, Medicare hospital

and physician reimbursement do not differentiate between robotic surgery and laparoscopic

surgery (the reimbursement systems are agnostic to the surgical instrument, though pay

differs more invasive open procedures). Given Medicare’s tendency to reimburse at average

rather than marginal cost, robot adoption and use can still be profitable for hospitals, par-

ticularly if the device receives heavy use. Hospitals may thus seek to increase the volume of

procedures after adoption (Sheetz et al., 2020). Perhaps unsurprisingly given the appeal of

a volume-oriented strategy, hospitals heavily advertise their surgical robots (Schwartz and

Woloshin, 2019).

We focus on robotics in the context of prostate cancer because the robot has played a

notably large role in transforming how prostatectomy is performed in comparison to other

conditions intensively treated with the robot (Chandra et al., 2011). Prior to robotics,

prostatectomy was usually an open-site procedure because the prostate is hard to access

with a laparoscope (Finkelstein et al., 2010). Figure 2 shows that by 2008, just 8 years after

the FDA approval of the robot, open-site procedures were no longer the dominant method

of prostatectomy. The market implications of this phenomenon have received surprisingly

little study; perhaps the most relevant work in this area is Ko and Glied (2021), which found

that hospital robot adoption increased robot use and decreased costs for New York state

Medicaid patients.

The transition to laparoscopic intervention was driven by adoption of the robots, and we
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exploit this rapid roll-out in our differences-in-differences research design. Yet this dramatic

change in intervention modality was backed by essentially no randomized trial data. To date,

only one randomized trial has compared the robotic and open approaches head-to-head; it

was published after our sample period and detected no benefit of the robotic approach

(Yaxley et al., 2016). Systematic reviews of randomized trials find that the outcomes of

open, laparoscopic, and robotic prostatectomy are similar (Sandoval Salinas et al., 2013; Ilic

et al., 2017).

Prostate cancer is the second most common cancer behind skin cancer in men and

results in approximately 33,000 deaths each year (ACS, 2020; CDC, 2020). Prostatectomy,

or the removal of the prostate gland, is the key surgical treatment for prostate cancer.

However, the treatment can come with significant side effects like incontinence and sexual

dysfunction that may dramatically impact a patient’s life. The high personal and accounting

costs of aggressively treating this slow-growing cancer has led to a shift toward a watch-and-

wait strategy to avoid over-treating a disease that may not become fatal (Lepor, 2000).

Prostatectomy hospitalizations decreased by 32 percent in Medicare over our sample period

as watch-and-wait became more widespread in managing prostate cancer (Appendix Figure

A1). The introduction of robots overlays this reduction in aggressively treating prostate can-

cer, and so increases in prostatectomy volume induced by surgical robots may only partially

offset the general decline in intensive intervention.

3 Data

The key allocation analyses in this study measure the volume of prostate cancer and prosta-

tectomy inpatients at each hospital in each year. Both volume measures are key to this

study because adoption of a surgical robot could attract patients to the hospital whether or

not they ultimately receive surgical intervention; they provide, respectively, a broader and

narrower view of the impact of adoption on allocation. We source these measures from 1998-
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2015 inpatient hospitalization records (called MEDPAR) for 100% of Medicare beneficiaries.3

We count patients with a principal diagnosis of prostate cancer and, separately, those with

prostate cancer who also received a prostatectomy. Appendix Table A1 lists the diagnosis

and procedure codes we use to identify patients. When we analyze patient characteristics,

we do so through a linkage to patient summary data (the Master Beneficiary Summary File).

We omit patients under age 65, who can enter Medicare due to disability or end-stage renal

disease, to focus on the older adult population for whom coverage is near-universal. We also

exclude managed care patients, for whom reporting is incomplete, from all analyses.

To observe if and when hospitals acquire surgical robots, we rely on snapshots of the

Intuitive Surgical website posted on the Wayback Machine (archive.org) from 2002-2005

and American Hospital Association (AHA) survey data from 2005-2015. Our first view of

adoption thus occurs 12 to 18 months after the robot was approved by the FDA.4. To account

for the lag between very early adoption and initial reporting, we assign hospitals listed in

the 2002 archive of the website an adoption year of 2001.

The Medicare setting has a number of advantages for this research. The size of the

program allows us to observe patient allocation in essentially all U.S. markets and the vast

majority of hospitals. The Original Medicare program imposes no network restrictions on

patients. The cost-sharing structure of Medicare and patients’ frequent enrollment in sec-

ondary coverage of these costs mean that patients have little financial incentive to choose

one hospital over another. Together, these features of Medicare insulate our findings from

potentially endogenous changes in networks and cost-sharing that might occur in private

insurance.

Our analysis period spans 1998 through 2015. All analyses presented in this study use
3We focus on inpatient stays because Medicare only covers open and robotic/laparoscopic prostatectomy

in this setting during our analysis period (CMS, 2015). A related procedure, transurethral resection of the
prostate (TURP), is covered in the outpatient setting but is most often used to treat an enlarged prostate as
opposed to prostate cancer (Hopkins, 2021). In more recent years post-dating our analysis period, Medicare
began expanding its coverage of prostatectomy procedures in the outpatient setting (CMS, 2020a).

