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Abstract

I present a theory of oligopoly and markups in general equilibrium, and use it to study the welfare

impact of monopoly power. I develop a model populated by granular firms that compete in a

network game of oligopoly, which co-exist with a fringe of atomistic competitors that enter and

exit endogenously. To model product substitution, I introduce a Generalized Hedonic-Linear

(GHL) demand system, which I identify using a publicly-available dataset that measures product

similarity among all US public corporations. Using my model, I decompose firm-level markups

into two components: one related to productivity and one related to product market centrality

(which measures competition): both have contributed to the secular rise of markups. I estimate,

for the year 2019, a large deadweight loss from oligopolistic behavior (about 11.5% of total

surplus). Even larger is the effect on consumer surplus, which would double if firms behaved

atomistically. My analysis also suggests that both these numbers are significantly larger than

they were in the mid-90s, implying that oligopoly power exerts an increasingly large effect on

welfare. To conclude, I present counterfactual analysis which suggests a potentially important

role of startup acquisitions in generating these trends.

JEL Codes: D2, D4, D6, E2, L1, O4

Keywords: Competition, Concentration, General Equilibrium, Market Power, Markups, Mergers,

Monopoly, Networks, Oligopoly, Startups, Text Analysis.

This paper received the following awards: EEA Best Job Market Paper Award, WFA Best Corporate Finance Paper, UCLA
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1. Introduction

Industry concentration, markups, and corporate profit rates have all increased in the United States during

the past two decades (Grullon et al., 2019; De Loecker et al., 2020). This fact has spurred important

public debates over whether these trends reflect an oligopolization of U.S. industries and whether a revised

antitrust paradigm is necessary (Khan, 2018). While standard price theory arguments suggest that the

welfare implications of these trends might be significant, interpreting these trends presents an imposing

methodological challenge. The study of market power has traditionally resided within the literature on

Empirical Industrial Organization (EIO). Yet, there is a consensus that these trends are macroeconomic in

nature: standard EIO methodologies are unfeasible, as they require data that is not available for more than

a handful of industries (Syverson, 2019).

This paper investigates the welfare consequences of the increased concentration of U.S. industries. I

address the existing methodological challenges by introducing a novel general equilibrium model with two

types of firms: a finite set of granular firms that behave as oligopolists and a continuum of atomistic

producers that behave competitively and can enter and exit. To model product market competition among

the oligopolists, I propose a Generalized Hedonic-Linear (GHL) demand system, which I estimate using

a dataset recently developed by Hoberg and Phillips (2016). This dataset provides measures of product

similarity for all pairs of publicly-traded corporations in the US. The empirical implementation of the model

allows me address the following question: how have consumer surplus and the welfare costs of oligopoly

evolved as a consequence of industry consolidation during this period?

Using my novel theoretical framework, I document that the increased concentration of US industries over

the past twenty years was accompanied by an increase in oligopoly power, measured as: (1) an increase in the

deadweight losses induced by oligopolistic behavior; (2) a decline in the share of total surplus that accrues

to consumers. My methodology also allows to me associate these trends with another well-known stylized

fact: the dramatic rise in takeovers of startups that began in the mid 1990s, and which coincided with the

well-known secular decline in Initial Public Offerings (IPOs) (Kahle and Stulz, 2017).

Economists have long been concerned with market power. Since the 1980s, the EIO literature has been

developing a conceptual “toolkit” that researchers and antitrust enforcement practitioners have used to

analyze market power within industries (Einav and Levin, 2010). The EIO approach requires the researcher

to first understand the structure of product market rivalries in an industry: a firm’s ability to price above

marginal cost depends critically on the intensity of competition from firms that produce similar products. As

a consequence, this literature has shown that oligopoly power is inextricably linked to the notion of product

differentiation: to measure a firm’s market power in an industry with n firms, the economist effectively needs

to first estimate n2 cross-price demand elasticities—one for each pair of rivals. This is because variations

in the supply of any product cause the residual demand curve of every competing product to shift, and the

shift is larger for products that are closer substitutes.

In industry studies, demand estimation is nowadays largely based on hedonic models (Berry, Levinsohn

and Pakes, 1995). The current resurgence in market power and antitrust research, however, has a distinctive

macroeconomic angle. Because we do not observe output volume, prices, or product characteristics for a

sufficiently large cross-section of industries, this EIO approach cannot be directly applied in a macroeconomic

context. This challenge is compounded by the problem that, at the macro level, product-market rivalry is

not well approximated by industry classifications. Industry classifications (such as NAICS) tend to be

based on similarities in the production process, not on the degree of product substitutability. In other

words, they are appropriate for estimating production functions, but they are unreliable when it comes to

estimating cross-price demand elasticities. In addition, the very concepts of industry or sector are more fluid
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than macroeconomists tend to assume. While industry classifications are static, larger companies (those

more likely to have market power) move frequently from one industry to another, and have been shown to

strategically manipulate their industry classification—a phenomenon that has been dubbed industry window

dressing (Chen et al., 2016).

Despite these challenges, the macroeconomics literature has made significant progress in incorporating

market power in general equilibrium models: Baqaee and Farhi (2020, henceforth BF) have recently shown

how to approximate the welfare costs of imperfect competition, under minimal assumptions, using the cross-

sectional distribution of markups. Their approach is (by design) very general, but it is also agnostic about

the origin of markups, which are assumed to be exogenous and observable. Because this approach is silent

about how the observed cross-section of markups arises in the first place, a separate theory of markups

formation is needed in order to simulate the welfare consequences of a change in market structure.

This study breaks new ground by providing a theory of firm size and profitability that generalizes the

Cournot oligopoly model to differentiated products and hedonic demand, and embeds it in a general equi-

librium model. The objective of my model is not to capture all sources of variation in markups, but rather

to isolate the variation that can be reliably attributed to product market rivalry. Through this approach, I

can quantify the contribution of each individual producer to aggregate welfare, and I can study the general

equilibrium effects of events that are relevant to antitrust policy, such as mergers or the entry of additional

firms.

To achieve this, my theoretical model dispenses with the notions of industry and sector altogether,

building instead on the tradition of hedonic demand (Lancaster, 1966; Rosen, 1974). Thus, I can link the

cross-price elasticity of demand between all firms in the economy to the fundamental attributes of each

firm’s product portfolio. Each firm’s output is modeled as a bundle of characteristics that are individually

valued by the representative consumer. The cross-price elasticity of demand between two firms depends on

the characteristics embedded in their output. If the product portfolios of two companies contain similar

characteristics, the cross-price elasticity of demand between their products is high. The result is a rather

different picture of the product market: not a collection of sectors, but a network, in which the distance

between nodes reflects product similarity and strategic interaction between firms.

The key assumptions of my model are: (1) the representative consumer’s preferences are described by a

utility function that is quadratic-in-characteristics ; (2) firms compete à la Cournot1; (3) the marginal cost

function is linear in output. Based on these assumptions, the firms in my model play a linear-quadratic game

over a weighted network, a type of potential game that has been extensively studied in the micro theory

literature (see Ballester, Calvó-Armengol and Zenou, 2006; Ushchev and Zenou, 2018).

This is the first paper to show how to derive the network Cournot model starting from a hedonic utility

specification, to embed the game in a general equilibrium framework and to take the model to the data in a

structural way.

To estimate my model, I use a recently-developed data set (Hoberg and Phillips, 2016, henceforth HP) that

provides continuous measures of product similarity for every pair of publicly traded firms in the United States.

These product-similarity scores are based on a computational-linguistics analysis of product descriptions

obtained from SEC filings, and are mapped by my model into an n × n matrix of cross-price demand

elasticities. Moreover, because HP’s similarity scores are time-varying (yearly observations since 1997), my

model is unique in that the degree of product substitution between individual firms is allowed to change over

time.

Crucially, the empirical implementation of my model does not require any proprietary or confidential

1I also study the Bertrand case in the Appendix.

3



data, and is computationally tractable. Two datasets are required: Compustat and HP’s cosine similarity

data, which the authors have made publicly-accessible through an online repository.2

I use my model to compute the deadweight loss from oligopoly and to simulate changes in total surplus

and consumer surplus for a number of counterfactuals. I find that the welfare costs of oligopoly are sizable.

By moving to an allocation in which firms price at marginal cost (that is, in which they behave as if they were

atomistic players in a perfectly-competitive market), total surplus would rise by approximately 11 percentage

points; consumer surplus would double, partly due to total surplus being reallocated from producers to

consumers. By computing a separate counterfactual that keeps the aggregate labor supply fixed (markups

are equalized, rather than eliminated), I can determine that a significant share of the welfare loss from

oligopoly—about 7.7 percentage points of the aforementioned 11—occurs by way of factor misallocation. In

other words, the deadweight loss is driven not only by an underutilization of inputs, but also by a suboptimal

mix of goods being produced. I also simulate a counterfactual in which all firms in the economy are owned

by a single producer that implements a collusive equilibrium. Under this scenario, total surplus would drop

by about one-tenth: with some degree of abstraction, we can think of this estimate as an upper bound to

the welfare benefits of antitrust. Also, in this monopolistic/collusive equilibrium consumer surplus would

decrease by about 38%, due partly to surplus being reallocated from consumers to producers.

By mapping my model to firm-level data for a period of 21 consecutive years, I investigate the welfare

consequences of the rise in concentration and markups between 1997 and 2017. I find that the share of surplus

appropriated by companies in the form of oligopoly profits has increased from about 50% (in 1997) to 55.5%

(in 2017). When I subtract fixed costs (such as capital and overhead) from profits and total surplus, this

increase becomes significantly steeper: from 11% in 1997 to 22% in 2017. This result is robust to different

measurements of fixed costs and intangible capital, and suggests that the increase in the profit share of

surplus is not justified by larger fixed costs.

I also use the model to decompose the increase in markups among US public firms into two components:

one driven by (quality-adjusted) productivity and one driven by the firms’ centrality in the product network.

Both these components contribute to the rise of markups, albeit through different margins: the productivity

component increases by way of reallocation of market shares towards firms that differentiate vertically,

while the increase of the increase in the centrality component, which reflects the availability of substitutable

products, drives the within-firm growth of markups.

The welfare costs of oligopoly have also increased over this period. In terms of total surplus, the gap

between the oligopolistic equilibrium and perfect competition (the deadweight loss) has increased from 8.5%

(in 1997) to 11% (in 2017). Consumer surplus is adversely affected via two channels: less surplus is pro-

duced overall (as a percentage of the surplus that could be produced), and less of the diminished surplus is

allocated to the consumer in equilibrium. Thus, an important contribution of this paper is to investigate

the distributional implications of oligopoly. Overall, my empirical findings suggest that rising concentration

and markups did indeed translate into a measurable increase in the welfare loss from oligopoly, and affected

how surplus is shared between producers and consumers.

Finally, I use the counterfactual-building capabilities of the model to better understand the drivers of

these trends. In particular, I study the impact of a dramatic secular shift that has occurred among venture

capital (VC) startups over the past 20 years. In the early 1990s, most VC-backed startups (80%–90%), if

successful, would exit3 through an Initial Public Offering (IPO). Today, the near entirety (about 94%) of

2See hobergphillips.tuck.dartmouth.edu
3In the entrepreneurial finance literature, an “exit” is the termination of a VC investment and should not be confused with a
business termination. If the VC investor exits with an IPO, that event marks the entry of that firm in the universe of public
firms, not an enterprise death.
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successful VC-backed startups exit by getting acquired by an incumbent. I find that this shift accounts not

only for the secular decline in the number of public corporations in the US (from about 7,500 in 1997 to

about 3,500 in 2017) but also for a large share of the increase in the welfare costs of oligopoly, and of the

rise in the profit share of surplus.

This paper aims to connect the new EIO literature (Einav and Levin, 2010) to two recent and growing

branches of macroeconomics that use micro-data.

The first is the literature on networks (Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi, 2012; Carvalho,

2014; Acemoglu, Ozdaglar and Tahbaz-Salehi, 2017; Carvalho and Tahbaz-Salehi, 2019; Baqaee and Farhi,

2020; Carvalho, Nirei, Saito and Tahbaz-Salehi, 2020). I contribute to and expand this literature, which has

mostly focused on input-output networks, by considering a different type of network: that of product market

rivalries.4

The second is the literature on markups and industry concentration (De Loecker, Eeckhout and Unger,

2020; Autor, Dorn, Katz, Patterson and Van Reenen, 2020; Edmond, Midrigan and Xu, 2018; Covarrubias,

Gutiérrez and Philippon, 2020; Syverson, 2019). This paper builds on and adds to this body of work by

incorporating hedonic demand as well as new data. These features allow me to go beyond markups and

concentration, and to create a rich, high-dimensional representation of the competitive environment. In my

model, firms differ not only by their productivity, but also by their products’ characteristics; as a consequence,

each firm has a distinct set of competitors that changes over time, as firms update their product’s description

in their SEC filings.

This paper also connects the recent literature on market power to the secular decline of public companies

(Kahle and Stulz, 2017) and IPOs (Bowen, Frésard and Hoberg, 2018; Gao, Ritter and Zhu, 2013). My

model allows to quantify the effects of these phenomena on the intensity of product market competition.

The rest of the paper is organized as follows. In Section 2, I present my theoretical model. In Section 3, I

present the data used in the empirical part of the paper and show how it is mapped to the model. In Section

4, I present my empirical results. In Section 5, I discuss a number of extensions and robustness checks. In

Section 6, I present my conclusions and discuss how my findings can inform the current debate on market

power and antitrust policy.

4Outside the macro-networks literature, Bloom, Schankerman and Van Reenen (2013) have studied rivalry networks in a seminal
empirical study of R&D spillovers.
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2. A Theory of Imperfect, Networked Competition

In this section, I present a general equilibrium model in which firms produce differentiated products and

compete à la Cournot. For expositional purposes, I start by laying out the basic model that only includes

granular oligopolistic firms. After characterizing the equilibrium of this model economy and outlining a series

of counterfactuals of interest, I extend the model (in Subsection 2.6) by adding a continuum of perfectly-

competitive atomistic firms.

2.1. Basic Setup: the Generalized Hedonic-Linear (GHL) Demand System

There are n firms, indexed by i ∈ {1, 2, ..., n} that produce differentiated products. Following the tradition of

hedonic demand in differentiated product markets (Lancaster, 1966; Rosen, 1974), I assume that consumers

value each product as a bundle of characteristics. The number of characteristics is (n+ J).

