Technology Adoption and Market Allocation: The Case of Robotic Surgery

Danea Horn¹ Adam Sacarny² Annetta Zhou³
November 30, 2021

¹University of California, Davis

²Columbia University and NBER

³RAND

Funding: NIA Baicker P01, Project 6 (PLs: Amitabh Chandra and Adam Sacarny)
Motivation

• Technology key driver of productivity in health care, economy in general
• Information frictions, insurance may distort adoption in health care
• Patients may have a preference for technology, use as proxy for quality
• “Medical arms race”: hospitals compete over same patients
 ➞ service duplication, increased cost

• How does tech adoption impact care utilization?
• Does adoption prompt market expansion? Business stealing?
• Who does adoption draw into treatment?
Overview

Study effect of adopting robotic surgery on prostate cancer hospitalizations

• Robot: intermediate cost (vs. cardiac cath, β blockers)
• Leverage rapid, staggered, adoption of robot
• Assess effects at market & hospital levels
• Characterize marginal patients (Gruber et al. 1999)

Key findings

• Adoption drives large increase in volume (80-99%)
• Smaller effects at market level (market expansion and business stealing)
• Marginals relatively healthy (adoption not broadening eligibility criteria)
Robotic Adoption Over Time

![Graph showing the share of hospitals adopting robotic surgery over time, with initial FDA approval marked in 2001.](image-url)
Background: Surgical Robotics

• Intuitive Surgical da Vinci robot (only device during analysis period)
• FDA approved in 2000
• Dramatically changed prostate cancer intervention
• Relatively low barriers to entry
• Not pivotal for Medicare payment
• No RCT evidence of benefit vs. alternatives (laparoscopic, open)
• Focus of hospital advertising
Use of Robotic Surgery for Prostatectomy Over Time

- **Initial FDA Approval:**
 - Year 1999

- **Share of Prostatectomies:***
 - **Laparoscopic (Including Robotic):**
 - **Robotic:**
 - Graph shows an increase over time from 1999 to 2015.
Background: Prostate Cancer

• Second most common cancer in men, 33k deaths/year

• Key surgical treatment: prostatectomy

• Slow-growing, often not fatal (competing risks)

• Mid-2000s shift to “watch & wait” (avoid unnecessary treatment)

• 32% drop in prostatectomies during analysis period

• Rapid adoption of robots during this shift, offsetting some of decline
Data

100% Medicare hospitalization data (MEDPAR), 1998-2015

• Measure prostate cancer, prostatectomy patients
• Hospitals in “risk set” for intensive treatment (50+ patients, 5+ cancer patients annually)
• Sample: 2,261 hospitals (1,091 adopters)

Robotic Adoption

• Archives of Intuitive Surgical website, 2002-2005
• AHA survey data, 2005-2015
Methodology

\[N_{ht} = \exp(\alpha_t + \alpha_h + \beta \cdot \text{interim}_{ht} + \gamma \cdot \text{post}_{ht}) + \varepsilon_{ht} \]

- \(N_{h,t} \) - admissions for hospital \(h \), time \(t \)
- \(\alpha_t \) - year FE, \(\alpha_h \) - hospital FE
- \(\text{interim}_{h,t} \) - adopted in \(t \)
- \(\text{post}_{h,t} \) - adopted in \(t - 1 \) or before

Also run analyses at market (HRR) level \(r \)

- \(\text{interim}_{r,t} \) - beds-weighted share adopting in \(t \)
- \(\text{post}_{r,t} \) - beds-weighted share adopting in \(t - 1 \) or before
Effects on Prostatectomy Patient Volume

Coefficient

Hospital-Level

Market-Level

1.0
0.8
0.6
0.4
0.2
0.0
-0.2

≤-3 -2 -1 0 1 2 ≥3
Estimates of Effect of Adoption on Volume

<table>
<thead>
<tr>
<th>Patients:</th>
<th>(1) Hospital-Level</th>
<th></th>
<th>(2) Hospital-Level</th>
<th></th>
<th>(3) Market-Level</th>
<th></th>
<th>(4) Market-Level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
</tr>
<tr>
<td>Post</td>
<td>0.59</td>
<td>0.69</td>
<td>0.28</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.07)</td>
<td>(0.08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Effect</td>
<td>7.8</td>
<td>7.6</td>
<td>27.8</td>
<td>27.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV Average</td>
<td>11.5</td>
<td>9.5</td>
<td>90.2</td>
<td>73.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitals/Markets</td>
<td>2,255</td>
<td>2,212</td>
<td>306</td>
<td>306</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>40,590</td>
<td>39,816</td>
<td>5,508</td>
<td>5,508</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the market level in parentheses.
Estimates of Effect of Adoption on Volume