4The FDA approved the da Vinci surgical robot on July 17, 2000 (FDA, 2000)
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a balanced panel of hospitals that treated at least 1 patient with any condition in every

year.5 To ensure we observe at least 3 years of pre- and post-adoption patient volumes at

all facilities, hospital-level analyses omit facilities that acquire a robot after 2012. We also

restrict to the plausible hospital choice set for patients seeking cancer care. First, we limit

to short-term and critical access hospitals. Second, hospitals in the analysis sample must

admit a minimum of 50 patients annually with at least 5 of those patients being admitted

for cancer treatment (we do not count skin cancer). In robustness analyses we show that

our findings are preserved when we add back late adopters and facilities that fail to meet

the patient thresholds.6

Table 1 provides summary statistics for the 2,261 hospitals in our sample, split nearly

evenly into those that do and do not adopt. Compared to non-adopters, hospitals that

adopt a robot tend to be larger, in urban areas and are more often teaching institutions.

Adopters also treat more cancer patients overall and treat more prostate cancer patients. In

turn, adopting hospitals also have three to four times the prostate cancer and prostatectomy

market shares of non-adopting hospitals. These differences may partly reflect the effect of

robot adoption itself in driving these patients to the hospitals.

4 Analytic Approach

Our research design exploits the staggered adoption of surgical robots across hospitals to

identify the effect of acquiring a robot on patient volume and characteristics. We conduct

analyses at the hospital and market levels. Analyses at the latter level are key to evaluating

the market-expanding effect of surgical robots because there is less scope for patients to
5To ensure that hospitals that change Medicare provider numbers are consistently tracked, we draw on

a provider number transition matrix graciously provided to us by Jon Skinner and the Dartmouth Institute
for Health Policy and Clinical Practice. We map together all provider numbers that ever refer to the same
facility into one synthetic hospital. A synthetic hospital is considered to have adopted a robot if any of its
component provider numbers has adopted one.

6The hospitals in our main analysis sample capture 87 percent of all Original Medicare prostate can-
cer patients and 88 percent of all prostatectomy patients. The expanded set of hospitals analyzed in the
robustness section captures 94 percent of prostate cancer patients and 95 percent of prostatectomy patients.
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reallocate across markets than across hospitals. When analyses at the hospital-level show

stronger allocation effects than those at the market-level, it suggests the presence of business

stealing since patients have more scope to change the hospital where they receive treatment

within a market.

We implement this research design at the hospital level by estimating differences-in-

differences Poisson regressions of the following form:

Nht = exp (αt + αh + β · interimht + γ · postht +XhtΩ) + εht, (1)

where h and t index hospitals and years, respectively. The outcome Nht is a measure of

patient volume; αt and αh are year and hospital fixed effects, respectively; interimht indicates

whether the hospital adopted the robot in year t; postht indicates whether the hospital

adopted the robot in year t − 1 or earlier; and Xht is a vector of time-varying hospital

controls. Our primary analyses include no controls in Xht, but in robustness analyses we

show our results are similar as we add controls of varying richness. The key coefficient of

interest is γ, the log-point effect of adopting a robot on volume omitting the initial adoption

year. This log-point interpretation is similar to that of a log-linear model.

The identifying assumption of this model is that absent acquiring a surgical robot,

adopters and non-adopters would have followed common proportional trends in patient vol-

ume. Equivalently, it assumes that patient volume at adopters and non-adopters would have

grown at common rates. To this end, we run event-study specifications:

Nht = exp
(
αt + αh + δ−3adopt

pre
h,t−3 + γ−2adopth,t−2 + . . .+ γ2adopth,t+2 + δ3adopt

post
h,t+3

)
+ εht, (2)

where adoptpreh,t−k indicates that the hospital adopted robotics in year t−k or earlier, adopth,t

indicates adoption in year t, and adoptposth,t+k indicates adoption in year t + k or later. We
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omit adopth,t−1 as the reference year. This specification emits pre-trend coefficients (δ−3, δ−2)

to test if volume grew at common rates before adoption, a key falsification exercise for the

counterfactual parallel trends assumption. It also yields post-adoption coefficients (δ0, . . . , δ3)

illustrating the dynamics of the impacts.

The Poisson model has several advantages for our setting. First, compared to a log-

linear regression, it accommodates zeroes without adding an arbitrary constant or switching

to an alternative functional form like inverse hyperbolic sine (though we show that our

findings are preserved under such alternatives). Second, unlike the bulk of nonlinear models

it is robust to fixed effects, which we use in our core models and (in higher dimensional

form) in our robustness exercises (Hausman et al., 1984). Finally, the model makes few

assumptions about the data-generating process beyond that the conditional mean takes the

form in equations 1 and 2; it does not require that Nht is Poissonian much as linear regression

does not require the outcome to be normally distributed (Gourieroux et al., 1984; Wooldridge,

1999).

We also run the models given by equations 1 and 2 at the market level, replacing all

hospital subscripts h with market subscripts r. As a market concept, we use Dartmouth

Hospital Referral Regions (HRRs), which partition the U.S. into 306 regions within which

patients tend stay when they receive specialty care. The outcome Nrt counts patient volume

at all hospitals in the market rather than at one hospital. To measure market-wide adoption

of the robot, we define interimrt as the beds-weighted share of hospitals in market r that

adopted the robot in year t and postrt as the beds-weighted share of hospitals that adopted

the robot in year t − 1 or earlier. For the event study we define the adoptrt variables

analogously as the beds-weighted averages of adoptht across the hospitals in the market. We

construct the adoption measures this way to maximize their comparability with the hospital-

level estimates; the market-level coefficients we report give the log-point effect of all hospitals

in the market adopting a robot.
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5 Results

5.1 Patient Allocation

Table 2 presents our main estimates of the effect of robot adoption on patient volume based

on equation 1. We focus on γ, the coefficient on post, which provides a single estimate of

the long-term effect of adoption averaging over its dynamics. At the hospital level, adoption

raises prostate cancer patient volume unconditional on surgical intervention by 59 log points,

an expected absolute increase of 7.8 patients per year at the average hospital. Prostatectomy

patient volume rises 69 log points or 7.6 patients. Effects at the market level are just under

half the log-point magnitude. Going from 0% to 100% adoption in a market is expected

to raise market-wide prostate cancer patient volume by 28 log points (27.8 patients) and

prostatectomy patient volume by 34 log points (27.7 patients). All of these effects are highly

statistically significant.