There are two types of characteristics. The first J characteristics are common across all goods and are

indexed by j ∈ {1, 2, ..., J}, while the remaining n characteristics are idiosyncratic (that is, they are product-

specific and cannot be imitated by other products) and therefore have the same index i as the corresponding

product. The scalar aji is the number of units of common characteristic j provided by product i. Each

product is described by a k-dimensional column vector ai , which I assume (without loss of generality) to be

of unit length – formally:

ai =
[
a1i a2i . . . aJi

]′
(2.1)

such that

J∑
j=1

a2
ji = 1 ∀ i ∈ {1, 2, ..., n} (2.2)

The vector ai therefore provides firm i’s coordinates in the space of common characteristics. We can

stack all the coordinate vectors ai inside a n× J matrix that we call A:

A =
[

a1 a2 · · · an

]
=


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

ak1 ak2 · · · akn

 (2.3)

Let qi be the number of units produced by firm i and consumed by the representative agent, which we

write inside the n-dimensional vector q:

q =
[
q1 q2 · · · qn

]′
(2.4)

Definition 1. A vector q that specifies, for every firm, the number of units produced is called an allocation.

I assume that there exists a representative agent. Consistent with the hedonic demand literature, the

consumer combines linearly the characteristics of different products, and their preferences are defined in

terms of these characteristics. Letting xj be the total units of common characteristic j, we have:

xj =

n∑
i=1

ajiqi (2.5)
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Hence, intuitively, the matrix A transforms units of goods into units of common characteristics:

x = Aq (2.6)

With regard to the n idiosyncratic characteristics, I assume that each unit of good i provides exactly

one unit of its corresponding idiosyncratic characteristic. Hence, we can just write qi in place the units of

idiosyncratic characteristic i.

The representative agent’s preferences are described by a utility function that is quadratic in both common

characteristics (x) and idiosyncratic characteristics (q). The agent’s preferences also incorporate a linear

disutility for the total number of hours of work supplied (H):

U (x,q, H)
def
= α ·

k∑
j=1

(
bxj xj −

1

2
x2
j

)
+ (1− α)

n∑
i=1

(
bqi qi −

1

2
q2
i

)
−H (2.7)

where bxj and bqi are characteristic-specific preference shifters. In linear algebra notation:

U (x,q, H)
def
= α

(
x′bx − 1

2
· x′x

)
+ (1− α)

(
q′bq − 1

2
· q′q

)
−H (2.8)

α ∈ [0, 1] is the utility weight that is assigned to common characteristics. Hence, it governs the degree

of horizontal differentiation among products. This utility specification is a generalization of the preferences

used by Epple (1987). In addition to introducing idiosyncratic characteristics, I make leisure the outside

good: that allows me to close the model and make it general equilibrium.

I denote by hi the labor input acquired by every firm, so that the labor market clearing condition is:

H =
∑
i

hi (2.9)

I assume (without loss of generality) that labor is the numéraire of this economy (the price of one unit of

labor is 1$), therefore hi is also the total variable cost incurred by firm i. Firm i produces output qi using a

quasi-Cobb Douglas production function:

qi = kθi · ` (hi) (2.10)

where ki is the capital input (fixed) and the function ` (·) is such that firm i’s technology can be described

by the following quadratic total variable cost function:

hi = fi + ciqi +
δi
2
q2
i (2.11)

Due to equation (2.10), we can see that ci and δi must depend on ki in the following way:5

ci =
c̃i
kθi

; δi =
δ̃i
k2θ
i

; (2.12)

where c̃i and δ̃i are positive constants. MC and AVC denote, respectively, the marginal cost and the average

variable cost:

MCi = ci + δiqi; AVCi = ci +
δi
2
qi (2.13)

5This in turn implies that ` (hi) =

√
hi−fi
δ̃i

+
c̃2i
δ̃2i
− c̃i
δ̃i
.

7



The representative consumer buys the goods bundle q taking p (the vector of prices) as given. Moreover,

I assume that the representative consumer is endowed with the shares of all the companies in the economy.

As a consequence, the aggregate profits are paid back to them. Their consumption basket, defined in terms

of the unit purchased q, has to respect the following budget constraint:

H + Π =

k∑
i=1

piqi (2.14)

Notice that for now we have defined aggregate economic profits Π to include all non-labor compensation

(which equates to assuming that fi is sunk). We will later consider a narrower metric of profits from which

fixed costs
(
F

def
=
∑
i fi

)
are netted out.

2.2. Equilibrium

To streamline notation, let us define:

bi
def
= α

∑
j

bxjixj + (1− α) bqi (2.15)

or, in linear algebra notation:

b
def
= αA′bx + (1− α) bq (2.16)

Then, plugging equation (2.6) and (2.16) inside equation (2.8), we obtain the following Lagrangian for

the representative consumer:

L (q, H) = q′b− 1

2
q′ [I + α (A′A− I)] q−H − λ (q′p−H −Π) (2.17)

The choice of labor hours as the numéraire immediately pins down the Lagrange multiplier λ = 1. Then,

the consumer chooses a demand function q (p) to maximize the following consumer surplus function:

S (q)
def
= q′ (b− p)− 1

2
q′ [I + α (A′A− I)] q (2.18)

Let us now define the concept of cosine similarity.

Definition 2. We call the dot product a′iaj the cosine similarity between i and j.

The rationale for this nomenclature is that – geometrically – a′iaj measures the cosine of the angle between

vectors ai and aj in the space of common characteristics Rk. Hence, the cosine similarity ranges from zero

to one. Because, by definition:

(A′A)ij = a′iaj (2.19)

the matrix A′A contains the cosine similarities between all firm pairs. A higher cosine similarity implies

that two products provide a more overlapping mix of characteristics, and this reflects in patterns of product

substitution: if a′iaj > a′iak, an increase in the supply of product i leads to a larger decline in the marginal

utility of product j than it does on the marginal utility of product k.

Figure 1 helps visualize this setup for the simple case of two firms—1 and 2—competing in the space of

two common characteristics A and B. As can be seen in the figure, both firms exist as vectors on the unit

circle (with more than three characteristics, it would be a hypersphere instead). The cosine similarity a′iaj
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Figure 1: Example Product Space: Two Firms, Two Characteristics

Figure Notes: The following diagram exemplifies the hedonic demand model, for the simple

case where there are only two product characteristics (A and B) and only two competitors (1

and 2). Each firm exists as a vector on the unit hypersphere of product characteristics (in this

example, we have a circle). The dot product a′iaj equals the cosine of the angle θ. The tighter the

angle, the higher the cosine similarity, and the larger (in absolute value) the inverse cross-price

elasticity of demand.

captures the width of the angle θ. An increase in the cosine of the angle θ implies a lower angular distance,

and therefore a more overlapping set of common characteristics.

The assumption that ai has unit length is a normalization assumption on volumetric units (kilograms,

pounds, gallons, etc.). The normalization consists in picking, for each good i, the volume unit so that i is

geometrically represented by a point on the k-dimensional hypersphere.

We can streamline the notation further by defining:

Σ
def
= α (A′A− I) (2.20)

then the demand and inverse demand functions are given by:

Aggregate demand : q = (I + Σ)
−1

(b− p) (2.21)

Inverse demand : p = b− (I + Σ) q (2.22)
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Notice that the quantity sold by each firm may affect the price of the output sold by every other firm

in the economy (unless the matrix Σ is null). The derivative ∂pi/∂qj is proportional to a′iaj , the product

similarity between i and j. The closer these two firms are in the product characteristics space, the larger is

this derivative in absolute value. Because A′A is symmetric, we have ∂qi/∂pj = ∂qj/∂pi by construction.

My rationale for using a linear demand is discussed at length in Appendix G.

In terms of elasticities, we have:

Inverse cross− price elasticity of demand :
∂ log pi
∂ log qj

= −qj
pi
· σij ∀ i 6= j (2.23)

Cross− price elasticity of demand :
∂ log qi
∂ log pj

= −pj
qi
· (I + Σ)

−1
ij (2.24)

It is worth stopping to inspect equation (2.24) more closely. The first thing to notice is that the cross-

price demand elasticities depend on the inverse (I + Σ)
−1

. This implies that, while cosine similarities are

positive by construction, it is entirely possible for goods to be complements. This property of the model is

discussed at length in Section 5.

Next, let us consider the case i = j, where (2.24) simply becomes the own residual demand elasticity.

The first major difference between the GHL demand system and CES is that, while in CES the own demand

elasticity is equal to a constant, here the own demand elasticity is an equilibrium object (as it depends on

q) and will generally differ among firm pairs. This implies that, unlike CES, this demand system produces

heterogenous markups. In fact, we can see that two forces drive cross-sectional differences in market power

across firms. The more familiar one is the incomplete passthrough from marginal cost to prices: that is,

larger firms (high qi) charge higher markups. The second force, which is instead a feature of hedonic demand

models, is asymmetric product differentiation. That is, firms that produce “unique” products, as measured

by the term (I + Σ)
−1
ii , face a less elastic residual demand.

Next, I define the economic profits πi as follows:

πi (q)
def
= pi (q) · qi − hi

= qi (bi − ci)−
(

1 +
δi
2

)
q2
i −

∑
j 6=i

σijqiqj

Firms compete à la Cournot: each firm i strategically chooses its output volume qi by taking as given

the output of all other firms. By taking the profit vector as a payoff function and the vector of quantities

produced q as a strategy profile, I have implicitly defined a linear-quadratic network game (Ballester, Calvó-

Armengol and Zenou, 2006, henceforth BCZ). The reason is that the matrix Σ can be conceptualized as the

adjacency matrix of a weighted network: in this specific instance, it is the network of product market rivalry

relationships that exists among the firms, based on the substitutability of their products.

Linear-quadratic network games belong to a larger class of games known as “potential games” (Monderer

and Shapley, 1996): the key feature of potential games is that they can be described by a scalar function

Φ (q), which we call the game’s potential. The potential function can be thought of, intuitively, as the

objective function of the pseudo-planner problem that is solved by the Nash equilibrium allocation. The

potential function is shown below, together with the aggregate profit function Π (q) and the aggregate welfare

function W (q):
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Aggregate Profit : Π (q) = q′ (b− c) −q′
(

I +
1

2
∆ + Σ

)
q

Cournot Potential : Φ (q) = q′ (b− c) −q′
(

I +
1

2
∆+

1

2
Σ

)
q

Total Surplus : W (q) = q′ (b− c) − 1

2
· q′ (I + ∆ + Σ) q

(2.25)

where ∆
def
=


δ1 0 · · · 0

0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δn

 (2.26)

The three functions in equation (2.25) are visually similar to each other; they only differ by the scalar

weight applied to the quadratic terms. The Cournot potential Φ is somewhat of a hybrid between the

aggregate profit Π and the total surplus W : the diagonal elements of the quadratic term are the same as

the aggregate profit function, while the off-diagonal terms are the same as the aggregate surplus function.

By maximizing the potential Φ (q), we find the Cournot-Nash equilibrium. I shall assume all these three

functions are concave. Because the oligopolists in this model will be actual firms in the data (who produce

positive output by definition) we can look directly at the unique internal solution.

Proposition 1. The Cournot-Nash equilibrium of the game described above is qΦ – the maximizer of the

potential function Φ (·):

qΦ def
= arg max

q
Φ (q) = (2I + ∆ + Σ)

−1
(b− c) (2.27)

Proof. The derivation of the potential function, as well as the proof that its maximizer qΦ is the genuine

Nash equilibrium, appear in Appendix A.

Equation (2.27), which characterizes the Cournot-Nash equilibrium, tells us which factors determine the

size of each firm in equilibrium. The diagonal matrix ∆, which contains the slopes of the marginal cost

functions, captures economies of scale. Σ is the adjacency matrix of the network of product rivalries. b

and c are, respectively, the demand and supply function intercepts. Hence, (bi − ci) is simply the marginal

surplus of the very first unit produced by firm i; also, bi can be interpreted as a measure of vertical product

differentiation (quality).

BCZ show that another way to interpret equation (2.27) is as a measure of network centrality – specifically,

that developed by Katz (1953) and Bonacich (1987). The intuition is that firms that are more “isolated” in

the network of product similarities face less product market competition and behave more like monopolists.

Centrality measures are a recurring feature of the literature on networks in macroeconomics (see Carvalho

and Tahbaz-Salehi, 2019). In Appendix B, I discuss in further detail the link between Nash equilibrium and

network centrality.

The discrepancy between the potential function and the total-surplus function implies that the network

Cournot game delivers an equilibrium allocation that is not socially-optimal. A benevolent social planner

can theoretically improve on the market outcome for two reasons. First, they can coordinate output choices

across firms; second, they can internalize consumer surplus.
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2.3. Consumer Surplus, the Shapley Value and Surplus Appropriation

How does a firm’s position in the product network affect its ability to appropriate surplus? To answer this

question, we must first answer the question of how to attribute consumer surplus to specific firms. Luckily,

there is a natural, economically-meaningful way to break down consumer surplus and attribute, to every

firm, a fraction of it: is the Shapley Value.

To see why this measure makes economic sense, we start by computing the marginal consumer surplus

generated by qi units of good i when all other firms supply q̂−i. We know from basic price theory that this

quantity can be computed by integrating the vertical distance between the residual demand and the purchase

price pi
6:

CSi (qi, pi, q̂−i) =

∫ qi

0

bi − q̂i −∑
j 6=i

σij q̂j − pi

 dq̂i (2.28)

= qi (bi − pi)−
1

2
q2
i +

∑
j 6=i

σijqiq̂j

We can then compute si, the Shapley Value in terms of consumer surplus, by taking the average of (2.28)

across all possible allocations where each firm j 6= i produces either q̂j = qj or q̂j = 0:

si
def
=

1

2(n−1)

1∑
ι1=0

1∑
ι2=0

. . .

1∑
ιn=0

qi (bi − pi)−
1

2
q2
i +

∑
j 6=i

ιjσijqiqj

 (2.29)

because we know that each firm j produces qj in exactly half of the allocations considered, the expression

above simplifies to:

si = qi (bi − pi)−
1

2

q2
i +

∑
j 6=i

σijqiqj

 (2.30)

by plugging pi (as a function of qi), this expression further simplifies to:

si
def
=

1

2

q2
i +

∑
j 6=i

σijqiqj

 (2.31)

Because it is a Shapley Value, one of si’s desirable properties is that it will always aggregate to total consumer

surplus, that is:

S =
∑
i

si (2.32)

We shall therefore call si, going forward, the consumer surplus generated by firm i. By plugging the equi-

librium expression for

We can similarly define a firm-level total surplus function, which specifies for every firm i a certain share

wi of the total surplus W (q):

6When integrating consumer surplus, we must remember to treat pi as a constant, since consumers are price-takers.
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wi
def
= πi + si

= qi (bi − ci)−
1

2

(1 + δi) q
2
i +

∑
j 6=i

σijqiqj

 (2.33)

Next, we define a suitable measure of market share for our network oligopoly model, and derive an equation

that links this quantity to firm’s ability to appropriate surplus in the form of monopoly profits.