<table>
<thead>
<tr>
<th>Patients:</th>
<th>(1) Hospital-Level</th>
<th>(2) Hospital-Level</th>
<th>(3) Market-Level</th>
<th>(4) Market-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
</tr>
<tr>
<td>Post</td>
<td>0.59 (0.04)</td>
<td>0.69 (0.04)</td>
<td>0.28 (0.07)</td>
<td>0.34 (0.08)</td>
</tr>
<tr>
<td>Marginal Effect</td>
<td>7.8</td>
<td>7.6</td>
<td>27.8</td>
<td>27.8</td>
</tr>
<tr>
<td>DV Average</td>
<td>11.5</td>
<td>9.5</td>
<td>90.2</td>
<td>73.1</td>
</tr>
<tr>
<td>Hospitals/Markets</td>
<td>2,255</td>
<td>2,212</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>Observations</td>
<td>40,590</td>
<td>39,816</td>
<td>5,508</td>
<td>5,508</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the market level in parentheses.
Estimates of Effect of Adoption on Volume

<table>
<thead>
<tr>
<th>Patients:</th>
<th>(1) Hospital-Level</th>
<th>(2) Hospital-Level</th>
<th>(3) Market-Level</th>
<th>(4) Market-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
<td>Prostate Cancer</td>
<td>Prostatectomy</td>
</tr>
<tr>
<td>Post</td>
<td>0.59 (0.04)</td>
<td>0.69 (0.04)</td>
<td>0.28 (0.07)</td>
<td>0.34 (0.08)</td>
</tr>
<tr>
<td>Marginal Effect</td>
<td>7.8</td>
<td>7.6</td>
<td>27.8</td>
<td>27.8</td>
</tr>
<tr>
<td>DV Average</td>
<td>11.5</td>
<td>9.5</td>
<td>90.2</td>
<td>73.1</td>
</tr>
<tr>
<td>Hospitals/Markets</td>
<td>2,255</td>
<td>2,212</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>Observations</td>
<td>40,590</td>
<td>39,816</td>
<td>5,508</td>
<td>5,508</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the market level in parentheses.
Study *who* robots bring into treatment:

- Patient Age
- Chronic conditions (22 conditions from pre-admit diagnoses)

First approach: use DD to measure volume effects for subgroups
Identifying Characteristics of Marginal Patients

Second approach: estimate characteristics of marginals (c.f. Gruber et al. 1999)

\[N_{ht} = \exp \left(\alpha^1_{t} + \alpha^1_{h} + \beta^1 \cdot \text{interim}_{ht} + \gamma^1 \cdot \text{post}_{ht} \right) + \varepsilon^1_{ht} \]

“First stage” - same DD regression as before

\[C_{ht} = \exp \left(\alpha^RF_{t} + \alpha^RF_{h} + \beta^RF \cdot \text{interim}_{ht} + \gamma^RF \cdot \text{post}_{ht} \right) + \varepsilon^RF_{ht} \]

“Reduced form” - use average characteristic \(C_{ht} \) as outcome

\[\eta = \frac{\gamma^RF}{\gamma^1} \]

“Elasticity” - ratio of reduced form to first stage

\(\approx \) % effect on average characteristic from 100% increase in volume

\(\approx \) % diff between marginal & average patient (under no defiers)
Characteristics of Marginal Patients After Adoption

<table>
<thead>
<tr>
<th>Characteristic:</th>
<th>Hospital-Level</th>
<th></th>
<th></th>
<th>Market-Level</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Characteristic:</td>
<td>Age</td>
<td>CCs</td>
<td>Age</td>
<td>CCs</td>
<td>Beds</td>
<td>Volume</td>
<td>Teaching</td>
</tr>
<tr>
<td>Elasticity</td>
<td>-0.054</td>
<td>-0.277</td>
<td>-0.067</td>
<td>-0.248</td>
<td>0.061</td>
<td>0.107</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.033)</td>
<td>(0.020)</td>
<td>(0.149)</td>
<td>(0.075)</td>
<td>(0.088)</td>
<td>(0.191)</td>
</tr>
<tr>
<td>Average Char</td>
<td>73.32</td>
<td>2.68</td>
<td>72.24</td>
<td>2.50</td>
<td>413.08</td>
<td>22.02</td>
<td>0.46</td>
</tr>
<tr>
<td>Hosps/Markets</td>
<td>2,191</td>
<td>2,164</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>Observations</td>
<td>62,046</td>
<td>53,808</td>
<td>10,956</td>
<td>9,732</td>
<td>10,956</td>
<td>10,942</td>
<td>8,925</td>
</tr>
</tbody>
</table>

CCs: chronic conditions count. Beds & volume measured at baseline (1998) levels.