Figure 3 plots the event study estimates from equation 2 for prostate cancer volume

(Panel A) and prostatectomy volume (Panel B) outcomes. The panels illustrate three key

facts. First, they show limited differences in pre-adoption trends in patient volume between

adopting and non-adopting hospitals and between relatively slow-adopting and fast-adopting

markets, a key falsification exercise for the parallel counterfactual trends assumption of

differences-in-differences. Pre-trends are quantitatively small at the hospital level; at the

market level they reverse trajectories after adoption, suggesting our findings will be, if any-

thing, conservative.

Second, the effect of adopting a robot on patient volume grows over time. For example,

hospital-level prostate cancer patient volume increases by a statistically significant 17 log

points in the adoption year, an effect that rises to 73 log points in the third year and

beyond. Essentially the same pattern holds for prostatectomy patients, though magnitudes

are slightly larger. These results highlight the importance of effect dynamics for patient
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allocation following robot adoption. They suggest that the long-term effect is greater than

the single average effect estimated in Table 2.

Third, effects at the market level are also highly significant and growing over time, but

they expand on a shallower trajectory than hospital-level effects. The market-level estimates

are very roughly half the magnitude of those at the hospital level, much as we found in Table

2. The divergence in magnitudes between the regressions at the two levels informs whether

adoption leads to market expansion or business stealing. The economically meaningful and

statistically significant market-level impacts suggest that robots expand the market, since

there is less scope for patients to be “stolen” across markets. Yet the greater magnitudes at

the hospital level imply that adoption further leads to business stealing as patients re-allocate

across facilities in the same market.7

5.2 Robustness

Appendix Tables A2 and A3 provide a number of robustness checks on the hospital-level

prostate cancer and prostatectomy results, respectively. The tables first test adding vary-

ing controls to the baseline estimating equation 1. Our key findings are preserved when

adding hospital-specific trends, hospital size decile-by-year interactions, and market by year

interactions (effects attenuate somewhat with the inclusion of trends and expand somewhat

when controlling for markets). We also consider controls for rest-of-market robot adoption

to directly model the potential for one hospital’s adoption to attract patients away from

other facilities. Point estimates on the rest-of-market coefficients are negative, as expected,

but own-adoption effects are unchanged.

The tables next test robustness to alternative hospital samples. In a more restrictive

approach, we limit the sample to adopters so that identification comes solely from comparing
7The market-level estimates report the effect of 100% of hospitals in a market adopting to make them

comparable to the hospital-level estimates. Since the typical market has lower levels of adoption, the effect
of surgical robots on total volume would be attenuated accordingly.
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hospitals that acquired a robot early vs. late in the period. Estimates shrink somewhat but

remain highly economically and statistically significant.8 Results are qualitatively unchanged

from baseline when we use the broadest sample possible by including hospitals that acquired

a robot after 2012 as well as those that failed to meet the minimum total patient and

cancer patient thresholds. We additionally test robustness to alternative functional forms

by running linear regressions with ln (Nht + 1) and asinh (Nht) as the outcomes, respectively.

Our results are little changed under these alternatives.

Appendix Tables A4 and A5 report robustness checks for the market-level analyses.

Effects remain significant with the inclusion of market-specific trends, and while they atten-

uate somewhat, the ratios of these effects to their hospital-level analogs reported in the prior

robustness tables remain similar. We also show estimates nearly identical to those reported

in the main text when we calculate market-level patient volume and adoption rates from the

broadest possible set of hospitals (adding those that had failed to meet minimum patient

and cancer patient thresholds). Finally, we provide estimates from linear models which yield

significant (albeit expanded) coefficients.

5.3 Characteristics of Marginal Patients

Having demonstrated substantial increases in patient volume in response to robot adoption,

we now analyze the characteristics of the marginal patients drawn in to treatment. We focus

on prostatectomy patients for brevity and since their hospital stay makes direct use of the

robot; results for prostate cancer yield essentially identical patterns and are presented in

Appendix Table A6. We characterize patients on two dimensions, each key for assessing

their suitability for surgical intervention: age and burden of illness. We measure illness by
8One reason for this attenuation may be that restricting the sample puts more weight on the short-term

effects of adoption, which are smaller according to the event studies. To explore this concern, we model
the adoption effect dynamics as having a constant (given by γ, as before) and a linear slope (we add the
interaction postht× [t− adoptyearh − 1], where the bracketed term is the hospital’s adoption year relative to
the post period). Columns 10 and 11 of Appendix Tables A2 and A3 augment the baseline and adopters-only
models, respectively, with this interaction. The results are consistent with this concern: the constant terms
converge and the slope terms are similar between the models.
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counting the number of chronic conditions (CCs) according to the patients diagnoses prior

to the hospitalization.9

Figure 4 plots the coefficient γ on post from estimating equation 1 with the outcome

redefined as the number of prostatectomy patients in the specified age or CC bin (Appendix

Figure A2 presents the results for prostate cancer). The volume increases at both the hospital

and market levels are driven by younger patients. At both levels, effects attenuate greatly

as the age bin rises; at the market-level we fail to detect effects at age 75 and up and point

estimates are close to zero for ages 80 and up.