Definition 3. I define γi, the weighted market share of firm i, as follows:

γi
def
=

qi
qi +

∑
j σijqj

(2.34)

Notice that, under homogenous products (σij = 1 ∀ i, j) this is simply the market share of firm i. It is

possible to show that the ratio of firm profits πi to consumer surplus (measured using the Shapley Value si)

is proportional to the weighted market share γi.

Proposition 2. In the Cournot-Nash equilibrium allocation, the ratio of profits to consumer surplus for firm

i is proportional to its weighted market share - specifically:

πi
si

= (2 + δi) γi (2.35)

Proof. See Appendix K.

The similarity-weighted market share γi plays, in the network Cournot model, a similar role as the

Herfindahl index (HHI) in the canonical Cournot model. Proposition 2 reflects the fact that, in my model,

there are no clearly-defined industry boundaries. This is also the case in the real world: if we consider

antitrust lawsuits for example, a major object of litigation is the market’s definition. Defendants (alleged

monopolies) have an incentive to define the relevant market broadly, while plaintiffs have an incentive to

define the relevant market narrowly. In my model, firms exist in a continuous space of product characteristics.

Hence, there is no uniquely-defined peer group that we can compare each firm to. To understand how

dominant firm i is, we need to compare its market share vis-à-vis every other firm in the economy, weighting

each of them by their distance in the space of product characteristics.

The HHI can be seen as a special case of the weighted market share: as a measure of surplus appropri-

ation, it is only valid in the special case where similarity scores are dichotomous (implying sharp industry

boundaries) and firms are exchangeable (bi − ci is constant across firms).

2.4. Markups and Product Market Centrality

In this model, we can think of market power being shaped by two forces. Firms more productive firms become

larger in the Nash-Cournot equilibrium: because of imperfect passthrough these firms end up charging higher

markups. Second, firms that are more central in the network of product similarities face increased competition

(all else being equal), and thus a more elastic residual demand: these firms charge lower markups.

We next show how to decompose a firm’s markup into two statistics that summarize these forces. We

start by defining product market centrality. To define centrality, we start from the residual demand for firm
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i, which is given by:

qi = bi −

 n∑
j=1

σijqj

− pi (2.36)

Equation (2.36) shows that, from the point of view of firm i, an increase in the similarity-weighted supply of

competitors induces a parallel downward shift in the residual demand for firm i’s product. Because i takes

the term in brackets as given, we can re-write equation (2.36) at no loss as:

qi =
bi
χi
− pi (2.37)

where χi, which we call the Product Market Centrality, by definition equates (2.36) and (2.37).

Definition 4. We define χi, the Product Market Centrality of firm i, as the parallel downward shift in firm

i’s residual demand induced by the combined supply of all potential competitors – formally:

χi
def
=

bi
bi −

∑n
j=1 σijqj

(2.38)

We can then re-write equation (2.27) as:

qi =
1

2

(
bi
χ
i

−MCi

)
(2.39)

We call χi a measure of centrality for two reasons. Firstly, the vector (χ1, χ2, ..., χn) “summarizes” the entire

matrix of cross-price derivatives into an n-dimensional vector; the idea is that, in order to solve its own profit

maximization problem, firm i does not need to know all of the cross-price derivatives (σij), it only needs

to know its own residual demand. Second, the summation term in the denominator of equation (2.38) is

just the output-weighted degree centrality of firm i. Hence, the product market centrality is a monotonic

transform of a measure of degree centrality, normalized by bi.

Definition 5. We define ωi –the “quality-adjusted productivity” of firm i– as the ratio between the marginal

utility of the very first unit produced (bi) and the marginal cost – formally:

ωi
def
=

bi
MCi

(2.40)

We can now express firm i’s markup µi (the price-marginal cost ratio) in terms of the ratio ωi/χi.

Proposition 3. The equilibrium markup µi is equal to the average of one and the ratio of the quality-adjusted

productivity to the product market centrality:

µi
def
=

pi
MCi

=
1

2

(
1 +

ωi
χi

)
(2.41)

Proof. Plug
(
qΦ
i = pi −MCi

)
inside equation (2.39), divide both sides by MCi, substitute (2.40) and rear-

range.

2.5. Market Structure Counterfactuals

A key application of my theoretical model is to study how welfare statistics - such as total surplus - respond

to changes in market structure. What that means is that, having made the required assumption that firms
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compete by a well-defined set of rules (thus far we have assumed Cournot oligopoly), we can then consider

counterfactuals in which the same firms play by a different set of rules. In this Subsection, I define four of

these counterfactuals: each of these counterfactuals corresponds to the solution of a specific maximization

problem.7

The first counterfactual that I consider is perfect competition: firms act as atomistic producers, and price

all units sold at marginal cost.

Definition 6. The Perfect Competition allocation qW is defined as the maximizer of the aggregate total

surplus function W (q) :

qW
def
= arg max

q
W (q) = (I + ∆ + Σ)

−1
(b− c) (2.42)

The second counterfactual that I consider is called Monopoly : it represents a situation in which one agent

(that does not internalize consumer surplus) has control over all the firms in the economy and maximizes

aggregate profits.

Definition 7. The Monopoly allocation is defined as the maximizer of the aggregate profit function Π (q):

qΠ def
= arg max

q
Π (q) = (2I + ∆ + 2Σ)

−1
(b− c) (2.43)

This allocation can be alternatively conceptualized as an economy with no antitrust policy, where firms

have unlimited ability to coordinate their supply choices.

While the Monopoly counterfactual is an interesting limit case, using the model we can also study the

welfare impact of mergers and collusion among specific firms.

When it comes to modeling mergers and collusions, the I.O. literature has used multiple approaches. Fol-

lowing Baker and Bresnahan (1985), I model mergers and collusion interchangeably as coordinated pricing.

That is, I assume that the merger or the collusion does not affect the product range offered by the merg-

ing/colluding enterprises; instead, a single agent determines the output of the merging firms to maximize

the joint profits.8

Lemma 1. Consider, without loss of generality, a merger or collusion between companies {1, 2, ...,m}; then,

partition the matrix Σ by separating the first m rows and columns as follows:

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(2.44)

The post-merger equilibrium allocation maximizes the following modified potential function:

Φ (q) = q′ (b− c)− q′
(

I +
1

2
∆

)
q− 1

2
· q′
[

2Σ11 Σ12

Σ21 Σ22

]
q (2.45)

Proof. See Appendix K.

7The closed-form expressions for the output vector q which I provide below assume an internal solution. For my empirical
analysis, I also compute a numerical solution that is subject to a non-negativity constraint on q and I verify it is approximately
equal to the unconstrained solution (error < 0.1% for the total surplus function in Perfect Competition). The non-negativity
constraint binds for very few firms.

8This approach is particularly attractive, from a tractability standpoint, in a setting like this, where products are differentiated.
The alternative would be to make some heroic assumptions about the nature and characteristics of the product supplied by
the combined entity.
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The maximizer of the re-defined Φ (q), which corresponds to the post-merger equilibrium allocation, is:

qΦ =

(
2I + ∆ +

[
2Σ11 Σ12

Σ21 Σ22

])−1

(b− c) (2.46)

That is, to simulate the new equilibrium following a merger or a collusion among existing firms, one only

needs to amend the potential function by doubling the off-diagonal quadratic terms corresponding to the

merging firms. It is easily verified that when all firms are merged, Φ (q) simply becomes the aggregate profit

function Π (q), and the equilibrium allocation converges to the Monopoly counterfactual (equation 2.43).

Another interesting counterfactual is one in which resources are allocated efficiently but the labor supply

is fixed. That is, the social planner maximizes the aggregate surplus function subject to the constraint of

using no more labor than in the observed Cournot equilibrium.

Definition 8. I define the resource-efficient counterfactual qH as the solution to the following constrained

maximization problem:

qH
def
= arg max

q
W (q) s.t. H (q) = H

(
qΦ
)

(2.47)

Setting up the Lagrangian and using (1− µ) as the Lagrange multiplier, we find that the resource-efficient

counterfactual takes the form:

qH = (I + µ∆ + Σ)
−1

(b− µc) (2.48)

where µ solves:

H
(
qH (µ)

)
= H

(
qΦ
)

(2.49)

The Lagrange multiplier term µ turns out to be the common markup charged by all firms in the resource-

efficient counterfactual.

Lemma 2. The Resource-efficient counterfactual qH equalizes markups across firms.

Proof. Let all firms price at a constant markup µ over marginal cost:

pi = µ ·MCi (2.50)

expanding the expression for the marginal cost and the equilibrium price we have:

b− (I + Σ) q = µ (c + ∆q) (2.51)

rearranging the equation above we obtain (2.48).

Because this counterfactual uses the same amount of labor as the observed equilibrium, by comparing

welfare in this allocation to the first-best we can effectively break down the deadweight loss into two com-

ponents – one linked to misallocation, the other linked to labor suppression. We can also interpret this

counterfactual as the deadweight loss in an alternative model where the supply of labor is completely in-

elastic. Notice that when this allocation is not constrained by the labor supply (the Lagrange multiplier

1− µ is zero), the common markup is one (firms price at marginal cost) and the resource-efficient allocation

coincides with perfect competition.

The counterfactuals considered thus far do not account for how a firm’s incentives to participate in the

market are affected by the intensity of competition. When the market moves from Cournot competition to
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(say) Bertrand 9 or perfect competition, the resulting lower profits might insufficient to cover fixed costs,

and therefore too low to justify a firm’s continued existence. If this is the case, perfect competition may not

be a realistic benchmark in the long-run: this is the classical criticism of static welfare analysis.

Next, I construct an “efficient” allocation that takes into account (to the extent possible in a static model)

these dynamic incentives. The starting point is again a benevolent social planner, to which we are adding a

constraint, in the form of a participation condition on the firms’ side: firms have to be able (on average) to

recover their fixed costs (F ) at the optimum.10

Definition 9. The Second-Best Allocation q2nd is defined as the solution to the following constrained maxi-

mization problem:

q2nd def
= arg max

q
W (q) s.t. Π (q) ≥ F (2.52)

where

F
def
=
∑
i

fi (2.53)

Setting up the Lagrangian of this problem and imposing λ as the Lagrangian multiplier, we find that the

resource-efficient counterfactual takes the form:

q2nd =

[
1 + 2λ

1 + λ
· (I + Σ) + ∆

]−1

(b− c) (2.54)

Assuming that the constraint binds at the optimum, the Lagrange multiplier λ solves:

Π
(
q2nd (λ)

)
= F (2.55)

As the constraint is relaxed (λ→ 0), this counterfactual allocation converges to the first-best. When the

constraint becomes arbitrarily tight (λ→∞), it converges to the Monopoly allocation.

In addition to the counterfactuals considered above, which admit closed-form solutions, we can simulate

the introduction or the removal of granular firms. The latter can be trivially implemented by computing an

allocation where a firm’s output is constrained to be zero. In order to simulate instead the introduction of

new firms, we require additional assumptions or data. Namely, in order to simulate the introduction of an

additional firm (let us label it firm zero), we would need to know the value of (b0 − c0), as well as the firm’s

similarity to every other firm in the economy (ai0). One such counterfactual is considered in Section (4).

2.6. Adding a Continuum of firms with Endogenous Entry

Next, I show how to expand the model to include a continuum of atomistic firms that behave competitively

and can enter and exit endogenously. This extension of the model allows me to accomplish two things: 1)

incorporate firms for whom we do not observe product similarity data – that is, foreign and private firms;

2) it allows to incorporate entry and exit in an otherwise static model. The idea is that we can model

unobserved companies as atomistic firms.

The key to tractably integrating these atomistic firms in the model is an aggregation result. I describe

9The Bertrand model is covered in Appendix F.
10There are two reasons why I consider a constraint on aggregate profits rather than individual profits (πi ≥ fi). The first is

that such individual constraint is already violated by many firms in the observed (Cournot) equilibrium. The second reason
is that adding individual constraints for each firms would make the optimization problem numerically intractable, since we
would need to solve for thousands of constraints (one for each firm in the model).
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these atomistic firms through a productivity distribution: the set of active atomistic firms is then character-

ized by a productivity cut-off value, in the style of Hopenhayn (1992).

Next, I show that these atomistic companies can be aggregated into a representative firm: variations in

the size of the representative firm reflect the intensive margin of production as well as the extensive margin

(the entry/exit of the atomistic firms). I index this representative firm i = n + 1, effectively adding a row

and a column to the matrices A′A and ∆ and adding one dimension to the vector b.

Proposition 4. Assume that there is a mass one of potential entrants that are indexed by a productivity

parameter z ∈ (z,∞) and that produce a homogeneous good using the following quadratic cost function:

h (z) =
δ (z)

2
· q2 (z) (2.56)

with z > 0 and

δ (z) =
1

z
(2.57)

Assume also that the firms face cost of entry equal to one unit of labor and that the probability density of

type-z potential entrants is given by

f (z) =
β − 1

zβ+1
(2.58)

implying that z follows a Pareto distribution with shape parameter β and scale parameter z
def
= [(β − 1) /β]

1
β .11

Then, as the parameter β converges down to 1, the cost function of the corresponding aggregate representative

firm is approximated by

hn+1 =
q2
n+1

2
(2.59)

where and hn+1 and qn+1 are, respectively, the labor input and the output of the representative firm, and the

productivity cutoff for entry converges to zmin = 1
qn+1

.

Proof. See Appendix K.

Because employment and revenues are proportional to z, it follows that, if the assumptions above are

respected, both the revenue and employment distribution of firms also approximate a Pareto distribution

with shape parameter β = 1, sometimes called a Zipf Law.

Although this might look like a knife-edge assumption, it is not. It is a well-documented empirical

regularity that the size distribution of firms closely approximates a Pareto distribution with shape parameter

β = 1. This stylized fact was confirmed to hold for both the employment and the revenue distribution of US

firms by Axtell (2001), using Census micro-data.

Because the representative firm behaves competitively, its first order condition will differ from that of

granular firms {1, 2, ..., n}. The latter maximize individual profits:

π′i (qi) = 0 for i = 1, 2, ..., n (2.60)

The representative firm, on the other hand, prices at marginal cost, and therefore maximizes total surplus:

W ′ (qi) = 0 for i = n+ 1 (2.61)

11While the revenue and employment distribution of US firms approximates a Pareto Distribution with scale parameter equal
to one (a Zipf Law), this distribution has the undesirable property that its mean (and therefore qn+1 and hn+1) grows
unboundedly as β → 1+. This particular choice of the scale parameter ensures that qn+1 and hn+1 integrate to a finite
number as β → 1+.
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We can write the full system of first order conditions in linear algebra notation as:

0 =

[
b(n) − c(n)

bn+1 − cn+1

]
+

([
2I 0

0 1

]
+ Σ + ∆

)[
q(n)

qn+1

]
(2.62)

where cn+1 = 0, δn+1 = 1 and the superscript (n) identifies the sub-vector corresponding to the granular

firms. A simpler way to rewrite this set of equations is

0 = b− c− (I + G + Σ + ∆) q (2.63)

where G is a diagonal matrix that identifies granular firms – that is, whose diagonal elements equal 1 for

firms 1 to n and to 0 for firm n+ 1:

G =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 0

 (2.64)

The potential function for the model that includes the representative firm is:

Φ (q) = q′ (b− c)− 1

2
q′ (I + G + Σ + ∆) q (2.65)

and the equilibrium quantity vector is:

qΦ = (I + G + ∆ + Σ)
−1

(b− c) (2.66)

3. Data and Identification/Calibration

In this section, I outline the data used to estimate the model in Section 2. Additional details are provided

in Appendix D, which also contains Table 2, where model mapping and identification are summarized.