Elasticity \approx \%\text{ effect on average characteristic from 100\% increase in volume}

\approx \%\text{ diff between marginal & average patient (under no defiers)}
Characteristics of Marginal Patients After Adoption

Hospital-Level vs. Market-Level

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hospital-Level</th>
<th>Market-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Age CCs</td>
<td>(3) Age CCs</td>
</tr>
<tr>
<td>Elasticity</td>
<td>-0.054 (0.004)</td>
<td>-0.067 (0.020)</td>
</tr>
<tr>
<td></td>
<td>-0.277 (0.033)</td>
<td>-0.248 (0.149)</td>
</tr>
<tr>
<td>Average Char</td>
<td>73.32 2.68</td>
<td>72.24 2.50</td>
</tr>
<tr>
<td>Hosps/Markets</td>
<td>2,191 2,164</td>
<td>306 306</td>
</tr>
<tr>
<td>Observations</td>
<td>62,046 53,808</td>
<td>10,956 10,956</td>
</tr>
</tbody>
</table>

Market-Level

<table>
<thead>
<tr>
<th>(4) Beds</th>
<th>(5) Volume</th>
<th>(6) Teaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.061 (0.075)</td>
<td>0.107 (0.088)</td>
<td>0.245 (0.191)</td>
</tr>
<tr>
<td>413.08</td>
<td>22.02</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Notes

- Elasticity ≈ % effect on average characteristic from 100% increase in volume
- ≈ % diff between marginal & average patient (under no defiers)
Characteristics of Marginal Patients After Adoption

<table>
<thead>
<tr>
<th>Characteristic:</th>
<th>Hospital-Level</th>
<th></th>
<th>Market-Level</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Age</td>
<td>73.32</td>
<td>2.68</td>
<td>72.24</td>
<td>2.50</td>
<td>413.08</td>
<td>22.02</td>
</tr>
<tr>
<td>Observations</td>
<td>62,046</td>
<td>53,808</td>
<td>10,956</td>
<td>9,732</td>
<td>10,956</td>
<td>10,942</td>
</tr>
<tr>
<td>Elasticity</td>
<td>-0.054</td>
<td>-0.277</td>
<td>-0.067</td>
<td>-0.248</td>
<td>0.061</td>
<td>0.107</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.033)</td>
<td>(0.020)</td>
<td>(0.149)</td>
<td>(0.075)</td>
<td>(0.088)</td>
<td>(0.191)</td>
</tr>
</tbody>
</table>
| CCs: chronic conditions count. Beds & volume measured at baseline (1998) levels.

Elasticity ≈ % effect on average characteristic from 100% increase in volume

≈ % diff between marginal & average patient (under no defiers)
Characteristics of Marginal Patients After Adoption

<table>
<thead>
<tr>
<th>Characteristic:</th>
<th>Hospital-Level</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Age CCs</td>
<td>(2)</td>
<td>(3) Age CCs</td>
<td>(4)</td>
<td>(5) Beds</td>
<td>(6) Volume</td>
<td>(7) Teaching</td>
</tr>
<tr>
<td>Elasticity</td>
<td>-0.054 (-0.004)</td>
<td>-0.277 (-0.033)</td>
<td>-0.067 (-0.020)</td>
<td>-0.248 (-0.149)</td>
<td>0.061 (0.075)</td>
<td>0.107 (0.088)</td>
<td>0.245 (0.191)</td>
</tr>
<tr>
<td>Average Char</td>
<td>73.32 2.68</td>
<td></td>
<td>72.24 2.50</td>
<td></td>
<td>413.08</td>
<td>22.02</td>
<td>0.46</td>
</tr>
<tr>
<td>Hosps/Markets</td>
<td>2,191 2,164</td>
<td></td>
<td>306 306</td>
<td></td>
<td>306 306</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>Observations</td>
<td>62,046 53,808</td>
<td></td>
<td>10,956 9,732</td>
<td></td>
<td>10,956</td>
<td>10,942</td>
<td>8,925</td>
</tr>
</tbody>
</table>

CCs: chronic conditions count. Beds & volume measured at baseline (1998) levels.

Elasticity \(\approx\) % effect on average characteristic from 100% increase in volume

\(\approx\) % diff between marginal & average patient (under no defiers)
Robotic surgery expands market and moves patients across hospitals

- Gap between the market- & hospital-level: business stealing
- Marginal patients are younger and healthier
- No detected expansion of treatment to older patients (low-value)
- Signs that adoption brings patients to larger & teaching hospitals
Implications for Welfare

A socially wasteful “medical arms race”?

- Traditional view: unconstrained adoption, fixed costs, business stealing
 \[\Rightarrow\] welfare-damaging arms race

- Assumes common quality or quality uncorrelated with adoption

- Adoption that reallocates to better hospitals can be welfare-improving

- Signs patients move to bigger & teaching hospitals are encouraging
Does finding of market expansion mean welfare improved?

- Market imperfections, behavioral patients (or agents) complicate story
- Moral hazard - insurance distorts decisions
- Behavioral hazard - biased beliefs distort decisions (Baicker et al. 2015)
- But don’t find welfare-damaging expansion to poor matches to surgery
- Detailed clinical data (e.g. SEER) could give the last word
Conclusion

• Study intermediate-cost, rapidly-adopted tech in prostate cancer context
• Find adoption drives large increases in patient volume
• Effects due to market expansion and business stealing
• Small to no volume effects for poor patient matches
• Results inconsistent with most welfare-damaging stories

• Thank you for attending!