Effects by history of illness follow an upside-down U-shaped path. At both the hospital

and market levels we detect significant increases in the volume of patients with up to 4 CCs,

those with low and intermediate levels of prior illness. Point estimates for the volume of

patients with no CCs, those who are observably the healthiest, are slightly smaller. Effects

on the volume of patients with 5 or more CCs are the smallest; they are still significant at

the hospital level but not the market level.

To provide a sense of how the patients induced to receive treatment due to robot

adoption compare to incumbent patients, we directly estimate the effect of adoption on the

average characteristics of the patients. Our approach draws on Gruber et al. (1999) and

adapts their two stage least squares method to our context, which uses a Poisson model.

Specifically, for each patient characteristic of interest we estimate two Poisson regressions:

a first stage on patient volume, which repeats equation 1, and a reduced form with the

same specification but the outcome redefined as the average characteristic of patients at the

hospital or in the market. We then report the first stage estimates, which repeat our prior

volume findings; the reduced form estimates, which indicate the log point effect of adoption

on the average characteristic of the patients; and the ratio of the reduced form to the first
9We track 22 CCs measured in the Medicare Chronic Conditions data at 6-month intervals using the

observation most immediately predating the patient’s admission. This data was not available before 1999 so
these estimates are limited to the years 2000 to 2015.
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stage, similar to an indirect least squares estimate. As the ratio of two log-point effects,

this object is an elasticity. Under the assumption that adopting a surgical robot brings

new patients into treatment without pushing old patients out of treatment (i.e. there are

no “defiers” to adoption), the elasticity can be interpreted as the log point difference in the

average characteristic between marginal patients and the incumbents. Appendix A provides

more details on this model.

Table 3 reports the estimates from these regressions. Panel A reports the first stage

with similar estimates to those presented earlier (when they differ, it is because we omit

observations where the average characteristic could not be calculated, e.g. when a hospital

or market has no patients or the characteristic is not observed). Panel B reports the reduced

forms. Columns 1-4 show the effect of adoption on average age and CCs. As expected,

adoption tends to lower the age of the average patient at both the hospital and market

level. For example, when a hospital adopts, average patient age is expected to fall by 2.9 log

points or 2.1 years off the average; when 100% of a market adopts, average age falls by 2.3 log

points or 1.6 years off the average. Panel C scales the reduced form by the first stage. These

elasticities indicate that the marginal prostatectomy patient is statistically significantly 5.4

log points younger at the hospital level (3.9 years off the average) and 6.7 log points younger

at the market level (4.7 years off the average) than the incumbents. Results on CCs indicate

that marginal patients are healthier, with elasticities that are 4-5 times larger than age

elasticities at both levels but only statistically significant at the hospital level.

These results suggest that markets and hospitals grow in response to robot adoption

by attracting younger, healthier prostate cancer patients. The attraction to robotics does

not seem to be as strong for relatively sick patients. These findings imply that the influx of

patients after adoption is not caused by widening eligibility criteria to patients in observably

poorer health, particularly on the basis of age.

In columns 5-7 of Table 3 we consider how adoption changed the features of the average
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hospital in a market performing prostatectomy. Specifically, we test if markets that adopt

tend to shift their prostatectomy patients to larger, higher-volume, and teaching hospitals.10

The directions of these effects are a priori unclear: adoption by large well-resourced hospitals

could further entrench their market dominance while adoption by smaller hospitals could give

them a new opportunity to compete with their larger counterparts. While we do not find any

significant effects on these metrics, the point estimates are all positive indicating that if there

is adjustment in response to adoption it tends to concentrate patients at bigger hospitals

with teaching infrastructure.

6 Discussion and Conclusion

Robotic surgery diffused quickly through the health care system, and during our analysis

period it became the primary surgical modality to treat prostate cancer. Our results clearly

indicate that when hospitals adopt this technology they attract more prostate cancer pa-

tients. We find signs that this increase in patient volume occurs through both business

stealing and market expansion following adoption. As hospitals in a market adopt surgical

robots, prostate cancer volume increases in the whole market; since it is relatively difficult

to “steal” patients across regions, this result shows the market-expanding power of surgical

robots. Still, this phenomenon does not explain the totality of the increase in volume that

occurs after a hospital adopts, since we find a hospital-level effect that is roughly twice the

market-level effect. The gap between the results at each level points to a significant role for

business stealing.

The welfare implications of this result are nuanced. One interpretation of these find-

ings is that they indicate a wasteful medical arms race, since hospitals had few regulatory

constraints on adoption, frequently took up a new technology with nontrivial fixed costs,

and engaged in business stealing from one-another. If hospitals do not otherwise differ in
10To ease interpretation, we measure hospital size and volume at baseline (1998) levels, which avoids

exploiting growth in size and volume due to adoption of the robot itself.
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their quality of care, this service duplication could be welfare-damaging. However, when

hospitals differ in quality, business stealing has the potential to improve — or further reduce

— welfare by redirecting patients to better or worse hospitals. For example, outcomes from

robotic surgery are widely believed to depend on provider experience with the device (Savage

and Vickers, 2009). If low-volume facilities attract patients by adopting robots, patient out-

comes could deteriorate throughout the market because provider experience could become

more diluted. On the other hand, if facilities that adopt robots tend to be higher-performing,

the marginal patients attracted to them could benefit. Such a channel may operate here:

adopting hospitals tend to be bigger and are more likely to be teaching facilities, two features

that are associated with better patient outcomes (see e.g. Birkmeyer et al., 2002; Burke et al.,

2017); we also note signs in Section 5.3 that as markets adopt, patients are more likely to

receive treatment at these facilities.