3.1. Firm Financials

My data source for firm financials is the Compustat database, which I access via the Wharton Research

Data Services (WRDS) platform. From this database, I extract information on firm revenues, Costs of

Goods Sold (COGS), Selling General and Administrative (SGA) costs, R&D expenditures and Property

Plant and Equipment (PPE).

I follow (De Loecker, Eeckhout and Unger, 2020, henceforth DEU) in mapping accounting revenues to

model revenues, COGS to variable costs, and in computing an estimate of fixed costs costs (fi):

fi ← SGAi + Property Plant & Equipmenti ×User Cost of Capital (3.1)
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3.2. Text-Based Product Similarity

The key data ingredient that we need, in order to estimate my model, is the matrix of product similarities

A′A. The empirical counterpart of this object is provided by Hoberg and Phillips (2016, henceforth HP).

HP created a publicly-available database that provides product cosine similarities for the universe of

public corporations in the United States. These cosine similarities originate from natural language processing

(NLP) of 10-K filings, and are time-varying. A complete matrix of similarities is provided for every year,

beginning in 1997.

The 10-K is a mandatory form that is filed by American public corporations with the U.S. Securities and

Exchange Commission on a yearly basis. Item 1 of the 10-K is a long and detailed description of the product

or service sold by the company. HP’s product cosine similarities are constructed by comparing these textual

product descriptions.

I briefly outline the construction of this dataset. HP start by building a vocabulary of 61,146 words that

firms use to describe the characteristics of their products.12 Based on this vocabulary, HP produce, for each

firm i, a vector of word frequencies oi. Each of component of this vector corresponds to a word in HP’s

vocabulary, and is equal to the number of times that word appears in firm i’s 10-K product description:

oi =


oi,1

oi,2
...

oi,61146

 (3.2)

Similar to the model in Section 2, this vector is then normalized (divided by the Euclidean norm). We

have thus obtained the empirical counterpart of ai:

ai =
oi
‖oi‖

(3.3)

finally, all ai vectors are dot-multiplied to obtain A′A:

A′A =


a′1a1 a′1a2 · · · a′1an

a′2a1 a′2a2 · · · a′2an
...

...
. . .

...

a′na1 a′na2 · · · a′nan

 (3.4)

Next, we state explicitly the key identifying assumption that allows us to map HP’s cosine similarity

dataset to A′A.

Assumption (Identification). the normalized frequencies of the words from Hoberg and Phillips’ vocabulary

in 10-K business descriptions approximate the product loadings on common characteristics.

This assumption is obviously is strong, and will need to be validated empirically before proceeding to per-

form welfare measurements using the model. However, the implications of this assumption for identification

12I report here verbatim the methodology description from the original paper by Hoberg and Phillips (2016):“[...] In our main
specification, we limit attention to nouns (defined by Webster.com) and proper nouns that appear in no more than 25 percent
of all product descriptions in order to avoid common words. We define proper nouns as words that appear with the first
letter capitalized at least 90 percent of the time in our sample of 10-Ks. We also omit common words that are used by more
than 25 percent of all firms, and we omit geographical words including country and state names, as well as the names of the
top 50 cities in the United States and in the world. [...]”
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are powerful: to the extent that this assumption is satisfied, HP’s matrix of cosine similarities is not simply

“resembling” the object A′A: it is that exact object, there is literally no difference between the theoretical

object and the data counterpart.

The fact that all publicly-traded firms in the United States are required to file a 10-K form makes

the this data set unique, in that it covers the near entirety (97.8%) of the Compustat universe. HP use

these cosine similarities to produce a dynamic industry classification, called TNIC, which they extensively

validate: one way they validate their data (in the paper that presents their methodology) is by using another

dataset called CapitalIQ. This dataset provides dummy variables for a sub-set of Compustat firm pairs which

identify product market rivalry relationships; they are based on corporate filings as well as other sources (no

time variation is available in this dataset). HP show that TNIC outperforms SIC and NAICS in predicting

competitor pairs in CapitalIQ.

Since their introduction in 2011, HP’s industry classifications have become standard in the empirical

corporate finance literature, where they have replaced NAICS and SIC for a variety of applications. A major

reason for this methodological shift is that HP’s dataset addressed an important limitation of traditional

industry classifications. While these have often been used (for lack of better alternatives) to capture product

market competition13, it is well-known that they are based on the concept of production process similarity,

not product similarity14. This is also one reason why, in the I.O. and Antitrust literature, NAICS and SIC

are generally only used to estimate production functions15.

There are other factors that differentiate HP’s database from traditional industry classifications. While

NAICS and SIC are binary (firms are either in the same industry or different industries), HP’s database also

provides continuous similarity scores ranging from zero to one, thus accommodating the inherent fuzziness

of product market rivalries. While NAICS and SIC are seldom updated, HP’s similarity scores are updated

yearly. While NAICS and SIC are arbitrarily assigned (Chen et al., 2016 show that firms strategically

manipulate their industry classifications), HP’s similarity scores are rule-driven and incentive-compatible:

executives face legal liability for misrepresenting company information in SEC filings.

I begin my empirical analysis by visualizing HP’s dataset. To do so, I have to reduce the dimensionality

of the dataset from 61,146 (the number of words in the HP’s vocabulary) to two. I do so using the algorithm

of Fruchterman and Reingold (1991, henceforth FR), which is widely used in network science to visualize

weighted networks16.

The result of this exercise is Figure 2: every dot in the graph is a publicly traded firm as of 2004. Firm

pairs that have a high cosine similarity appear closer, and are joined by a thicker line. Conversely, firms that

are more dissimilar are not joined, and are more distant. From the graph, we can see that the distribution

of firms over the space of product characteristics is manifestly uneven: some areas are significantly more

densely populated with firms than others. Also, the network displays a pronounced community structure:

large groups of firms tend to cluster in certain areas of the network.

In Appendix C, I show that this visualization is not an artifact of dimensionality reduction or measure-

ment error: notwithstanding the dimensionality reduction, a remarkable degree of overlap exists between

13Before HP’s data was published, Bloom, Schankerman and Van Reenen (2013) constructed cosine similarities to estimate
R&D spillovers. They used Compustat Segments data, which is based on NAICS/SIC industries. This dataset’s coverage of
Compustat is insufficient to estimate my model (not enough firms/years available).

14See the following Bureau of Labor Statistics Guide.
15For example: DEU’s method to compute markups uses production function estimates for NAICS industries.
16The algorithm models the network nodes as particles, letting them dynamically arrange themselves on a bidimensional surface

as if they were subject to attractive and repulsive forces. One known shortcoming of this algorithm is that it is sensitive to
the initial configurations of the nodes, and it can have a hard time uncovering the cluster structure of large networks. To
mitigate this problem, and to make sure that the cluster structure of the network is properly displayed, I pre-arrange the
nodes using the OpenOrd algorithm (which was developed for this purpose) before running FR.
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Figure 2: Network Visualization of the Hoberg-Phillips Dataset

Figure Notes: The following diagram is a two-dimensional representation of the network of

product similarities computed by Hoberg and Phillips (2016), which is used in the estimation

of the model presented in Section 2. The data covers the universe of Compustat firms in 2004.

Firm pairs that have thicker links are closer in the product market space. These distances are

computed in a space that has approximately 61,000 dimensions. To plot this high-dimensional

object over a plane, I applied the gravity algorithm of Fruchterman and Reingold (1991), which

is standard in social network analysis.

the macro-clusters of this network and broad economic sectors. In addition, this exercise allows me to

independently validate HP’s product similarity data.

3.3. Identification of Output, Prices and Cost Intercept

All of the unobserved variables in the model are identified subject to two parameters: (α) which controls the

degree of horizontal differentiation between goods; and the diagonal matrix (∆), which controls returns to

scale. I will first show how to identify the remaining variables conditional on these two parameters and then

I will illustrate my calibration procedure for α and ∆.

I measure the matrix A′A using Hoberg and Phillips (2016)’s cosine similarity data. Given α, this

provides an estimate of Σ. We can then identify real output qi from revenues and total variable cost data:
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qi =

√
πi

1 + δi/2
if i ≤ n (3.5)

If the model includes a representative competitive firm n+ 1, the identification of qi for this firm will be

different. Specifically, the marginal cost pricing condition (pn+1 = MCn+1) implies that:

qi =
√
πi + hi if i = n+ 1 (3.6)

where (πn+1 + hn+1) is measured as the Gross Value Added of private and foreign firms, which I compute

using the OECD Trade in Value Added (TiVA) Dataset.

Having identified qi, we can then pin down the vector of prices and the cost function intercepts:

pi =
piqi
qi

ci =
hi
qi
− δi

2
qi (3.7)

Finally, I identify the demand intercept bi using equation (2.27):

b = (2I + ∆ + Σ) q + c (3.8)

or, in the presence of an representative competitive firm:

b = (I + G + ∆ + Σ) q + c (3.9)

3.4. Calibration of α and ∆

The last step required to take the model to the data is to calibrate the scalar α and the diagonal matrix

∆. Let us start from the latter. To calibrate each diagonal element δi, we use the fact that the markup

(price-marginal cost ratio) of firm i can be written as a function of observables (revenues, total variable

costs) and δi – i.e. the markup µi is identified conditional δi.

Lemma 3. The markup µi is equal to:

µi
def
=

pi
MCi

=
(2 + δi) · piqi

2 · hi + δi · piqi
(3.10)

Proof. See Appendix (K).

DEU compute the revenue-weighted average markup for the same universe of companies (Compustat).

My strategy for calibrating ∆ is to target their estimate. The detailed methodology for calibrating ∆ is

outlined in detail in Appendix D.

To calibrate α, we rewrite equation (2.21) as:∣∣∣∣∂ log pi
∂ log qj

∣∣∣∣ = α · a′iaj
qj
pi
∀ i 6= j (3.11)

By calibrating ∆, we have already pinned qi and pi. The matrix of cosine similarities of Hoberg and

Phillips (2016) provides the empirical counterpart to A′A. Hence, the matrix of equilibrium cross-price

demand elasticities is identified given α.

My strategy for calibrating α is to target target microeconometric estimates from the Industrial Orga-

nization literature. I obtain, for a number of firm pairs, estimates of the cross-price demand elasticity from
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empirical IO studies that estimate the demand function econometrically. These estimates of the cross-price

demand elasticity are then manually matched to to the corresponding firm pair in Compustat. Finally, for

each firm pair, I can obtain an estimate of α by rearranging equation (3.11):

α̂ij =

∣∣∣∣∂ log pi
∂ log qj

∣∣∣∣/(a′iaj
qi
pi

)
(3.12)

In the absence of mis-specification and measurement error, all these estimates α̂ij would return the same

estimate. What I obtain in this case, instead, is a range of estimates. I calibrate α to the median value

among these estimates, which is 0.05. The full methodology is presented in Appendix D, where I also discuss

how the model fits non-targeted moments in the data.

4. Empirical Findings

In this section, I present the results of the estimation of my model. My baseline estimates reflect the model

implementation that only includes granular firms (Compustat). In the next section, I discuss the robustness

of my estimates to the inclusion of private and foreign firms as a continuum of atomistic firms that enter

endogenously.

4.1. Welfare Statics

My first empirical exercise is to compute total surplus and to break it down into profits and consumer surplus.

This is done for both the observed equilibrium (which is assumed to be a Nash-Cournot equilibrium) and

the counterfactuals considered in Section 2. These estimates are all shown in Table 1.

I estimate that the publicly-traded firms earn an aggregate economic profit of $5 trillion and produce

an estimated total surplus of $9.1 trillion. Consumer surplus is therefore estimated to be about $4 trillion.

About 55% of the total surplus produced is appropriated by the companies in the form of oligopoly profits.

For context, the GDP of U.S. corporations in the same year (2017) is $11 trillion17.

The first counterfactual I consider, Perfect Competition, appears in the second column. By comparing

this counterfactual with the Cournot-Nash allocation we can see that the welfare costs of oligopoly are

significant. Under perfect competition, aggregate surplus is significantly higher – $10.2 trillion – hence, the

deadweight loss amounts to about 11% of the total surplus.

While the effects of oligopoly on Pareto efficiency are significant, perhaps even more significant are the

distributional effects. When firms price at marginal cost, a much larger share of the surplus goes to the

consumer: $8.2 trillion, more than double than in the Cournot allocation. This amounts to 80% of the total

surplus.

The next counterfactual I analyze, the Monopoly counterfactual, appears in the third column: it repre-

sents a scenario in which all firms are controlled by a single decision-maker that coordinates supply choices.

In this allocation, aggregate surplus is significantly lower than in the Network Cournot equilibrium allo-

cation: $8.2 trillion. Despite the decrease in aggregate welfare, profits are markedly higher: $5.7 trillion.

Consequently, consumer surplus is reduced to just $2.5 trillion, a mere 33% of the total. One interpretation

17The difference between GDP and total surplus is that total surplus does not include the value of labor input but it does
include the value of inframarginal consumption. GDP, on the other hand, includes the value of labor input but not the
inframarginal value of consumption. In this model each unit of labor is paid exactly its marginal disutility, hence there is no
inframarginal value of leisure.
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of this exercise is that policies that prevent coordination between firms (antitrust) have a large positive

impact on welfare.

Next, I consider the Resource Efficient counterfactual, in which the social planner maximizes total surplus

subject to the constraint of not using more labor than the Cournot equilibrium.

In this scenario, markups across firms have been equalized, but not eliminated. By removing all dispersion

in markups, this counterfactual targets the malallocative effects of oligopoly.

The total surplus produced in this counterfactual is $9.9 trillion, about 3.3 percentage points lower than

in perfect competition, and $800 billion higher than the observed Cournot-Nash equilibrium. Most of the

surplus produced – $6.9 trillion, or 68% of the total – goes to the consumer; profits are reduced to $3.1

trillion. Because labor is fixed, all the welfare gains with respect the Cournot equilibrium come from the

reallocation of labor. Hence, an important take-away from this counterfactual is that a large share of the

inefficiencies from oligopoly are driven by resource misallocation. A different way to say this is that the

dispersion in markups (caused by oligopolistic competition with differentiated products) matters at least as

much as the level of markups in determining the overall deadweight loss.

The last counterfactual that I consider is the Second-Best, in which a benevolent social planner maximizes

aggregate surplus subject to an aggregate participation constraint (profits must cover fixed costs on average).

In this counterfactual, total surplus is very close to the level achieved by the perfectly-competitive outcome:

$10 trillion. The main difference is the surplus split: the consumer receives $6.1 trillion (two trillion less than

under perfect competition but two more than under Cournot), while total profits amount to $3.9 trillion.

In sum, my measurements suggest that the oligopoly power of U.S. public firms has significant conse-

quences for aggregate welfare, and that it impacts consumer welfare through two channels: it increases the

dispersion of markups, generating resource misallocation which raises the deadweight loss; it also increases

the level of markups, which in turn affects how surplus is shared between producers and consumers.

4.2. Markup Decomposition

While there’s evidence in support of the fact that the markups of US corporations have increased in the past

decades (De Loecker, Eeckhout and Unger, 2020), the reasons behind this increase are still very much up

for debate: are higher markups the result of a right tail of highly-productive superstar firms pulling away

from the rest the competition, or are they the result of a softening of product market competition (i.e. fewer

substitutes)?

Equation (2.41) allows us to study this question by decomposing markups into two components reflecting

these forces: by implementing the decomposition within our model, can investigate whether the rise of markup

is driven by firms with a low product market centrality (χi) or whether it’s driven by higher quality-adjusted

productivity (ωi).

Defining the operator E (·) as the (weighted) cross-sectional average of a variable, and letting cov (·) be

the corresponding cross-sectional (weighted) covariance, we can write the following formula for the revenue-

weighted markup, based on equation (2.41):

E (µit) =
1

2

[
1 + E (ωit) · E

(
χ−1
it

)
+ cov

(
ωit, χ

−1
it

)]
(4.1)

where t represents the year of observation. Differentiating with respect to time, we obtain the following
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Figure 3: Markups Growth Decomposition (1995-2019)
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Figure Notes: The figure decomposes the growth rate of the average markup (µi) using the formula in

equation (4.2). The upper panel displays the decomposition of the revenue-weighted average markup,

while the lower panel displays the decomposition for the variable cost-weighted average markup.
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decomposition for the change in the revenue-weighted average markup:

∆E (µit) ≈
1

2

[
E (ωit) · E

(
χ−1
it

)]
∆ logE (ωit)︸ ︷︷ ︸

Contribution of Quality−Adjusted Productivity

+
1

2

[
E (ωit) · E

(
χ−1
it

)]
∆ logE

(
χ−1
it

)
︸ ︷︷ ︸

Contribution of Centrality

(4.2)

where the discrepancy is determined by a higher-order/covariance term.

Figure 3 illustrates the implementation of this decomposition for the period 1995-2019. The upper panel

presents the decomposition for the revenue-weighted average markup, while the lower panel presents the

decomposition of the average markup weighted by variable costs. The difference between these two statistics

consists in the fact that a reallocation of market shares towards higher markups will affect the first, but not

the latter.

Over this period, we can see that the revenue-weighted average markup increased from 1.38 to 1.56.

Relative to the minimum theoretical value of one, this value represents an increase of 47%. The decomposition

shows that approximately three-fifths of this increase (+0.11) can be attributed to changes in quality-adjusted

productivity (ωi), with the remaining share of the increase (+0.06) being driven by the contribution of

product market centrality (χi).

When we consider cost-weighted markups instead, the increase in markup is more muted, from 1.31 to

1.38 (+23%). The effect of quality-adjusted productivity is completely absent, while the contribution of

product market centrality is broadly unchanged.

The interpretation of these findings is that the fall in product market centrality occurs within firms, and

reflects a lesser availability of substitutes for the typical product. The increase in (revenue-weighted) quality-

adjusted productivity, on the other hand, is driven by a reallocation of revenues towards more productive

firms. Because market shares are driven by the difference (bi −MCi), it must be the case that this reallocation

is driven by vertical differentiation: high-productivity firms (which charge higher markups to begin with)

experience an increase in product quality (bi), combined by a more-or-less proportional increase in marginal

costs (MCi). This leaves their ratio (ωi) unaffected but increases their difference (bi −MCi), thus triggering

a “superstar” effect: a reallocation of market shares towards high-productivity firms. Because demand is

linear these firms also charge higher markups: this results in an overall increase in sales-weighted markups.

4.3. Time Trends in Total Surplus and Consumer Surplus

HP’s cosine similarity data is available starting from 1997. By mapping my model to Compustat data year

by year, I can produce annual estimates of the welfare metrics previously presented. This allows me to study

the welfare implications of the rising concentration of US industries. Most importantly, because my model

leverages HP’s time-varying product similarity data, these estimates account for how the product offering of

US public firms changed over time. This is another contribution of this study.

In Figure 4, I plot aggregate consumer surplus S (the dark area) and profits Π (the light area) for every

year between 1997 and 2017. The combined area represents total surplus W . I also plot, on the right axis

(dotted black line), profits as a share of total surplus Π/W . All these statistics refer to the (observed)

Cournot equilibrium.

The graph shows that the total surplus produced by US public corporations has nearly doubled between

1997 and 2017 from $4.6 trillion to $9.1 trillion between 1997 and 2017. Profits have increased more-than-

proportionally with respect to consumer surplus – from about $2.2 trillion to about $5 trillion. Consumer

surplus increased instead from $2.2 trillion in 1997 to about $4 trillion i 2017. As a consequence, the profit

share of surplus has increased from about 50% of total surplus to nearly 56%. The consumer appears to
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Figure 4: Total Surplus of US public firms (1997-2017)
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Figure Notes: The figure above plots the evolution, between 1997 and 2017, of aggregate

(economic) profits Π (q), aggregate consumer surplus S (q) and total surplus W (q), as defined

in the model from Section 2. Profits as a percentage of total surplus (Π/W , black dotted line) are

shown on the right axis. These statistics are estimated over the universe of the US publicly-listed

corporations. These surplus measures are gross of fixed costs. Appendix E replicates this graph

using surplus measures that are net of fixed costs.

capture a decreasing share of the surplus generated by public companies.

In Figure 5, I plot, over the same period, the percentage gain in total surplus from moving from the

competitive equilibrium qΦ to the first best qW . This is the deadweight loss from oligopolistic behavior, and

is plotted as the darker line. Its trend that mimic that of profit share of surplus: it increased from 8.5% (in

1997) to the current level of 11% (in 2017). This suggests that the impact of oligopoly on surplus creation

has increased over time.

To investigate the impact of fixed costs on these results, I plot, in the same figure (light line), the

percentage difference in total surplus between the Cournot equilibrium and the Second Best : it has increased

from 6.4 percentage points (in 1997) to 9.3 percentage points (in 2017). In other words, when fixed costs

are taken into account, the welfare loss caused by oligopoly starts from a lower level (as is to be expected,

mathematically) but increases more sharply over time (+45% over the period)

Overall, my findings are consistent with the interpretation that U.S. public firms have more oligopoly

power than they had in 1997, and that this increase in oligopoly power has had a significant impact on both

allocative efficiency and consumer welfare.

4.4. The Role of Entry Costs

The increasing concentration of US industries is reflected in the stark decline of the number of public

companies: their number has dropped from about 7,500 in 1997 to about 3,500 in 2017 (Kahle and Stulz,

2017). This is largely the result of a collapse in the rate of new Initial Public Offerings (IPOs). This lower
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Figure 5: Deadweight Loss from Oligopoly (1997-2017)
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Figure Notes: The following figure plots the estimated deadweight loss (DWL) from oligopoly,

between 1997 and 2017. The darker line is the traditionally-defined DWL - the % difference in

total surplus between the Cournot equilibrium and the First-Best scenario, while the lighter line

is the % difference between the Cournot equilibrium and the Second-Best scenario as defined in

Section 2. These surplus measures are gross of fixed costs. Appendix E replicates this graph

using surplus measures that are net of fixed costs.

rate of entry among public firms, as well as the higher profits and deadweight losses, could be the result of

higher entry costs. Obviously, this is hard to know for sure, since entry costs are not directly observable.

Next, I use my model to obtain an estimate of how costs of entry have changed over time. The intuition

behind this exercise is to ask how high would the cost of entry have to be, in order to deter a marginal

startup from entering the market. Thus far, I have kept the number of granular firms fixed. Now, I consider

the entry problem of a marginal startup indexed by i = 0 that has quality-adjusted productivity (b0 − c0)

and fixed costs (f0) that are equal to the median in the population of incumbents.

We can use the model to compute firm 0’s economic profits conditional on entry (π0). Let us then assume

that firm 0 faces an entry cost of e0, and that it enters the market if π0−f0 ≥ e0. Given these assumptions,

the net profits conditional on entry (π0 − f0) provide a lower bound for the entry cost e0.

The challenge in computing π0 is that, in my model, firms exist in a space of product characteristics.

Therefore, to estimate π0, I also need to measure 0’s cosine similarity vis-à-vis every other firm in the

dataset (a′0ai). To measure a′0ai (for all i), I obtain another set of cosine similarities from Hoberg, Phillips

and Prabhala (2014). These cosine similarities are computed, for Compustat firms, against a generic ven-

ture capital-backed startup. To construct them, the authors use startup product descriptions from the

VenturExpert database. This data is available for 1997-2008.18

Figure 6 presents the resulting estimate of the implied entry cost, normalized at the level of 1997. As

of 2008, it has increased by approximately 60%. What this exercise tells us is that incentives to enter have

18I thank the authors for retrieving and sharing this data, which is not part of the public HP repository.
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Figure 6: Implied Cost of Entry for a VC-backed Startup
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Figure Notes: the figure above plots the implied cost of entry for a VC-backed startup with

median quality-adjusted productivity (bi − ci) and fixed cost (fi), as implied by the model in

Section 2. The similarity scores for the marginal entrant are computed by Hoberg, Phillips and

Prabhala (2014), using VenturExpert product descriptions.

increased; hence, from a marginal analysis perspective, the model suggests that constraints or disincentives

to enter should also have increased over this period. This occurs at approximately the same time as the

number of new IPOs collapses.

This exercise is, obviously, not informative about the nature of these unobserved entry costs. In the next

Subsection, I further investigate the collapse of the rate of entry among public firms.

4.5. Startup Takeovers and the Secular Decline of IPOs

One interesting aspect of the decline of IPOs is that it appears to be unrelated to the decline of the startup

rate that has been measured in the broader economy (Decker, Haltiwanger, Jarmin and Miranda, 2014).

Far from declining, the number of startups that are backed by Venture Capital (VC), which make up the

majority of startups that eventually become public companies, has boomed over this period.

Figure 7 plots the number of Venture Capital exits in the United States by year and type, for the period

1985-201719. In the diagram, I separate IPOs from acquisitions. We can see from this figure that, at the

beginning of the 1990s, the vast majority of VC exits were IPOs. However, since the mid-90s, there has

been a dramatic shift toward acquisitions. One implication of this fact is that the decline of IPOs was not

driven by a dearth of startups. Instead, the reason why IPOs have decreased is that they have been largely

replaced by acquisitions.

The next question I ask is to what extent can the shift from IPOs to acquisitions account for the rising

19This data is sourced from the National Venture Capital Association (NVCA).
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Figure 7: Venture Capital Startup Exits by Type
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Figure Notes: the figure above plots the number of successful venture capital exits in the

United States by year and type (Initial Public Offering v/s Acquisition). The data is sourced

from the National Venture Capital Association (NVCA).

profit share of surplus, and the increasing deadweight loss?

To investigate this question, I construct a counterfactual in which I add granular firms to the model,

with the objective of simulating the ratio of IPOs to acquisitions remaining constant after 1997. For each

firm i entering Compustat after 1997, I add (Ni − 1) firms to the model. These firms are “similar” to i in

the sense that they share the same value of (bi − ci) as well as the same coordinates in the space of common

characteristics (ai); they also exit the sample in whichever year firm i exits the dataset. Yet, they are not

perfect substitutes to i, due to the presence of idiosyncratic characteristics.

Ni is determined so that, in this counterfactual, the ratio of IPOs to acquisitions remains constant after

1997. Specifically, let IRt be ratio of IPOs to total VC exits at time t. I set Ni as follows:

Ni =

 IR1997

IRt
if i went public at time t

1 otherwise
(4.3)

We can see the result of this counterfactual analysis in Figure 8: it shows the percent difference in

consumer surplus between the Cournot equilibrium and the Perfect Competition counterfactual, under two

alternative scenarios. The lighter line shows the baseline case: consistent with the findings of Subsection 4.3,

the percentage gap in consumer surplus increases from 42% to 51%, reflecting the larger deadweight loss as

well as the larger share of total surplus accruing to producers.

The darker line shows the counterfactual where the ratio of IPOs to acquisitions stays constant after 1997.

Under this alternative scenario, the increase in the consumer surplus “gap” is significantly less pronounced,

leveling at 43.9% in 2017. This reflects a more muted increase in the deadweight loss, as well as a slight

decrease in the profit share of surplus.
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Figure 8: Consumer Surplus, % difference from Perfect Competition
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Figure Notes: The following figure plots the percentage difference in consumer surplus between

oligopolistic competition and perfect competition, between 1997 and 2017. The observed equi-

librium value (light line) is plotted against a counterfactual scenario (darker line) in which the

ratio of IPOs to startup acquisitions remains constant after 1997.

This counterfactual analysis suggests that the shift from IPOs to takeovers may have contributed at least

to some degree to the measured increase in oligopoly power. There are some caveats, of course. First, this

is just one of many factors that may have contributed – and it only offers a proximate explanation for the

increasing oligopoly power: my model is silent on the reasons why this shift from IPOs to acquisitions has

occurred in the first place20. It is also important to note that this counterfactual analysis should not be

interpreted as causal evidence.

That being said, these results do seem to align with a recent empirical literature that has focused on

the anti-competitive effects of startup acquisitions. Wollmann (2019), for example, argues that startup

acquisitions may have been used by large corporations to engage in what he calls stealth consolidation. The

idea is that the majority of startup acquisitions fall under the size threshold for mandatory merger review:

as a consequence, startup acquisitions rarely undergo merger review. Large companies may then be able to

use startup acquisitions to engage in monopolization with little risk of attracting antitrust scrutiny.

In another study, Cunningham, Ederer and Ma (2018) provide evidence from the pharmaceutical industry

of so-called killer acquisitions: specifically, they show that a significant share of startup acquisitions by drug-

makers results in the arrested development of startups’ drugs that might compete with the acquirers’ own.