Market expansion is generally considered a sign of welfare improvement in traditional

sectors, since a rise in quantity would tend to signal more consumers with access to the

good. The market imperfections typical of the health care sector add some complication to

this interpretation, however. Market expansion may be welfare-decreasing if it occurs due to

moral hazard, when patients or their agents are shielded from the true costs of the technology

due to insurance and overuse it as a result, or from behavioral hazard, when patients or their

agents are attracted to hospitals with robotics because they have biased beliefs about the

benefits of the technology (Baicker et al., 2015).

A full accounting of these welfare effects would require detailed clinical data on patient

characteristics like cancer staging. Still, the relatively coarse data that we observe in claims

is informative for ruling out a key welfare-damaging moral and behavioral hazard story in

which poor candidates for intensive treatment are attracted to the hospital after adoption.

During our analysis period, prostate cancer treatment guidelines increasingly sought to dis-

courage older patients with competing risks from intensive testing for and management of
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this condition (USPSTF, 2008; Lepor, 2000). We find that the increase in prostatectomy

patient volume in response to robot adoption is comprised of relatively younger patients that

have fewer chronic conditions; we fail to detect increases in volume for patients age 80 and

up or those with 5 or more chronic conditions. Our findings therefore suggest that robot

adoption had small-to-nonexistent market-expanding effects on poor matches for surgery, an

encouraging though not definitive sign that welfare was not harmed through at least one

channel.11

In this study, we sought to evaluate the effects of hospital technology adoption on

hospital utilization through the lens of surgical robotics in prostate cancer. We found striking

impacts of adoption on patient volume at both the hospital- and market-level. These results

raise key questions for future work on robotics and technology in the health care sector.

While robotics has diffused particularly rapidly in prostate cancer treatment, its welfare

effects in other areas of health care remain an open question that merits further study. In

the space of prostate cancer treatment, future work could exploit electronic medical record or

cancer registry data to observe an even richer view of patient outcomes. Taken together, our

work highlights the power of technology diffusion to rapidly change the health care delivery

system with concomitant implications for patient welfare.
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Figures

Figure 1: Robotic Adoption Over Time

Initial
FDA
Approval

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1999 2001 2003 2005 2007 2009 2011 2013 2015

Share of
Hospitals

Notes: This figure shows the share of U.S. hospitals adopting a surgical robot according
to data from the Intuitive Surgical Website (2001-2005) and the AHA survey (2005-
2015). Adoption assumed to be 0% in 2000, the year in which surgical robots were first
approved for use in the U.S.
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Figure 2: Use of Robotic Surgery for Prostatectomies Over Time
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Notes: This figure depicts the share of prostatectomies conducted using surgical robots
from 1998 to 2015. The blue dashed line plots the robotic share, defined as the share
of prostatectomies with a robot-assisted procedure code (it begins in 2009 because the
robot-assist hospital procedure code was only created in late 2008). The red solid line
plots the laparoscopic share for the full period, which we can observe well throughout by
linking to physician procedural billing. In this series, the denominator is the subset of
prostatectomy hospitalizations for which there was concurrent physician billing for any
prostatectomy procedure during the stay (patient admission through discharge) while
the numerator is further restricted to those with physician billing for a laparoscopic
prostatectomy procedure. All procedure codes are listed in Appendix Table A1. Essen-
tially all robotic prostatectomies are laparoscopic and the vast majority of laparoscopic
prostatectomies use a robot.
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Figure 3: Event Studies of Patient Allocation
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Notes: This figure plots event study coefficients from estimating equation 2 and its
market-level analog. The outcome is prostate cancer patients in Panel A and prosta-
tectomy patients in Panel B. The year prior to adoption is the reference year. The
outcome is the volume of prostate cancer patients. Coefficients have a log-point inter-
pretation, e.g. a coefficient of 0.2 implies a 20 log point change. Shaded areas depict
95% confidence intervals based on robust standard errors clustered at the market level.
Regressions control for year and level (hospital or market) fixed effects.
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Figure 4: Effect on Prostatectomy Volume by Patient Age and Chronic Conditions
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Notes: This figure plots estimates from equation 1 of the effect of adopting a robot on
the volume of prostatectomy patients in the specified age and chronic condition (CC)
bins. Hospital-level effects depicted with diamonds and market-level effects depicted
with squares. Estimates of effects on the total volume of patients reported at the
top of the figure (“Baseline”, repeated from Table 2). Coefficients have a log-point
interpretation, e.g. a coefficient of 0.2 implies a 20 log point change. Error bars depict
95% confidence intervals based on robust standard errors clustered at the market level.
Regressions control for year and level (hospital or market) fixed effects.
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Tables
Table 1: Summary Statistics for Hospitals in Sample

(1) (2)
Non-Adopters Adopters

Beds 186.4 413.7
(139.1) (272.6)

Urban 0.61 0.94
(0.49) (0.24)

Teaching Hospital 0.13 0.32
(0.34) (0.47)

Patients (Annual)

Cancer (ex. skin) 87.2 324.9
(77.9) (308.9)

Prostate Cancer 4.5 18.9
(6.4) (23.3)

Prostatectomy 3.3 15.7
(5.2) (21.0)

Market Share

Prostate Cancer 0.06 0.20
(0.12) (0.23)

Prostatectomy 0.05 0.20
(0.12) (0.24)

Hospitals 1,168 1,093
Observations 21,024 19,674
Notes: This table shows summary statistics for the sam-
ple of hospitals included in the main hospital-level anal-
yses. See text for more information on sample construc-
tion. All characteristics are at the hospital-year level
spanning 1998-2015. Market share defined as the hos-
pital’s patient count divided by the patient count in its
market. Standard deviations presented in parentheses.
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Table 2: Estimates of Effect of Adoption on Patient Volume
(1) (2) (3) (4)

Hospital-Level Market-Level
Patients: Prostate Cancer Prostatectomy Prostate Cancer Prostatectomy
Interim 0.17 0.19 -0.04 -0.05

(0.03) (0.03) (0.06) (0.07)

Post 0.59 0.69 0.28 0.34
(0.04) (0.04) (0.07) (0.08)

Marginal Effect 7.8 7.6 27.8 27.8
(0.5) (0.5) (7.8) (6.8)

DV Average 11.5 9.5 90.2 73.1
Hospitals/Markets 2,255 2,212 306 306
Observations 40,590 39,816 5,508 5,508
Notes: This table depicts the results of estimating equation 1 (columns 1 and 2) and its market-level
analog (columns 3 and 4). The dependent variable is prostate cancer patient volume (columns 1
and 3) and prostatectomy patient volume (columns 2 and 4). Interim indicates the first year the
hospital reports having a robot while Post indicates the subsequent years. Coefficients have a log-
point interpretation, e.g. a coefficient of 0.2 implies a 20 log point change. Marginal effect is the
expected absolute change in patient volume derived from the Post coefficient. DV average is the
average dependent variable (patient volume) in the regression. Robust standard errors clustered at
the market level in parentheses. Regressions control for year and level (hospital or market) fixed
effects.
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Table 3: Effect of Adoption on Characteristics of Prostatectomy Patients
Hospital-Level Market-Level
(1) (2) (3) (4) (5) (6) (7)

Chronic Chronic Beds Volume Teaching
Characteristic: Age Conditions Age Conditions (Baseline) (Baseline) Hospital

A. First Stage: Outcome is Patient Volume
Post 0.542 0.490 0.342 0.260 0.342 0.342 0.342

(0.035) (0.040) (0.077) (0.082) (0.077) (0.077) (0.077)

B. Reduced Form: Outcome is Average Characteristic
Post -0.029 -0.136 -0.023 -0.064 0.021 0.037 0.084

(0.002) (0.015) (0.005) (0.034) (0.025) (0.029) (0.065)

C. Ratio of Reduced Form to First Stage: Elasticity of Average Characteristic with Respect to Volume
Elasticity -0.054 -0.277 -0.067 -0.248 0.061 0.107 0.245

(0.004) (0.033) (0.020) (0.149) (0.075) (0.088) (0.191)
Average Characteristic 73.32 2.68 72.24 2.50 413.08 22.02 0.46
Hospitals/Markets 2,191 2,164 306 306 306 306 306
Observations 62,046 53,808 10,956 9,732 10,956 10,942 8,925
Notes: This table reports results from estimating the impact of robotic adoption on the characteristics of prostatectomy
patients. Panel A reports the “first stage” results from estimating equation 1 and differs only from Table 2 because it omits
observations (hospital- or market-years) with no prostatectomy patients. Panel B reports the “reduced form” estimates of the
same specification with the outcome redefined as the average characteristic of prostatectomy patients. Coefficients in Panels
A and B have a log-point interpretation, e.g. a coefficient of 0.2 implies a 20 log point change in volume or the average
characteristic. Panel C reports the ratio of the reduced form estimate to the first stage estimate. These coefficients have an
elasticity interpretation, i.e. the elasticity of the average characteristic with respect to volume. In columns 5-7, the outcome is
the average characteristic of the patients’ hospitals. Columns 5 and 6 measure the hospital’s beds and prostatectomy patient
volume at baseline (1998) levels. See text for more details. Robust standard errors clustered at the market level in parentheses.
Regressions control for year and level (hospital or market) fixed effects.
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A Estimating Effects of Adoption on the Characteristics

of the Average and Marginal Patient

In Section 5.3 of the main text, we estimate the effect of robot adoption on the average

characteristics of patients as well as the characteristics of the marginal patients induced to

receive treatment. To develop this approach, we draw on Gruber et al. (1999) and construct

the Poisson regression analog to their two-stage least squares approach. Here, the “first

stage” repeats our main specification given by equation 1, which we use to estimate the

effect of adoption on patient volume in the text:

Nht = exp (αt + αh + β · interimht + γ · postht +XhtΩ) + εht. (3)

We also estimate a “reduced form” effect of robot adoption on the average characteristics of

patients in the hospital (or market):

Cht = exp (δt + δh + κ · interimht + λ · postht +XhtΦ) + υht, (4)

where Cht is the average characteristic of patients treated at hospital h in year t.12 In the

Poisson model, γ can be interpreted as the log-point effect of adoption on patient volume

while λ represents the log point effect of adoption on the average patient characteristic.

These estimates can be combined to yield an elasticity of average patient characteristics

with respect to volume:

η =
λ

γ
. (5)

12This average is not defined for a hospital (or market) with no patients in the given year. Hence,
observations with no patients must drop out from this regression. To ensure both regressions are run with
the same sample, we omit any hospital-year or market-year with no patients from both.
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Assuming there are no defiers — people who only come to the hospital if there is no

robot, and do not come if there is one — this elasticity can also be interpreted as the log-point

difference in average characteristics between the marginal patients and incumbent patients.