20See Bowen, Frésard and Hoberg (2018) and Ewens and Farre-Mensa (2020) for a discussion of the potential causes.
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5. Robustness and Extensions

In this section, I investigate the robustness of my empirical analyses to a variety of assumptions; I propose

extensions to the model; and I discuss the limitations of this paper and potential follow-up work.

5.1. Private and Foreign Firms, Endogenous Entry

I verify that my baseline results are not sensitive to the inclusion of private and foreign firms. Based on the

aggregation result derived in Subsection 2.6, I am able to include non-Compustat companies in the model by

adding a representative firm that acts competitively and whose size reflects the endogenous entry and exit

of atomistic players. This representative firm is used to capture the economic activity of private and foreign

firms.

In order to implement this version of the model, I need to assume a cosine similarity between this

representative firm, which I label n + 1, and every other firm i = 1, 2, ..., n. I assume that the cosine

similarity between i and n+ 1 is simply equal to the average cosine similarity between i and every other firm

– formally:

a′ian+1 =
1

n− 1

∑
j 6=i

a′iaj (5.1)

My empirical results only change slightly as a consequence of this modification: corporate profits, as

a percentage of the surplus produced by public firms, increase from 49.5% in 1997 to 55% in 2017. The

deadweight loss increases is virtually unchanged.

To ensure that the approach of modeling non-Compustat firms as atomistic is valid, I investigate whether

Compustat becomes a much larger or smaller share of US GDP over time. I compute an estimate of the

value added by Compustat companies, and investigate how it changes over time as a percentage of corporate

business GDP (obtained from BLS NIPA tables). Reassuringly, I find that this percentage does not trend

(either positively or negatively) over the period considered: it is 46.8 in 1997 and 47.4 in 2017, with a

standard deviation of 5.9 percentage points over the period.

5.2. Fixed Costs and Capital

Thus far, I have defined aggregate profits (Π) and total surplus (W ) gross of fixed costs (F ). Next, I study

how Figures 4 and 5 change if we subtract F from Π and from W . In other words, I want to investigate

whether the higher economic profits are somehow justified by higher fixed costs.

In Appendix E, I reproduce both these figures, after redefining Π and W to be computed net of fixed

costs. By comparing Figures 4 and 5 with Figures 14 and 15, we can see that my core empirical results are

largely unaffected by how fixed costs are incorporated in the analysis. The most significant change in the

findings is that the profit share of surplus increases much more dramatically when fixed costs are subtracted:

from 11% in 1997 to 22% in 2017.

With regard to the estimation of fixed costs, there has been some debate in the literature about how

Selling, General & Administrative (SGA) costs should be treated from an accounting standpoint. This

item, as presented in Compustat, includes miscellaneous costs that are not directly linked to production (see

Traina, 2018). It also includes R&D expenditures.

While it is generally understood that these are not variable costs, it is also not entirely clear that this cost

item is simply overhead. Eisfeldt and Papanikolaou (2013) have argued that SGA partly embeds investments

in intangible capital, and therefore should not be treated as overhead but capitalized.
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Based on this argument, Peters and Taylor (2017) have developed a measure of intangible capital for

Compustat: they treat R&D expenditures, plus 30% of the remaining portion of SGA, as investment in

intangible capital. They then computed the firm-level intangible capital stock by applying a perpetual

inventory model. If we choose to capitalize, rather than expense, these putative investments in intangible

capital, we then obtain the following alternative measure of fixed costs:

fi = (SGAi − R&Di)× 0.7 + (PPEi + Intan.Capitali)×User CoC (5.2)

Changing the definition of fixed costs (by definition) does not affect my measurements in Figure 4, nor the

deadweight loss from Figure 5, because fixed costs do not enter these measures. It does, however, affect the

distance from the second-best (which is shown in Figure 5) as well as the analysis from Appendix E, which

I have discussed above. In the same Appendix, I show that my results are largely unaffected if intangible

investments are capitalized, rather than expensed.

5.3. Labor Supply Elasticity

Next, I investigate how my empirical results change if I assume a completely-inelastic labor supply function.

By definition, profit as a share of total surplus would be unchanged. The deadweight loss would instead

become the total surplus difference between the Cournot equilibrium and the Resource-Efficient counterfac-

tual, which we previously defined in Subsection 2.5. As can be seen in Table 1, this welfare difference is

smaller than the deadweight loss. Intuitively, this is because the labor supply (by definition) cannot respond

to the removal of the oligopolistic distortions.

I compute this alternative measure of the deadweight loss (the percentage difference in total surplus

between Cournot and Resource Efficient) over the period 1997-2017. I find that my core empirical results

carry through: the level of this “alternative” deadweight loss is 5.2% in 1997, and it increases to 7.9% by

2017. In other words, the level of the deadweight loss is lower if we assume a fixed labor supply (as should

be expected), but it increases more sharply (by half) over the 20-year period.

5.4. Multi-product Firms (Diversification vs. Differentiation)

Like most of the macroeconomics literature, this paper does not use product-level data on characteristics.

Hence, while the model does reasonably well in capturing measured variation in markups across firms (see

Appendix D), it cannot speak to how the market power of a firm varies across individual product markets

(say, how Apple’s market power in the smartphone industry may be higher or lower than in the personal

computer market). Nevertheless, given the extensive presence in Compustat of multi-product firms, it is

worth investigating what additional assumptions are required for my model to apply to multi-product firms.

Suppose that there are still n firms and k characteristics, but now the n firms produce a total of m ≥ n
products. The same product might be produced by multiple firms and the same firm may produce more

than one product. The vector of units produced for each good is now the m-dimensional vector y. Similarly

to matrix A in Section 2, matrix A1 transforms units of products into units of characteristics:

x = A1y (5.3)

Because firms are diversified, each firm now produces a basket of goods: instead of representing the number

of units produced of each product, the vector q now represents the number of baskets produced by each firm.
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The matrix A2 transforms the vector of quantity indices into units of products supplied:

y = A2q (5.4)

Now I put together the previous two equations. Letting A = A1A2, I have

x = A1y = A1A2q = Aq (5.5)

The identity above demonstrates how the linear-hedonic structure makes the model easily generalizable to

multi-product firms. The intuition is that, if the output of a firm i is not a single product, but rather a

basket of products, one can project the quantity index qi on the characteristics space either in two steps (by

projecting it first on goods and then on characteristics), or in one single step (using the composite projection

matrix A).

The limitation of this multi-product interpretation of the model is that, while firms can change their

supply qi, the vector ai must stay fixed. What this means is that while firms may produce more than one

product and can scale up or down the quantity of baskets produced, they must keep producing the products

in constant quantity ratios.

A different way of saying this is that the limitation of firm-level data is that it does not allow to study

the reallocation of resources within firms, but only across firms. This implies that my estimates of the

deadweight loss may be conservative: if firms have different degree of market power in different markets,

this will generate within-firm variation in markups. My model does not capture the additional welfare gains

that would be realized if the social planner could remove within-firm dispersion in markups.

It is important to emphasize that this limitation is not specific to this paper, but it is endemic in the

literature. While my linear demand specification does not fully address it, I claim that the GHL demand

system handles multi-product firms better than CES preferences.

Additionally, suppose that we had product or plant-level data (including similarity scores for individual

products), so that we may relax the assumption that A2 is fixed (firms can change output ratios among

products). The model would then need to account for the fact that different business units within the same

firm coordinate their supply decisions, similar to what merging/colluding firms do in the counterfactual from

equation (2.45). Hence, one argument for using firm-level data is that it is a tractable way of modeling

coordination of plants within the same firm.

Finally, it useful to ask how does diversification affect the measured intensity of competition across firms.

If, for example, firms became more diversified, would the model erroneously interpret the resulting change

in cosine similarity as an increase in market power? The answer to this question is it depends – i.e. the

effect of diversification of measured competition is ambiguous. It is possible to construct examples where

diversification leads to higher, lower, or unchanged cosine similarity. In Appendix I, I construct three such

examples to illustrate this argument.

5.5. Complements

Because the matrix Σ is non-negative by construction, the marginal utility from one unit of product j is

always non-increasing in qi - formally:

∂2S

∂qi∂qj
= −σij ≤ 0 ∀ i 6= j (5.6)

In light of equation (5.6), it is tempting to jump to the conclusion that all products are by construction
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substitutes and that no pair of products are complements. That conclusion is, however, incorrect.

To understand why, we need to recall the textbook definition of substitution and complementarity. Two

goods (i, j) are21:

Complements if
∂qi
∂pj

< 0 Substitutes if
∂qi
∂pj

> 0 (5.7)

We intuitively expect this derivative to have the opposite sign of that in equation (5.6). In the case of CES,

this intuition is correct. In the case of my model, however, this intuition fails. This is a consequence of the

fact that the cross-price demand elasticity depends on the inverted matrix (I + Σ)
−1

, not on Σ itself. If Σ

is not symmetric (here it is not) the off-diagonal elements of − (I + Σ)
−1

will generally include positive as

well as negative elements.22 This implies that, in the empirical implementation of the model, many producer

pairs are strategic complements.

For example, if we compute the vector of cross-price derivatives for car manufacturer General Motors

in 2017, we will find that it includes several negative elements (i.e. complements), mostly corresponding

to energy and consumer finance companies. This makes sense: intuitively, we expect higher oil prices, loan

rates or insurance premia to adversely affect the residual demand for cars.

Hence, despite the property of the model described by equation (5.6), my model does produce strategic

complementarity. Indeed, I argue that one of the strengths of the network Cournot model is its ability to

produce a rich competitive environment that includes complement goods.

5.6. Limitations and Future Work

This model (like every other model) has limitations and leaves out certain aspects of market power that

might be relevant to the current debate on antitrust policy.

For example, one important assumption that I make in my model (in order to preserve tractability) is that

all firms are final goods firms. In other words, input-output linkages between individual firms are not part of

the model. This might lead to underestimating the welfare costs of oligopoly, if input-output linkages result

in double marginalization. One interesting extension of the model would be to modify the firm’s production

function to allow firms to use other firm’s output as inputs. In order to take this extended model to the

data, granular input-output data on firm-to-firm relationships would be required.

Another important restriction of my model is that it treats the firms’ position in the product character-

istics space as fixed. The assumption that product characteristics are exogenous is standard in the demand

estimation literature (Berry et al., 1995; Nevo, 2001); however, it makes policy simulations less robust in

the long-run. This is because, given enough time, firms may be able to endogenously change their product

portfolios. Some recent work in the IO literature (see Fan, 2013; Wollmann, 2018) has considered endogenous

product characteristics. If product characteristics data can be obtained (HP only provide cosine similarities),

another interesting direction for future research is to generalize my model by endogenizing the firms’ position

in the characteristics space.

Finally, another force that is left out of this paper is labor market power. Concentration may lead not

only to oligopoly power in output markets: it may also lead to oligopsony in input markets. Because the

model that I presented does not speak to this channel, my estimates of income distribution and aggregate

21Usually, these derivatives refer to the Hicksian demand, to ensure that sign (∂qi/∂pj) = sign (∂qj/∂pi) (see Kreps, 2012,
section 11.6). This distinction can be ignored for my model, since the sign of this derivative is the same for the Marshallian
and the Hicksian demand.

22It is fairly easy to come up with examples. Consider for instance three goods (1,2,3) and three common characteristics (A,B,C).
If goods 1 and 3 load entirely on characteristic A and C respectively, and good 2 loads equally on all three characteristics,
then it can be verified that goods 1 and 3 are strategic complements.
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efficiency do not include the effects of the labor market power, which might also have increased over this

period.

With additional labor market data, it is definitely possible to apply the methods developed in this paper to

a labor market setting. Cosine similarities can easily be constructed for textual descriptions of job vacancies:

if we see labor input as a differentiated good, we can then develop and estimate a labor market version of

the model presented in Section 2. In Appendix J, I propose two ways of reframing my model to study labor

market power: the first considers workers’ monopoly power (workers with unique characteristics command

higher wages); the latter looks at oligopsony (firms that utilize unique inputs are able to charge higher

markups).

6. Conclusions

In this study, I have presented a new general equilibrium model of oligopolistic competition with hedonic

demand and differentiated products, with the objective of measuring the welfare consequences of rising

oligopoly in the United States from 1997 to 2017. To estimate my model, I used a data set (recently

developed by Hoberg and Phillips, 2016) of product cosine similarities that covers all public firms in the

United States on a yearly basis. Through the lens of my model, these similarity scores are used to retrieve

the cross-price elasticity of demand for every pair of publicly traded firms.

My measurements suggest that oligopoly has a considerable and growing effect on aggregate welfare. In

particular, I estimate that, if all publicly traded firms were to behave as atomistic competitors, the total

surplus produced by this set of companies would increase by 11 percentage points. Consumer welfare would

increase even more dramatically—it would more than double—as surplus would be largely reallocated from

producers to consumers. I find that a large share of the deadweight loss caused by oligopoly (7.7 percentage

points) can be attributed to resource misallocation—that is, a significant share of the deadweight losses

could theoretically be recovered by a benevolent social planner, even if we assumed labor to be inelastically

supplied.

I also find evidence that the deadweight losses increases significantly in the presence of collusion: consol-

idating firm ownership in the hands of one owner, who induces firms to coordinate, would depress aggregate

surplus by an additional 10 percentage points. Consumer surplus would drop even more, with a projected

decrease of about 38 percentage points. Overall, my analysis of firm-level data suggests that there is evidence

of sizable welfare distortions due to oligopoly power.

By mapping my model to firm-level data for every year between 1997 and 2017, I find that, while both the

profits earned by U.S. public corporations and the corresponding consumer surplus have increased over this

period, profits have increased at a significantly faster pace: consequently, the share of surplus appropriated

by firms in the form of profits has increased substantially (from 50% to 55.5%). Consistent with this finding, I

estimate that the welfare costs of oligopoly, computed as the percentage increase in surplus that is obtained

by moving to the competitive outcome, have increased (from 8.5% to 11%). Overall, my estimates are

consistent with the hypothesis that the observed secular trends in markups and concentration have resulted

in an increased welfare loss, particularly at the expense of the consumer.

The model also disentangle the role of two factors that have contributed to secular rise of markups

(previously documented by De Loecker, Eeckhout and Unger, 2020): productivity (adjusted for quality)

and product market centrality (which captures the availability of substitute products). The first drives the

reallocation of market shares towards high-markup firms, while the latter drives the within-firm growth

component. This finding provides a proximate explanation for the rise of markups, and imposes significant

constraints to theories that seek to provide a deep explanation: a credible theoretical account for the secular
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rise of markups should accommodate both of these forces.

The model allows me to compute a number of novel counterfactuals that are relevant to competition

policy, and to shed additional light on these ongoing trends. I have shown that a potential contributor to the

increased oligopoly power might lie in the secular decline in IPOs and the surge in takeovers of VC-backed

startups. Through the lens of my model, this shift can account for a large share of the increase in the

deadweight loss and in the producer share of surplus.