We conduct inference on this object by estimating the “first stage” and “reduced form” as

a stacked regression, an approach that is analogous to seemingly unrelated regression and

is supported by the Stata command ppmlhdfe, and using the delta method. The market

estimates follow the same methodology with a change in notation from h indexing hospitals

to r indexing markets.
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Appendix Figures

Figure A1: Trends in Prostate Cancer and Prostatectomy Hospitalizations, 1998 - 2015
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Notes: This figure shows the total number of Original Medicare hospitalizations for
prostate cancer and prostatectomy from 1998 - 2015.
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Figure A2: Effect on Prostate Cancer Volume by Patient Age and Chronic Conditions
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Notes: This figure plots estimates from equation 1 of the effect of adopting a robot on
the volume of prostate cancer patients in the specified age and chronic condition (CC)
bins. Hospital-level effects depicted with circles and market-level effects depicted with
triangles. Estimates of effects on the total volume of patients reported at the top of the
figure (“Baseline”, repeated from Table 2). Coefficients have a log-point interpretation,
e.g. a coefficient of 0.2 implies a 20 log point change. Error bars depict 95% confidence
intervals based on robust standard errors clustered at the market level. Regressions
control for year and level (hospital or market) fixed effects.
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Appendix Tables

Table A1: Diagnosis and Procedure Codes Used to Identify Relevant Patients
ICD-9 ICD-10

Prostate Cancer
Diagnosis

CCS code 29
excluding V10.46

CCS code NEO039
excluding Z85.46

Prostatectomy
Procedure

CCS codes 113, 114 CCS code MRS003 or
0Vx0yZZ (x ∈ {5, B}, y ∈
{0, 3, 4, 7, 8}) or XV508A4

Cancer (excluding skin)
Diagnosis

CCS codes 11-21, 24-47 CCS codes NEO001-
NEO024, NEO029-NEO074

Robot-assisted Procedure 17.4x 8E0WxCx

Prostatectomy,
Non-Laparoscopic*
(Physician Billing)

Open: CPT codes 55801, 55810, 55812,55815, 55821,
55831, 55840, 55842, 55845
TURP: CPT codes 52601, 52612, 52614, 52620, 52630

Prostatectomy,
Laparoscopic
(Physician Billing)

CPT code 55866

* We include trans-urethral resection of the prostate (TURP) procedures when iden-
tifying prostatectomies in physician billing.
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Table A2: Robustness of Prostate Cancer Hospital-Level Results
Controls Sample Model Dynamics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Fixed Bed-Year Market-Year Market Ever All Log- asinh- Ever

Baseline Trends FE FE Adoption Adopters Hospitals Linear Linear Baseline Adopters
Interim 0.17 0.10 0.17 0.22 0.17 0.05 0.17 0.17 0.22 0.27 0.20

(0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

Post 0.59 0.36 0.57 0.72 0.59 0.37 0.62 0.49 0.62 0.53 0.44
(0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.04) (0.04)

Interim (Rest of Market) -0.08
(0.07)

Post (Rest of Market) -0.19
(0.09)

Post * 0.09 0.08
Relative Adopt Year (0.01) (0.01)

DV Average 11.5 11.5 11.5 11.5 11.5 19.0 9.5 1.8 2.3 11.5 19.0
Hospitals 2,255 2,255 2,255 2,236 2,255 1,090 2,929 2,261 2,261 2,255 1,090
Observations 40,590 40,590 40,590 40,225 40,590 19,620 52,722 40,698 40,698 40,590 19,620
Notes: This table assess the robustness of the hospital-level results on prostate cancer patient volume. Column (1) repeats the baseline estimate from Table 2.
Columns 2-5 add controls for hospital-specific linear trends, hospital bed size decile indicators interacted with years, market-year fixed effects, and rest-of-market
robot adoption, respectively. Column 6 limits the sample to hospitals that adopted a robot, dropping never-adopters. Column 7 expands the sample to all
hospitals that treated at least 1 patient annually during the analysis period, adding back hospitals that adopted a robot after 2012 or that failed to meet the
minimum patient thresholds described in the main text. Columns 8 and 9 use linear regression instead of Poisson regression with the outcomes defined as
ln (Nht + 1) and asinh (Nht), respectively. Columns 10 and 11 add an interaction between Post and the hospital’s relative adoption year (which starts at zero
in the first year the hospital’s Post indicator turns on) to the models previously estimated in columns 1 and 6, respectively. See text for more details. Robust
standard errors clustered at the market level in parentheses. All regressions control for year and hospital fixed effects.
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Table A3: Robustness of Prostatectomy Hospital-Level Results
Controls Sample Model Dynamics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Fixed Bed-Year Market-Year Market Ever All Log- asinh- Ever

Baseline Trends FE FE Adoption Adopters Hospitals Linear Linear Baseline Adopters
Interim 0.19 0.11 0.19 0.26 0.19 0.05 0.19 0.17 0.22 0.32 0.24

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.02) (0.03) (0.02) (0.03)

Post 0.69 0.43 0.66 0.85 0.69 0.43 0.72 0.54 0.67 0.64 0.53
(0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.03) (0.04) (0.04) (0.04)

Interim (Rest of Market) -0.09
(0.08)

Post (Rest of Market) -0.20
(0.10)

Post * 0.11 0.09
Relative Adopt Year (0.01) (0.01)