This paper contributes—both methodologically and empirically—to a growing literature in macroeco-

nomics and finance that is devoted to incorporating heterogeneity, imperfect competition and Industrial

Organization methods in general equilibrium models. In particular, it shows that combining firm financials

with measures of similarity based on natural-language processing of regulatory filings offers a promising av-

enue to model product differentiation and imperfect substitutability at the macroeconomic level: it affords

the opportunity to impose a less arbitrary structure on the degree of substitution across sectors and firms.

In addition to the theory contribution, this paper provides measurements that align with a growing body

of empirical work on rising market power (De Loecker, Eeckhout and Unger, 2020) and the anti-competitive

effects of startup acquisitions (Cunningham et al., 2018; Wollmann, 2019). One potential policy implication of

my findings is that startup takeovers may have significant anti-competitive effects at the aggregate level – even

if one takes the view that individual acquisitions have negligible impact. Because competition authorities are

much less likely to challenge these acquisitions than they are to oppose a merger between large incumbents,

these findings strengthen the case for increasing the antitrust oversight of these transactions.
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Online Appendices

Product Differentiation and Oligopoly:
a Network Approach

Bruno Pellegrino, UMD

A. Derivation of the Cournot Potential

In the Network Cournot model, each firm i chooses its own output level to maximize its own profit by taking

as given the output of every other firm:

q∗i = arg max
qi

π (qi; q̄−i) (A.1)

where q−i is the vector of output for every firm except i. The upper bar sign ·̄ indicates that i treats the

quantity supplied by other firms as fixed. The system of first order conditions for this problem is

0 = bi − ci − (2 + δi) qi − α
∑
j 6=i

(a′iaj) qj (A.2)

which can be expressed, in vector form, as:

0 = b− c− (2I + ∆) q−Σq̄ (A.3)

This system of reaction functions defines a vector field q (q̄) which represents the firms’ best response as a

function of every other firms’ strategy. To find the Cournot-Nash Equilibrium, we look for the fixed point

q∗ such that q = q̄ = q∗. Plugging this inside the equation above yields the first order condition that is

needed to maximize the potential function Φ (q):

0 = (b− c)− (2I + ∆ + Σ) q∗ (A.4)

which clarifies why the maximizer of the potential function solves the Network Cournot game. The potential

Φ (q) is then obtained as the solution to the following system of partial differential equations

∇Φ (q) = (b− c)− (2I + ∆ + Σ) q (A.5)

which equates the gradient of the potential function to the linear system of Cournot reaction functions.

The relationship between the potential and the Cournot-Nash equilibrium is represented graphically, for

the two-firm case, in Figure 9. The arrows represent the vector field defined by the firms’ reaction functions.

The potential function is defined to be the scalar-valued function whose gradient coincides with this vector

field. A game is a potential game if the vector field defined by the players’ reaction functions is a conservative

field - that is, if it is the gradient of some scalar function. We call that function the game’s potential.
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Figure 9: Graphing the Cournot Potential for the Two-firm Case
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B. Nash-Cournot Equilibrium and Network Centrality

In this appendix, I provide additional details on the relationship between equation (2.27), which describes

the equilibrium size of firms in my model, and the measures of network centrality developed by Katz (1953)

and Bonacich (1987), which are widely used in the social networks literature.

The game played by the firms from Section 2 is a linear quadratic game played over a weighted network.

Ballester, Calvó-Armengol and Zenou (2006, henceforth BCZ) show that players’ equilibrium actions and

payoffs in this class of games depends on their centrality in the network.

In the game played the firms that populate by model, the adjacency matrix of the network over which the

game is played, is given by the matrix (−Σ). This matrix appears in the quadratic term of all the welfare

functions (profits, total surplus and the Cournot potential).

Before discussing how the linkage extends to my model, I am going to formally define the metric of

centrality.

Definition 10 (Katz-Bonacich Centrality). For a weighted network with adjacency matrix G, we define the

vector of centralities f , with parameters (λ, z):

f (G;λ, z) : f = λG f + z (B.1)

= (I− λG)
−1

z

The Katz-Bonacich centrality is defined recursively: a node receives a higher centrality score the higher is

the centrality of the nodes it is connected to.

The Nash-Bonacich linkage extends to my model. Suppose there are constant returns to scale (∆ = 0):

then, the Cournot-Nash equilibrium allocation of the model presented in Section 2 (equation 2.27) can be

easily verified to coincide with the vector of Katz-Bonacich centralities, with parametrization
(

1
2 ,

1
2 (b− c)

)
:

qΦ ≡ f

(
−Σ;

1

2
,

1

2
(b− c)

)
(B.2)

The peculiarity of the Cournot game played by the firms in my model is that it is played over a negatively-

weighted network (the adjacency matrix is −Σ). The consequence is that the interpretation of qΦ as a

measure of centrality is reversed: a higher centrality actually reflects a more peripheral position in the

network with positive weights Σ.
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C. Independent Validation of the Hoberg & Phillips Dataset

In this appendix, I validate independently the text-based product similarity measures of Hoberg and Phillips

(2016). In the figure below I produce a graph similar to that of Figure 2, while coloring different nodes

according to the respective firm’s GIC economic sector. The figure shows that there is significant overlap

between the macro clusters of the network of product similarity and the broad GIC sectors. To produce this

visualization, the dimensionality of data has been reduced from 61,000 to 2; yet, the overlap is nonetheless

very clearly visible. The GIC sectors were not targeted in producing this graph.

Figure 10: Visualization of the product space (alternate coloring)
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D. Data and Calibration

D.1. Mapping to Data and Identification

I present in Table 2 the correspondence between model variables and actual data, with sources. In construct-

ing the dataset, I follow De Loecker, Eeckhout and Unger (2020, henceforth DEU) in excluding firms with

negative revenues or costs of goods sold, or negative gross margin (revenues less COGS).

I also follow DEU in the computation of the user cost of capital, which is equal to the federal funds rate

(FEDFUNDS from FRED), minus capital goods inflation (PIRIC from FRED), plus a combined depreciation

rate and risk premium set at 12%.

D.2. Calibrating the Cost Function

The firms’ variable cost function (in linear algebra notation) is:

hi = ciqi +
δi
2
q2
i (D.1)

We have seen in Section (3) how to recover the intercepts ci given the slopes δi. Calibrating the cost function

means calibrating the slopes δi. Recall that firms produce using the following quasi-Cobb-Douglas production

function:

qi = kθi · ` (hi) (D.2)

where ki is the capital input. Following De Loecker, Eeckhout and Unger (2020, henceforth DEU), who also

use Compustat data, I measure capital in Compustat as Property, Plant and Equipment). DEU estimate

the production function econometrically. I use DEU’s estimates to calibrate θ = 0.15.

Then it must be the case that ` (·) respects:

hi = `−1

(
qi
kθi

)
def
= c̃i

(
qi
kθi

)
+
δ̃

2

(
qi
kθi

)2

(D.3)

where, by definition:

ci =
c̃i
kθi

and δi =
δ̃

k2θ
i

(D.4)

I make the assumption that δ̃ is constant across firms and over time. Through this assumption, I am

reducing the dimensionality of the cost parameter vector to one
(
δ̃
)

. We can then rewrite equation (3.10) –

the markup of firm i – as a function of δ̃ and observables:

µi =

(
2k2θ
i + δ̃

)
· piqi

2k2θ
i · hi + δ̃ · piqi

(D.5)

where (piqi, hi, ki) are all obtained from Compustat.
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Table 2: Variable Definitions and Mapping to Compustat

Panel A: Observed Variables

Notation Concept Measurement

piqi Revenues Revenues

(source: Compustat)

hi Total Variable Costs Costs of Goods Sold

(source: Compustat)

fi Fixed Costs SGAi + Property Plant & Equipmenti ×User Cost of Capital

alternative measure: (SGAi − R&Di)× 0.7 + (Property Plant & Equipmenti + Intangible Capitali)×UCC

(source: Compustat, Federal Reserve Economic Data )

a′iaj Product Cosine Similarity Word cosine similarity in 10-K product description

(source:Hoberg and Phillips, 2016)

Panel B: Identified Variables

Notation Derived Variable Computation/Identification

qi Output =

√
πi

1 + δi/2

ci Marginal Cost Intercept = hi/qi − 1
2δiqi

b Demand Intercept = (2I + ∆ + Σ) q + c

V
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Figure 11: Revenue-Weighted Average Markup
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To calibrate δ̃, I target the markup estimates of De Loecker, Eeckhout and Unger (2020, DEU). Specifi-

cally, I calibrate δ̃ so that the model-inferred average markup matches exactly that estimated by DEU:

δ̃ : E


(

2k2θ
i + δ̃

)
· piqi

2k2θ
i · hi + δ̃ · piqi

 = E
(
µDEU
i

)
(D.6)

Following DEU, I weight markups by revenues in order to compute this average. While I can only estimate

my full model for the period 1997-2017, I can actually compute markups as far back as the 1950s, since the

identification of markups does not require HP’s product similarity data.

I use GMM to solve the moment equation (D.6). I pool data from the years preceding the rise in markups

that was documented by DEU (1957-1982). This implies that only the long-term average markup before

1982 is targeted (not the time trend). The rationale for this approach is that I can then test the assumption

that δ̃ is stable over time by evaluating whether the δ̃ calibrated before 1982 allows to capture the rise of

markups that is observed after 1982. I obtain δ̃ = 6.3.
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Figure 12: Markups: Model vs. DEU Estimates
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D.3. Non-Targeted Moments (Model Fit)

For the model to realistically capture the deadweight losses from oligopoly it should generate meaningful

time-series and cross-sectional variation in markups. Moreover, we would expect the model-implied markups

to correlate with existing econometric estimates (for the Compustat universe, the benchmark would be DEU).

I look at non-targeted moments of the distribution of markups to evaluate the empirical performance

of the model. The first non-targeted moment is the time-series correlation between the revenue-weighted

average markup (µi) from my model and the corresponding estimate by DEU, outside of the calibration

window (1983-2017). Figure 11 plots the two series. The navy line is the average markup based on my

model. The light blue line is the series computed by DEU.

While only the average markup over 1957-1982 was targeted to calibrate δ̃, the model-implied average

markup tracks closely the time trend of the average markup of DEU after 1982.

Next, I examine how much cross-sectional variation in markups the model is able to generate. One major

limitation of current general equilibrium models with market power is that the cross-sectional variation in

markups that they can endogenously generate is nowhere close to that estimated by DEU.

In Figure 12, I plot the cross-section of markups obtained from the model against DEU’s estimates. Both

axes use a log scale. I include data from 1997, 2007 and 2017. As in DEU, I weight observations by revenue

(weights are represented by circle sizes). On the one hand, it is fairly evident from the graph that there is

more variation in the markups estimated by DEU than in the model-based estimates: the range is wider

and the fitted regression slope (the dotted black line) is larger than one. On the other hand, I find that my

model-based estimates capture a remarkable 77% of the cross-sectional variation in markups (as measured
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Figure 13: Calibrated Elasticities vs. Microeconometric Estimates
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by the R-squared of a regression where the slope is constrained to one23).

Another important question from the point of view of model fit is how well my model-based estimates of

the cross-price elasticity of demand correlate with the corresponding microeconometric estimates that were

used to calibrate the parameter α. To this end, notice that equation (3.12) can be rearranged as:

log

∣∣∣∣∂ log pi
∂ log qj

∣∣∣∣ ≈ logα+ log

(
a′iaj

qj
pi

)
(D.7)

23If we don’t constrain the coefficient to one, the R2 increases to 83%.
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where we use the symbol ≈ to denote the fact that measurement error contaminates what should be a

linear-in-logs relationship.

By calibrating α, I was only able to choose the intercept of this linear relationship, not the slope nor the

correlation. I will use the (untargeted) slope and the goodness-of-fit of equation (D.7) to evaluate the model

fit.

In Figure 13, I plot the relationship between the microeconometric estimates (the left side of equation

D.7) and the model-based estimates that use the calibrated value of α, together with the 45 degree line (the

predicted slope) and a linear regression line. Each observation is a firm pair (i, j) and the labels reflect the

industry study from whom the microeconometric estimates are sourced.

Despite the fact that we cannot affect the slope of the relationship by calibrating α, the slope of the

linear fit between the two variables is statistically indistinguishable from one, and there is a strong positive

correlation between the two series. The R2 is 32%, which is particularly high if we consider that the

microeconometric estimates were obtained by the respective authors using different assumptions about the

underlying demand system, as well as different econometric methodologies.
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E. Accounting for Fixed Costs and Intangible Capital

Figure 14: Replication of Figure 4, using Surplus net of Fixed Costs
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Figure 15: Replication of Figure 5, using Surplus net of Fixed Costs
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In this appendix, I replicate Figures 4 and 5 using a different definition of aggregate profits, which is computed

net of fixed costs. All results described in the main body of the paper are strengthened if we detract fixed

costs. This suggests that fixed costs are not driving the measured increase in oligopoly power.
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Figure 16: Replication of Figure 4, using Surplus net of Fixed Costs (Alternate Measure)
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Figure 17: Replication of Figure 5, using Surplus net of Fixed Costs (Alternate Measure)
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Figures 16 and 17 repeat this exercise using the alternate measure of fixed costs described in equation

(5.2) (in which intangible investments are capitalized rather than expensed).

XII



F. Bertrand Competition

In this Appendix I derive the equilibrium of the Bertrand counterpart of the Network Cournot game played

by the oligopolists in the Model from Section 2. I focus on the special case of flat marginal cost – that is

∆ = diag (0) (the case with non-flat marginal cost is less tractable). I start by writing the vector of economic

profits in terms of the price vector p:

π = diag (p− c) (I + Σ)
−1

(b− p) (F.1)

Now let D and O be, respectively, the matrices containing the diagonal and off-diagonal elements of (I + Σ)
−1

so that:

(I + Σ)
−1

= D + O (F.2)

Then we can write:

π = diag (p− c) [D (b− p) + O (b− p̄)] (F.3)

and take the first order condition firm-by-firm by taking the price vector of other firms (denoted by the

upper bar as in Appendix A) as given:

0 = D (b− 2p) + O (b− p)− D c (F.4)

which we can re-write in terms of q as:

0 = b− c−
(
D−1 + I + Σ

)
q (F.5)

the corresponding Bertrand potential is

ΦB = q′ (b− c)− 1

2
q′
(
I + D−1 + Σ

)
q (F.6)

and the Bertrand equilibrium is:

qB =
(
I + D−1 + Σ

)−1
(b− c) (F.7)

Compare this with the Cournot Equilibrium (flat marginal cost):

qΦ = (2I + Σ)
−1

(b− c) (F.8)

and perfect competition:

qW = (I + Σ)
−1

(b− c) (F.9)

because D−1 is a diagonal matrix whose diagonal components are between zero and one, we can see how

Bertrand is a more “intense” form of competition than Cournot.
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G. Further discussion of the GHL demand system

In this Appendix, I discuss more in depth how the GHL demand system introduced in this paper relates to

other demand systems already encountered in the literature.