DV Average 9.5 9.5 9.5 9.5 9.5 15.8 8.5 1.6 2.0 9.5 15.8
Hospitals 2,212 2,212 2,212 2,190 2,212 1,090 2,669 2,261 2,261 2,212 1,090
Observations 39,816 39,816 39,816 39,369 39,816 19,620 48,042 40,698 40,698 39,816 19,620
Notes: This table assess the robustness of the hospital-level results on prostatectomy patient volume. Column (1) repeats the baseline estimate from Table 2.
Columns 2-5 add controls for hospital-specific linear trends, hospital bed size decile indicators interacted with years, market-year fixed effects, and rest-of-market
robot adoption, respectively. Column 6 limits the sample to hospitals that adopted a robot, dropping never-adopters. Column 7 expands the sample to all
hospitals that treated at least 1 patient annually during the analysis period, adding back hospitals that adopted a robot after 2012 or that failed to meet the
minimum patient thresholds described in the main text. Columns 8 and 9 use linear regression instead of Poisson regression with the outcomes defined as
ln (Nht + 1) and asinh (Nht), respectively. Columns 10 and 11 add an interaction between Post and the hospital’s relative adoption year (which starts at zero
in the first year the hospital’s Post indicator turns on) to the models previously estimated in columns 1 and 6, respectively. See text for more details. Robust
standard errors clustered at the market level in parentheses. All regressions control for year and hospital fixed effects.
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Table A4: Robustness of Prostate Cancer Market-Level Results
Controls Sample Model

(1) (2) (3) (4) (5)
Fixed Broad Hosp. Log- asinh-

Baseline Trends Sample Linear Linear
Interim -0.04 -0.00 -0.04 -0.03 -0.05

(0.06) (0.05) (0.06) (0.06) (0.06)

Post 0.28 0.20 0.31 0.43 0.46
(0.07) (0.07) (0.08) (0.07) (0.08)

DV Average 90.2 90.2 91.3 4.0 4.7
Markets 306 306 306 306 306
Observations 5,508 5,508 5,508 5,508 5,508
Notes: This table assess the robustness of the market-level results on
prostate cancer patient volume. Column (1) repeats the baseline estimate
from Table 2. Columns 2 adds controls for market-specific linear trends.
Column 3 expands the sample of hospitals used to measure market-level
adoption and patient volume to include hospitals that failed to meet the
minimum patient thresholds described in the main text. Columns 4 and
5 use linear regression instead of Poisson regression with the outcomes
defined as ln (Nrt + 1) and asinh (Nrt), respectively. See text for more de-
tails. Robust standard errors clustered at the market level in parentheses.
All regressions control for year and market fixed effects.
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Table A5: Robustness of Prostatectomy Market-Level Results
Controls Sample Model

(1) (2) (3) (4) (5)
Fixed Broad Hosp. Log- asinh-

Baseline Trends Sample Linear Linear
Interim -0.05 0.02 -0.04 -0.01 -0.03

(0.07) (0.04) (0.07) (0.06) (0.07)

Post 0.34 0.29 0.37 0.54 0.60
(0.08) (0.06) (0.08) (0.08) (0.09)

DV Average 73.1 73.1 73.8 3.8 4.4
Markets 306 306 306 306 306
Observations 5,508 5,508 5,508 5,508 5,508
Notes: This table assess the robustness of the market-level results on
prostatectomy patient volume. Column (1) repeats the baseline estimate
from Table 2. Columns 2 adds controls for market-specific linear trends.
Column 3 expands the sample of hospitals used to measure market-level
adoption and patient volume to include hospitals that failed to meet the
minimum patient thresholds described in the main text. Columns 4 and
5 use linear regression instead of Poisson regression with the outcomes
defined as ln (Nrt + 1) and asinh (Nrt), respectively. See text for more de-
tails. Robust standard errors clustered at the market level in parentheses.
All regressions control for year and market fixed effects.
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Table A6: Effect of Adoption on Characteristics of Prostate Cancer Patients
Hospital-Level Market-Level
(1) (2) (3) (4) (5) (6) (7)

Chronic Chronic Beds Volume Teaching
Characteristic: Age Conditions Age Conditions (Baseline) (Baseline) Hospital

A. First Stage: Outcome is Patient Volume
Post 0.503 0.453 0.281 0.215 0.281 0.281 0.281

(0.033) (0.037) (0.074) (0.074) (0.074) (0.074) (0.074)

B. Reduced Form: Outcome is Average Characteristic
Post -0.034 -0.128 -0.026 -0.071 0.019 0.016 0.054

(0.002) (0.013) (0.005) (0.029) (0.020) (0.022) (0.050)

C. Ratio of Reduced Form to First Stage: Elasticity of Average Characteristic with Respect to Volume
Elasticity -0.068 -0.283 -0.091 -0.332 0.068 0.058 0.192

(0.005) (0.031) (0.026) (0.169) (0.073) (0.080) (0.180)
Average Characteristic 74.74 3.01 73.32 2.74 407.63 26.73 0.46
Hospitals/Markets 2,249 2,244 306 306 306 306 306
Observations 68,770 60,190 11,000 9,778 11,000 10,984 8,954
Notes: This table reports results from estimating the impact of robotic adoption on the characteristics of prostate cancer
patients. Panel A reports the “first stage” results from estimating equation 1 and differs only from Table 2 because it omits
observations (hospital- or market-years) with no prostate cancer patients. Panel B reports the “reduced form” estimates of
the same specification with the outcome redefined as the average characteristic of prostate cancer patients. Coefficients in
Panels A and B have a log-point interpretation, e.g. a coefficient of 0.2 implies a 20 log point change in volume or the average
characteristic. Panel C reports the ratio of the reduced form estimate to the first stage estimate. These coefficients have an
elasticity interpretation, i.e. the elasticity of the average characteristic with respect to volume. In columns 5-7, the outcome is
the average characteristic of the patients’ hospitals. Columns 5 and 6 measure the hospital’s beds and prostate cancer patient
volume at baseline (1998) levels. See text for more details. Robust standard errors clustered at the market level in parentheses.
Regressions control for year and level (hospital or market) fixed effects.
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