At a very basic level, GHL can be thought of as the hedonic, discrete counterpart of a type of preference

aggregator that is already widely used in macroeconomics, trade, and industrial organization (see for example

Asplund and Nocke 2006; Foster, Haltiwanger and Syverson 2008; Melitz and Ottaviano 2008):

U (q) = q0 + α

∫
i∈I

qi di− η

2

(∫
i∈I

qi di

)2

− γ

2

∫
i∈I

q2
i di (G.1)

These linear-quadratic aggregators are frequently encountered in models with variable markups. My hedonic

demand specification adds to this setup the following three features: 1) granular firms; 2) asymmetry in the

degree of substitutability between different firm pairs; 3) the ability interpret the cross derivatives of the

demand system in terms of product similarity.

Hedonic demand is something that I adopt from empirical industrial organization (see for example Berry,

Levinsohn and Pakes, 1995). There are two main points of departure between GHL and standard IO demand

models: the first is that the typical IO demand system is derived from a discrete choice model at the level of

the individual consumer: it is obvious why, in a macroeconomics setting, with multiple products, it would

be inappropriate to start from a discrete choice model (the consumer would have to choose either cars or

laptops). The second difference is the functional form, which is linear instead of logit.

A key motivation for using linear demand as opposed to the widely-used CES aggregator is the ability

of linear demand to produce heterogeneous markups. The reason why this is a desirable feature is that

homogeneous markups, a feature of CES preferences, imply allocative efficiency (Dhingra and Morrow, 2019).

While CES preferences have a number of desirable properties (such as the ability aggregate the output of

firms with Pareto-distributed productivity), they become hard to rationalize within the context of this paper,

not just empirically but also theoretically. If we try, for example, to write the isoelastic counterpart to the

demand system in equation (2.21)

log p = b− (I + Σ) log q (G.2)

and derive the utility specification that generates it, we find that it will generally fail to satisfy the conditions

for integrability, unless we impose the assumption that σij = 0 ∀ ij, which would make the model trivial. A

more intuitive way to rephrase this mathematical fact is that in order to model the cross-price derivatives of

the demand system in terms of product cosine similarities, we need a model with variable markups.
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H. Additional Details on the “Constant IPO Ratio” Counterfactual

In this appendix, I provide additional details on how I implement the “constant IPO ratio” counterfactual.

Without loss of generality, consider “spawning” (N1 − 1) additional firms that are identical to firm 1, except

for the idiosyncratic characteristic. The profit and total surplus functions for each of these firms is:

π1 = (b1 − c1) q1 −
(

1 +
δ1
2

)
q2
1 − α (Q1 − q1) q1 − α

∑
j 6=1

(a′1aj) q1qj (H.1)

w1 = (b1 − c1) q1 −
1

2
(1 + δ1) q2

1 −
α

2
(Q1 − q1) q1 −

α

2

∑
j 6=1

(a′1aj) q1qj (H.2)

The first order condition is:

0 = b1 − c1 − (2 + δ1) q1 − α (Q1 − q1)− α
∑
j 6=1

(a′1aj) qj (H.3)

where Q1 is the joint output of all the N1 resulting entities, and q1 is the output of the individual firm.

Because the child companies are all identical, in equilibrium they must produce the same quantity, therefore

q1 = 1
NQ1 . We can then re-arrange:

0 = b1 − c1 −
2 + δ1 + α (N1 − 1)

N1
Q1 −

∑
j 6=1

σ1jqj (H.4)

re-labelling Q1 as q1 we obtain this new set of first order conditions

0 = b− c−

[
2+δ1+α(N1−1)

N q1

(2I + ∆2) q2

]
−Σq (H.5)

where q1 is no longer the output of the individual company of type 1 but the joint output of all the type-1

companies. The new Cournot equilibrium allocation maximizes the following modified potential:

Φ (q) = q′ (b− c)− 1

2
q′

[
2+δ1+α(N−1)

N 0

0 (2I + ∆2)

]
q− 1

2
q′Σ q (H.6)

The maximizer of Φ (q), which corresponds to the post-breakup equilibrium allocation, is

qΦ =

([
2+δ1+α(N−1)

N 0

0 (2I + ∆2)

]
q + Σ

)−1

(b− c) (H.7)

The total surplus and aggregate profit function have to be modified accordingly:

Π (q) = q′ (b− c)− q′

[
1+ 1

2 δ1+α(N−1)

N 0

0 I + 1
2∆2

]
q− q′Σ q (H.8)

W (q) = q′ (b− c)− 1

2
q′

[
1+δ1+α(N−1)

N 0

0 (I + ∆2)

]
q− 1

2
q′Σ q (H.9)
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I. Differentiation and diversification: three examples

In this Appendix, I provide three simple numerical examples that illustrate how diversification could be

associated, in the model, with decreasing, unchanged, or increasing competition. The direction of the effect

clearly depends on whether cosine similarity increases, decreases or remains unchanged as a consequence of

diversification.

I.1. Example 1: Similarity unaffected by diversification

Let us consider the example of two companies – say Apple and Samsung – that start by producing perfectly-

substitutable computers (hence they compete fiercely) and then later diversify into producing mobile phones

that are also perfectly-substitutable (this implies that there are no idiosyncratic characteristics, or α → 0).

Quantitatively

Apple Samsung

↓ ↓

A2 =

[
1

0

1

0

]
←
←

Computers

Mobile Phones

(I.1)

after diversification occurs, this matrix becomes:

Ã2 =

[ √
.5
√
.5√

.5
√
.5

]
(I.2)

It can be easily verified that, for any matrix A1 such that the columns of A = A1A2 have unit length (that

is, regardless of how substitutable computers and mobile phones are):

Ã′2A
′
1A1Ã2 = A′2A

′
1A1A2 = A′A =

[
1 1

1 1

]
(I.3)

by computing the (I + Σ)
−1

as α→ 0 (no common characteristics) we find that the derivatives:

lim
α→0

(
−∂qi
∂pi

)
= lim

α→0

(
∂qi
∂pj 6=i

)
= ∞ (I.4)

hence, as long as Apple and Samsung diversify symmetrically (as measured by the change from A2 to Ã2)

the model captures the fact that Apple and Samsung behave as perfect substitutes both before and after the

change.

I.2. Example 2: Diversification reduces similarity

Next, consider a scenario in which only Samsung diversifies into mobile phones:

Ã2 =

[
1
√
.5

0
√
.5

]
(I.5)

and suppose, for simplicity, that A1 is equal to an identity matrix (hence there is no substitution between

computers and phones). The derivative of qSamsung with respect to pApple is 1.41, indicating that Apple and

Samsung are no longer perfect substitutes from the point of view of the model.
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This is not an accurate representation of the elasticities at the product level. However, we must be mindful

that what the model takes as inputs are not product-level revenues and costs, but firm-level revenues and

costs. When Apple raises computer prices, only the computer part of Samsung’s product portfolio reacts to

that price change.

Clearly, the ideal scenario would be to estimate the model at the product level. Lacking product-level

data, I argue that it is appropriate to treat products Apple and Samsung as imperfect substitutes. If we

treated Apple and Samsung as perfect substitutes after this diversification has occurred, we would be making

the implicit assumption that Apple computers are perfect substitutes to Samsung phones.

In sum, in the example considered above, treating differentiated firms as imperfect substitutes is less-

than-ideal. It is, however, still preferable to the alternative, which is to treat them as perfect substitutes

while only being able to observe firm-level data.

I.3. Example 3: Diversification increases similarity

Finally, consider a scenario where, initially, Apple produces “mostly” computers and Samsung produces

“mostly” phones. We continue to assume that all phones are perfect substitutes and that the same is true

for computers. Also, phones do not interact strategically with computers. The two companies then become

more diversified, with equal weight being applied to computers and phones:

A2 =

[ √
8
√
.2√

.2
√
.8

]
Ã2 =

[ √
.5
√
.5√

.5
√
.5

]
(I.6)

In this case, the model initially sees the two companies as imperfect substitutes, although their products

are, in each market, perfectly substitutable. After the product loadings are equalized, the cosine similarity

between Apple and Samsung increases, and the two companies become eventually perfect substitutes in the

model.
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J. Labor Market Applications/Extensions

In this Appendix, I explore two labor-market applications of the linear-quadratic framework. The first is a

model of skill worker monopoly: workers that have a unique set of skills (that are unlike other workers) are

able to command higher wages. The second is a model of monopsony: firms that use inputs or labor markets

not used by other firms are able to charge larger unit margins.

J.1. Worker Skill Monopoly

There are k types of workers. Each type is endowed with a unit of labor. There are n firms indexed by i

that produce a homogeneous good (whose price is normalized to one) and act as price takers. They produce

output qi using a quadratic production function:

qi = s′ibi −
1

2
s′isi (J.1)

where si is the vector of skill units that depend on the vector of labor units hi hired:

si = Ahi (J.2)

As in the model from Section 2, the matrix A transforms labor units into skill units, and ‖ai‖ = 1. Hence

qi = h′iA
′bi −

1

2
h′iA

′Ahi (J.3)

The optimality condition for firm i is that the marginal revenue product of each type of labor is equal to the

corresponding wage

MRPLi = A′bi −A′Ahi = w (J.4)

The labor demand for firm i is:

hi = (A′A)
−1

(A′bi −w) (J.5)

Summing across firms and defining b =
∑
i A
′bi

1 = (A′A)
−1

(b− nw) (J.6)

Hence j’s equilibrium wage is equal to the marginal revenue product of the first hour (bj) less the average

cosine similarity of j to every other worker:

wj = bj −
1

n

k∑
m=1

a′jam (J.7)
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J.2. Monopsony

There are k types of workers and n firms indexed by i that act as price-takers in goods markets and face

output price vector p. The firms produce using a Leontief production function, so that the following vector

of labor inputs h is required in order to produce output vector q:

h = Tq (J.8)

Each dimension of h is a worker and each dimension of q is a firm. Once again, we normalize ‖ti‖ = 1.

Assume that the labor supply function is linear, so that i’s wage is:

wi = λihi (J.9)

The total cost of firm i is equal to

TCi =
∑
j

wjxij = qi
∑
j

wjtji = λiqi
∑
j

∑
i

qjtijtji (J.10)

We can then write the vector of profit as:

π = diag (q) p−Λ · diag (q) T′Tq (J.11)

where

Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 (J.12)

Firms compete on quantity, taking the output of all other firms as given. The potential function is:

Φ (q) = q′p−Λ · q (I + T′T) q (J.13)

Taking the first order condition we find the Nash equilibrium. It is once again a measure of centrality - this

time in the input/technological space:

qΦ = (I + ΛT′T)
−1

p (J.14)

Because qi is proportional to the unit margin, one implication of the equation above is that firms that

use labor not used by other firms have monopsony power in those labor markets.
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K. Proofs and Derivations

Proof to Proposition 2. To prove the proposition we use the fact that, at the Cournot equilibrium, the

following two relationships hold:

πi =

(
1 +

δi
2

)
q2
i and si =

1

2

q2
i+
∑
j 6=i

σijqiqj

 (K.1)

then:
πi
si

=

(
1 + δi

2

)
· q2
i

1

2
· qi

(
qi+

∑
j 6=i

σijqj

) = (2 + δi) ·
qi

qi+
∑
j 6=i

σijqi
≡ (2 + δi) · ωi (K.2)

Proof to Lemma 1. To simulate a merger (or a collusion), we sum the first rows of the profit function that

correspond to the merging firms:[
Π1

π2

]
=

[
q′1
Q2

][
b− c1

b− c2

]
−

[
q1

Q2

]′ [ (
I + 1

2∆1

)
q1(

I + 1
2∆2

)
q2

]
−

[
q1

Q2

]′ [
Σ11 Σ12

Σ21 Σ22

][
q1

q2

]
(K.3)

where

Q2
def
= diag (q2) (K.4)

I have partitioned the profits vector into a scalar Π1, which collects the joint profits of the new entity, and

vector π2, in which I stack the profits of all the other companies that are not included in the merger. If there

are n firms and two of them are merging, this is a (n− 1) dimensional column vector. The system of first

order condition solved by the surviving firms is:[
0

0

]
=

[
b− c1

b− c2

]
−

[
(2 + δ1) q1

(2I + ∆2) q2

]
−

[
2 · Σ11 Σ12

Σ21 Σ22

][
q1

q̄2

]
(K.5)

Proof to Proposition 4. An atomistic firm z has the following cost function:

h (z) =
q2 (z)

2z
(K.6)

Let pn+1 be the price of the good sold by the atomistic firms (recall we assumed they produce a homogeneous

product). Because firms behave competitively and price at marginal cost, it must be the case that:

q (z) = pn+1 · z (K.7)
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hence labor supply and profits are given by:

h (z) =
p2
n+1

2
· z; π (z) =

p2
n+1

2
· z (K.8)

Because the atomistic firms pay an entry cost of one unit of labor, the productivity cutoff for entry, which

we call zmin, is given by:

1 =
p2
n+1

2
· zmin (K.9)

Let us now compute aggregate output and aggregate labor

qn+1 =
∫∞
zmin

q (z) dF (z) = pn+1

∫∞
zmin

z · f (z) dz =
√

2
zmin

∫∞
zmin

β−1
zβ

dz =
√

2z
1
2−β
min

hn+1 =
∫∞
zmin

h (z) dF (z) =
p2n+1

4

∫∞
zmin

z · f (z) dz = 1
zmin

∫∞
zmin

β−1
zβ

dz = z−βmin

(K.10)

By writing the productivity cutoff zmin in terms of aggregate output qn+1 and plugging it in the expression

for aggregate cost hn+1, we find the aggregate cost function:

hn+1 =

[(
qn+1√

2

) 1
1
2
−β

](−β)

=

(
qn+1√

2

) 2β
2β−1

(K.11)

by taking the limit β → 1+, we can see that the expression above converges to the quadratic form:

hn+1 =
q2
n+1

2
(K.12)

Proof to Lemma 3. The markup is equal to:

µi =
pi

MCi
=

pi
ci + δqi

=
piqi

ciqi + δq2
i

=
piqi

hi + δ
2q

2
i

(K.13)

we can then use the fact that πi = (1 + δi/2) q2
i = (piqi − hi) to write:

µi =
piqi

hi + δ
2(1+δi/2)πi

=
(2 + δi) piqi

(2 + δi)hi + δiπi
=

(2 + δi) piqi
2 · hi + δipiqi

(K.14)
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